u-boot/drivers/adc/stm32-adc.c
Simon Glass 336d4615f8 dm: core: Create a new header file for 'compat' features
At present dm/device.h includes the linux-compatible features. This
requires including linux/compat.h which in turn includes a lot of headers.
One of these is malloc.h which we thus end up including in every file in
U-Boot. Apart from the inefficiency of this, it is problematic for sandbox
which needs to use the system malloc() in some files.

Move the compatibility features into a separate header file.

Signed-off-by: Simon Glass <sjg@chromium.org>
2020-02-05 19:33:46 -07:00

260 lines
7.0 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2018, STMicroelectronics - All Rights Reserved
* Author: Fabrice Gasnier <fabrice.gasnier@st.com>
*
* Originally based on the Linux kernel v4.18 drivers/iio/adc/stm32-adc.c.
*/
#include <common.h>
#include <adc.h>
#include <asm/io.h>
#include <dm/device_compat.h>
#include <linux/iopoll.h>
#include "stm32-adc-core.h"
/* STM32H7 - Registers for each ADC instance */
#define STM32H7_ADC_ISR 0x00
#define STM32H7_ADC_CR 0x08
#define STM32H7_ADC_CFGR 0x0C
#define STM32H7_ADC_SMPR1 0x14
#define STM32H7_ADC_SMPR2 0x18
#define STM32H7_ADC_PCSEL 0x1C
#define STM32H7_ADC_SQR1 0x30
#define STM32H7_ADC_DR 0x40
#define STM32H7_ADC_DIFSEL 0xC0
/* STM32H7_ADC_ISR - bit fields */
#define STM32MP1_VREGREADY BIT(12)
#define STM32H7_EOC BIT(2)
#define STM32H7_ADRDY BIT(0)
/* STM32H7_ADC_CR - bit fields */
#define STM32H7_DEEPPWD BIT(29)
#define STM32H7_ADVREGEN BIT(28)
#define STM32H7_BOOST BIT(8)
#define STM32H7_ADSTART BIT(2)
#define STM32H7_ADDIS BIT(1)
#define STM32H7_ADEN BIT(0)
/* STM32H7_ADC_CFGR bit fields */
#define STM32H7_EXTEN GENMASK(11, 10)
#define STM32H7_DMNGT GENMASK(1, 0)
/* STM32H7_ADC_SQR1 - bit fields */
#define STM32H7_SQ1_SHIFT 6
/* BOOST bit must be set on STM32H7 when ADC clock is above 20MHz */
#define STM32H7_BOOST_CLKRATE 20000000UL
#define STM32_ADC_CH_MAX 20 /* max number of channels */
#define STM32_ADC_TIMEOUT_US 100000
struct stm32_adc_cfg {
unsigned int max_channels;
unsigned int num_bits;
bool has_vregready;
};
struct stm32_adc {
void __iomem *regs;
int active_channel;
const struct stm32_adc_cfg *cfg;
};
static int stm32_adc_stop(struct udevice *dev)
{
struct stm32_adc *adc = dev_get_priv(dev);
setbits_le32(adc->regs + STM32H7_ADC_CR, STM32H7_ADDIS);
clrbits_le32(adc->regs + STM32H7_ADC_CR, STM32H7_BOOST);
/* Setting DEEPPWD disables ADC vreg and clears ADVREGEN */
setbits_le32(adc->regs + STM32H7_ADC_CR, STM32H7_DEEPPWD);
adc->active_channel = -1;
return 0;
}
static int stm32_adc_start_channel(struct udevice *dev, int channel)
{
struct adc_uclass_platdata *uc_pdata = dev_get_uclass_platdata(dev);
struct stm32_adc_common *common = dev_get_priv(dev_get_parent(dev));
struct stm32_adc *adc = dev_get_priv(dev);
int ret;
u32 val;
/* Exit deep power down, then enable ADC voltage regulator */
clrbits_le32(adc->regs + STM32H7_ADC_CR, STM32H7_DEEPPWD);
setbits_le32(adc->regs + STM32H7_ADC_CR, STM32H7_ADVREGEN);
if (common->rate > STM32H7_BOOST_CLKRATE)
setbits_le32(adc->regs + STM32H7_ADC_CR, STM32H7_BOOST);
/* Wait for startup time */
if (!adc->cfg->has_vregready) {
udelay(20);
} else {
ret = readl_poll_timeout(adc->regs + STM32H7_ADC_ISR, val,
val & STM32MP1_VREGREADY,
STM32_ADC_TIMEOUT_US);
if (ret < 0) {
stm32_adc_stop(dev);
dev_err(dev, "Failed to enable vreg: %d\n", ret);
return ret;
}
}
/* Only use single ended channels */
writel(0, adc->regs + STM32H7_ADC_DIFSEL);
/* Enable ADC, Poll for ADRDY to be set (after adc startup time) */
setbits_le32(adc->regs + STM32H7_ADC_CR, STM32H7_ADEN);
ret = readl_poll_timeout(adc->regs + STM32H7_ADC_ISR, val,
val & STM32H7_ADRDY, STM32_ADC_TIMEOUT_US);
