u-boot/disk/part_efi.c
Ilias Apalodimas 4ea1deb4bf disk: Mark static functions in part_efi.c
Mark all the functions that are only defined locally as static and
quiesce W=1 warnings

Signed-off-by: Ilias Apalodimas <ilias.apalodimas@linaro.org>
Reviewed-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
[trini: Add __maybe_unused as it's now seen as unused in some cases]
Signed-off-by: Tom Rini <trini@konsulko.com>
2024-10-29 16:17:47 -06:00

1216 lines
32 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2008 RuggedCom, Inc.
* Richard Retanubun <RichardRetanubun@RuggedCom.com>
*/
/*
* NOTE:
* when CONFIG_SYS_64BIT_LBA is not defined, lbaint_t is 32 bits; this
* limits the maximum size of addressable storage to < 2 tebibytes
*/
#define LOG_CATEGORY LOGC_FS
#include <blk.h>
#include <log.h>
#include <part.h>
#include <u-boot/uuid.h>
#include <asm/cache.h>
#include <asm/global_data.h>
#include <asm/unaligned.h>
#include <command.h>
#include <fdtdec.h>
#include <ide.h>
#include <malloc.h>
#include <memalign.h>
#include <part_efi.h>
#include <dm/ofnode.h>
#include <linux/compiler.h>
#include <linux/ctype.h>
#include <linux/printk.h>
#include <u-boot/crc.h>
/* GUID for basic data partitons */
#if CONFIG_IS_ENABLED(EFI_PARTITION)
static const efi_guid_t partition_basic_data_guid = PARTITION_BASIC_DATA_GUID;
#endif
/**
* efi_crc32() - EFI version of crc32 function
* @buf: buffer to calculate crc32 of
* @len - length of buf
*
* Description: Returns EFI-style CRC32 value for @buf
*/
static inline u32 efi_crc32(const void *buf, u32 len)
{
return crc32(0, buf, len);
}
/*
* Private function prototypes
*/
static int pmbr_part_valid(struct partition *part);
static int is_pmbr_valid(legacy_mbr * mbr);
static int is_gpt_valid(struct blk_desc *desc, u64 lba, gpt_header *pgpt_head,
gpt_entry **pgpt_pte);
static gpt_entry *alloc_read_gpt_entries(struct blk_desc *desc,
gpt_header *pgpt_head);
static int is_pte_valid(gpt_entry * pte);
static int find_valid_gpt(struct blk_desc *desc, gpt_header *gpt_head,
gpt_entry **pgpt_pte);
static char *print_efiname(gpt_entry *pte)
{
static char name[PARTNAME_SZ + 1];
int i;
for (i = 0; i < PARTNAME_SZ; i++) {
u8 c;
c = pte->partition_name[i] & 0xff;
c = (c && !isprint(c)) ? '.' : c;
name[i] = c;
}
name[PARTNAME_SZ] = 0;
return name;
}
static const efi_guid_t system_guid = PARTITION_SYSTEM_GUID;
static int get_bootable(gpt_entry *p)
{
int ret = 0;
if (!memcmp(&p->partition_type_guid, &system_guid, sizeof(efi_guid_t)))
ret |= PART_EFI_SYSTEM_PARTITION;
if (p->attributes.fields.legacy_bios_bootable)
ret |= PART_BOOTABLE;
return ret;
}
static int validate_gpt_header(gpt_header *gpt_h, lbaint_t lba,
lbaint_t lastlba)
{
uint32_t crc32_backup = 0;
uint32_t calc_crc32;
/* Check the GPT header signature */
if (le64_to_cpu(gpt_h->signature) != GPT_HEADER_SIGNATURE_UBOOT) {
log_debug("%s signature is wrong: %#llX != %#llX\n",
"GUID Partition Table Header",
le64_to_cpu(gpt_h->signature),
GPT_HEADER_SIGNATURE_UBOOT);
return -1;
}
/* Check the GUID Partition Table CRC */
memcpy(&crc32_backup, &gpt_h->header_crc32, sizeof(crc32_backup));
memset(&gpt_h->header_crc32, 0, sizeof(gpt_h->header_crc32));
calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
le32_to_cpu(gpt_h->header_size));
memcpy(&gpt_h->header_crc32, &crc32_backup, sizeof(crc32_backup));
if (calc_crc32 != le32_to_cpu(crc32_backup)) {
log_debug("%s: CRC is wrong: %#x != %#x\n",
"GUID Partition Table Header",
le32_to_cpu(crc32_backup), calc_crc32);
return -1;
}
/*
* Check that the my_lba entry points to the LBA that contains the GPT
*/
if (le64_to_cpu(gpt_h->my_lba) != lba) {
log_debug("GPT: my_lba incorrect: %llX != " LBAF "\n",
le64_to_cpu(gpt_h->my_lba), lba);
return -1;
}
/*
* Check that the first_usable_lba and that the last_usable_lba are
* within the disk.
