u-boot/drivers/net/eepro100.c
Marek Vasut 3a15684dc6 net: eepro100: Use PCI_DEVICE() to define PCI device compat list
Use this macro to fully fill the PCI device ID table. This is mandatory
for the DM PCI support, which checks all the fields.

Signed-off-by: Marek Vasut <marek.vasut+renesas@gmail.com>
2020-06-18 19:34:40 +02:00

794 lines
20 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2002
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*/
#include <common.h>
#include <asm/io.h>
#include <cpu_func.h>
#include <malloc.h>
#include <miiphy.h>
#include <net.h>
#include <netdev.h>
#include <pci.h>
#include <linux/delay.h>
/* Ethernet chip registers. */
#define SCB_STATUS 0 /* Rx/Command Unit Status *Word* */
#define SCB_INT_ACK_BYTE 1 /* Rx/Command Unit STAT/ACK byte */
#define SCB_CMD 2 /* Rx/Command Unit Command *Word* */
#define SCB_INTR_CTL_BYTE 3 /* Rx/Command Unit Intr.Control Byte */
#define SCB_POINTER 4 /* General purpose pointer. */
#define SCB_PORT 8 /* Misc. commands and operands. */
#define SCB_FLASH 12 /* Flash memory control. */
#define SCB_EEPROM 14 /* EEPROM memory control. */
#define SCB_CTRL_MDI 16 /* MDI interface control. */
#define SCB_EARLY_RX 20 /* Early receive byte count. */
#define SCB_GEN_CONTROL 28 /* 82559 General Control Register */
#define SCB_GEN_STATUS 29 /* 82559 General Status register */
/* 82559 SCB status word defnitions */
#define SCB_STATUS_CX 0x8000 /* CU finished command (transmit) */
#define SCB_STATUS_FR 0x4000 /* frame received */
#define SCB_STATUS_CNA 0x2000 /* CU left active state */
#define SCB_STATUS_RNR 0x1000 /* receiver left ready state */
#define SCB_STATUS_MDI 0x0800 /* MDI read/write cycle done */
#define SCB_STATUS_SWI 0x0400 /* software generated interrupt */
#define SCB_STATUS_FCP 0x0100 /* flow control pause interrupt */
#define SCB_INTACK_MASK 0xFD00 /* all the above */
#define SCB_INTACK_TX (SCB_STATUS_CX | SCB_STATUS_CNA)
#define SCB_INTACK_RX (SCB_STATUS_FR | SCB_STATUS_RNR)
/* System control block commands */
/* CU Commands */
#define CU_NOP 0x0000
#define CU_START 0x0010
#define CU_RESUME 0x0020
#define CU_STATSADDR 0x0040 /* Load Dump Statistics ctrs addr */
#define CU_SHOWSTATS 0x0050 /* Dump statistics counters. */
#define CU_ADDR_LOAD 0x0060 /* Base address to add to CU commands */
#define CU_DUMPSTATS 0x0070 /* Dump then reset stats counters. */
/* RUC Commands */
#define RUC_NOP 0x0000
#define RUC_START 0x0001
#define RUC_RESUME 0x0002
#define RUC_ABORT 0x0004
#define RUC_ADDR_LOAD 0x0006 /* (seems not to clear on acceptance) */
#define RUC_RESUMENR 0x0007
#define CU_CMD_MASK 0x00f0
#define RU_CMD_MASK 0x0007
#define SCB_M 0x0100 /* 0 = enable interrupt, 1 = disable */
#define SCB_SWI 0x0200 /* 1 - cause device to interrupt */
#define CU_STATUS_MASK 0x00C0
#define RU_STATUS_MASK 0x003C
#define RU_STATUS_IDLE (0 << 2)
#define RU_STATUS_SUS (1 << 2)
#define RU_STATUS_NORES (2 << 2)
#define RU_STATUS_READY (4 << 2)
