u-boot/drivers/clk/altera/clk-agilex.c
Simon Glass 401d1c4f5d common: Drop asm/global_data.h from common header
Move this out of the common header and include it only where needed.  In
a number of cases this requires adding "struct udevice;" to avoid adding
another large header or in other cases replacing / adding missing header
files that had been pulled in, very indirectly.   Finally, we have a few
cases where we did not need to include <asm/global_data.h> at all, so
remove that include.

Signed-off-by: Simon Glass <sjg@chromium.org>
Signed-off-by: Tom Rini <trini@konsulko.com>
2021-02-02 15:33:42 -05:00

664 lines
17 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2019 Intel Corporation <www.intel.com>
*/
#include <common.h>
#include <log.h>
#include <asm/global_data.h>
#include <asm/io.h>
#include <clk-uclass.h>
#include <dm.h>
#include <dm/lists.h>
#include <dm/util.h>
#include <dt-bindings/clock/agilex-clock.h>
#include <linux/bitops.h>
#include <asm/arch/clock_manager.h>
DECLARE_GLOBAL_DATA_PTR;
struct socfpga_clk_plat {
void __iomem *regs;
};
/*
* function to write the bypass register which requires a poll of the
* busy bit
*/
static void clk_write_bypass_mainpll(struct socfpga_clk_plat *plat, u32 val)
{
CM_REG_WRITEL(plat, val, CLKMGR_MAINPLL_BYPASS);
cm_wait_for_fsm();
}
static void clk_write_bypass_perpll(struct socfpga_clk_plat *plat, u32 val)
{
CM_REG_WRITEL(plat, val, CLKMGR_PERPLL_BYPASS);
cm_wait_for_fsm();
}
/* function to write the ctrl register which requires a poll of the busy bit */
static void clk_write_ctrl(struct socfpga_clk_plat *plat, u32 val)
{
CM_REG_WRITEL(plat, val, CLKMGR_CTRL);
cm_wait_for_fsm();
}
#define MEMBUS_MAINPLL 0
#define MEMBUS_PERPLL 1
#define MEMBUS_TIMEOUT 1000
#define MEMBUS_CLKSLICE_REG 0x27
#define MEMBUS_SYNTHCALFOSC_INIT_CENTERFREQ_REG 0xb3
#define MEMBUS_SYNTHPPM_WATCHDOGTMR_VF01_REG 0xe6
#define MEMBUS_CALCLKSLICE0_DUTY_LOCOVR_REG 0x03
#define MEMBUS_CALCLKSLICE1_DUTY_LOCOVR_REG 0x07
static const struct {
u32 reg;
u32 val;
u32 mask;
} membus_pll[] = {
{
MEMBUS_CLKSLICE_REG,
/*
* BIT[7:7]
* Enable source synchronous mode
*/
BIT(7),
BIT(7)
},
{
MEMBUS_SYNTHCALFOSC_INIT_CENTERFREQ_REG,
/*
* BIT[0:0]
* Sets synthcalfosc_init_centerfreq=1 to limit overshoot
* frequency during lock
*/
BIT(0),
BIT(0)
},
{
MEMBUS_SYNTHPPM_WATCHDOGTMR_VF01_REG,
/*
* BIT[0:0]
* Sets synthppm_watchdogtmr_vf0=1 to give the pll more time
* to settle before lock is asserted.
