u-boot/drivers/net/dc2114x.c
Ben Warren 8ca0b3f99c Moved initialization of TULIP Ethernet controller to board_eth_init()
Affected boards:
	cu824
	bab7xx
	adciop
	dasa_sim
	mousse
	mpc8540eval
	musenki
	mvblue
	pcippc2/pcippc6
	sbc8240
	stxssa

Removed initialization of the driver from net/eth.c

Signed-off-by: Ben Warren <biggerbadderben@gmail.com>
2008-09-02 21:18:18 -07:00

766 lines
20 KiB
C

/*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <malloc.h>
#include <net.h>
#include <netdev.h>
#include <pci.h>
#undef DEBUG_SROM
#undef DEBUG_SROM2
#undef UPDATE_SROM
/* PCI Registers.
*/
#define PCI_CFDA_PSM 0x43
#define CFRV_RN 0x000000f0 /* Revision Number */
#define WAKEUP 0x00 /* Power Saving Wakeup */
#define SLEEP 0x80 /* Power Saving Sleep Mode */
#define DC2114x_BRK 0x0020 /* CFRV break between DC21142 & DC21143 */
/* Ethernet chip registers.
*/
#define DE4X5_BMR 0x000 /* Bus Mode Register */
#define DE4X5_TPD 0x008 /* Transmit Poll Demand Reg */
#define DE4X5_RRBA 0x018 /* RX Ring Base Address Reg */
#define DE4X5_TRBA 0x020 /* TX Ring Base Address Reg */
#define DE4X5_STS 0x028 /* Status Register */
#define DE4X5_OMR 0x030 /* Operation Mode Register */
#define DE4X5_SICR 0x068 /* SIA Connectivity Register */
#define DE4X5_APROM 0x048 /* Ethernet Address PROM */
/* Register bits.
*/
#define BMR_SWR 0x00000001 /* Software Reset */
#define STS_TS 0x00700000 /* Transmit Process State */
#define STS_RS 0x000e0000 /* Receive Process State */
#define OMR_ST 0x00002000 /* Start/Stop Transmission Command */
#define OMR_SR 0x00000002 /* Start/Stop Receive */
#define OMR_PS 0x00040000 /* Port Select */
#define OMR_SDP 0x02000000 /* SD Polarity - MUST BE ASSERTED */
#define OMR_PM 0x00000080 /* Pass All Multicast */
/* Descriptor bits.
*/
#define R_OWN 0x80000000 /* Own Bit */
#define RD_RER 0x02000000 /* Receive End Of Ring */
#define RD_LS 0x00000100 /* Last Descriptor */
#define RD_ES 0x00008000 /* Error Summary */
#define TD_TER 0x02000000 /* Transmit End Of Ring */
#define T_OWN 0x80000000 /* Own Bit */
#define TD_LS 0x40000000 /* Last Segment */
#define TD_FS 0x20000000 /* First Segment */
#define TD_ES 0x00008000 /* Error Summary */
#define TD_SET 0x08000000 /* Setup Packet */
/* The EEPROM commands include the alway-set leading bit. */
#define SROM_WRITE_CMD 5
#define SROM_READ_CMD 6
#define SROM_ERASE_CMD 7
#define SROM_HWADD 0x0014 /* Hardware Address offset in SROM */
#define SROM_RD 0x00004000 /* Read from Boot ROM */
#define EE_DATA_WRITE 0x04 /* EEPROM chip data in. */
#define EE_WRITE_0 0x4801
#define EE_WRITE_1 0x4805
#define EE_DATA_READ 0x08 /* EEPROM chip data out. */
#define SROM_SR 0x00000800 /* Select Serial ROM when set */
#define DT_IN 0x00000004 /* Serial Data In */
#define DT_CLK 0x00000002 /* Serial ROM Clock */
#define DT_CS 0x00000001 /* Serial ROM Chip Select */
#define POLL_DEMAND 1
#ifdef CONFIG_TULIP_FIX_DAVICOM
#define RESET_DM9102(dev) {\
unsigned long i;\
i=INL(dev, 0x0);\
udelay(1000);\
OUTL(dev, i | BMR_SWR, DE4X5_BMR);\
udelay(1000);\
}
#else
#define RESET_DE4X5(dev) {\
int i;\
i=INL(dev, DE4X5_BMR);\
udelay(1000);\
OUTL(dev, i | BMR_SWR, DE4X5_BMR);\
udelay(1000);\
OUTL(dev, i, DE4X5_BMR);\
udelay(1000);\
for (i=0;i<5;i++) {INL(dev, DE4X5_BMR); udelay(10000);}\
