u-boot/arch/arm/mach-tegra/board2.c
Svyatoslav Ryhel 1a7ce63c08 ARM: tegra: add late init support
Late init function allows passing values like identifiers and
perform device specific configurations of pre-boot stage.

Tested-by: Andreas Westman Dorcsak <hedmoo@yahoo.com> # ASUS TF T30
Tested-by: Svyatoslav Ryhel <clamor95@gmail.com> # LG P895 T30
Signed-off-by: Svyatoslav Ryhel <clamor95@gmail.com>
Signed-off-by: Tom <twarren@nvidia.com>
2023-02-23 12:55:37 -07:00

419 lines
11 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2010,2011
* NVIDIA Corporation <www.nvidia.com>
*/
#include <common.h>
#include <dm.h>
#include <env.h>
#include <errno.h>
#include <init.h>
#include <log.h>
#include <ns16550.h>
#include <usb.h>
#include <asm/global_data.h>
#include <asm/io.h>
#include <asm/arch-tegra/ap.h>
#include <asm/arch-tegra/board.h>
#include <asm/arch-tegra/cboot.h>
#include <asm/arch-tegra/clk_rst.h>
#include <asm/arch-tegra/pmc.h>
#include <asm/arch-tegra/pmu.h>
#include <asm/arch-tegra/sys_proto.h>
#include <asm/arch-tegra/uart.h>
#include <asm/arch-tegra/warmboot.h>
#include <asm/arch-tegra/gpu.h>
#include <asm/arch-tegra/usb.h>
#include <asm/arch-tegra/xusb-padctl.h>
#if IS_ENABLED(CONFIG_TEGRA_CLKRST)
#include <asm/arch/clock.h>
#endif
#if IS_ENABLED(CONFIG_TEGRA_PINCTRL)
#include <asm/arch/funcmux.h>
#include <asm/arch/pinmux.h>
#endif
#include <asm/arch/tegra.h>
#ifdef CONFIG_TEGRA_CLOCK_SCALING
#include <asm/arch/emc.h>
#endif
#include "emc.h"
DECLARE_GLOBAL_DATA_PTR;
#ifdef CONFIG_SPL_BUILD
/* TODO(sjg@chromium.org): Remove once SPL supports device tree */
U_BOOT_DRVINFO(tegra_gpios) = {
"gpio_tegra"
};
#endif
__weak void pinmux_init(void) {}
__weak void pin_mux_usb(void) {}
__weak void pin_mux_spi(void) {}
__weak void pin_mux_mmc(void) {}
__weak void gpio_early_init_uart(void) {}
__weak void pin_mux_display(void) {}
__weak void start_cpu_fan(void) {}
__weak void cboot_late_init(void) {}
__weak void nvidia_board_late_init(void) {}
#if defined(CONFIG_TEGRA_NAND)
__weak void pin_mux_nand(void)
{
funcmux_select(PERIPH_ID_NDFLASH, FUNCMUX_DEFAULT);
}
#endif
/*
* Routine: power_det_init
* Description: turn off power detects
*/
static void power_det_init(void)
{
#if defined(CONFIG_TEGRA20)
struct pmc_ctlr *const pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
/* turn off power detects */
writel(0, &pmc->pmc_pwr_det_latch);
writel(0, &pmc->pmc_pwr_det);
#endif
}
__weak int tegra_board_id(void)
{
return -1;
}
#ifdef CONFIG_DISPLAY_BOARDINFO
int checkboard(void)
{
int board_id = tegra_board_id();
printf("Board: %s", CFG_TEGRA_BOARD_STRING);
if (board_id != -1)
printf(", ID: %d\n", board_id);
printf("\n");
return 0;
}
#endif /* CONFIG_DISPLAY_BOARDINFO */
__weak int tegra_lcd_pmic_init(int board_it)
{
return 0;
}
__weak int nvidia_board_init(void)
{
return 0;
}
/*
* Routine: board_init
* Description: Early hardware init.