*/
BIT(0),
BIT(0)
},
{
MEMBUS_CALCLKSLICE0_DUTY_LOCOVR_REG,
/*
* BIT[6:0]
* Centering duty cycle for clkslice0 output
*/
0x4a,
GENMASK(6, 0)
},
{
MEMBUS_CALCLKSLICE1_DUTY_LOCOVR_REG,
/*
* BIT[6:0]
* Centering duty cycle for clkslice1 output
*/
0x4a,
GENMASK(6, 0)
},
};
static int membus_wait_for_req(struct socfpga_clk_plat *plat, u32 pll,
int timeout)
{
int cnt = 0;
u32 req_status;
if (pll == MEMBUS_MAINPLL)
req_status = CM_REG_READL(plat, CLKMGR_MAINPLL_MEM);
else
req_status = CM_REG_READL(plat, CLKMGR_PERPLL_MEM);
while ((cnt < timeout) && (req_status & CLKMGR_MEM_REQ_SET_MSK)) {
if (pll == MEMBUS_MAINPLL)
req_status = CM_REG_READL(plat, CLKMGR_MAINPLL_MEM);
else
req_status = CM_REG_READL(plat, CLKMGR_PERPLL_MEM);
cnt++;
}
if (cnt >= timeout)
return -ETIMEDOUT;
return 0;
}
static int membus_write_pll(struct socfpga_clk_plat *plat, u32 pll,
u32 addr_offset, u32 wdat, int timeout)
{
u32 addr;
u32 val;
addr = ((addr_offset | CLKMGR_MEM_ADDR_START) & CLKMGR_MEM_ADDR_MASK);
val = (CLKMGR_MEM_REQ_SET_MSK | CLKMGR_MEM_WR_SET_MSK |
(wdat << CLKMGR_MEM_WDAT_LSB_OFFSET) | addr);
if (pll == MEMBUS_MAINPLL)
CM_REG_WRITEL(plat, val, CLKMGR_MAINPLL_MEM);
else
CM_REG_WRITEL(plat, val, CLKMGR_PERPLL_MEM);
debug("MEMBUS: Write 0x%08x to addr = 0x%08x\n", wdat, addr);
return membus_wait_for_req(plat, pll, timeout);
}
static int membus_read_pll(struct socfpga_clk_plat *plat, u32 pll,
u32 addr_offset, u32 *rdata, int timeout)
{
u32 addr;
u32 val;
addr = ((addr_offset | CLKMGR_MEM_ADDR_START) & CLKMGR_MEM_ADDR_MASK);
val = ((CLKMGR_MEM_REQ_SET_MSK & ~CLKMGR_MEM_WR_SET_MSK) | addr);
if (pll == MEMBUS_MAINPLL)
CM_REG_WRITEL(plat, val, CLKMGR_MAINPLL_MEM);
else
CM_REG_WRITEL(plat, val, CLKMGR_PERPLL_MEM);
*rdata = 0;
if (membus_wait_for_req(plat, pll, timeout))
return -ETIMEDOUT;
if (pll == MEMBUS_MAINPLL)
*rdata = CM_REG_READL(plat, CLKMGR_MAINPLL_MEMSTAT);
else
*rdata = CM_REG_READL(plat, CLKMGR_PERPLL_MEMSTAT);
debug("MEMBUS: Read 0x%08x from addr = 0x%08x\n", *rdata, addr);
return 0;
}
static void membus_pll_configs(struct socfpga_clk_plat *plat, u32 pll)
{
int i;
u32 rdata;
for (i = 0; i < ARRAY_SIZE(membus_pll); i++) {
membus_read_pll(plat, pll, membus_pll[i].reg,
&rdata, MEMBUS_TIMEOUT);
membus_write_pll(plat, pll, membus_pll[i].reg,
((rdata & ~membus_pll[i].mask) | membus_pll[i].val),
MEMBUS_TIMEOUT);
}
}
static u32 calc_vocalib_pll(u32 pllm, u32 pllglob)
{
u32 mdiv, refclkdiv, arefclkdiv, drefclkdiv, mscnt, hscnt, vcocalib;
mdiv = pllm & CLKMGR_PLLM_MDIV_MASK;
arefclkdiv = (pllglob & CLKMGR_PLLGLOB_AREFCLKDIV_MASK) >>
CLKMGR_PLLGLOB_AREFCLKDIV_OFFSET;
drefclkdiv = (pllglob & CLKMGR_PLLGLOB_DREFCLKDIV_MASK) >>
CLKMGR_PLLGLOB_DREFCLKDIV_OFFSET;
refclkdiv = (pllglob & CLKMGR_PLLGLOB_REFCLKDIV_MASK) >>
CLKMGR_PLLGLOB_REFCLKDIV_OFFSET;
mscnt = CLKMGR_VCOCALIB_MSCNT_CONST / (mdiv * BIT(drefclkdiv));
if (!mscnt)
mscnt = 1;
hscnt = (mdiv * mscnt * BIT(drefclkdiv) / refclkdiv) -
CLKMGR_VCOCALIB_HSCNT_CONST;
vcocalib = (hscnt & CLKMGR_VCOCALIB_HSCNT_MASK) |
((mscnt << CLKMGR_VCOCALIB_MSCNT_OFFSET) &
CLKMGR_VCOCALIB_MSCNT_MASK);
/* Dump all the pll calibration settings for debug purposes */
debug("mdiv : %d\n", mdiv);
debug("arefclkdiv : %d\n", arefclkdiv);
debug("drefclkdiv : %d\n", drefclkdiv);
debug("refclkdiv : %d\n", refclkdiv);
debug("mscnt : %d\n", mscnt);
debug("hscnt : %d\n", hscnt);
debug("vcocalib : 0x%08x\n", vcocalib);
return vcocalib;
}
/*
* Setup clocks while making no assumptions about previous state of the clocks.
