u-boot/drivers/mmc/fsl_esdhc.c
Tom Rini 10dc77716f esdhc/usdhc: Fix warning when CONFIG_SYS_FSL_ESDHC_USE_PIO is not set
In 7168977 we made calls to check_and_invalidate_dcache_range()
conditional on !CONFIG_SYS_FSL_ESDHC_USE_PIO.  Only define this function
in this case as well.

Signed-off-by: Tom Rini <trini@ti.com>
2014-05-23 09:19:05 -04:00

654 lines
16 KiB
C

/*
* Copyright 2007, 2010-2011 Freescale Semiconductor, Inc
* Andy Fleming
*
* Based vaguely on the pxa mmc code:
* (C) Copyright 2003
* Kyle Harris, Nexus Technologies, Inc. kharris@nexus-tech.net
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <config.h>
#include <common.h>
#include <command.h>
#include <hwconfig.h>
#include <mmc.h>
#include <part.h>
#include <malloc.h>
#include <mmc.h>
#include <fsl_esdhc.h>
#include <fdt_support.h>
#include <asm/io.h>
DECLARE_GLOBAL_DATA_PTR;
struct fsl_esdhc {
uint dsaddr; /* SDMA system address register */
uint blkattr; /* Block attributes register */
uint cmdarg; /* Command argument register */
uint xfertyp; /* Transfer type register */
uint cmdrsp0; /* Command response 0 register */
uint cmdrsp1; /* Command response 1 register */
uint cmdrsp2; /* Command response 2 register */
uint cmdrsp3; /* Command response 3 register */
uint datport; /* Buffer data port register */
uint prsstat; /* Present state register */
uint proctl; /* Protocol control register */
uint sysctl; /* System Control Register */
uint irqstat; /* Interrupt status register */
uint irqstaten; /* Interrupt status enable register */
uint irqsigen; /* Interrupt signal enable register */
uint autoc12err; /* Auto CMD error status register */
uint hostcapblt; /* Host controller capabilities register */
uint wml; /* Watermark level register */
uint mixctrl; /* For USDHC */
char reserved1[4]; /* reserved */
uint fevt; /* Force event register */
uint admaes; /* ADMA error status register */
uint adsaddr; /* ADMA system address register */
char reserved2[160]; /* reserved */
uint hostver; /* Host controller version register */
char reserved3[4]; /* reserved */
uint dmaerraddr; /* DMA error address register */
char reserved4[4]; /* reserved */
uint dmaerrattr; /* DMA error attribute register */
char reserved5[4]; /* reserved */
uint hostcapblt2; /* Host controller capabilities register 2 */
char reserved6[8]; /* reserved */
uint tcr; /* Tuning control register */
char reserved7[28]; /* reserved */
uint sddirctl; /* SD direction control register */
char reserved8[712]; /* reserved */
uint scr; /* eSDHC control register */
};
/* Return the XFERTYP flags for a given command and data packet */
static uint esdhc_xfertyp(struct mmc_cmd *cmd, struct mmc_data *data)
{
uint xfertyp = 0;
if (data) {
xfertyp |= XFERTYP_DPSEL;
#ifndef CONFIG_SYS_FSL_ESDHC_USE_PIO
xfertyp |= XFERTYP_DMAEN;
#endif
if (data->blocks > 1) {
xfertyp |= XFERTYP_MSBSEL;
xfertyp |= XFERTYP_BCEN;
#ifdef CONFIG_SYS_FSL_ERRATUM_ESDHC111
xfertyp |= XFERTYP_AC12EN;
#endif
}
if (data->flags & MMC_DATA_READ)
xfertyp |= XFERTYP_DTDSEL;
}
if (cmd->resp_type & MMC_RSP_CRC)
xfertyp |= XFERTYP_CCCEN;
if (cmd->resp_type & MMC_RSP_OPCODE)
xfertyp |= XFERTYP_CICEN;
if (cmd->resp_type & MMC_RSP_136)
xfertyp |= XFERTYP_RSPTYP_136;
else if (cmd->resp_type & MMC_RSP_BUSY)
xfertyp |= XFERTYP_RSPTYP_48_BUSY;
else if (cmd->resp_type & MMC_RSP_PRESENT)
xfertyp |= XFERTYP_RSPTYP_48;
#if defined(CONFIG_MX53) || defined(CONFIG_PPC_T4240)
if (cmd->cmdidx == MMC_CMD_STOP_TRANSMISSION)
xfertyp |= XFERTYP_CMDTYP_ABORT;
#endif
return XFERTYP_CMD(cmd->cmdidx) | xfertyp;
}
#ifdef CONFIG_SYS_FSL_ESDHC_USE_PIO
/*
* PIO Read/Write Mode reduce the performace as DMA is not used in this mode.