#define RU_STATUS_NO_RBDS_SUS ((1 << 2) | (8 << 2))
#define RU_STATUS_NO_RBDS_NORES ((2 << 2) | (8 << 2))
#define RU_STATUS_NO_RBDS_READY ((4 << 2) | (8 << 2))
/* 82559 Port interface commands. */
#define I82559_RESET 0x00000000 /* Software reset */
#define I82559_SELFTEST 0x00000001 /* 82559 Selftest command */
#define I82559_SELECTIVE_RESET 0x00000002
#define I82559_DUMP 0x00000003
#define I82559_DUMP_WAKEUP 0x00000007
/* 82559 Eeprom interface. */
#define EE_SHIFT_CLK 0x01 /* EEPROM shift clock. */
#define EE_CS 0x02 /* EEPROM chip select. */
#define EE_DATA_WRITE 0x04 /* EEPROM chip data in. */
#define EE_WRITE_0 0x01
#define EE_WRITE_1 0x05
#define EE_DATA_READ 0x08 /* EEPROM chip data out. */
#define EE_ENB (0x4800 | EE_CS)
#define EE_CMD_BITS 3
#define EE_DATA_BITS 16
/* The EEPROM commands include the alway-set leading bit. */
#define EE_EWENB_CMD (4 << addr_len)
#define EE_WRITE_CMD (5 << addr_len)
#define EE_READ_CMD (6 << addr_len)
#define EE_ERASE_CMD (7 << addr_len)
/* Receive frame descriptors. */
struct eepro100_rxfd {
u16 status;
u16 control;
u32 link; /* struct eepro100_rxfd * */
u32 rx_buf_addr; /* void * */
u32 count;
u8 data[PKTSIZE_ALIGN];
};
#define RFD_STATUS_C 0x8000 /* completion of received frame */
#define RFD_STATUS_OK 0x2000 /* frame received with no errors */
#define RFD_CONTROL_EL 0x8000 /* 1=last RFD in RFA */
#define RFD_CONTROL_S 0x4000 /* 1=suspend RU after receiving frame */
#define RFD_CONTROL_H 0x0010 /* 1=RFD is a header RFD */
#define RFD_CONTROL_SF 0x0008 /* 0=simplified, 1=flexible mode */
#define RFD_COUNT_MASK 0x3fff
#define RFD_COUNT_F 0x4000
#define RFD_COUNT_EOF 0x8000
#define RFD_RX_CRC 0x0800 /* crc error */
#define RFD_RX_ALIGNMENT 0x0400 /* alignment error */
#define RFD_RX_RESOURCE 0x0200 /* out of space, no resources */
#define RFD_RX_DMA_OVER 0x0100 /* DMA overrun */
#define RFD_RX_SHORT 0x0080 /* short frame error */
#define RFD_RX_LENGTH 0x0020
#define RFD_RX_ERROR 0x0010 /* receive error */
#define RFD_RX_NO_ADR_MATCH 0x0004 /* no address match */
#define RFD_RX_IA_MATCH 0x0002 /* individual address does not match */
#define RFD_RX_TCO 0x0001 /* TCO indication */
/* Transmit frame descriptors */
struct eepro100_txfd { /* Transmit frame descriptor set. */
u16 status;
u16 command;
u32 link; /* void * */
u32 tx_desc_addr; /* Always points to the tx_buf_addr element. */
s32 count;
u32 tx_buf_addr0; /* void *, frame to be transmitted. */
s32 tx_buf_size0; /* Length of Tx frame. */
u32 tx_buf_addr1; /* void *, frame to be transmitted. */
s32 tx_buf_size1; /* Length of Tx frame. */
};
#define TXCB_CMD_TRANSMIT 0x0004 /* transmit command */
#define TXCB_CMD_SF 0x0008 /* 0=simplified, 1=flexible mode */
#define TXCB_CMD_NC 0x0010 /* 0=CRC insert by controller */
#define TXCB_CMD_I 0x2000 /* generate interrupt on completion */
#define TXCB_CMD_S 0x4000 /* suspend on completion */
#define TXCB_CMD_EL 0x8000 /* last command block in CBL */
#define TXCB_COUNT_MASK 0x3fff