*/
static void clk_basic_init(struct udevice *dev,
const struct cm_config * const cfg)
{
struct socfpga_clk_plat *plat = dev_get_plat(dev);
u32 vcocalib;
if (!cfg)
return;
#ifdef CONFIG_SPL_BUILD
/* Always force clock manager into boot mode before any configuration */
clk_write_ctrl(plat,
CM_REG_READL(plat, CLKMGR_CTRL) | CLKMGR_CTRL_BOOTMODE);
#else
/* Skip clock configuration in SSBL if it's not in boot mode */
if (!(CM_REG_READL(plat, CLKMGR_CTRL) & CLKMGR_CTRL_BOOTMODE))
return;
#endif
/* Put both PLLs in bypass */
clk_write_bypass_mainpll(plat, CLKMGR_BYPASS_MAINPLL_ALL);
clk_write_bypass_perpll(plat, CLKMGR_BYPASS_PERPLL_ALL);
/* Put both PLLs in Reset and Power Down */
CM_REG_CLRBITS(plat, CLKMGR_MAINPLL_PLLGLOB,
CLKMGR_PLLGLOB_PD_MASK | CLKMGR_PLLGLOB_RST_MASK);
CM_REG_CLRBITS(plat, CLKMGR_PERPLL_PLLGLOB,
CLKMGR_PLLGLOB_PD_MASK | CLKMGR_PLLGLOB_RST_MASK);
/* setup main PLL dividers where calculate the vcocalib value */
vcocalib = calc_vocalib_pll(cfg->main_pll_pllm, cfg->main_pll_pllglob);
CM_REG_WRITEL(plat, cfg->main_pll_pllglob & ~CLKMGR_PLLGLOB_RST_MASK,
CLKMGR_MAINPLL_PLLGLOB);
CM_REG_WRITEL(plat, cfg->main_pll_fdbck, CLKMGR_MAINPLL_FDBCK);
CM_REG_WRITEL(plat, vcocalib, CLKMGR_MAINPLL_VCOCALIB);
CM_REG_WRITEL(plat, cfg->main_pll_pllc0, CLKMGR_MAINPLL_PLLC0);
CM_REG_WRITEL(plat, cfg->main_pll_pllc1, CLKMGR_MAINPLL_PLLC1);
CM_REG_WRITEL(plat, cfg->main_pll_pllc2, CLKMGR_MAINPLL_PLLC2);
CM_REG_WRITEL(plat, cfg->main_pll_pllc3, CLKMGR_MAINPLL_PLLC3);
CM_REG_WRITEL(plat, cfg->main_pll_pllm, CLKMGR_MAINPLL_PLLM);
CM_REG_WRITEL(plat, cfg->main_pll_mpuclk, CLKMGR_MAINPLL_MPUCLK);
CM_REG_WRITEL(plat, cfg->main_pll_nocclk, CLKMGR_MAINPLL_NOCCLK);
CM_REG_WRITEL(plat, cfg->main_pll_nocdiv, CLKMGR_MAINPLL_NOCDIV);
/* setup peripheral PLL dividers where calculate the vcocalib value */
vcocalib = calc_vocalib_pll(cfg->per_pll_pllm, cfg->per_pll_pllglob);
CM_REG_WRITEL(plat, cfg->per_pll_pllglob & ~CLKMGR_PLLGLOB_RST_MASK,
CLKMGR_PERPLL_PLLGLOB);
CM_REG_WRITEL(plat, cfg->per_pll_fdbck, CLKMGR_PERPLL_FDBCK);
CM_REG_WRITEL(plat, vcocalib, CLKMGR_PERPLL_VCOCALIB);
CM_REG_WRITEL(plat, cfg->per_pll_pllc0, CLKMGR_PERPLL_PLLC0);
CM_REG_WRITEL(plat, cfg->per_pll_pllc1, CLKMGR_PERPLL_PLLC1);
CM_REG_WRITEL(plat, cfg->per_pll_pllc2, CLKMGR_PERPLL_PLLC2);
CM_REG_WRITEL(plat, cfg->per_pll_pllc3, CLKMGR_PERPLL_PLLC3);
CM_REG_WRITEL(plat, cfg->per_pll_pllm, CLKMGR_PERPLL_PLLM);
CM_REG_WRITEL(plat, cfg->per_pll_emacctl, CLKMGR_PERPLL_EMACCTL);
CM_REG_WRITEL(plat, cfg->per_pll_gpiodiv, CLKMGR_PERPLL_GPIODIV);
/* Take both PLL out of reset and power up */