*/
static void
esdhc_pio_read_write(struct mmc *mmc, struct mmc_data *data)
{
struct fsl_esdhc_cfg *cfg = mmc->priv;
struct fsl_esdhc *regs = (struct fsl_esdhc *)cfg->esdhc_base;
uint blocks;
char *buffer;
uint databuf;
uint size;
uint irqstat;
uint timeout;
if (data->flags & MMC_DATA_READ) {
blocks = data->blocks;
buffer = data->dest;
while (blocks) {
timeout = PIO_TIMEOUT;
size = data->blocksize;
irqstat = esdhc_read32(&regs->irqstat);
while (!(esdhc_read32(&regs->prsstat) & PRSSTAT_BREN)
&& --timeout);
if (timeout <= 0) {
printf("\nData Read Failed in PIO Mode.");
return;
}
while (size && (!(irqstat & IRQSTAT_TC))) {
udelay(100); /* Wait before last byte transfer complete */
irqstat = esdhc_read32(&regs->irqstat);
databuf = in_le32(&regs->datport);
*((uint *)buffer) = databuf;
buffer += 4;
size -= 4;
}
blocks--;
}
} else {
blocks = data->blocks;
buffer = (char *)data->src;
while (blocks) {
timeout = PIO_TIMEOUT;
size = data->blocksize;
irqstat = esdhc_read32(&regs->irqstat);
while (!(esdhc_read32(&regs->prsstat) & PRSSTAT_BWEN)
&& --timeout);
if (timeout <= 0) {
printf("\nData Write Failed in PIO Mode.");
return;
}
while (size && (!(irqstat & IRQSTAT_TC))) {
udelay(100); /* Wait before last byte transfer complete */
databuf = *((uint *)buffer);
buffer += 4;
size -= 4;
irqstat = esdhc_read32(&regs->irqstat);
out_le32(&regs->datport, databuf);
}
blocks--;
}
}
}
#endif
static int esdhc_setup_data(struct mmc *mmc, struct mmc_data *data)
{
int timeout;
struct fsl_esdhc_cfg *cfg = mmc->priv;
struct fsl_esdhc *regs = (struct fsl_esdhc *)cfg->esdhc_base;
uint wml_value;
wml_value = data->blocksize/4;
if (data->flags & MMC_DATA_READ) {
if (wml_value > WML_RD_WML_MAX)
wml_value = WML_RD_WML_MAX_VAL;
esdhc_clrsetbits32(&regs->wml, WML_RD_WML_MASK, wml_value);
#ifndef CONFIG_SYS_FSL_ESDHC_USE_PIO
esdhc_write32(&regs->dsaddr, (u32)data->dest);
#endif
} else {
#ifndef CONFIG_SYS_FSL_ESDHC_USE_PIO
flush_dcache_range((ulong)data->src,
(ulong)data->src+data->blocks
*data->blocksize);
#endif
if (wml_value > WML_WR_WML_MAX)
wml_value = WML_WR_WML_MAX_VAL;
if ((esdhc_read32(&regs->prsstat) & PRSSTAT_WPSPL) == 0) {
printf("\nThe SD card is locked. Can not write to a locked card.\n\n");
return TIMEOUT;
}
esdhc_clrsetbits32(&regs->wml, WML_WR_WML_MASK,
wml_value << 16);
#ifndef CONFIG_SYS_FSL_ESDHC_USE_PIO
esdhc_write32(&regs->dsaddr, (u32)data->src);
#endif
}
esdhc_write32(&regs->blkattr, data->blocks << 16 | data->blocksize);
/* Calculate the timeout period for data transactions */
/*
