u-boot/board/tqc/tqm8xx/tqm8xx.c
Wolfgang Denk f0c0b3a9e6 Fix incorrect use of getenv() before relocation
A large number of boards incorrectly used getenv() in their board init
code running before relocation.  In some cases this caused U-Boot to
hang when certain environment variables grew too long.
Fix the code to use getenv_r().

Signed-off-by: Wolfgang Denk <wd@denx.de>
Cc: Stefan Roese <sr@denx.de>
Cc: The LEOX team <team@leox.org>
Cc: Michael Schwingen <michael@schwingen.org>
Cc: Georg Schardt <schardt@team-ctech.de>
Cc: Werner Pfister <Pfister_Werner@intercontrol.de>
Cc: Dirk Eibach <eibach@gdsys.de>
Cc: Peter De Schrijver <p2@mind.be>
Cc: John Zhan <zhanz@sinovee.com>
Cc: Rishi Bhattacharya <rishi@ti.com>
Cc: Peter Tyser <ptyser@xes-inc.com>
2011-05-12 19:48:42 +02:00

745 lines
19 KiB
C

/*
* (C) Copyright 2000-2008
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <hwconfig.h>
#include <mpc8xx.h>
#ifdef CONFIG_PS2MULT
#include <ps2mult.h>
#endif
#if defined(CONFIG_OF_BOARD_SETUP) && defined(CONFIG_OF_LIBFDT)
#include <libfdt.h>
#endif
extern flash_info_t flash_info[]; /* FLASH chips info */
DECLARE_GLOBAL_DATA_PTR;
static long int dram_size (long int, long int *, long int);
#define _NOT_USED_ 0xFFFFFFFF
/* UPM initialization table for SDRAM: 40, 50, 66 MHz CLKOUT @ CAS latency 2, tWR=2 */
const uint sdram_table[] =
{
/*
* Single Read. (Offset 0 in UPMA RAM)
*/
0x1F0DFC04, 0xEEAFBC04, 0x11AF7C04, 0xEFBAFC00,
0x1FF5FC47, /* last */
/*
* SDRAM Initialization (offset 5 in UPMA RAM)
*
* This is no UPM entry point. The following definition uses
* the remaining space to establish an initialization
* sequence, which is executed by a RUN command.
*
*/
0x1FF5FC34, 0xEFEABC34, 0x1FB57C35, /* last */
/*
* Burst Read. (Offset 8 in UPMA RAM)
*/
0x1F0DFC04, 0xEEAFBC04, 0x10AF7C04, 0xF0AFFC00,
0xF0AFFC00, 0xF1AFFC00, 0xEFBAFC00, 0x1FF5FC47, /* last */
_NOT_USED_, _NOT_USED_, _NOT_USED_, _NOT_USED_,
_NOT_USED_, _NOT_USED_, _NOT_USED_, _NOT_USED_,
/*
* Single Write. (Offset 18 in UPMA RAM)
*/
0x1F0DFC04, 0xEEABBC00, 0x11B77C04, 0xEFFAFC44,
0x1FF5FC47, /* last */
_NOT_USED_, _NOT_USED_, _NOT_USED_,
/*
* Burst Write. (Offset 20 in UPMA RAM)
*/
0x1F0DFC04, 0xEEABBC00, 0x10A77C00, 0xF0AFFC00,
0xF0AFFC00, 0xF0AFFC04, 0xE1BAFC44, 0x1FF5FC47, /* last */
_NOT_USED_, _NOT_USED_, _NOT_USED_, _NOT_USED_,
_NOT_USED_, _NOT_USED_, _NOT_USED_, _NOT_USED_,
/*
* Refresh (Offset 30 in UPMA RAM)
*/
0x1FFD7C84, 0xFFFFFC04, 0xFFFFFC04, 0xFFFFFC04,
0xFFFFFC84, 0xFFFFFC07, /* last */
_NOT_USED_, _NOT_USED_,
_NOT_USED_, _NOT_USED_, _NOT_USED_, _NOT_USED_,
/*
* Exception. (Offset 3c in UPMA RAM)
*/
0xFFFFFC07, /* last */
_NOT_USED_, _NOT_USED_, _NOT_USED_,
};
/* ------------------------------------------------------------------------- */
/*
* Check Board Identity:
*
* Test TQ ID string (TQM8xx...)
* If present, check for "L" type (no second DRAM bank),
* otherwise "L" type is assumed as default.
*
* Set board_type to 'L' for "L" type, 'M' for "M" type, 0 else.