*/
int board_init(void)
{
__maybe_unused int err;
__maybe_unused int board_id;
/* Do clocks and UART first so that printf() works */
#if IS_ENABLED(CONFIG_TEGRA_CLKRST)
clock_init();
clock_verify();
#endif
tegra_gpu_config();
#ifdef CONFIG_TEGRA_SPI
pin_mux_spi();
#endif
#ifdef CONFIG_MMC_SDHCI_TEGRA
pin_mux_mmc();
#endif
/* Init is handled automatically in the driver-model case */
#if defined(CONFIG_VIDEO)
pin_mux_display();
#endif
/* boot param addr */
gd->bd->bi_boot_params = (NV_PA_SDRAM_BASE + 0x100);
power_det_init();
#ifdef CONFIG_SYS_I2C_TEGRA
# ifdef CONFIG_TEGRA_PMU
if (pmu_set_nominal())
debug("Failed to select nominal voltages\n");
# ifdef CONFIG_TEGRA_CLOCK_SCALING
err = board_emc_init();
if (err)
debug("Memory controller init failed: %d\n", err);
# endif
# endif /* CONFIG_TEGRA_PMU */
#endif /* CONFIG_SYS_I2C_TEGRA */
#ifdef CONFIG_USB_EHCI_TEGRA
pin_mux_usb();
#endif
#if defined(CONFIG_VIDEO)
board_id = tegra_board_id();
err = tegra_lcd_pmic_init(board_id);
if (err) {
debug("Failed to set up LCD PMIC\n");
return err;
}
#endif
#ifdef CONFIG_TEGRA_NAND
pin_mux_nand();
#endif
tegra_xusb_padctl_init();
#ifdef CONFIG_TEGRA_LP0
/* save Sdram params to PMC 2, 4, and 24 for WB0 */
warmboot_save_sdram_params();
/* prepare the WB code to LP0 location */
warmboot_prepare_code(TEGRA_LP0_ADDR, TEGRA_LP0_SIZE);
#endif
return nvidia_board_init();
}
void board_cleanup_before_linux(void)
{
/* power down UPHY PLL */
tegra_xusb_padctl_exit();
}
#ifdef CONFIG_BOARD_EARLY_INIT_F
static void __gpio_early_init(void)
{
}
void gpio_early_init(void) __attribute__((weak, alias("__gpio_early_init")));
int board_early_init_f(void)
{
#if IS_ENABLED(CONFIG_TEGRA_CLKRST)
if (!clock_early_init_done())
clock_early_init();
#endif
#if defined(CONFIG_TEGRA_DISCONNECT_UDC_ON_BOOT)
#define USBCMD_FS2 (1 << 15)
{
struct usb_ctlr *usbctlr = (struct usb_ctlr *)0x7d000000;
writel(USBCMD_FS2, &usbctlr->usb_cmd);
}
#endif
/* Do any special system timer/TSC setup */
#if IS_ENABLED(CONFIG_TEGRA_CLKRST)
# if defined(CONFIG_TEGRA_SUPPORT_NON_SECURE)
if (!tegra_cpu_is_non_secure())
# endif
arch_timer_init();
#endif
#if defined(CONFIG_DISABLE_SDMMC1_EARLY)
/*
* Turn off (reset/disable) SDMMC1 on Nano here, before GPIO INIT.
* We do this because earlier bootloaders have enabled power to
* SDMMC1 on Nano, and toggling power-gpio (PZ3) in pinmux_init()
* results in power being back-driven into the SD-card and SDMMC1
* HW, which is 'bad' as per the HW team.
*
* From the HW team: "LDO2 from the PMIC has already been set to 3.3v in
* nvtboot/CBoot on Nano (for SD-card boot). So when U-Boot's GPIO_INIT
* table sets PZ3 to OUT0 as per the pinmux spreadsheet, it turns off
* the loadswitch. When PZ3 is 0 and not driving, essentially the SDCard
* voltage turns off. Since the SDCard voltage is no longer there, the
* SDMMC CLK/DAT lines are backdriving into what essentially is a
* powered-off SDCard, that's why the voltage drops from 3.3V to ~1.6V"
*
* Note that this can probably be removed when we change over to storing
* all BL components on QSPI on Nano, and U-Boot then becomes the first
* one to turn on SDMMC1 power. Another fix would be to have CBoot
* disable power/gate SDMMC1 off before handing off to U-Boot/kernel.
*/
reset_set_enable(PERIPH_ID_SDMMC1, 1);
clock_set_enable(PERIPH_ID_SDMMC1, 0);
#endif /* CONFIG_DISABLE_SDMMC1_EARLY */
pinmux_init();
board_init_uart_f();
/* Initialize periph GPIOs */
gpio_early_init();
gpio_early_init_uart();
return 0;
}
#endif /* EARLY_INIT */
int board_late_init(void)
{
#if defined(CONFIG_TEGRA_SUPPORT_NON_SECURE)
if (tegra_cpu_is_non_secure()) {
printf("CPU is in NS mode\n");
env_set("cpu_ns_mode", "1");
} else {
env_set("cpu_ns_mode", "");
}
#endif
start_cpu_fan();
cboot_late_init();
nvidia_board_late_init();
return 0;
}
/*
* In some SW environments, a memory carve-out exists to house a secure
* monitor, a trusted OS, and/or various statically allocated media buffers.
*
* This carveout exists at the highest possible address that is within a
* 32-bit physical address space.
*
* This function returns the total size of this carve-out. At present, the
* returned value is hard-coded for simplicity. In the future, it may be
* possible to determine the carve-out size:
* - By querying some run-time information source, such as:
* - A structure passed to U-Boot by earlier boot software.