* 1)Timeout period = (2^(timeout+13)) SD Clock cycles
* 2)Timeout period should be minimum 0.250sec as per SD Card spec
* So, Number of SD Clock cycles for 0.25sec should be minimum
* (SD Clock/sec * 0.25 sec) SD Clock cycles
* = (mmc->clock * 1/4) SD Clock cycles
* As 1) >= 2)
* => (2^(timeout+13)) >= mmc->clock * 1/4
* Taking log2 both the sides
* => timeout + 13 >= log2(mmc->clock/4)
* Rounding up to next power of 2
* => timeout + 13 = log2(mmc->clock/4) + 1
* => timeout + 13 = fls(mmc->clock/4)
*/
timeout = fls(mmc->clock/4);
timeout -= 13;
if (timeout > 14)
timeout = 14;
if (timeout < 0)
timeout = 0;
#ifdef CONFIG_SYS_FSL_ERRATUM_ESDHC_A001
if ((timeout == 4) || (timeout == 8) || (timeout == 12))
timeout++;
#endif
#ifdef ESDHCI_QUIRK_BROKEN_TIMEOUT_VALUE
timeout = 0xE;
#endif
esdhc_clrsetbits32(&regs->sysctl, SYSCTL_TIMEOUT_MASK, timeout << 16);
return 0;
}
#ifndef CONFIG_SYS_FSL_ESDHC_USE_PIO
static void check_and_invalidate_dcache_range
(struct mmc_cmd *cmd,
struct mmc_data *data) {
unsigned start = (unsigned)data->dest ;
unsigned size = roundup(ARCH_DMA_MINALIGN,
data->blocks*data->blocksize);
unsigned end = start+size ;
invalidate_dcache_range(start, end);
}
#endif
/*
* Sends a command out on the bus. Takes the mmc pointer,
* a command pointer, and an optional data pointer.
*/
static int
esdhc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd, struct mmc_data *data)
{
int err = 0;
uint xfertyp;
uint irqstat;
struct fsl_esdhc_cfg *cfg = mmc->priv;
volatile struct fsl_esdhc *regs = (struct fsl_esdhc *)cfg->esdhc_base;
#ifdef CONFIG_SYS_FSL_ERRATUM_ESDHC111
if (cmd->cmdidx == MMC_CMD_STOP_TRANSMISSION)
return 0;
#endif
esdhc_write32(&regs->irqstat, -1);
sync();
/* Wait for the bus to be idle */
while ((esdhc_read32(&regs->prsstat) & PRSSTAT_CICHB) ||
(esdhc_read32(&regs->prsstat) & PRSSTAT_CIDHB))
;
while (esdhc_read32(&regs->prsstat) & PRSSTAT_DLA)
;
/* Wait at least 8 SD clock cycles before the next command */
/*
* Note: This is way more than 8 cycles, but 1ms seems to
* resolve timing issues with some cards
*/
udelay(1000);
/* Set up for a data transfer if we have one */
if (data) {
err = esdhc_setup_data(mmc, data);
if(err)
return err;
}
/* Figure out the transfer arguments */
xfertyp = esdhc_xfertyp(cmd, data);
/* Mask all irqs */
esdhc_write32(&regs->irqsigen, 0);
/* Send the command */
esdhc_write32(&regs->cmdarg, cmd->cmdarg);
#if defined(CONFIG_FSL_USDHC)
esdhc_write32(&regs->mixctrl,
(esdhc_read32(&regs->mixctrl) & 0xFFFFFF80) | (xfertyp & 0x7F));