udelay(1000);\
}
#endif
#define START_DE4X5(dev) {\
s32 omr; \
omr = INL(dev, DE4X5_OMR);\
omr |= OMR_ST | OMR_SR;\
OUTL(dev, omr, DE4X5_OMR); /* Enable the TX and/or RX */\
}
#define STOP_DE4X5(dev) {\
s32 omr; \
omr = INL(dev, DE4X5_OMR);\
omr &= ~(OMR_ST|OMR_SR);\
OUTL(dev, omr, DE4X5_OMR); /* Disable the TX and/or RX */ \
}
#define NUM_RX_DESC PKTBUFSRX
#ifndef CONFIG_TULIP_FIX_DAVICOM
#define NUM_TX_DESC 1 /* Number of TX descriptors */
#else
#define NUM_TX_DESC 4
#endif
#define RX_BUFF_SZ PKTSIZE_ALIGN
#define TOUT_LOOP 1000000
#define SETUP_FRAME_LEN 192
#define ETH_ALEN 6
struct de4x5_desc {
volatile s32 status;
u32 des1;
u32 buf;
u32 next;
};
static struct de4x5_desc rx_ring[NUM_RX_DESC] __attribute__ ((aligned(32))); /* RX descriptor ring */
static struct de4x5_desc tx_ring[NUM_TX_DESC] __attribute__ ((aligned(32))); /* TX descriptor ring */
static int rx_new; /* RX descriptor ring pointer */
static int tx_new; /* TX descriptor ring pointer */
static char rxRingSize;
static char txRingSize;
#if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
static void sendto_srom(struct eth_device* dev, u_int command, u_long addr);
static int getfrom_srom(struct eth_device* dev, u_long addr);
static int do_eeprom_cmd(struct eth_device *dev, u_long ioaddr,int cmd,int cmd_len);
static int do_read_eeprom(struct eth_device *dev,u_long ioaddr,int location,int addr_len);
#endif /* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
#ifdef UPDATE_SROM
static int write_srom(struct eth_device *dev, u_long ioaddr, int index, int new_value);
static void update_srom(struct eth_device *dev, bd_t *bis);
#endif
#ifndef CONFIG_TULIP_FIX_DAVICOM
static int read_srom(struct eth_device *dev, u_long ioaddr, int index);
static void read_hw_addr(struct eth_device* dev, bd_t * bis);
#endif /* CONFIG_TULIP_FIX_DAVICOM */
static void send_setup_frame(struct eth_device* dev, bd_t * bis);
static int dc21x4x_init(struct eth_device* dev, bd_t* bis);
static int dc21x4x_send(struct eth_device* dev, volatile void *packet, int length);
static int dc21x4x_recv(struct eth_device* dev);
static void dc21x4x_halt(struct eth_device* dev);
#ifdef CONFIG_TULIP_SELECT_MEDIA
extern void dc21x4x_select_media(struct eth_device* dev);
#endif
#if defined(CONFIG_E500)
#define phys_to_bus(a) (a)
#else
#define phys_to_bus(a) pci_phys_to_mem((pci_dev_t)dev->priv, a)
#endif
static int INL(struct eth_device* dev, u_long addr)
{
return le32_to_cpu(*(volatile u_long *)(addr + dev->iobase));
}
static void OUTL(struct eth_device* dev, int command, u_long addr)
{
*(volatile u_long *)(addr + dev->iobase) = cpu_to_le32(command);
}
static struct pci_device_id supported[] = {
{ PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_FAST },
{ PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_21142 },
#ifdef CONFIG_TULIP_FIX_DAVICOM
{ PCI_VENDOR_ID_DAVICOM, PCI_DEVICE_ID_DAVICOM_DM9102A },
#endif
{ }
};
int dc21x4x_initialize(bd_t *bis)
{
int idx=0;
int card_number = 0;
unsigned int cfrv;
unsigned char timer;
pci_dev_t devbusfn;
unsigned int iobase;
unsigned short status;
struct eth_device* dev;
while(1) {
devbusfn = pci_find_devices(supported, idx++);
if (devbusfn == -1) {
break;
}
/* Get the chip configuration revision register. */