#define TXCB_COUNT_EOF 0x8000
/* The Speedo3 Rx and Tx frame/buffer descriptors. */
struct descriptor { /* A generic descriptor. */
u16 status;
u16 command;
u32 link; /* struct descriptor * */
unsigned char params[0];
};
#define CONFIG_SYS_CMD_EL 0x8000
#define CONFIG_SYS_CMD_SUSPEND 0x4000
#define CONFIG_SYS_CMD_INT 0x2000
#define CONFIG_SYS_CMD_IAS 0x0001 /* individual address setup */
#define CONFIG_SYS_CMD_CONFIGURE 0x0002 /* configure */
#define CONFIG_SYS_STATUS_C 0x8000
#define CONFIG_SYS_STATUS_OK 0x2000
/* Misc. */
#define NUM_RX_DESC PKTBUFSRX
#define NUM_TX_DESC 1 /* Number of TX descriptors */
#define TOUT_LOOP 1000000
static struct eepro100_rxfd rx_ring[NUM_RX_DESC]; /* RX descriptor ring */
static struct eepro100_txfd tx_ring[NUM_TX_DESC]; /* TX descriptor ring */
static int rx_next; /* RX descriptor ring pointer */
static int tx_next; /* TX descriptor ring pointer */
static int tx_threshold;
/*
* The parameters for a CmdConfigure operation.
* There are so many options that it would be difficult to document
* each bit. We mostly use the default or recommended settings.
*/
static const char i82558_config_cmd[] = {
22, 0x08, 0, 1, 0, 0, 0x22, 0x03, 1, /* 1=Use MII 0=Use AUI */
0, 0x2E, 0, 0x60, 0x08, 0x88,
0x68, 0, 0x40, 0xf2, 0x84, /* Disable FC */
0x31, 0x05,
};
#if defined(CONFIG_E500)
#define bus_to_phys(a) (a)
#define phys_to_bus(a) (a)
#else
#define bus_to_phys(a) pci_mem_to_phys((pci_dev_t)dev->priv, a)
#define phys_to_bus(a) pci_phys_to_mem((pci_dev_t)dev->priv, a)
#endif
static inline int INW(struct eth_device *dev, u_long addr)
{
return le16_to_cpu(readw(addr + (void *)dev->iobase));
}
static inline void OUTW(struct eth_device *dev, int command, u_long addr)
{
writew(cpu_to_le16(command), addr + (void *)dev->iobase);
}
static inline void OUTL(struct eth_device *dev, int command, u_long addr)
{
writel(cpu_to_le32(command), addr + (void *)dev->iobase);
}
#if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
static inline int INL(struct eth_device *dev, u_long addr)
{
return le32_to_cpu(readl(addr + (void *)dev->iobase));
}
static int get_phyreg(struct eth_device *dev, unsigned char addr,
unsigned char reg, unsigned short *value)
{
int cmd;
int timeout = 50;
/* read requested data */
cmd = (2 << 26) | ((addr & 0x1f) << 21) | ((reg & 0x1f) << 16);
OUTL(dev, cmd, SCB_CTRL_MDI);
do {
udelay(1000);
cmd = INL(dev, SCB_CTRL_MDI);
} while (!(cmd & (1 << 28)) && (--timeout));
if (timeout == 0)
return -1;
*value = (unsigned short)(cmd & 0xffff);
return 0;
}
static int set_phyreg(struct eth_device *dev, unsigned char addr,
unsigned char reg, unsigned short value)
{
int cmd;
int timeout = 50;
/* write requested data */
cmd = (1 << 26) | ((addr & 0x1f) << 21) | ((reg & 0x1f) << 16);
OUTL(dev, cmd | value, SCB_CTRL_MDI);
while (!(INL(dev, SCB_CTRL_MDI) & (1 << 28)) && (--timeout))
udelay(1000);
if (timeout == 0)
return -1;
return 0;
}
/*
* Check if given phyaddr is valid, i.e. there is a PHY connected.