*/
int checkboard (void)
{
char buf[64];
int i;
int l = getenv_f("serial#", buf, sizeof(buf));
puts ("Board: ");
if (l < 0 || strncmp(buf, "TQM8", 4)) {
puts ("### No HW ID - assuming TQM8xxL\n");
return (0);
}
if ((buf[6] == 'L')) { /* a TQM8xxL type */
gd->board_type = 'L';
}
if ((buf[6] == 'M')) { /* a TQM8xxM type */
gd->board_type = 'M';
}
if ((buf[6] == 'D')) { /* a TQM885D type */
gd->board_type = 'D';
}
for (i = 0; i < l; ++i) {
if (buf[i] == ' ')
break;
putc (buf[i]);
}
#ifdef CONFIG_VIRTLAB2
puts (" (Virtlab2)");
#endif
putc ('\n');
return (0);
}
/* ------------------------------------------------------------------------- */
phys_size_t initdram (int board_type)
{
volatile immap_t *immap = (immap_t *) CONFIG_SYS_IMMR;
volatile memctl8xx_t *memctl = &immap->im_memctl;
long int size8, size9, size10;
long int size_b0 = 0;
long int size_b1 = 0;
upmconfig (UPMA, (uint *) sdram_table,
sizeof (sdram_table) / sizeof (uint));
/*
* Preliminary prescaler for refresh (depends on number of
* banks): This value is selected for four cycles every 62.4 us
* with two SDRAM banks or four cycles every 31.2 us with one
* bank. It will be adjusted after memory sizing.
*/
memctl->memc_mptpr = CONFIG_SYS_MPTPR_2BK_8K;
/*
* The following value is used as an address (i.e. opcode) for
* the LOAD MODE REGISTER COMMAND during SDRAM initialisation. If
* the port size is 32bit the SDRAM does NOT "see" the lower two
* address lines, i.e. mar=0x00000088 -> opcode=0x00000022 for
* MICRON SDRAMs:
* -> 0 00 010 0 010
* | | | | +- Burst Length = 4
* | | | +----- Burst Type = Sequential
* | | +------- CAS Latency = 2
* | +----------- Operating Mode = Standard
* +-------------- Write Burst Mode = Programmed Burst Length
*/
memctl->memc_mar = 0x00000088;
/*
* Map controller banks 2 and 3 to the SDRAM banks 2 and 3 at
* preliminary addresses - these have to be modified after the
* SDRAM size has been determined.
*/
memctl->memc_or2 = CONFIG_SYS_OR2_PRELIM;
memctl->memc_br2 = CONFIG_SYS_BR2_PRELIM;
#ifndef CONFIG_CAN_DRIVER
if ((board_type != 'L') &&
(board_type != 'M') &&
(board_type != 'D') ) { /* only one SDRAM bank on L, M and D modules */
memctl->memc_or3 = CONFIG_SYS_OR3_PRELIM;
memctl->memc_br3 = CONFIG_SYS_BR3_PRELIM;
}
#endif /* CONFIG_CAN_DRIVER */
memctl->memc_mamr = CONFIG_SYS_MAMR_8COL & (~(MAMR_PTAE)); /* no refresh yet */
udelay (200);
/* perform SDRAM initializsation sequence */
memctl->memc_mcr = 0x80004105; /* SDRAM bank 0 */
udelay (1);
memctl->memc_mcr = 0x80004230; /* SDRAM bank 0 - execute twice */
udelay (1);
#ifndef CONFIG_CAN_DRIVER
if ((board_type != 'L') &&
(board_type != 'M') &&
(board_type != 'D') ) { /* only one SDRAM bank on L, M and D modules */
memctl->memc_mcr = 0x80006105; /* SDRAM bank 1 */
udelay (1);
memctl->memc_mcr = 0x80006230; /* SDRAM bank 1 - execute twice */
udelay (1);
}
#endif /* CONFIG_CAN_DRIVER */
memctl->memc_mamr |= MAMR_PTAE; /* enable refresh */
udelay (1000);
/*
* Check Bank 0 Memory Size for re-configuration
*
* try 8 column mode