pci_read_config_dword(devbusfn, PCI_REVISION_ID, &cfrv);
#ifndef CONFIG_TULIP_FIX_DAVICOM
if ((cfrv & CFRV_RN) < DC2114x_BRK ) {
printf("Error: The chip is not DC21143.\n");
continue;
}
#endif
pci_read_config_word(devbusfn, PCI_COMMAND, &status);
status |=
#ifdef CONFIG_TULIP_USE_IO
PCI_COMMAND_IO |
#else
PCI_COMMAND_MEMORY |
#endif
PCI_COMMAND_MASTER;
pci_write_config_word(devbusfn, PCI_COMMAND, status);
pci_read_config_word(devbusfn, PCI_COMMAND, &status);
if (!(status & PCI_COMMAND_IO)) {
printf("Error: Can not enable I/O access.\n");
continue;
}
if (!(status & PCI_COMMAND_IO)) {
printf("Error: Can not enable I/O access.\n");
continue;
}
if (!(status & PCI_COMMAND_MASTER)) {
printf("Error: Can not enable Bus Mastering.\n");
continue;
}
/* Check the latency timer for values >= 0x60. */
pci_read_config_byte(devbusfn, PCI_LATENCY_TIMER, &timer);
if (timer < 0x60) {
pci_write_config_byte(devbusfn, PCI_LATENCY_TIMER, 0x60);
}
#ifdef CONFIG_TULIP_USE_IO
/* read BAR for memory space access */
pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_0, &iobase);
iobase &= PCI_BASE_ADDRESS_IO_MASK;
#else
/* read BAR for memory space access */
pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_1, &iobase);
iobase &= PCI_BASE_ADDRESS_MEM_MASK;
#endif
debug ("dc21x4x: DEC 21142 PCI Device @0x%x\n", iobase);
dev = (struct eth_device*) malloc(sizeof *dev);
#ifdef CONFIG_TULIP_FIX_DAVICOM
sprintf(dev->name, "Davicom#%d", card_number);
#else
sprintf(dev->name, "dc21x4x#%d", card_number);
#endif
#ifdef CONFIG_TULIP_USE_IO
dev->iobase = pci_io_to_phys(devbusfn, iobase);
#else
dev->iobase = pci_mem_to_phys(devbusfn, iobase);
#endif
dev->priv = (void*) devbusfn;
dev->init = dc21x4x_init;
dev->halt = dc21x4x_halt;
dev->send = dc21x4x_send;
dev->recv = dc21x4x_recv;
/* Ensure we're not sleeping. */
pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP);
udelay(10 * 1000);
#ifndef CONFIG_TULIP_FIX_DAVICOM
read_hw_addr(dev, bis);
#endif
eth_register(dev);
card_number++;
}
return card_number;
}
static int dc21x4x_init(struct eth_device* dev, bd_t* bis)
{
int i;
int devbusfn = (int) dev->priv;
/* Ensure we're not sleeping. */
pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP);
#ifdef CONFIG_TULIP_FIX_DAVICOM
RESET_DM9102(dev);
#else
RESET_DE4X5(dev);
#endif
if ((INL(dev, DE4X5_STS) & (STS_TS | STS_RS)) != 0) {
printf("Error: Cannot reset ethernet controller.\n");
return -1;
}
#ifdef CONFIG_TULIP_SELECT_MEDIA
dc21x4x_select_media(dev);
#else
OUTL(dev, OMR_SDP | OMR_PS | OMR_PM, DE4X5_OMR);
#endif
for (i = 0; i < NUM_RX_DESC; i++) {
rx_ring[i].status = cpu_to_le32(R_OWN);
rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
rx_ring[i].buf = cpu_to_le32(phys_to_bus((u32) NetRxPackets[i]));
#ifdef CONFIG_TULIP_FIX_DAVICOM
rx_ring[i].next = cpu_to_le32(phys_to_bus((u32) &rx_ring[(i+1) % NUM_RX_DESC]));
#else
rx_ring[i].next = 0;
#endif
}
for (i=0; i < NUM_TX_DESC; i++) {
tx_ring[i].status = 0;
tx_ring[i].des1 = 0;
tx_ring[i].buf = 0;
#ifdef CONFIG_TULIP_FIX_DAVICOM
tx_ring[i].next = cpu_to_le32(phys_to_bus((u32) &tx_ring[(i+1) % NUM_TX_DESC]));
#else
tx_ring[i].next = 0;
#endif
}
rxRingSize = NUM_RX_DESC;
txRingSize = NUM_TX_DESC;
/* Write the end of list marker to the descriptor lists. */