* Do this by checking model value field from ID2 register.
*/
static struct eth_device *verify_phyaddr(const char *devname,
unsigned char addr)
{
struct eth_device *dev;
unsigned short value;
unsigned char model;
dev = eth_get_dev_by_name(devname);
if (!dev) {
printf("%s: no such device\n", devname);
return NULL;
}
/* read id2 register */
if (get_phyreg(dev, addr, MII_PHYSID2, &value) != 0) {
printf("%s: mii read timeout!\n", devname);
return NULL;
}
/* get model */
model = (unsigned char)((value >> 4) & 0x003f);
if (model == 0) {
printf("%s: no PHY at address %d\n", devname, addr);
return NULL;
}
return dev;
}
static int eepro100_miiphy_read(struct mii_dev *bus, int addr, int devad,
int reg)
{
unsigned short value = 0;
struct eth_device *dev;
dev = verify_phyaddr(bus->name, addr);
if (!dev)
return -1;
if (get_phyreg(dev, addr, reg, &value) != 0) {
printf("%s: mii read timeout!\n", bus->name);
return -1;
}
return value;
}
static int eepro100_miiphy_write(struct mii_dev *bus, int addr, int devad,
int reg, u16 value)
{
struct eth_device *dev;
dev = verify_phyaddr(bus->name, addr);
if (!dev)
return -1;
if (set_phyreg(dev, addr, reg, value) != 0) {
printf("%s: mii write timeout!\n", bus->name);
return -1;
}
return 0;
}
#endif
static void init_rx_ring(struct eth_device *dev)
{
int i;
for (i = 0; i < NUM_RX_DESC; i++) {
rx_ring[i].status = 0;
rx_ring[i].control = (i == NUM_RX_DESC - 1) ?
cpu_to_le16 (RFD_CONTROL_S) : 0;
rx_ring[i].link =
cpu_to_le32(phys_to_bus((u32)&rx_ring[(i + 1) %
NUM_RX_DESC]));
rx_ring[i].rx_buf_addr = 0xffffffff;
rx_ring[i].count = cpu_to_le32(PKTSIZE_ALIGN << 16);
}
flush_dcache_range((unsigned long)rx_ring,
(unsigned long)rx_ring +
(sizeof(*rx_ring) * NUM_RX_DESC));
rx_next = 0;
}
static void purge_tx_ring(struct eth_device *dev)
{
tx_next = 0;
tx_threshold = 0x01208000;
memset(tx_ring, 0, sizeof(*tx_ring) * NUM_TX_DESC);
flush_dcache_range((unsigned long)tx_ring,
(unsigned long)tx_ring +
(sizeof(*tx_ring) * NUM_TX_DESC));
}
/* Wait for the chip get the command. */
static int wait_for_eepro100(struct eth_device *dev)
{
int i;
for (i = 0; INW(dev, SCB_CMD) & (CU_CMD_MASK | RU_CMD_MASK); i++) {
if (i >= TOUT_LOOP)
return 0;
}
return 1;
}
static int eepro100_txcmd_send(struct eth_device *dev,
struct eepro100_txfd *desc)
{
u16 rstat;
int i = 0;
flush_dcache_range((unsigned long)desc,
(unsigned long)desc + sizeof(*desc));
if (!wait_for_eepro100(dev))
return -ETIMEDOUT;
OUTL(dev, phys_to_bus((u32)desc), SCB_POINTER);
OUTW(dev, SCB_M | CU_START, SCB_CMD);
while (true) {
invalidate_dcache_range((unsigned long)desc,
(unsigned long)desc + sizeof(*desc));
rstat = le16_to_cpu(desc->status);
if (rstat & CONFIG_SYS_STATUS_C)
break;
if (i++ >= TOUT_LOOP) {
printf("%s: Tx error buffer not ready\n", dev->name);
return -EINVAL;
}
}
invalidate_dcache_range((unsigned long)desc,
(unsigned long)desc + sizeof(*desc));