* - SoC registers.
* - A call into the secure monitor.
* - In the per-board U-Boot configuration header, based on knowledge of the
* SW environment that U-Boot is being built for.
*
* For now, we support two configurations in U-Boot:
* - 32-bit ports without any form of carve-out.
* - 64 bit ports which are assumed to use a carve-out of a conservatively
* hard-coded size.
*/
static ulong carveout_size(void)
{
#ifdef CONFIG_ARM64
return SZ_512M;
#elif defined(CONFIG_ARMV7_SECURE_RESERVE_SIZE)
// BASE+SIZE might not == 4GB. If so, we want the carveout to cover
// from BASE to 4GB, not BASE to BASE+SIZE.
return (0 - CONFIG_ARMV7_SECURE_BASE) & ~(SZ_2M - 1);
#else
return 0;
#endif
}
/*
* Determine the amount of usable RAM below 4GiB, taking into account any
* carve-out that may be assigned.
*/
static ulong usable_ram_size_below_4g(void)
{
ulong total_size_below_4g;
ulong usable_size_below_4g;
/*
* The total size of RAM below 4GiB is the lesser address of:
* (a) 2GiB itself (RAM starts at 2GiB, and 4GiB - 2GiB == 2GiB).
* (b) The size RAM physically present in the system.
*/
if (gd->ram_size < SZ_2G)
total_size_below_4g = gd->ram_size;
else
total_size_below_4g = SZ_2G;
/* Calculate usable RAM by subtracting out any carve-out size */
usable_size_below_4g = total_size_below_4g - carveout_size();
return usable_size_below_4g;
}
/*
* Represent all available RAM in either one or two banks.
*
* The first bank describes any usable RAM below 4GiB.
* The second bank describes any RAM above 4GiB.
*
* This split is driven by the following requirements:
* - The NVIDIA L4T kernel requires separate entries in the DT /memory/reg
* property for memory below and above the 4GiB boundary. The layout of that
* DT property is directly driven by the entries in the U-Boot bank array.
* - The potential existence of a carve-out at the end of RAM below 4GiB can
* only be represented using multiple banks.
*
* Explicitly removing the carve-out RAM from the bank entries makes the RAM
* layout a bit more obvious, e.g. when running "bdinfo" at the U-Boot
* command-line.
*
* This does mean that the DT U-Boot passes to the Linux kernel will not
* include this RAM in /memory/reg at all. An alternative would be to include
* all RAM in the U-Boot banks (and hence DT), and add a /memreserve/ node
* into DT to stop the kernel from using the RAM. IIUC, I don't /think/ the
* Linux kernel will ever need to access any RAM in* the carve-out via a CPU
* mapping, so either way is acceptable.
*
* On 32-bit systems, we never define a bank for RAM above 4GiB, since the
* start address of that bank cannot be represented in the 32-bit .size
* field.
*/
int dram_init_banksize(void)
{
int err;
/* try to compute DRAM bank size based on cboot DTB first */
err = cboot_dram_init_banksize();
if (err == 0)
return err;
/* fall back to default DRAM bank size computation */
gd->bd->bi_dram[0].start = CFG_SYS_SDRAM_BASE;
gd->bd->bi_dram[0].size = usable_ram_size_below_4g();
#ifdef CONFIG_PCI
gd->pci_ram_top = gd->bd->bi_dram[0].start + gd->bd->bi_dram[0].size;
#endif
#ifdef CONFIG_PHYS_64BIT
if (gd->ram_size > SZ_2G) {
gd->bd->bi_dram[1].start = 0x100000000;
gd->bd->bi_dram[1].size = gd->ram_size - SZ_2G;
} else
#endif
{
gd->bd->bi_dram[1].start = 0;
gd->bd->bi_dram[1].size = 0;
}
return 0;
}
/*
* Most hardware on 64-bit Tegra is still restricted to DMA to the lower
* 32-bits of the physical address space. Cap the maximum usable RAM area
* at 4 GiB to avoid DMA buffers from being allocated beyond the 32-bit
* boundary that most devices can address. Also, don't let U-Boot use any
* carve-out, as mentioned above.
*
* This function is called before dram_init_banksize(), so we can't simply
* return gd->bd->bi_dram[1].start + gd->bd->bi_dram[1].size.
*/
phys_size_t board_get_usable_ram_top(phys_size_t total_size)
{
ulong ram_top;
/* try to get top of usable RAM based on cboot DTB first */
ram_top = cboot_get_usable_ram_top(total_size);
if (ram_top > 0)
return ram_top;
/* fall back to default usable RAM computation */
return CFG_SYS_SDRAM_BASE + usable_ram_size_below_4g();
}