*/
if (le64_to_cpu(gpt_h->first_usable_lba) > lastlba) {
log_debug("GPT: first_usable_lba incorrect: %llX > " LBAF "\n",
le64_to_cpu(gpt_h->first_usable_lba), lastlba);
return -1;
}
if (le64_to_cpu(gpt_h->last_usable_lba) > lastlba) {
log_debug("GPT: last_usable_lba incorrect: %llX > " LBAF "\n",
le64_to_cpu(gpt_h->last_usable_lba), lastlba);
return -1;
}
debug("GPT: first_usable_lba: %llX last_usable_lba: %llX last lba: "
LBAF "\n", le64_to_cpu(gpt_h->first_usable_lba),
le64_to_cpu(gpt_h->last_usable_lba), lastlba);
return 0;
}
static int validate_gpt_entries(gpt_header *gpt_h, gpt_entry *gpt_e)
{
uint32_t calc_crc32;
/* Check the GUID Partition Table Entry Array CRC */
calc_crc32 = efi_crc32((const unsigned char *)gpt_e,
le32_to_cpu(gpt_h->num_partition_entries) *
le32_to_cpu(gpt_h->sizeof_partition_entry));
if (calc_crc32 != le32_to_cpu(gpt_h->partition_entry_array_crc32)) {
log_debug("%s: %#x != %#x\n",
"GUID Partition Table Entry Array CRC is wrong",
le32_to_cpu(gpt_h->partition_entry_array_crc32),
calc_crc32);
return -1;
}
return 0;
}
static void prepare_backup_gpt_header(gpt_header *gpt_h)
{
uint32_t calc_crc32;
uint64_t val;
/* recalculate the values for the Backup GPT Header */
val = le64_to_cpu(gpt_h->my_lba);
gpt_h->my_lba = gpt_h->alternate_lba;
gpt_h->alternate_lba = cpu_to_le64(val);
gpt_h->partition_entry_lba =
cpu_to_le64(le64_to_cpu(gpt_h->last_usable_lba) + 1);
gpt_h->header_crc32 = 0;
calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
le32_to_cpu(gpt_h->header_size));
gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
}
#if CONFIG_IS_ENABLED(EFI_PARTITION)
/*
* Public Functions (include/part.h)
*/
/*
* UUID is displayed as 32 hexadecimal digits, in 5 groups,
* separated by hyphens, in the form 8-4-4-4-12 for a total of 36 characters
*/
int get_disk_guid(struct blk_desc *desc, char *guid)
{
ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, desc->blksz);
gpt_entry *gpt_pte = NULL;
unsigned char *guid_bin;
/* This function validates AND fills in the GPT header and PTE */
if (find_valid_gpt(desc, gpt_head, &gpt_pte) != 1)
return -EINVAL;
guid_bin = gpt_head->disk_guid.b;
uuid_bin_to_str(guid_bin, guid, UUID_STR_FORMAT_GUID);
/* Remember to free pte */
free(gpt_pte);
return 0;
}
static void __maybe_unused part_print_efi(struct blk_desc *desc)
{
ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, desc->blksz);
gpt_entry *gpt_pte = NULL;
int i = 0;
unsigned char *uuid;
/* This function validates AND fills in the GPT header and PTE */
if (find_valid_gpt(desc, gpt_head, &gpt_pte) != 1)
return;
debug("%s: gpt-entry at %p\n", __func__, gpt_pte);
printf("Part\tStart LBA\tEnd LBA\t\tName\n");
printf("\tAttributes\n");
printf("\tType GUID\n");
printf("\tPartition GUID\n");
for (i = 0; i < le32_to_cpu(gpt_head->num_partition_entries); i++) {
/* Skip invalid PTE */
if (!is_pte_valid(&gpt_pte[i]))
continue;
printf("%3d\t0x%08llx\t0x%08llx\t\"%s\"\n", (i + 1),
le64_to_cpu(gpt_pte[i].starting_lba),
le64_to_cpu(gpt_pte[i].ending_lba),
print_efiname(&gpt_pte[i]));
printf("\tattrs:\t0x%016llx\n", gpt_pte[i].attributes.raw);
uuid = (unsigned char *)gpt_pte[i].partition_type_guid.b;
if (IS_ENABLED(CONFIG_PARTITION_TYPE_GUID))
printf("\ttype:\t%pUl\n\t\t(%pUs)\n", uuid, uuid);
else
printf("\ttype:\t%pUl\n", uuid);
uuid = (unsigned char *)gpt_pte[i].unique_partition_guid.b;
printf("\tguid:\t%pUl\n", uuid);
}
/* Remember to free pte */
free(gpt_pte);
return;
}
static int __maybe_unused part_get_info_efi(struct blk_desc *desc, int part,
struct disk_partition *info)
{
ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, desc->blksz);
gpt_entry *gpt_pte = NULL;
/* "part" argument must be at least 1 */
if (part < 1) {
log_debug("Invalid Argument(s)\n");
return -EINVAL;
}
/* This function validates AND fills in the GPT header and PTE */
if (find_valid_gpt(desc, gpt_head, &gpt_pte) != 1)
return -EINVAL;
if (part > le32_to_cpu(gpt_head->num_partition_entries) ||
!is_pte_valid(&gpt_pte[part - 1])) {
log_debug("Invalid partition number %d\n", part);
free(gpt_pte);
return -EPERM;
}
/* The 'lbaint_t' casting may limit the maximum disk size to 2 TB */
info->start = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].starting_lba);
/* The ending LBA is inclusive, to calculate size, add 1 to it */
info->size = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].ending_lba) + 1
- info->start;
info->blksz = desc->blksz;
snprintf((char *)info->name, sizeof(info->name), "%s",
print_efiname(&gpt_pte[part - 1]));
strcpy((char *)info->type, "U-Boot");