rx_ring[rxRingSize - 1].des1 |= cpu_to_le32(RD_RER);
tx_ring[txRingSize - 1].des1 |= cpu_to_le32(TD_TER);
/* Tell the adapter where the TX/RX rings are located. */
OUTL(dev, phys_to_bus((u32) &rx_ring), DE4X5_RRBA);
OUTL(dev, phys_to_bus((u32) &tx_ring), DE4X5_TRBA);
START_DE4X5(dev);
tx_new = 0;
rx_new = 0;
send_setup_frame(dev, bis);
return 0;
}
static int dc21x4x_send(struct eth_device* dev, volatile void *packet, int length)
{
int status = -1;
int i;
if (length <= 0) {
printf("%s: bad packet size: %d\n", dev->name, length);
goto Done;
}
for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
if (i >= TOUT_LOOP) {
printf("%s: tx error buffer not ready\n", dev->name);
goto Done;
}
}
tx_ring[tx_new].buf = cpu_to_le32(phys_to_bus((u32) packet));
tx_ring[tx_new].des1 = cpu_to_le32(TD_TER | TD_LS | TD_FS | length);
tx_ring[tx_new].status = cpu_to_le32(T_OWN);
OUTL(dev, POLL_DEMAND, DE4X5_TPD);
for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
if (i >= TOUT_LOOP) {
printf(".%s: tx buffer not ready\n", dev->name);
goto Done;
}
}
if (le32_to_cpu(tx_ring[tx_new].status) & TD_ES) {
#if 0 /* test-only */
printf("TX error status = 0x%08X\n",
le32_to_cpu(tx_ring[tx_new].status));
#endif
tx_ring[tx_new].status = 0x0;
goto Done;
}
status = length;
Done:
tx_new = (tx_new+1) % NUM_TX_DESC;
return status;
}
static int dc21x4x_recv(struct eth_device* dev)
{
s32 status;
int length = 0;
for ( ; ; ) {
status = (s32)le32_to_cpu(rx_ring[rx_new].status);
if (status & R_OWN) {
break;
}
if (status & RD_LS) {
/* Valid frame status.
*/
if (status & RD_ES) {
/* There was an error.
*/
printf("RX error status = 0x%08X\n", status);
} else {
/* A valid frame received.
*/
length = (le32_to_cpu(rx_ring[rx_new].status) >> 16);
/* Pass the packet up to the protocol
* layers.
*/
NetReceive(NetRxPackets[rx_new], length - 4);
}
/* Change buffer ownership for this frame, back
* to the adapter.
*/
rx_ring[rx_new].status = cpu_to_le32(R_OWN);
}
/* Update entry information.
*/
rx_new = (rx_new + 1) % rxRingSize;
}
return length;
}
static void dc21x4x_halt(struct eth_device* dev)
{
int devbusfn = (int) dev->priv;
STOP_DE4X5(dev);
OUTL(dev, 0, DE4X5_SICR);
pci_write_config_byte(devbusfn, PCI_CFDA_PSM, SLEEP);
}
static void send_setup_frame(struct eth_device* dev, bd_t *bis)
{
int i;
char setup_frame[SETUP_FRAME_LEN];
char *pa = &setup_frame[0];
memset(pa, 0xff, SETUP_FRAME_LEN);
for (i = 0; i < ETH_ALEN; i++) {
*(pa + (i & 1)) = dev->enetaddr[i];
if (i & 0x01) {
pa += 4;
}
}
for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
if (i >= TOUT_LOOP) {
printf("%s: tx error buffer not ready\n", dev->name);
goto Done;
}
}
tx_ring[tx_new].buf = cpu_to_le32(phys_to_bus((u32) &setup_frame[0]));
tx_ring[tx_new].des1 = cpu_to_le32(TD_TER | TD_SET| SETUP_FRAME_LEN);
tx_ring[tx_new].status = cpu_to_le32(T_OWN);
OUTL(dev, POLL_DEMAND, DE4X5_TPD);
for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
if (i >= TOUT_LOOP) {
printf("%s: tx buffer not ready\n", dev->name);
goto Done;
}
}
if (le32_to_cpu(tx_ring[tx_new].status) != 0x7FFFFFFF) {
printf("TX error status2 = 0x%08X\n", le32_to_cpu(tx_ring[tx_new].status));
}
tx_new = (tx_new+1) % NUM_TX_DESC;
Done:
return;
}
#if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
/* SROM Read and write routines.