esdhc_write32(&regs->xfertyp, xfertyp & 0xFFFF0000);
#else
esdhc_write32(&regs->xfertyp, xfertyp);
#endif
/* Wait for the command to complete */
while (!(esdhc_read32(&regs->irqstat) & (IRQSTAT_CC | IRQSTAT_CTOE)))
;
irqstat = esdhc_read32(&regs->irqstat);
if (irqstat & CMD_ERR) {
err = COMM_ERR;
goto out;
}
if (irqstat & IRQSTAT_CTOE) {
err = TIMEOUT;
goto out;
}
/* Workaround for ESDHC errata ENGcm03648 */
if (!data && (cmd->resp_type & MMC_RSP_BUSY)) {
int timeout = 2500;
/* Poll on DATA0 line for cmd with busy signal for 250 ms */
while (timeout > 0 && !(esdhc_read32(&regs->prsstat) &
PRSSTAT_DAT0)) {
udelay(100);
timeout--;
}
if (timeout <= 0) {
printf("Timeout waiting for DAT0 to go high!\n");
err = TIMEOUT;
goto out;
}
}
/* Copy the response to the response buffer */
if (cmd->resp_type & MMC_RSP_136) {
u32 cmdrsp3, cmdrsp2, cmdrsp1, cmdrsp0;
cmdrsp3 = esdhc_read32(&regs->cmdrsp3);
cmdrsp2 = esdhc_read32(&regs->cmdrsp2);
cmdrsp1 = esdhc_read32(&regs->cmdrsp1);
cmdrsp0 = esdhc_read32(&regs->cmdrsp0);
cmd->response[0] = (cmdrsp3 << 8) | (cmdrsp2 >> 24);
cmd->response[1] = (cmdrsp2 << 8) | (cmdrsp1 >> 24);
cmd->response[2] = (cmdrsp1 << 8) | (cmdrsp0 >> 24);
cmd->response[3] = (cmdrsp0 << 8);
} else
cmd->response[0] = esdhc_read32(&regs->cmdrsp0);
/* Wait until all of the blocks are transferred */
if (data) {
#ifdef CONFIG_SYS_FSL_ESDHC_USE_PIO
esdhc_pio_read_write(mmc, data);
#else
do {
irqstat = esdhc_read32(&regs->irqstat);
if (irqstat & IRQSTAT_DTOE) {
err = TIMEOUT;
goto out;
}
if (irqstat & DATA_ERR) {
err = COMM_ERR;
goto out;
}
} while ((irqstat & DATA_COMPLETE) != DATA_COMPLETE);
if (data->flags & MMC_DATA_READ)
check_and_invalidate_dcache_range(cmd, data);
#endif
}
out:
/* Reset CMD and DATA portions on error */
if (err) {
esdhc_write32(&regs->sysctl, esdhc_read32(&regs->sysctl) |
SYSCTL_RSTC);
while (esdhc_read32(&regs->sysctl) & SYSCTL_RSTC)
;
if (data) {
esdhc_write32(&regs->sysctl,
esdhc_read32(&regs->sysctl) |
SYSCTL_RSTD);
while ((esdhc_read32(&regs->sysctl) & SYSCTL_RSTD))
;
}
}
esdhc_write32(&regs->irqstat, -1);
return err;
}
static void set_sysctl(struct mmc *mmc, uint clock)
{
int div, pre_div;
struct fsl_esdhc_cfg *cfg = mmc->priv;
volatile struct fsl_esdhc *regs = (struct fsl_esdhc *)cfg->esdhc_base;
int sdhc_clk = cfg->sdhc_clk;
uint clk;
if (clock < mmc->cfg->f_min)
clock = mmc->cfg->f_min;
if (sdhc_clk / 16 > clock) {
for (pre_div = 2; pre_div < 256; pre_div *= 2)
if ((sdhc_clk / pre_div) <= (clock * 16))
break;
} else
pre_div = 2;
for (div = 1; div <= 16; div++)