info->bootable = get_bootable(&gpt_pte[part - 1]);
if (CONFIG_IS_ENABLED(PARTITION_UUIDS)) {
uuid_bin_to_str(gpt_pte[part - 1].unique_partition_guid.b,
(char *)disk_partition_uuid(info),
UUID_STR_FORMAT_GUID);
}
if (IS_ENABLED(CONFIG_PARTITION_TYPE_GUID)) {
uuid_bin_to_str(gpt_pte[part - 1].partition_type_guid.b,
(char *)disk_partition_type_guid(info),
UUID_STR_FORMAT_GUID);
}
log_debug("start 0x" LBAF ", size 0x" LBAF ", name %s\n", info->start,
info->size, info->name);
/* Remember to free pte */
free(gpt_pte);
return 0;
}
static int part_test_efi(struct blk_desc *desc)
{
ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, legacymbr, 1, desc->blksz);
/* Read legacy MBR from block 0 and validate it */
if ((blk_dread(desc, 0, 1, (ulong *)legacymbr) != 1)
|| (is_pmbr_valid(legacymbr) != 1)) {
/*
* TegraPT is compatible with EFI part, but it
* cannot pass the Protective MBR check. Skip it
* if CONFIG_TEGRA_PARTITION is enabled and the
* device in question is eMMC.
*/
if (IS_ENABLED(CONFIG_TEGRA_PARTITION))
if (!is_pmbr_valid(legacymbr) &&
desc->uclass_id == UCLASS_MMC &&
!desc->devnum)
return 0;
return -1;
}
return 0;
}
/**
* set_protective_mbr(): Set the EFI protective MBR
* @param desc - block device descriptor
*
* Return: - zero on success, otherwise error
*/
static int set_protective_mbr(struct blk_desc *desc)
{
/* Setup the Protective MBR */
ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, p_mbr, 1, desc->blksz);
if (p_mbr == NULL) {
log_debug("calloc failed!\n");
return -ENOMEM;
}
/* Read MBR to backup boot code if it exists */
if (blk_dread(desc, 0, 1, p_mbr) != 1) {
log_debug("** Can't read from device %d **\n",
desc->devnum);
return -EIO;
}
/* Clear all data in MBR except of backed up boot code */
memset((char *)p_mbr + MSDOS_MBR_BOOT_CODE_SIZE, 0, sizeof(*p_mbr) -
MSDOS_MBR_BOOT_CODE_SIZE);
/* Append signature */
p_mbr->signature = MSDOS_MBR_SIGNATURE;
p_mbr->partition_record[0].sys_ind = EFI_PMBR_OSTYPE_EFI_GPT;
p_mbr->partition_record[0].start_sect = 1;
p_mbr->partition_record[0].nr_sects = (u32)desc->lba - 1;
/* Write MBR sector to the MMC device */
if (blk_dwrite(desc, 0, 1, p_mbr) != 1) {
log_debug("** Can't write to device %d **\n", desc->devnum);
return -EIO;
}
return 0;
}
int write_gpt_table(struct blk_desc *desc, gpt_header *gpt_h, gpt_entry *gpt_e)
{
const int pte_blk_cnt = BLOCK_CNT((gpt_h->num_partition_entries
* sizeof(gpt_entry)), desc);
u32 calc_crc32;
debug("max lba: %x\n", (u32)desc->lba);
/* Setup the Protective MBR */
if (set_protective_mbr(desc) < 0)
goto err;
/* Generate CRC for the Primary GPT Header */
calc_crc32 = efi_crc32((const unsigned char *)gpt_e,
le32_to_cpu(gpt_h->num_partition_entries) *
le32_to_cpu(gpt_h->sizeof_partition_entry));
gpt_h->partition_entry_array_crc32 = cpu_to_le32(calc_crc32);
calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
le32_to_cpu(gpt_h->header_size));
gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
/* Write the First GPT to the block right after the Legacy MBR */
if (blk_dwrite(desc, 1, 1, gpt_h) != 1)
goto err;
if (blk_dwrite(desc, le64_to_cpu(gpt_h->partition_entry_lba),
pte_blk_cnt, gpt_e) != pte_blk_cnt)
goto err;
prepare_backup_gpt_header(gpt_h);
if (blk_dwrite(desc, (lbaint_t)le64_to_cpu(gpt_h->last_usable_lba)
+ 1, pte_blk_cnt, gpt_e) != pte_blk_cnt)
goto err;
if (blk_dwrite(desc, (lbaint_t)le64_to_cpu(gpt_h->my_lba), 1,
gpt_h) != 1)
goto err;
debug("GPT successfully written to block device!\n");
return 0;
err:
log_debug("** Can't write to device %d **\n", desc->devnum);
return -EIO;
}
int gpt_fill_pte(struct blk_desc *desc,
gpt_header *gpt_h, gpt_entry *gpt_e,
struct disk_partition *partitions, int parts)
{
lbaint_t offset = (lbaint_t)le64_to_cpu(gpt_h->first_usable_lba);
lbaint_t last_usable_lba = (lbaint_t)
le64_to_cpu(gpt_h->last_usable_lba);
int i, k;
size_t efiname_len, dosname_len;
unsigned char *bin_uuid;
#ifdef CONFIG_PARTITION_TYPE_GUID
char *str_type_guid;
unsigned char *bin_type_guid;
#endif
size_t hdr_start = gpt_h->my_lba;
size_t hdr_end = hdr_start + 1;
size_t pte_start = gpt_h->partition_entry_lba;
size_t pte_end = pte_start +
gpt_h->num_partition_entries * gpt_h->sizeof_partition_entry /
desc->blksz;
for (i = 0; i < parts; i++) {
/* partition starting lba */
lbaint_t start = partitions[i].start;
lbaint_t size = partitions[i].size;
if (start) {
offset = start + size;
} else {
start = offset;
offset += size;
}
/*
* If our partition overlaps with either the GPT
* header, or the partition entry, reject it.