*/
size8 = dram_size (CONFIG_SYS_MAMR_8COL, SDRAM_BASE2_PRELIM, SDRAM_MAX_SIZE);
debug ("SDRAM Bank 0 in 8 column mode: %ld MB\n", size8 >> 20);
udelay (1000);
/*
* try 9 column mode
*/
size9 = dram_size (CONFIG_SYS_MAMR_9COL, SDRAM_BASE2_PRELIM, SDRAM_MAX_SIZE);
debug ("SDRAM Bank 0 in 9 column mode: %ld MB\n", size9 >> 20);
udelay(1000);
#if defined(CONFIG_SYS_MAMR_10COL)
/*
* try 10 column mode
*/
size10 = dram_size (CONFIG_SYS_MAMR_10COL, SDRAM_BASE2_PRELIM, SDRAM_MAX_SIZE);
debug ("SDRAM Bank 0 in 10 column mode: %ld MB\n", size10 >> 20);
#else
size10 = 0;
#endif /* CONFIG_SYS_MAMR_10COL */
if ((size8 < size10) && (size9 < size10)) {
size_b0 = size10;
} else if ((size8 < size9) && (size10 < size9)) {
size_b0 = size9;
memctl->memc_mamr = CONFIG_SYS_MAMR_9COL;
udelay (500);
} else {
size_b0 = size8;
memctl->memc_mamr = CONFIG_SYS_MAMR_8COL;
udelay (500);
}
debug ("SDRAM Bank 0: %ld MB\n", size_b0 >> 20);
#ifndef CONFIG_CAN_DRIVER
if ((board_type != 'L') &&
(board_type != 'M') &&
(board_type != 'D') ) { /* only one SDRAM bank on L, M and D modules */
/*
* Check Bank 1 Memory Size
* use current column settings
* [9 column SDRAM may also be used in 8 column mode,
* but then only half the real size will be used.]
*/
size_b1 = dram_size (memctl->memc_mamr, (long int *)SDRAM_BASE3_PRELIM,
SDRAM_MAX_SIZE);
debug ("SDRAM Bank 1: %ld MB\n", size_b1 >> 20);
} else {
size_b1 = 0;
}
#endif /* CONFIG_CAN_DRIVER */
udelay (1000);
/*
* Adjust refresh rate depending on SDRAM type, both banks
* For types > 128 MBit leave it at the current (fast) rate
*/
if ((size_b0 < 0x02000000) && (size_b1 < 0x02000000)) {
/* reduce to 15.6 us (62.4 us / quad) */
memctl->memc_mptpr = CONFIG_SYS_MPTPR_2BK_4K;
udelay (1000);
}
/*
* Final mapping: map bigger bank first
*/
if (size_b1 > size_b0) { /* SDRAM Bank 1 is bigger - map first */
memctl->memc_or3 = ((-size_b1) & 0xFFFF0000) | CONFIG_SYS_OR_TIMING_SDRAM;
memctl->memc_br3 = (CONFIG_SYS_SDRAM_BASE & BR_BA_MSK) | BR_MS_UPMA | BR_V;
if (size_b0 > 0) {
/*
* Position Bank 0 immediately above Bank 1
*/
memctl->memc_or2 = ((-size_b0) & 0xFFFF0000) | CONFIG_SYS_OR_TIMING_SDRAM;
memctl->memc_br2 = ((CONFIG_SYS_SDRAM_BASE & BR_BA_MSK) | BR_MS_UPMA | BR_V)
+ size_b1;
} else {
unsigned long reg;
/*
* No bank 0
*
* invalidate bank
*/
memctl->memc_br2 = 0;
/* adjust refresh rate depending on SDRAM type, one bank */
reg = memctl->memc_mptpr;
reg >>= 1; /* reduce to CONFIG_SYS_MPTPR_1BK_8K / _4K */
memctl->memc_mptpr = reg;
}
} else { /* SDRAM Bank 0 is bigger - map first */
memctl->memc_or2 = ((-size_b0) & 0xFFFF0000) | CONFIG_SYS_OR_TIMING_SDRAM;
memctl->memc_br2 =
(CONFIG_SYS_SDRAM_BASE & BR_BA_MSK) | BR_MS_UPMA | BR_V;
if (size_b1 > 0) {
/*
* Position Bank 1 immediately above Bank 0
*/
memctl->memc_or3 =
((-size_b1) & 0xFFFF0000) | CONFIG_SYS_OR_TIMING_SDRAM;
memctl->memc_br3 =
((CONFIG_SYS_SDRAM_BASE & BR_BA_MSK) | BR_MS_UPMA | BR_V)
+ size_b0;
} else {
unsigned long reg;
#ifndef CONFIG_CAN_DRIVER
/*
* No bank 1
*
* invalidate bank