if (ret < 0) {
stm32_adc_stop(dev);
dev_err(dev, "Failed to enable ADC: %d\n", ret);
return ret;
}
/* Preselect channels */
writel(uc_pdata->channel_mask, adc->regs + STM32H7_ADC_PCSEL);
/* Set sampling time to max value by default */
writel(0xffffffff, adc->regs + STM32H7_ADC_SMPR1);
writel(0xffffffff, adc->regs + STM32H7_ADC_SMPR2);
/* Program regular sequence: chan in SQ1 & len = 0 for one channel */
writel(channel << STM32H7_SQ1_SHIFT, adc->regs + STM32H7_ADC_SQR1);
/* Trigger detection disabled (conversion can be launched in SW) */
clrbits_le32(adc->regs + STM32H7_ADC_CFGR, STM32H7_EXTEN |
STM32H7_DMNGT);
adc->active_channel = channel;
return 0;
}
static int stm32_adc_channel_data(struct udevice *dev, int channel,
unsigned int *data)
{
struct stm32_adc *adc = dev_get_priv(dev);
int ret;
u32 val;
if (channel != adc->active_channel) {
dev_err(dev, "Requested channel is not active!\n");
return -EINVAL;
}
setbits_le32(adc->regs + STM32H7_ADC_CR, STM32H7_ADSTART);
ret = readl_poll_timeout(adc->regs + STM32H7_ADC_ISR, val,
val & STM32H7_EOC, STM32_ADC_TIMEOUT_US);
if (ret < 0) {
dev_err(dev, "conversion timed out: %d\n", ret);
return ret;
}
*data = readl(adc->regs + STM32H7_ADC_DR);
return 0;
}
static int stm32_adc_chan_of_init(struct udevice *dev)
{
struct adc_uclass_platdata *uc_pdata = dev_get_uclass_platdata(dev);
struct stm32_adc *adc = dev_get_priv(dev);
u32 chans[STM32_ADC_CH_MAX];
unsigned int i, num_channels;
int ret;
/* Retrieve single ended channels listed in device tree */
ret = dev_read_size(dev, "st,adc-channels");
if (ret < 0) {
dev_err(dev, "can't get st,adc-channels: %d\n", ret);
return ret;
}
num_channels = ret / sizeof(u32);
if (num_channels > adc->cfg->max_channels) {
dev_err(dev, "too many st,adc-channels: %d\n", num_channels);
return -EINVAL;
}
ret = dev_read_u32_array(dev, "st,adc-channels", chans, num_channels);
if (ret < 0) {
dev_err(dev, "can't read st,adc-channels: %d\n", ret);
return ret;
}
for (i = 0; i < num_channels; i++) {
if (chans[i] >= adc->cfg->max_channels) {
dev_err(dev, "bad channel %u\n", chans[i]);
return -EINVAL;
}
uc_pdata->channel_mask |= 1 << chans[i];
}
uc_pdata->data_mask = (1 << adc->cfg->num_bits) - 1;
uc_pdata->data_format = ADC_DATA_FORMAT_BIN;
uc_pdata->data_timeout_us = 100000;
return 0;
}
static int stm32_adc_probe(struct udevice *dev)
{
struct adc_uclass_platdata *uc_pdata = dev_get_uclass_platdata(dev);
struct stm32_adc_common *common = dev_get_priv(dev_get_parent(dev));
struct stm32_adc *adc = dev_get_priv(dev);
int offset;
offset = dev_read_u32_default(dev, "reg", -ENODATA);
if (offset < 0) {
dev_err(dev, "Can't read reg property\n");
return offset;
}
adc->regs = common->base + offset;
adc->cfg = (const struct stm32_adc_cfg *)dev_get_driver_data(dev);
/* VDD supplied by common vref pin */
uc_pdata->vdd_supply = common->vref;
uc_pdata->vdd_microvolts = common->vref_uv;
uc_pdata->vss_microvolts = 0;
return stm32_adc_chan_of_init(dev);
}
static const struct adc_ops stm32_adc_ops = {
.start_channel = stm32_adc_start_channel,
.channel_data = stm32_adc_channel_data,
.stop = stm32_adc_stop,
};
static const struct stm32_adc_cfg stm32h7_adc_cfg = {
.num_bits = 16,
.max_channels = STM32_ADC_CH_MAX,
};
static const struct stm32_adc_cfg stm32mp1_adc_cfg = {
.num_bits = 16,
.max_channels = STM32_ADC_CH_MAX,
.has_vregready = true,
};
static const struct udevice_id stm32_adc_ids[] = {
{ .compatible = "st,stm32h7-adc",
.data = (ulong)&stm32h7_adc_cfg },
{ .compatible = "st,stm32mp1-adc",
.data = (ulong)&stm32mp1_adc_cfg },
{}
};
U_BOOT_DRIVER(stm32_adc) = {
.name = "stm32-adc",
.id = UCLASS_ADC,
.of_match = stm32_adc_ids,
.probe = stm32_adc_probe,
.ops = &stm32_adc_ops,
.priv_auto_alloc_size = sizeof(struct stm32_adc),
};