*/
if (((start < hdr_end && hdr_start < (start + size)) ||
(start < pte_end && pte_start < (start + size)))) {
log_debug("Partition overlap\n");
return -ENOSPC;
}
gpt_e[i].starting_lba = cpu_to_le64(start);
if (offset > (last_usable_lba + 1)) {
log_debug("Partitions layout exceeds disk size\n");
return -E2BIG;
}
/* partition ending lba */
if ((i == parts - 1) && (size == 0))
/* extend the last partition to maximuim */
gpt_e[i].ending_lba = gpt_h->last_usable_lba;
else
gpt_e[i].ending_lba = cpu_to_le64(offset - 1);
#ifdef CONFIG_PARTITION_TYPE_GUID
str_type_guid = partitions[i].type_guid;
bin_type_guid = gpt_e[i].partition_type_guid.b;
if (strlen(str_type_guid)) {
if (uuid_str_to_bin(str_type_guid, bin_type_guid,
UUID_STR_FORMAT_GUID)) {
log_debug("Partition no. %d: invalid type guid: %s\n",
i, str_type_guid);
return -EINVAL;
}
} else {
/* default partition type GUID */
memcpy(bin_type_guid,
&partition_basic_data_guid, 16);
}
#else
/* partition type GUID */
memcpy(gpt_e[i].partition_type_guid.b,
&partition_basic_data_guid, 16);
#endif
if (CONFIG_IS_ENABLED(PARTITION_UUIDS)) {
const char *str_uuid;
str_uuid = disk_partition_uuid(&partitions[i]);
bin_uuid = gpt_e[i].unique_partition_guid.b;
if (uuid_str_to_bin(str_uuid, bin_uuid,
UUID_STR_FORMAT_GUID)) {
log_debug("Partition no. %d: invalid guid: %s\n",
i, str_uuid);
return -EINVAL;
}
}
/* partition attributes */
memset(&gpt_e[i].attributes, 0,
sizeof(gpt_entry_attributes));
if (partitions[i].bootable & PART_BOOTABLE)
gpt_e[i].attributes.fields.legacy_bios_bootable = 1;
/* partition name */
efiname_len = sizeof(gpt_e[i].partition_name)
/ sizeof(efi_char16_t);
dosname_len = sizeof(partitions[i].name);
memset(gpt_e[i].partition_name, 0,
sizeof(gpt_e[i].partition_name));
for (k = 0; k < min(dosname_len, efiname_len); k++)
gpt_e[i].partition_name[k] =
(efi_char16_t)(partitions[i].name[k]);
debug("%s: name: %s offset[%d]: 0x" LBAF
" size[%d]: 0x" LBAF "\n",
__func__, partitions[i].name, i,
offset, i, size);
}
return 0;
}
static uint32_t partition_entries_offset(struct blk_desc *desc)
{
uint32_t offset_blks = 2;
uint32_t __maybe_unused offset_bytes;
int __maybe_unused config_offset;
#if defined(CONFIG_EFI_PARTITION_ENTRIES_OFF)
/*
* Some architectures require their SPL loader at a fixed
* address within the first 16KB of the disk. To avoid an
* overlap with the partition entries of the EFI partition
* table, the first safe offset (in bytes, from the start of
* the disk) for the entries can be set in
* CONFIG_EFI_PARTITION_ENTRIES_OFF.
*/
offset_bytes =
PAD_TO_BLOCKSIZE(CONFIG_EFI_PARTITION_ENTRIES_OFF, desc);
offset_blks = offset_bytes / desc->blksz;
#endif
#if defined(CONFIG_OF_CONTROL)
/*
* Allow the offset of the first partition entires (in bytes
* from the start of the device) to be specified as a property
* of the device tree '/config' node.