*/
memctl->memc_br3 = 0;
#endif /* CONFIG_CAN_DRIVER */
/* adjust refresh rate depending on SDRAM type, one bank */
reg = memctl->memc_mptpr;
reg >>= 1; /* reduce to CONFIG_SYS_MPTPR_1BK_8K / _4K */
memctl->memc_mptpr = reg;
}
}
udelay (10000);
#ifdef CONFIG_CAN_DRIVER
/* UPM initialization for CAN @ CLKOUT <= 66 MHz */
/* Initialize OR3 / BR3 */
memctl->memc_or3 = CONFIG_SYS_OR3_CAN;
memctl->memc_br3 = CONFIG_SYS_BR3_CAN;
/* Initialize MBMR */
memctl->memc_mbmr = MBMR_GPL_B4DIS; /* GPL_B4 ouput line Disable */
/* Initialize UPMB for CAN: single read */
memctl->memc_mdr = 0xFFFFCC04;
memctl->memc_mcr = 0x0100 | UPMB;
memctl->memc_mdr = 0x0FFFD004;
memctl->memc_mcr = 0x0101 | UPMB;
memctl->memc_mdr = 0x0FFFC000;
memctl->memc_mcr = 0x0102 | UPMB;
memctl->memc_mdr = 0x3FFFC004;
memctl->memc_mcr = 0x0103 | UPMB;
memctl->memc_mdr = 0xFFFFDC07;
memctl->memc_mcr = 0x0104 | UPMB;
/* Initialize UPMB for CAN: single write */
memctl->memc_mdr = 0xFFFCCC04;
memctl->memc_mcr = 0x0118 | UPMB;
memctl->memc_mdr = 0xCFFCDC04;
memctl->memc_mcr = 0x0119 | UPMB;
memctl->memc_mdr = 0x3FFCC000;
memctl->memc_mcr = 0x011A | UPMB;
memctl->memc_mdr = 0xFFFCC004;
memctl->memc_mcr = 0x011B | UPMB;
memctl->memc_mdr = 0xFFFDC405;
memctl->memc_mcr = 0x011C | UPMB;
#endif /* CONFIG_CAN_DRIVER */
#ifdef CONFIG_ISP1362_USB
/* Initialize OR5 / BR5 */
memctl->memc_or5 = CONFIG_SYS_OR5_ISP1362;
memctl->memc_br5 = CONFIG_SYS_BR5_ISP1362;
#endif /* CONFIG_ISP1362_USB */
return (size_b0 + size_b1);
}
/* ------------------------------------------------------------------------- */
/*
* Check memory range for valid RAM. A simple memory test determines
* the actually available RAM size between addresses `base' and
* `base + maxsize'. Some (not all) hardware errors are detected:
* - short between address lines
* - short between data lines
*/
static long int dram_size (long int mamr_value, long int *base, long int maxsize)
{
volatile immap_t *immap = (immap_t *) CONFIG_SYS_IMMR;
volatile memctl8xx_t *memctl = &immap->im_memctl;
memctl->memc_mamr = mamr_value;
return (get_ram_size(base, maxsize));
}
/* ------------------------------------------------------------------------- */
#ifdef CONFIG_MISC_INIT_R
extern void load_sernum_ethaddr(void);
int misc_init_r (void)
{
volatile immap_t *immap = (immap_t *) CONFIG_SYS_IMMR;
volatile memctl8xx_t *memctl = &immap->im_memctl;
load_sernum_ethaddr();
#ifdef CONFIG_SYS_OR_TIMING_FLASH_AT_50MHZ
int scy, trlx, flash_or_timing, clk_diff;
scy = (CONFIG_SYS_OR_TIMING_FLASH_AT_50MHZ & OR_SCY_MSK) >> 4;
if (CONFIG_SYS_OR_TIMING_FLASH_AT_50MHZ & OR_TRLX) {
trlx = OR_TRLX;
scy *= 2;
} else {
trlx = 0;
}
/*
* We assume that each 10MHz of bus clock require 1-clk SCY
* adjustment.
*/
clk_diff = (gd->bus_clk / 1000000) - 50;
/*
* We need proper rounding here. This is what the "+5" and "-5"
* are here for.
*/
if (clk_diff >= 0)
scy += (clk_diff + 5) / 10;
else
scy += (clk_diff - 5) / 10;
/*
* For bus frequencies above 50MHz, we want to use relaxed timing
* (OR_TRLX).