rstat = le16_to_cpu(desc->status);
if (!(rstat & CONFIG_SYS_STATUS_OK)) {
printf("TX error status = 0x%08X\n", rstat);
return -EIO;
}
return 0;
}
/* SROM Read. */
static int read_eeprom(struct eth_device *dev, int location, int addr_len)
{
unsigned short retval = 0;
int read_cmd = location | EE_READ_CMD;
int i;
OUTW(dev, EE_ENB & ~EE_CS, SCB_EEPROM);
OUTW(dev, EE_ENB, SCB_EEPROM);
/* Shift the read command bits out. */
for (i = 12; i >= 0; i--) {
short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
OUTW(dev, EE_ENB | dataval, SCB_EEPROM);
udelay(1);
OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCB_EEPROM);
udelay(1);
}
OUTW(dev, EE_ENB, SCB_EEPROM);
for (i = 15; i >= 0; i--) {
OUTW(dev, EE_ENB | EE_SHIFT_CLK, SCB_EEPROM);
udelay(1);
retval = (retval << 1) |
((INW(dev, SCB_EEPROM) & EE_DATA_READ) ? 1 : 0);
OUTW(dev, EE_ENB, SCB_EEPROM);
udelay(1);
}
/* Terminate the EEPROM access. */
OUTW(dev, EE_ENB & ~EE_CS, SCB_EEPROM);
return retval;
}
static struct pci_device_id supported[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82557) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82559) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82559ER) },
{ }
};
static void read_hw_addr(struct eth_device *dev, bd_t *bis)
{
u16 sum = 0;
int i, j;
int addr_len = read_eeprom(dev, 0, 6) == 0xffff ? 8 : 6;
for (j = 0, i = 0; i < 0x40; i++) {
u16 value = read_eeprom(dev, i, addr_len);
sum += value;
if (i < 3) {
dev->enetaddr[j++] = value;
dev->enetaddr[j++] = value >> 8;
}
}
if (sum != 0xBABA) {
memset(dev->enetaddr, 0, ETH_ALEN);
debug("%s: Invalid EEPROM checksum %#4.4x, check settings before activating this device!\n",
dev->name, sum);
}
}
static int eepro100_init(struct eth_device *dev, bd_t *bis)
{
struct eepro100_txfd *ias_cmd, *cfg_cmd;
int ret, status = -1;
int tx_cur;
/* Reset the ethernet controller */
OUTL(dev, I82559_SELECTIVE_RESET, SCB_PORT);
udelay(20);
OUTL(dev, I82559_RESET, SCB_PORT);
udelay(20);
if (!wait_for_eepro100(dev)) {
printf("Error: Can not reset ethernet controller.\n");
goto done;
}
OUTL(dev, 0, SCB_POINTER);
OUTW(dev, SCB_M | RUC_ADDR_LOAD, SCB_CMD);
if (!wait_for_eepro100(dev)) {
printf("Error: Can not reset ethernet controller.\n");
goto done;
}
OUTL(dev, 0, SCB_POINTER);
OUTW(dev, SCB_M | CU_ADDR_LOAD, SCB_CMD);
/* Initialize Rx and Tx rings. */
init_rx_ring(dev);
purge_tx_ring(dev);
/* Tell the adapter where the RX ring is located. */
if (!wait_for_eepro100(dev)) {
printf("Error: Can not reset ethernet controller.\n");
goto done;
}
/* RX ring cache was already flushed in init_rx_ring() */
OUTL(dev, phys_to_bus((u32)&rx_ring[rx_next]), SCB_POINTER);
OUTW(dev, SCB_M | RUC_START, SCB_CMD);
/* Send the Configure frame */
tx_cur = tx_next;
tx_next = ((tx_next + 1) % NUM_TX_DESC);
cfg_cmd = &tx_ring[tx_cur];
cfg_cmd->command = cpu_to_le16(CONFIG_SYS_CMD_SUSPEND |