*/
config_offset = ofnode_conf_read_int(
"u-boot,efi-partition-entries-offset", -EINVAL);
if (config_offset != -EINVAL) {
offset_bytes = PAD_TO_BLOCKSIZE(config_offset, desc);
offset_blks = offset_bytes / desc->blksz;
}
#endif
debug("efi: partition entries offset (in blocks): %d\n", offset_blks);
/*
* The earliest LBA this can be at is LBA#2 (i.e. right behind
* the (protective) MBR and the GPT header.
*/
if (offset_blks < 2)
offset_blks = 2;
return offset_blks;
}
int gpt_fill_header(struct blk_desc *desc, gpt_header *gpt_h, char *str_guid,
int parts_count)
{
gpt_h->signature = cpu_to_le64(GPT_HEADER_SIGNATURE_UBOOT);
gpt_h->revision = cpu_to_le32(GPT_HEADER_REVISION_V1);
gpt_h->header_size = cpu_to_le32(sizeof(gpt_header));
gpt_h->my_lba = cpu_to_le64(1);
gpt_h->alternate_lba = cpu_to_le64(desc->lba - 1);
gpt_h->last_usable_lba = cpu_to_le64(desc->lba - 34);
gpt_h->partition_entry_lba =
cpu_to_le64(partition_entries_offset(desc));
gpt_h->first_usable_lba =
cpu_to_le64(le64_to_cpu(gpt_h->partition_entry_lba) + 32);
gpt_h->num_partition_entries = cpu_to_le32(GPT_ENTRY_NUMBERS);
gpt_h->sizeof_partition_entry = cpu_to_le32(sizeof(gpt_entry));
gpt_h->header_crc32 = 0;
gpt_h->partition_entry_array_crc32 = 0;
if (uuid_str_to_bin(str_guid, gpt_h->disk_guid.b, UUID_STR_FORMAT_GUID))
return -1;
return 0;
}
int gpt_restore(struct blk_desc *desc, char *str_disk_guid,
struct disk_partition *partitions, int parts_count)
{
gpt_header *gpt_h;
gpt_entry *gpt_e;
int ret, size;
size = PAD_TO_BLOCKSIZE(sizeof(gpt_header), desc);
gpt_h = malloc_cache_aligned(size);
if (gpt_h == NULL) {
log_debug("calloc failed!\n");
return -ENOMEM;
}
memset(gpt_h, 0, size);
size = PAD_TO_BLOCKSIZE(GPT_ENTRY_NUMBERS * sizeof(gpt_entry),
desc);
gpt_e = malloc_cache_aligned(size);
if (gpt_e == NULL) {
log_debug("calloc failed!\n");
free(gpt_h);
return -ENOMEM;
}
memset(gpt_e, 0, size);
/* Generate Primary GPT header (LBA1) */
ret = gpt_fill_header(desc, gpt_h, str_disk_guid, parts_count);
if (ret)
goto err;
/* Generate partition entries */
ret = gpt_fill_pte(desc, gpt_h, gpt_e, partitions, parts_count);
if (ret)
goto err;
/* Write GPT partition table */
ret = write_gpt_table(desc, gpt_h, gpt_e);
err:
free(gpt_e);
free(gpt_h);
return ret;
}
/**
* gpt_convert_efi_name_to_char() - convert u16 string to char string
*
* TODO: this conversion only supports ANSI characters
*
* @s: target buffer
* @es: u16 string to be converted
* @n: size of target buffer
*/
static void gpt_convert_efi_name_to_char(char *s, void *es, int n)
{
char *ess = es;
int i, j;
memset(s, '\0', n);
for (i = 0, j = 0; j < n; i += 2, j++) {
s[j] = ess[i];
if (!ess[i])
return;
}
}
int gpt_verify_headers(struct blk_desc *desc, gpt_header *gpt_head,
gpt_entry **gpt_pte)
{
/*
* This function validates AND
* fills in the GPT header and PTE
*/
if (is_gpt_valid(desc,
GPT_PRIMARY_PARTITION_TABLE_LBA,
gpt_head, gpt_pte) != 1) {
log_debug("Invalid GPT\n");
return -1;
}
/* Free pte before allocating again */
free(*gpt_pte);
/*
* Check that the alternate_lba entry points to the last LBA
*/
if (le64_to_cpu(gpt_head->alternate_lba) != (desc->lba - 1)) {
log_debug("Misplaced Backup GPT\n");
return -1;
}
if (is_gpt_valid(desc, (desc->lba - 1),
gpt_head, gpt_pte) != 1) {
log_debug("Invalid Backup GPT\n");
return -1;
}
return 0;
}
static void restore_primary_gpt_header(gpt_header *gpt_h, struct blk_desc *desc)
{
u32 calc_crc32;
u64 val;
/* recalculate the values for the Primary GPT Header */
val = le64_to_cpu(gpt_h->my_lba);
gpt_h->my_lba = gpt_h->alternate_lba;
gpt_h->alternate_lba = cpu_to_le64(val);