*/
static void
sendto_srom(struct eth_device* dev, u_int command, u_long addr)
{
OUTL(dev, command, addr);
udelay(1);
}
static int
getfrom_srom(struct eth_device* dev, u_long addr)
{
s32 tmp;
tmp = INL(dev, addr);
udelay(1);
return tmp;
}
/* Note: this routine returns extra data bits for size detection. */
static int do_read_eeprom(struct eth_device *dev, u_long ioaddr, int location, int addr_len)
{
int i;
unsigned retval = 0;
int read_cmd = location | (SROM_READ_CMD << addr_len);
sendto_srom(dev, SROM_RD | SROM_SR, ioaddr);
sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
#ifdef DEBUG_SROM
printf(" EEPROM read at %d ", location);
#endif
/* Shift the read command bits out. */
for (i = 4 + addr_len; i >= 0; i--) {
short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval, ioaddr);
udelay(10);
sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval | DT_CLK, ioaddr);
udelay(10);
#ifdef DEBUG_SROM2
printf("%X", getfrom_srom(dev, ioaddr) & 15);
#endif
retval = (retval << 1) | ((getfrom_srom(dev, ioaddr) & EE_DATA_READ) ? 1 : 0);
}
sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
#ifdef DEBUG_SROM2
printf(" :%X:", getfrom_srom(dev, ioaddr) & 15);
#endif
for (i = 16; i > 0; i--) {
sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr);
udelay(10);
#ifdef DEBUG_SROM2
printf("%X", getfrom_srom(dev, ioaddr) & 15);
#endif
retval = (retval << 1) | ((getfrom_srom(dev, ioaddr) & EE_DATA_READ) ? 1 : 0);
sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
udelay(10);
}
/* Terminate the EEPROM access. */
sendto_srom(dev, SROM_RD | SROM_SR, ioaddr);
#ifdef DEBUG_SROM2
printf(" EEPROM value at %d is %5.5x.\n", location, retval);
#endif
return retval;
}
#endif /* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
/* This executes a generic EEPROM command, typically a write or write
* enable. It returns the data output from the EEPROM, and thus may
* also be used for reads.
*/
#if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
static int do_eeprom_cmd(struct eth_device *dev, u_long ioaddr, int cmd, int cmd_len)
{
unsigned retval = 0;
#ifdef DEBUG_SROM
printf(" EEPROM op 0x%x: ", cmd);
#endif
sendto_srom(dev,SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr);
/* Shift the command bits out. */
do {
short dataval = (cmd & (1 << cmd_len)) ? EE_WRITE_1 : EE_WRITE_0;
sendto_srom(dev,dataval, ioaddr);
udelay(10);
#ifdef DEBUG_SROM2
printf("%X", getfrom_srom(dev,ioaddr) & 15);
#endif
sendto_srom(dev,dataval | DT_CLK, ioaddr);
udelay(10);
retval = (retval << 1) | ((getfrom_srom(dev,ioaddr) & EE_DATA_READ) ? 1 : 0);
} while (--cmd_len >= 0);
sendto_srom(dev,SROM_RD | SROM_SR | DT_CS, ioaddr);
/* Terminate the EEPROM access. */
sendto_srom(dev,SROM_RD | SROM_SR, ioaddr);
#ifdef DEBUG_SROM
printf(" EEPROM result is 0x%5.5x.\n", retval);
#endif
return retval;
}
#endif /* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
#ifndef CONFIG_TULIP_FIX_DAVICOM
static int read_srom(struct eth_device *dev, u_long ioaddr, int index)
{
int ee_addr_size = do_read_eeprom(dev, ioaddr, 0xff, 8) & 0x40000 ? 8 : 6;
return do_eeprom_cmd(dev, ioaddr,