if ((sdhc_clk / (div * pre_div)) <= clock)
break;
pre_div >>= 1;
div -= 1;
clk = (pre_div << 8) | (div << 4);
esdhc_clrbits32(&regs->sysctl, SYSCTL_CKEN);
esdhc_clrsetbits32(&regs->sysctl, SYSCTL_CLOCK_MASK, clk);
udelay(10000);
clk = SYSCTL_PEREN | SYSCTL_CKEN;
esdhc_setbits32(&regs->sysctl, clk);
}
static void esdhc_set_ios(struct mmc *mmc)
{
struct fsl_esdhc_cfg *cfg = mmc->priv;
struct fsl_esdhc *regs = (struct fsl_esdhc *)cfg->esdhc_base;
/* Set the clock speed */
set_sysctl(mmc, mmc->clock);
/* Set the bus width */
esdhc_clrbits32(&regs->proctl, PROCTL_DTW_4 | PROCTL_DTW_8);
if (mmc->bus_width == 4)
esdhc_setbits32(&regs->proctl, PROCTL_DTW_4);
else if (mmc->bus_width == 8)
esdhc_setbits32(&regs->proctl, PROCTL_DTW_8);
}
static int esdhc_init(struct mmc *mmc)
{
struct fsl_esdhc_cfg *cfg = mmc->priv;
struct fsl_esdhc *regs = (struct fsl_esdhc *)cfg->esdhc_base;
int timeout = 1000;
/* Reset the entire host controller */
esdhc_setbits32(&regs->sysctl, SYSCTL_RSTA);
/* Wait until the controller is available */
while ((esdhc_read32(&regs->sysctl) & SYSCTL_RSTA) && --timeout)
udelay(1000);
#ifndef ARCH_MXC
/* Enable cache snooping */
esdhc_write32(&regs->scr, 0x00000040);
#endif
esdhc_setbits32(&regs->sysctl, SYSCTL_HCKEN | SYSCTL_IPGEN);
/* Set the initial clock speed */
mmc_set_clock(mmc, 400000);
/* Disable the BRR and BWR bits in IRQSTAT */
esdhc_clrbits32(&regs->irqstaten, IRQSTATEN_BRR | IRQSTATEN_BWR);
/* Put the PROCTL reg back to the default */
esdhc_write32(&regs->proctl, PROCTL_INIT);
/* Set timout to the maximum value */
esdhc_clrsetbits32(&regs->sysctl, SYSCTL_TIMEOUT_MASK, 14 << 16);
return 0;
}
static int esdhc_getcd(struct mmc *mmc)
{
struct fsl_esdhc_cfg *cfg = mmc->priv;
struct fsl_esdhc *regs = (struct fsl_esdhc *)cfg->esdhc_base;
int timeout = 1000;
#ifdef CONFIG_ESDHC_DETECT_QUIRK
if (CONFIG_ESDHC_DETECT_QUIRK)
return 1;
#endif
while (!(esdhc_read32(&regs->prsstat) & PRSSTAT_CINS) && --timeout)
udelay(1000);
return timeout > 0;
}
static void esdhc_reset(struct fsl_esdhc *regs)
{
unsigned long timeout = 100; /* wait max 100 ms */
/* reset the controller */
esdhc_setbits32(&regs->sysctl, SYSCTL_RSTA);
/* hardware clears the bit when it is done */
while ((esdhc_read32(&regs->sysctl) & SYSCTL_RSTA) && --timeout)
udelay(1000);
if (!timeout)
printf("MMC/SD: Reset never completed.\n");
}
static const struct mmc_ops esdhc_ops = {
.send_cmd = esdhc_send_cmd,
.set_ios = esdhc_set_ios,
.init = esdhc_init,
.getcd = esdhc_getcd,
};