gpt_h->partition_entry_lba = cpu_to_le64(partition_entries_offset(desc));
gpt_h->header_crc32 = 0;
calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
le32_to_cpu(gpt_h->header_size));
gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
}
static int write_one_gpt_table(struct blk_desc *desc, gpt_header *gpt_h,
gpt_entry *gpt_e)
{
const int pte_blk_cnt = BLOCK_CNT((gpt_h->num_partition_entries
* sizeof(gpt_entry)), desc);
lbaint_t start;
int ret = 0;
start = le64_to_cpu(gpt_h->my_lba);
if (blk_dwrite(desc, start, 1, gpt_h) != 1) {
ret = -1;
goto out;
}
start = le64_to_cpu(gpt_h->partition_entry_lba);
if (blk_dwrite(desc, start, pte_blk_cnt, gpt_e) != pte_blk_cnt) {
ret = -1;
goto out;
}
out:
return ret;
}
int gpt_repair_headers(struct blk_desc *desc)
{
ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_h1, 1, desc->blksz);
ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_h2, 1, desc->blksz);
gpt_entry *gpt_e1 = NULL, *gpt_e2 = NULL;
int is_gpt1_valid, is_gpt2_valid;
int ret = -1;
is_gpt1_valid = is_gpt_valid(desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
gpt_h1, &gpt_e1);
is_gpt2_valid = is_gpt_valid(desc, desc->lba - 1,
gpt_h2, &gpt_e2);
if (is_gpt1_valid && is_gpt2_valid) {
ret = 0;
goto out;
}
if (is_gpt1_valid && !is_gpt2_valid) {
prepare_backup_gpt_header(gpt_h1);
ret = write_one_gpt_table(desc, gpt_h1, gpt_e1);
goto out;
}
if (!is_gpt1_valid && is_gpt2_valid) {
restore_primary_gpt_header(gpt_h2, desc);
ret = write_one_gpt_table(desc, gpt_h2, gpt_e2);
goto out;
}
if (!is_gpt1_valid && !is_gpt2_valid) {
ret = -1;
goto out;
}
out:
if (is_gpt1_valid)
free(gpt_e1);
if (is_gpt2_valid)
free(gpt_e2);
return ret;
}
int gpt_verify_partitions(struct blk_desc *desc,
struct disk_partition *partitions, int parts,
gpt_header *gpt_head, gpt_entry **gpt_pte)
{
char efi_str[PARTNAME_SZ + 1];
u64 gpt_part_size;
gpt_entry *gpt_e;
int ret, i;
ret = gpt_verify_headers(desc, gpt_head, gpt_pte);
if (ret)
return ret;
gpt_e = *gpt_pte;
for (i = 0; i < parts; i++) {
if (i == gpt_head->num_partition_entries) {
pr_err("More partitions than allowed!\n");
return -1;
}
/* Check if GPT and ENV partition names match */
gpt_convert_efi_name_to_char(efi_str, gpt_e[i].partition_name,
PARTNAME_SZ + 1);
debug("%s: part: %2d name - GPT: %16s, ENV: %16s ",
__func__, i, efi_str, partitions[i].name);
if (strncmp(efi_str, (char *)partitions[i].name,
sizeof(partitions->name))) {
pr_err("Partition name: %s does not match %s!\n",
efi_str, (char *)partitions[i].name);
return -1;
}
/* Check if GPT and ENV sizes match */
gpt_part_size = le64_to_cpu(gpt_e[i].ending_lba) -
le64_to_cpu(gpt_e[i].starting_lba) + 1;
debug("size(LBA) - GPT: %8llu, ENV: %8llu ",
(unsigned long long)gpt_part_size,
(unsigned long long)partitions[i].size);
if (le64_to_cpu(gpt_part_size) != partitions[i].size) {
/* We do not check the extend partition size */
if ((i == parts - 1) && (partitions[i].size == 0))
continue;
pr_err("Partition %s size: %llu does not match %llu!\n",
efi_str, (unsigned long long)gpt_part_size,
(unsigned long long)partitions[i].size);
return -1;
}
/*
* Start address is optional - check only if provided
* in '$partition' variable
*/
if (!partitions[i].start) {
debug("\n");
continue;
}
/* Check if GPT and ENV start LBAs match */
debug("start LBA - GPT: %8llu, ENV: %8llu\n",
le64_to_cpu(gpt_e[i].starting_lba),
(unsigned long long)partitions[i].start);
if (le64_to_cpu(gpt_e[i].starting_lba) != partitions[i].start) {
pr_err("Partition %s start: %llu does not match %llu!\n",
efi_str, le64_to_cpu(gpt_e[i].starting_lba),
(unsigned long long)partitions[i].start);
return -1;
}
}