*/
if (gd->bus_clk >= 50000000)
trlx = OR_TRLX;
else
trlx = 0;
if (trlx)
scy /= 2;
if (scy > 0xf)
scy = 0xf;
if (scy < 1)
scy = 1;
flash_or_timing = (scy << 4) | trlx |
(CONFIG_SYS_OR_TIMING_FLASH_AT_50MHZ & ~(OR_TRLX | OR_SCY_MSK));
memctl->memc_or0 =
flash_or_timing | (-flash_info[0].size & OR_AM_MSK);
#else
memctl->memc_or0 =
CONFIG_SYS_OR_TIMING_FLASH | (-flash_info[0].size & OR_AM_MSK);
#endif
memctl->memc_br0 = (CONFIG_SYS_FLASH_BASE & BR_BA_MSK) | BR_MS_GPCM | BR_V;
debug ("## BR0: 0x%08x OR0: 0x%08x\n",
memctl->memc_br0, memctl->memc_or0);
if (flash_info[1].size) {
#ifdef CONFIG_SYS_OR_TIMING_FLASH_AT_50MHZ
memctl->memc_or1 = flash_or_timing |
(-flash_info[1].size & 0xFFFF8000);
#else
memctl->memc_or1 = CONFIG_SYS_OR_TIMING_FLASH |
(-flash_info[1].size & 0xFFFF8000);
#endif
memctl->memc_br1 =
((CONFIG_SYS_FLASH_BASE +
flash_info[0].
size) & BR_BA_MSK) | BR_MS_GPCM | BR_V;
debug ("## BR1: 0x%08x OR1: 0x%08x\n",
memctl->memc_br1, memctl->memc_or1);
} else {
memctl->memc_br1 = 0; /* invalidate bank */
debug ("## DISABLE BR1: 0x%08x OR1: 0x%08x\n",
memctl->memc_br1, memctl->memc_or1);
}
# ifdef CONFIG_IDE_LED
/* Configure PA15 as output port */
immap->im_ioport.iop_padir |= 0x0001;
immap->im_ioport.iop_paodr |= 0x0001;
immap->im_ioport.iop_papar &= ~0x0001;
immap->im_ioport.iop_padat &= ~0x0001; /* turn it off */
# endif
#ifdef CONFIG_NSCU
/* wake up ethernet module */
immap->im_ioport.iop_pcpar &= ~0x0004; /* GPIO pin */
immap->im_ioport.iop_pcdir |= 0x0004; /* output */
immap->im_ioport.iop_pcso &= ~0x0004; /* for clarity */
immap->im_ioport.iop_pcdat |= 0x0004; /* enable */
#endif /* CONFIG_NSCU */
return (0);
}
#endif /* CONFIG_MISC_INIT_R */
# ifdef CONFIG_IDE_LED
void ide_led (uchar led, uchar status)
{
volatile immap_t *immap = (immap_t *) CONFIG_SYS_IMMR;
/* We have one led for both pcmcia slots */
if (status) { /* led on */
immap->im_ioport.iop_padat |= 0x0001;
} else {
immap->im_ioport.iop_padat &= ~0x0001;
}
}
# endif
#ifdef CONFIG_LCD_INFO
#include <lcd.h>
#include <version.h>
#include <timestamp.h>
void lcd_show_board_info(void)
{
char temp[32];
lcd_printf ("%s (%s - %s)\n", U_BOOT_VERSION, U_BOOT_DATE, U_BOOT_TIME);
lcd_printf ("(C) 2008 DENX Software Engineering GmbH\n");
lcd_printf (" Wolfgang DENK, wd@denx.de\n");
#ifdef CONFIG_LCD_INFO_BELOW_LOGO
lcd_printf ("MPC823 CPU at %s MHz\n",
strmhz(temp, gd->cpu_clk));
lcd_printf (" %ld MB RAM, %ld MB Flash\n",
gd->ram_size >> 20,
gd->bd->bi_flashsize >> 20 );
#else
/* leave one blank line */
lcd_printf ("\nMPC823 CPU at %s MHz, %ld MB RAM, %ld MB Flash\n",
strmhz(temp, gd->cpu_clk),
gd->ram_size >> 20,
gd->bd->bi_flashsize >> 20 );
#endif /* CONFIG_LCD_INFO_BELOW_LOGO */
}
#endif /* CONFIG_LCD_INFO */
/*
* Device Tree Support
*/
#if defined(CONFIG_OF_BOARD_SETUP) && defined(CONFIG_OF_LIBFDT)
int fdt_set_node_and_value (void *blob,
char *nodename,
char *regname,
void *var,
int size)
{
int ret = 0;
int nodeoffset = 0;
nodeoffset = fdt_path_offset (blob, nodename);
if (nodeoffset >= 0) {
ret = fdt_setprop (blob, nodeoffset, regname, var,
size);
if (ret < 0) {
printf("ft_blob_update(): "
"cannot set %s/%s property; err: %s\n",
nodename, regname, fdt_strerror (ret));