CONFIG_SYS_CMD_CONFIGURE);
cfg_cmd->status = 0;
cfg_cmd->link = cpu_to_le32(phys_to_bus((u32)&tx_ring[tx_next]));
memcpy(((struct descriptor *)cfg_cmd)->params, i82558_config_cmd,
sizeof(i82558_config_cmd));
ret = eepro100_txcmd_send(dev, cfg_cmd);
if (ret) {
if (ret == -ETIMEDOUT)
printf("Error---CONFIG_SYS_CMD_CONFIGURE: Can not reset ethernet controller.\n");
goto done;
}
/* Send the Individual Address Setup frame */
tx_cur = tx_next;
tx_next = ((tx_next + 1) % NUM_TX_DESC);
ias_cmd = &tx_ring[tx_cur];
ias_cmd->command = cpu_to_le16(CONFIG_SYS_CMD_SUSPEND |
CONFIG_SYS_CMD_IAS);
ias_cmd->status = 0;
ias_cmd->link = cpu_to_le32(phys_to_bus((u32)&tx_ring[tx_next]));
memcpy(((struct descriptor *)ias_cmd)->params, dev->enetaddr, 6);
ret = eepro100_txcmd_send(dev, ias_cmd);
if (ret) {
if (ret == -ETIMEDOUT)
printf("Error: Can not reset ethernet controller.\n");
goto done;
}
status = 0;
done:
return status;
}
static int eepro100_send(struct eth_device *dev, void *packet, int length)
{
struct eepro100_txfd *desc;
int ret, status = -1;
int tx_cur;
if (length <= 0) {
printf("%s: bad packet size: %d\n", dev->name, length);
goto done;
}
tx_cur = tx_next;
tx_next = (tx_next + 1) % NUM_TX_DESC;
desc = &tx_ring[tx_cur];
desc->command = cpu_to_le16(TXCB_CMD_TRANSMIT | TXCB_CMD_SF |
TXCB_CMD_S | TXCB_CMD_EL);
desc->status = 0;
desc->count = cpu_to_le32(tx_threshold);
desc->link = cpu_to_le32(phys_to_bus((u32)&tx_ring[tx_next]));
desc->tx_desc_addr = cpu_to_le32(phys_to_bus((u32)&desc->tx_buf_addr0));
desc->tx_buf_addr0 = cpu_to_le32(phys_to_bus((u_long)packet));
desc->tx_buf_size0 = cpu_to_le32(length);
ret = eepro100_txcmd_send(dev, &tx_ring[tx_cur]);
if (ret) {
if (ret == -ETIMEDOUT)
printf("%s: Tx error ethernet controller not ready.\n",
dev->name);
goto done;
}
status = length;
done:
return status;
}
static int eepro100_recv(struct eth_device *dev)
{
struct eepro100_rxfd *desc;
int rx_prev, length = 0;
u16 status, stat;
stat = INW(dev, SCB_STATUS);
OUTW(dev, stat & SCB_STATUS_RNR, SCB_STATUS);
for (;;) {
desc = &rx_ring[rx_next];
invalidate_dcache_range((unsigned long)desc,
(unsigned long)desc + sizeof(*desc));
status = le16_to_cpu(desc->status);
if (!(status & RFD_STATUS_C))
break;
/* Valid frame status. */
if ((status & RFD_STATUS_OK)) {
/* A valid frame received. */
length = le32_to_cpu(desc->count) & 0x3fff;
/* Pass the packet up to the protocol layers. */
net_process_received_packet((u8 *)desc->data, length);
} else {
/* There was an error. */
printf("RX error status = 0x%08X\n", status);
}
desc->control = cpu_to_le16(RFD_CONTROL_S);
desc->status = 0;
desc->count = cpu_to_le32(PKTSIZE_ALIGN << 16);
flush_dcache_range((unsigned long)desc,
(unsigned long)desc + sizeof(*desc));
rx_prev = (rx_next + NUM_RX_DESC - 1) % NUM_RX_DESC;
desc = &rx_ring[rx_prev];
desc->control = 0;
flush_dcache_range((unsigned long)desc,