return 0;
}
int is_valid_gpt_buf(struct blk_desc *desc, void *buf)
{
gpt_header *gpt_h;
gpt_entry *gpt_e;
/* determine start of GPT Header in the buffer */
gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA * desc->blksz);
if (validate_gpt_header(gpt_h, GPT_PRIMARY_PARTITION_TABLE_LBA,
desc->lba))
return -1;
/* determine start of GPT Entries in the buffer */
gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) *
desc->blksz);
if (validate_gpt_entries(gpt_h, gpt_e))
return -1;
return 0;
}
int write_mbr_and_gpt_partitions(struct blk_desc *desc, void *buf)
{
gpt_header *gpt_h;
gpt_entry *gpt_e;
int gpt_e_blk_cnt;
lbaint_t lba;
int cnt;
if (is_valid_gpt_buf(desc, buf))
return -1;
/* determine start of GPT Header in the buffer */
gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA * desc->blksz);
/* determine start of GPT Entries in the buffer */
gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) * desc->blksz);
gpt_e_blk_cnt = BLOCK_CNT((le32_to_cpu(gpt_h->num_partition_entries) *
le32_to_cpu(gpt_h->sizeof_partition_entry)),
desc);
/* write MBR */
lba = 0; /* MBR is always at 0 */
cnt = 1; /* MBR (1 block) */
if (blk_dwrite(desc, lba, cnt, buf) != cnt) {
log_debug("failed writing '%s' (%d blks at 0x" LBAF ")\n",
"MBR", cnt, lba);
return 1;
}
/* write Primary GPT */
lba = GPT_PRIMARY_PARTITION_TABLE_LBA;
cnt = 1; /* GPT Header (1 block) */
if (blk_dwrite(desc, lba, cnt, gpt_h) != cnt) {
log_debug("failed writing '%s' (%d blks at 0x" LBAF ")\n",
"Primary GPT Header", cnt, lba);
return 1;
}
lba = le64_to_cpu(gpt_h->partition_entry_lba);
cnt = gpt_e_blk_cnt;
if (blk_dwrite(desc, lba, cnt, gpt_e) != cnt) {
log_debug("failed writing '%s' (%d blks at 0x" LBAF ")\n",
"Primary GPT Entries", cnt, lba);
return 1;
}
prepare_backup_gpt_header(gpt_h);
/* write Backup GPT */
lba = le64_to_cpu(gpt_h->partition_entry_lba);
cnt = gpt_e_blk_cnt;
if (blk_dwrite(desc, lba, cnt, gpt_e) != cnt) {
log_debug("failed writing '%s' (%d blks at 0x" LBAF ")\n",
"Backup GPT Entries", cnt, lba);
return 1;
}
lba = le64_to_cpu(gpt_h->my_lba);
cnt = 1; /* GPT Header (1 block) */
if (blk_dwrite(desc, lba, cnt, gpt_h) != cnt) {
log_debug("failed writing '%s' (%d blks at 0x" LBAF ")\n",
"Backup GPT Header", cnt, lba);
return 1;
}
/* Update the partition table entries*/
part_init(desc);
return 0;
}
#endif
/*
* Private functions
*/
/*
* pmbr_part_valid(): Check for EFI partition signature
*
* Returns: 1 if EFI GPT partition type is found.
*/
static int pmbr_part_valid(struct partition *part)
{
if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT &&
get_unaligned_le32(&part->start_sect) == 1UL) {
return 1;
}
return 0;
}
/*
* is_pmbr_valid(): test Protective MBR for validity
*
* @mbr: Pointer to Master Boot-Record data
*
* Returns: 1 if PMBR is valid, 0 otherwise.
* Validity depends on two things:
* 1) MSDOS signature is in the last two bytes of the MBR
* 2) One partition of type 0xEE is found, checked by pmbr_part_valid()
*/
static int is_pmbr_valid(legacy_mbr *mbr)
{
uint sig = le16_to_cpu(mbr->signature);
int i = 0;
if (sig != MSDOS_MBR_SIGNATURE) {
log_debug("Invalid signature %x\n", sig);
return 0;
}
log_debug("Signature %x valid\n", sig);
for (i = 0; i < 4; i++) {
if (pmbr_part_valid(&mbr->partition_record[i])) {
return 1;
}
}
return 0;
}
/**
* is_gpt_valid() - tests one GPT header and PTEs for validity
*
* lba is the logical block address of the GPT header to test
* gpt is a GPT header ptr, filled on return.
* ptes is a PTEs ptr, filled on return.
*
* Description: returns 1 if valid, 0 on error, 2 if ignored header
* If valid, returns pointers to PTEs.