int fsl_esdhc_initialize(bd_t *bis, struct fsl_esdhc_cfg *cfg)
{
struct fsl_esdhc *regs;
struct mmc *mmc;
u32 caps, voltage_caps;
if (!cfg)
return -1;
regs = (struct fsl_esdhc *)cfg->esdhc_base;
/* First reset the eSDHC controller */
esdhc_reset(regs);
esdhc_setbits32(&regs->sysctl, SYSCTL_PEREN | SYSCTL_HCKEN
| SYSCTL_IPGEN | SYSCTL_CKEN);
memset(&cfg->cfg, 0, sizeof(cfg->cfg));
voltage_caps = 0;
caps = regs->hostcapblt;
#ifdef CONFIG_SYS_FSL_ERRATUM_ESDHC135
caps = caps & ~(ESDHC_HOSTCAPBLT_SRS |
ESDHC_HOSTCAPBLT_VS18 | ESDHC_HOSTCAPBLT_VS30);
#endif
/* T4240 host controller capabilities register should have VS33 bit */
#ifdef CONFIG_SYS_FSL_MMC_HAS_CAPBLT_VS33
caps = caps | ESDHC_HOSTCAPBLT_VS33;
#endif
if (caps & ESDHC_HOSTCAPBLT_VS18)
voltage_caps |= MMC_VDD_165_195;
if (caps & ESDHC_HOSTCAPBLT_VS30)
voltage_caps |= MMC_VDD_29_30 | MMC_VDD_30_31;
if (caps & ESDHC_HOSTCAPBLT_VS33)
voltage_caps |= MMC_VDD_32_33 | MMC_VDD_33_34;
cfg->cfg.name = "FSL_SDHC";
cfg->cfg.ops = &esdhc_ops;
#ifdef CONFIG_SYS_SD_VOLTAGE
cfg->cfg.voltages = CONFIG_SYS_SD_VOLTAGE;
#else
cfg->cfg.voltages = MMC_VDD_32_33 | MMC_VDD_33_34;
#endif
if ((cfg->cfg.voltages & voltage_caps) == 0) {
printf("voltage not supported by controller\n");
return -1;
}
cfg->cfg.host_caps = MMC_MODE_4BIT | MMC_MODE_8BIT | MMC_MODE_HC;
if (cfg->max_bus_width > 0) {
if (cfg->max_bus_width < 8)
cfg->cfg.host_caps &= ~MMC_MODE_8BIT;
if (cfg->max_bus_width < 4)
cfg->cfg.host_caps &= ~MMC_MODE_4BIT;
}
if (caps & ESDHC_HOSTCAPBLT_HSS)
cfg->cfg.host_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS;
#ifdef CONFIG_ESDHC_DETECT_8_BIT_QUIRK
if (CONFIG_ESDHC_DETECT_8_BIT_QUIRK)
cfg->cfg.host_caps &= ~MMC_MODE_8BIT;
#endif
cfg->cfg.f_min = 400000;
cfg->cfg.f_max = MIN(gd->arch.sdhc_clk, 52000000);
cfg->cfg.b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT;
mmc = mmc_create(&cfg->cfg, cfg);
if (mmc == NULL)
return -1;
return 0;
}
int fsl_esdhc_mmc_init(bd_t *bis)
{
struct fsl_esdhc_cfg *cfg;
cfg = calloc(sizeof(struct fsl_esdhc_cfg), 1);
cfg->esdhc_base = CONFIG_SYS_FSL_ESDHC_ADDR;
cfg->sdhc_clk = gd->arch.sdhc_clk;
return fsl_esdhc_initialize(bis, cfg);
}
#ifdef CONFIG_OF_LIBFDT
void fdt_fixup_esdhc(void *blob, bd_t *bd)
{
const char *compat = "fsl,esdhc";
#ifdef CONFIG_FSL_ESDHC_PIN_MUX
if (!hwconfig("esdhc")) {
do_fixup_by_compat(blob, compat, "status", "disabled",
8 + 1, 1);
return;
}
#endif
do_fixup_by_compat_u32(blob, compat, "clock-frequency",
gd->arch.sdhc_clk, 1);
do_fixup_by_compat(blob, compat, "status", "okay",
4 + 1, 1);
}
#endif