(((SROM_READ_CMD << ee_addr_size) | index) << 16)
| 0xffff, 3 + ee_addr_size + 16);
}
#endif /* CONFIG_TULIP_FIX_DAVICOM */
#ifdef UPDATE_SROM
static int write_srom(struct eth_device *dev, u_long ioaddr, int index, int new_value)
{
int ee_addr_size = do_read_eeprom(dev, ioaddr, 0xff, 8) & 0x40000 ? 8 : 6;
int i;
unsigned short newval;
udelay(10*1000); /* test-only */
#ifdef DEBUG_SROM
printf("ee_addr_size=%d.\n", ee_addr_size);
printf("Writing new entry 0x%4.4x to offset %d.\n", new_value, index);
#endif
/* Enable programming modes. */
do_eeprom_cmd(dev, ioaddr, (0x4f << (ee_addr_size-4)), 3+ee_addr_size);
/* Do the actual write. */
do_eeprom_cmd(dev, ioaddr,
(((SROM_WRITE_CMD<<ee_addr_size)|index) << 16) | new_value,
3 + ee_addr_size + 16);
/* Poll for write finished. */
sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
for (i = 0; i < 10000; i++) /* Typical 2000 ticks */
if (getfrom_srom(dev, ioaddr) & EE_DATA_READ)
break;
#ifdef DEBUG_SROM
printf(" Write finished after %d ticks.\n", i);
#endif
/* Disable programming. */
do_eeprom_cmd(dev, ioaddr, (0x40 << (ee_addr_size-4)), 3 + ee_addr_size);
/* And read the result. */
newval = do_eeprom_cmd(dev, ioaddr,
(((SROM_READ_CMD<<ee_addr_size)|index) << 16)
| 0xffff, 3 + ee_addr_size + 16);
#ifdef DEBUG_SROM
printf(" New value at offset %d is %4.4x.\n", index, newval);
#endif
return 1;
}
#endif
#ifndef CONFIG_TULIP_FIX_DAVICOM
static void read_hw_addr(struct eth_device *dev, bd_t *bis)
{
u_short tmp, *p = (u_short *)(&dev->enetaddr[0]);
int i, j = 0;
for (i = 0; i < (ETH_ALEN >> 1); i++) {
tmp = read_srom(dev, DE4X5_APROM, ((SROM_HWADD >> 1) + i));
*p = le16_to_cpu(tmp);
j += *p++;
}
if ((j == 0) || (j == 0x2fffd)) {
memset (dev->enetaddr, 0, ETH_ALEN);
debug ("Warning: can't read HW address from SROM.\n");
goto Done;
}
return;
Done:
#ifdef UPDATE_SROM
update_srom(dev, bis);
#endif
return;
}
#endif /* CONFIG_TULIP_FIX_DAVICOM */
#ifdef UPDATE_SROM
static void update_srom(struct eth_device *dev, bd_t *bis)
{
int i;
static unsigned short eeprom[0x40] = {
0x140b, 0x6610, 0x0000, 0x0000, /* 00 */
0x0000, 0x0000, 0x0000, 0x0000, /* 04 */
0x00a3, 0x0103, 0x0000, 0x0000, /* 08 */
0x0000, 0x1f00, 0x0000, 0x0000, /* 0c */
0x0108, 0x038d, 0x0000, 0x0000, /* 10 */
0xe078, 0x0001, 0x0040, 0x0018, /* 14 */
0x0000, 0x0000, 0x0000, 0x0000, /* 18 */
0x0000, 0x0000, 0x0000, 0x0000, /* 1c */
0x0000, 0x0000, 0x0000, 0x0000, /* 20 */
0x0000, 0x0000, 0x0000, 0x0000, /* 24 */
0x0000, 0x0000, 0x0000, 0x0000, /* 28 */
0x0000, 0x0000, 0x0000, 0x0000, /* 2c */
0x0000, 0x0000, 0x0000, 0x0000, /* 30 */
0x0000, 0x0000, 0x0000, 0x0000, /* 34 */
0x0000, 0x0000, 0x0000, 0x0000, /* 38 */
0x0000, 0x0000, 0x0000, 0x4e07, /* 3c */
};
/* Ethernet Addr... */
eeprom[0x0a] = ((bis->bi_enetaddr[1] & 0xff) << 8) | (bis->bi_enetaddr[0] & 0xff);
eeprom[0x0b] = ((bis->bi_enetaddr[3] & 0xff) << 8) | (bis->bi_enetaddr[2] & 0xff);
eeprom[0x0c] = ((bis->bi_enetaddr[5] & 0xff) << 8) | (bis->bi_enetaddr[4] & 0xff);
for (i=0; i<0x40; i++) {
write_srom(dev, DE4X5_APROM, i, eeprom[i]);
}
}
#endif /* UPDATE_SROM */