CM_REG_SETBITS(plat, CLKMGR_MAINPLL_PLLGLOB,
CLKMGR_PLLGLOB_PD_MASK | CLKMGR_PLLGLOB_RST_MASK);
CM_REG_SETBITS(plat, CLKMGR_PERPLL_PLLGLOB,
CLKMGR_PLLGLOB_PD_MASK | CLKMGR_PLLGLOB_RST_MASK);
/* Membus programming for mainpll */
membus_pll_configs(plat, MEMBUS_MAINPLL);
/* Membus programming for peripll */
membus_pll_configs(plat, MEMBUS_PERPLL);
cm_wait_for_lock(CLKMGR_STAT_ALLPLL_LOCKED_MASK);
/* Configure ping pong counters in altera group */
CM_REG_WRITEL(plat, cfg->alt_emacactr, CLKMGR_ALTR_EMACACTR);
CM_REG_WRITEL(plat, cfg->alt_emacbctr, CLKMGR_ALTR_EMACBCTR);
CM_REG_WRITEL(plat, cfg->alt_emacptpctr, CLKMGR_ALTR_EMACPTPCTR);
CM_REG_WRITEL(plat, cfg->alt_gpiodbctr, CLKMGR_ALTR_GPIODBCTR);
CM_REG_WRITEL(plat, cfg->alt_sdmmcctr, CLKMGR_ALTR_SDMMCCTR);
CM_REG_WRITEL(plat, cfg->alt_s2fuser0ctr, CLKMGR_ALTR_S2FUSER0CTR);
CM_REG_WRITEL(plat, cfg->alt_s2fuser1ctr, CLKMGR_ALTR_S2FUSER1CTR);
CM_REG_WRITEL(plat, cfg->alt_psirefctr, CLKMGR_ALTR_PSIREFCTR);
CM_REG_WRITEL(plat, CLKMGR_LOSTLOCK_SET_MASK, CLKMGR_MAINPLL_LOSTLOCK);
CM_REG_WRITEL(plat, CLKMGR_LOSTLOCK_SET_MASK, CLKMGR_PERPLL_LOSTLOCK);
CM_REG_WRITEL(plat, CM_REG_READL(plat, CLKMGR_MAINPLL_PLLGLOB) |
CLKMGR_PLLGLOB_CLR_LOSTLOCK_BYPASS_MASK,
CLKMGR_MAINPLL_PLLGLOB);
CM_REG_WRITEL(plat, CM_REG_READL(plat, CLKMGR_PERPLL_PLLGLOB) |
CLKMGR_PLLGLOB_CLR_LOSTLOCK_BYPASS_MASK,
CLKMGR_PERPLL_PLLGLOB);
/* Take all PLLs out of bypass */
clk_write_bypass_mainpll(plat, 0);
clk_write_bypass_perpll(plat, 0);
/* Clear the loss of lock bits (write 1 to clear) */
CM_REG_CLRBITS(plat, CLKMGR_INTRCLR,
CLKMGR_INTER_PERPLLLOST_MASK |
CLKMGR_INTER_MAINPLLLOST_MASK);
/* Take all ping pong counters out of reset */
CM_REG_CLRBITS(plat, CLKMGR_ALTR_EXTCNTRST,
CLKMGR_ALT_EXTCNTRST_ALLCNTRST);
/* Out of boot mode */
clk_write_ctrl(plat,
CM_REG_READL(plat, CLKMGR_CTRL) & ~CLKMGR_CTRL_BOOTMODE);
}
static u64 clk_get_vco_clk_hz(struct socfpga_clk_plat *plat,
u32 pllglob_reg, u32 pllm_reg)
{
u64 fref, arefdiv, mdiv, reg, vco;
reg = CM_REG_READL(plat, pllglob_reg);
fref = (reg & CLKMGR_PLLGLOB_VCO_PSRC_MASK) >>
CLKMGR_PLLGLOB_VCO_PSRC_OFFSET;
switch (fref) {
case CLKMGR_VCO_PSRC_EOSC1:
fref = cm_get_osc_clk_hz();
break;
case CLKMGR_VCO_PSRC_INTOSC:
fref = cm_get_intosc_clk_hz();
break;
case CLKMGR_VCO_PSRC_F2S:
fref = cm_get_fpga_clk_hz();
break;
}
arefdiv = (reg & CLKMGR_PLLGLOB_AREFCLKDIV_MASK) >>
CLKMGR_PLLGLOB_AREFCLKDIV_OFFSET;
mdiv = CM_REG_READL(plat, pllm_reg) & CLKMGR_PLLM_MDIV_MASK;
vco = fref / arefdiv;
vco = vco * mdiv;
return vco;
}
static u64 clk_get_main_vco_clk_hz(struct socfpga_clk_plat *plat)
{
return clk_get_vco_clk_hz(plat, CLKMGR_MAINPLL_PLLGLOB,