*/
static int is_gpt_valid(struct blk_desc *desc, u64 lba, gpt_header *pgpt_head,
gpt_entry **pgpt_pte)
{
/* Confirm valid arguments prior to allocation. */
if (!desc || !pgpt_head) {
log_debug("Invalid Argument(s)\n");
return 0;
}
ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, mbr, 1, desc->blksz);
/* Read MBR Header from device */
if (blk_dread(desc, 0, 1, (ulong *)mbr) != 1) {
log_debug("Can't read MBR header\n");
return 0;
}
/* Read GPT Header from device */
if (blk_dread(desc, (lbaint_t)lba, 1, pgpt_head) != 1) {
log_debug("Can't read GPT header\n");
return 0;
}
/* Invalid but nothing to yell about. */
if (le64_to_cpu(pgpt_head->signature) == GPT_HEADER_CHROMEOS_IGNORE) {
log_debug("ChromeOS 'IGNOREME' GPT header found and ignored\n");
return 2;
}
if (validate_gpt_header(pgpt_head, (lbaint_t)lba, desc->lba))
return 0;
if (desc->sig_type == SIG_TYPE_NONE) {
efi_guid_t empty = {};
if (memcmp(&pgpt_head->disk_guid, &empty, sizeof(empty))) {
desc->sig_type = SIG_TYPE_GUID;
memcpy(&desc->guid_sig, &pgpt_head->disk_guid,
sizeof(empty));
} else if (mbr->unique_mbr_signature != 0) {
desc->sig_type = SIG_TYPE_MBR;
desc->mbr_sig = mbr->unique_mbr_signature;
}
}
/* Read and allocate Partition Table Entries */
*pgpt_pte = alloc_read_gpt_entries(desc, pgpt_head);
if (!*pgpt_pte)
return 0;
if (validate_gpt_entries(pgpt_head, *pgpt_pte)) {
free(*pgpt_pte);
return 0;
}
/* We're done, all's well */
return 1;
}
/**
* find_valid_gpt() - finds a valid GPT header and PTEs
*
* gpt is a GPT header ptr, filled on return.
* ptes is a PTEs ptr, filled on return.
*
* Description: returns 1 if found a valid gpt, 0 on error.
* If valid, returns pointers to PTEs.
*/
static int find_valid_gpt(struct blk_desc *desc, gpt_header *gpt_head,
gpt_entry **pgpt_pte)
{
int r;
r = is_gpt_valid(desc, GPT_PRIMARY_PARTITION_TABLE_LBA, gpt_head,
pgpt_pte);
if (r != 1) {
if (r != 2)
log_debug("Invalid GPT\n");
if (is_gpt_valid(desc, desc->lba - 1, gpt_head, pgpt_pte)
!= 1) {
log_debug("Invalid Backup GPT\n");
return 0;
}
if (r != 2)
log_debug(" Using Backup GPT\n");
}
return 1;
}
/**
* alloc_read_gpt_entries(): reads partition entries from disk
* @desc
* @gpt - GPT header
*
* Description: Returns ptes on success, NULL on error.
* Allocates space for PTEs based on information found in @gpt.
* Notes: remember to free pte when you're done!
*/
static gpt_entry *alloc_read_gpt_entries(struct blk_desc *desc,
gpt_header *pgpt_head)
{
size_t count = 0, blk_cnt;
lbaint_t blk;
gpt_entry *pte = NULL;
if (!desc || !pgpt_head) {
log_debug("Invalid Argument(s)\n");
return NULL;
}
count = le32_to_cpu(pgpt_head->num_partition_entries) *
le32_to_cpu(pgpt_head->sizeof_partition_entry);
log_debug("count = %u * %u = %lu\n",
(u32)le32_to_cpu(pgpt_head->num_partition_entries),
(u32)le32_to_cpu(pgpt_head->sizeof_partition_entry),
(ulong)count);
/* Allocate memory for PTE, remember to FREE */
if (count != 0) {
pte = memalign(ARCH_DMA_MINALIGN,
PAD_TO_BLOCKSIZE(count, desc));
}
if (count == 0 || pte == NULL) {
log_debug("ERROR: Can't allocate %#lX bytes for GPT Entries\n",
(ulong)count);
return NULL;
}
/* Read GPT Entries from device */
blk = le64_to_cpu(pgpt_head->partition_entry_lba);
blk_cnt = BLOCK_CNT(count, desc);
if (blk_dread(desc, blk, (lbaint_t)blk_cnt, pte) != blk_cnt) {
log_debug("Can't read GPT Entries\n");
free(pte);
return NULL;
}
return pte;
}
/**
* is_pte_valid(): validates a single Partition Table Entry
* @gpt_entry - Pointer to a single Partition Table Entry
*
* Description: returns 1 if valid, 0 on error.
*/
static int is_pte_valid(gpt_entry * pte)
{
efi_guid_t unused_guid;
if (!pte) {
log_debug("Invalid Argument(s)\n");
return 0;
}
/* Only one validation for now:
* The GUID Partition Type != Unused Entry (ALL-ZERO)
*/
memset(unused_guid.b, 0, sizeof(unused_guid.b));
if (memcmp(pte->partition_type_guid.b, unused_guid.b,
sizeof(unused_guid.b)) == 0) {
log_debug("Found an unused PTE GUID at 0x%08X\n",
(unsigned int)(uintptr_t)pte);
return 0;
} else {
return 1;
}
}
/*
* Add an 'a_' prefix so it comes before 'dos' in the linker list. We need to
* check EFI first, since a DOS partition is often used as a 'protective MBR'
* with EFI.
*/
U_BOOT_PART_TYPE(a_efi) = {
.name = "EFI",
.part_type = PART_TYPE_EFI,
.max_entries = GPT_ENTRY_NUMBERS,
.get_info = part_get_info_ptr(part_get_info_efi),
.print = part_print_ptr(part_print_efi),
.test = part_test_efi,
};