(unsigned long)desc + sizeof(*desc));
/* Update entry information. */
rx_next = (rx_next + 1) % NUM_RX_DESC;
}
if (stat & SCB_STATUS_RNR) {
printf("%s: Receiver is not ready, restart it !\n", dev->name);
/* Reinitialize Rx ring. */
init_rx_ring(dev);
if (!wait_for_eepro100(dev)) {
printf("Error: Can not restart ethernet controller.\n");
goto done;
}
/* RX ring cache was already flushed in init_rx_ring() */
OUTL(dev, phys_to_bus((u32)&rx_ring[rx_next]), SCB_POINTER);
OUTW(dev, SCB_M | RUC_START, SCB_CMD);
}
done:
return length;
}
static void eepro100_halt(struct eth_device *dev)
{
/* Reset the ethernet controller */
OUTL(dev, I82559_SELECTIVE_RESET, SCB_PORT);
udelay(20);
OUTL(dev, I82559_RESET, SCB_PORT);
udelay(20);
if (!wait_for_eepro100(dev)) {
printf("Error: Can not reset ethernet controller.\n");
goto done;
}
OUTL(dev, 0, SCB_POINTER);
OUTW(dev, SCB_M | RUC_ADDR_LOAD, SCB_CMD);
if (!wait_for_eepro100(dev)) {
printf("Error: Can not reset ethernet controller.\n");
goto done;
}
OUTL(dev, 0, SCB_POINTER);
OUTW(dev, SCB_M | CU_ADDR_LOAD, SCB_CMD);
done:
return;
}
int eepro100_initialize(bd_t *bis)
{
pci_dev_t devno;
int card_number = 0;
struct eth_device *dev;
u32 iobase, status;
int idx = 0;
while (1) {
/* Find PCI device */
devno = pci_find_devices(supported, idx++);
if (devno < 0)
break;
pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &iobase);
iobase &= ~0xf;
debug("eepro100: Intel i82559 PCI EtherExpressPro @0x%x\n",
iobase);
pci_write_config_dword(devno, PCI_COMMAND,
PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
/* Check if I/O accesses and Bus Mastering are enabled. */
pci_read_config_dword(devno, PCI_COMMAND, &status);
if (!(status & PCI_COMMAND_MEMORY)) {
printf("Error: Can not enable MEM access.\n");
continue;
}
if (!(status & PCI_COMMAND_MASTER)) {
printf("Error: Can not enable Bus Mastering.\n");
continue;
}
dev = (struct eth_device *)malloc(sizeof(*dev));
if (!dev) {
printf("eepro100: Can not allocate memory\n");
break;
}
memset(dev, 0, sizeof(*dev));
sprintf(dev->name, "i82559#%d", card_number);
dev->priv = (void *)devno; /* this have to come before bus_to_phys() */
dev->iobase = bus_to_phys(iobase);
dev->init = eepro100_init;
dev->halt = eepro100_halt;
dev->send = eepro100_send;
dev->recv = eepro100_recv;
eth_register(dev);
#if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
/* register mii command access routines */
int retval;
struct mii_dev *mdiodev = mdio_alloc();
if (!mdiodev)
return -ENOMEM;
strncpy(mdiodev->name, dev->name, MDIO_NAME_LEN);
mdiodev->read = eepro100_miiphy_read;
mdiodev->write = eepro100_miiphy_write;
retval = mdio_register(mdiodev);
if (retval < 0)
return retval;
#endif
card_number++;
/* Set the latency timer for value. */
pci_write_config_byte(devno, PCI_LATENCY_TIMER, 0x20);
udelay(10 * 1000);
read_hw_addr(dev, bis);
}
return card_number;
}