}
} else {
printf("ft_blob_update(): "
"cannot find %s node err:%s\n",
nodename, fdt_strerror (nodeoffset));
}
return ret;
}
int fdt_del_node_name (void *blob, char *nodename)
{
int ret = 0;
int nodeoffset = 0;
nodeoffset = fdt_path_offset (blob, nodename);
if (nodeoffset >= 0) {
ret = fdt_del_node (blob, nodeoffset);
if (ret < 0) {
printf("%s: cannot delete %s; err: %s\n",
__func__, nodename, fdt_strerror (ret));
}
} else {
printf("%s: cannot find %s node err:%s\n",
__func__, nodename, fdt_strerror (nodeoffset));
}
return ret;
}
int fdt_del_prop_name (void *blob, char *nodename, char *propname)
{
int ret = 0;
int nodeoffset = 0;
nodeoffset = fdt_path_offset (blob, nodename);
if (nodeoffset >= 0) {
ret = fdt_delprop (blob, nodeoffset, propname);
if (ret < 0) {
printf("%s: cannot delete %s %s; err: %s\n",
__func__, nodename, propname,
fdt_strerror (ret));
}
} else {
printf("%s: cannot find %s node err:%s\n",
__func__, nodename, fdt_strerror (nodeoffset));
}
return ret;
}
/*
* update "brg" property in the blob
*/
void ft_blob_update (void *blob, bd_t *bd)
{
uchar enetaddr[6];
ulong brg_data = 0;
/* BRG */
brg_data = cpu_to_be32(bd->bi_busfreq);
fdt_set_node_and_value(blob,
"/soc/cpm", "brg-frequency",
&brg_data, sizeof(brg_data));
/* MAC addr */
if (eth_getenv_enetaddr("ethaddr", enetaddr)) {
fdt_set_node_and_value(blob,
"ethernet0", "local-mac-address",
enetaddr, sizeof(u8) * 6);
}
if (hwconfig_arg_cmp("fec", "off")) {
/* no FEC on this plattform, delete DTS nodes */
fdt_del_node_name (blob, "ethernet1");
fdt_del_node_name (blob, "mdio1");
/* also the aliases entries */
fdt_del_prop_name (blob, "/aliases", "ethernet1");
fdt_del_prop_name (blob, "/aliases", "mdio1");
} else {
/* adjust local-mac-address for FEC ethernet */
if (eth_getenv_enetaddr("eth1addr", enetaddr)) {
fdt_set_node_and_value(blob,
"ethernet1", "local-mac-address",
enetaddr, sizeof(u8) * 6);
}
}
}
void ft_board_setup(void *blob, bd_t *bd)
{
ft_cpu_setup(blob, bd);
ft_blob_update(blob, bd);
}
#endif /* defined(CONFIG_OF_BOARD_SETUP) && defined(CONFIG_OF_LIBFDT) */
/* ---------------------------------------------------------------------------- */
/* TK885D specific initializaion */
/* ---------------------------------------------------------------------------- */
#ifdef CONFIG_TK885D
#include <miiphy.h>
int last_stage_init(void)
{
const unsigned char phy[] = {CONFIG_FEC1_PHY, CONFIG_FEC2_PHY};
unsigned short reg;
int ret, i = 100;
char *s;
mii_init();
/* Without this delay 0xff is read from the UART buffer later in
* abortboot() and autoboot is aborted */
udelay(10000);
while (tstc() && i--)
(void)getc();
/* Check if auto-negotiation is prohibited */
s = getenv("phy_auto_nego");
if (!s || !strcmp(s, "on"))
/* Nothing to do - autonegotiation by default */
return 0;
for (i = 0; i < 2; i++) {
ret = miiphy_read("FEC", phy[i], MII_BMCR, &reg);
if (ret) {
printf("Cannot read BMCR on PHY %d\n", phy[i]);
return 0;
}
/* Auto-negotiation off, hard set full duplex, 100Mbps */
ret = miiphy_write("FEC", phy[i],
MII_BMCR, (reg | BMCR_SPEED100 |
BMCR_FULLDPLX) & ~BMCR_ANENABLE);
if (ret) {
printf("Cannot write BMCR on PHY %d\n", phy[i]);
return 0;
}
}
return 0;
}
#endif