CLKMGR_MAINPLL_PLLM);
}
static u64 clk_get_per_vco_clk_hz(struct socfpga_clk_plat *plat)
{
return clk_get_vco_clk_hz(plat, CLKMGR_PERPLL_PLLGLOB,
CLKMGR_PERPLL_PLLM);
}
static u32 clk_get_5_1_clk_src(struct socfpga_clk_plat *plat, u64 reg)
{
u32 clksrc = CM_REG_READL(plat, reg);
return (clksrc & CLKMGR_CLKSRC_MASK) >> CLKMGR_CLKSRC_OFFSET;
}
static u64 clk_get_clksrc_hz(struct socfpga_clk_plat *plat, u32 clksrc_reg,
u32 main_reg, u32 per_reg)
{
u64 clock;
u32 clklsrc = clk_get_5_1_clk_src(plat, clksrc_reg);
switch (clklsrc) {
case CLKMGR_CLKSRC_MAIN:
clock = clk_get_main_vco_clk_hz(plat);
clock /= (CM_REG_READL(plat, main_reg) &
CLKMGR_CLKCNT_MSK);
break;
case CLKMGR_CLKSRC_PER:
clock = clk_get_per_vco_clk_hz(plat);
clock /= (CM_REG_READL(plat, per_reg) &
CLKMGR_CLKCNT_MSK);
break;
case CLKMGR_CLKSRC_OSC1:
clock = cm_get_osc_clk_hz();
break;
case CLKMGR_CLKSRC_INTOSC:
clock = cm_get_intosc_clk_hz();
break;
case CLKMGR_CLKSRC_FPGA:
clock = cm_get_fpga_clk_hz();
break;
default:
return 0;
}
return clock;
}
static u64 clk_get_mpu_clk_hz(struct socfpga_clk_plat *plat)
{
u64 clock = clk_get_clksrc_hz(plat, CLKMGR_MAINPLL_MPUCLK,
CLKMGR_MAINPLL_PLLC0,
CLKMGR_PERPLL_PLLC0);
clock /= 1 + (CM_REG_READL(plat, CLKMGR_MAINPLL_MPUCLK) &
CLKMGR_CLKCNT_MSK);
return clock;
}
static u32 clk_get_l3_main_clk_hz(struct socfpga_clk_plat *plat)
{
return clk_get_clksrc_hz(plat, CLKMGR_MAINPLL_NOCCLK,
CLKMGR_MAINPLL_PLLC1,
CLKMGR_PERPLL_PLLC1);
}
static u32 clk_get_l4_main_clk_hz(struct socfpga_clk_plat *plat)
{
u64 clock = clk_get_l3_main_clk_hz(plat);
clock /= BIT((CM_REG_READL(plat, CLKMGR_MAINPLL_NOCDIV) >>
CLKMGR_NOCDIV_L4MAIN_OFFSET) &
CLKMGR_NOCDIV_DIVIDER_MASK);
return clock;
}
static u32 clk_get_sdmmc_clk_hz(struct socfpga_clk_plat *plat)
{
u64 clock = clk_get_clksrc_hz(plat, CLKMGR_ALTR_SDMMCCTR,
CLKMGR_MAINPLL_PLLC3,
CLKMGR_PERPLL_PLLC3);
clock /= 1 + (CM_REG_READL(plat, CLKMGR_ALTR_SDMMCCTR) &
CLKMGR_CLKCNT_MSK);
return clock / 4;
}
static u32 clk_get_l4_sp_clk_hz(struct socfpga_clk_plat *plat)
{
u64 clock = clk_get_l3_main_clk_hz(plat);
clock /= BIT((CM_REG_READL(plat, CLKMGR_MAINPLL_NOCDIV) >>
CLKMGR_NOCDIV_L4SPCLK_OFFSET) &
CLKMGR_NOCDIV_DIVIDER_MASK);
return clock;
}
static u32 clk_get_l4_mp_clk_hz(struct socfpga_clk_plat *plat)
{
u64 clock = clk_get_l3_main_clk_hz(plat);
clock /= BIT((CM_REG_READL(plat, CLKMGR_MAINPLL_NOCDIV) >>
CLKMGR_NOCDIV_L4MPCLK_OFFSET) &
CLKMGR_NOCDIV_DIVIDER_MASK);
return clock;
}
static u32 clk_get_l4_sys_free_clk_hz(struct socfpga_clk_plat *plat)
{
if (CM_REG_READL(plat, CLKMGR_STAT) & CLKMGR_STAT_BOOTMODE)
return clk_get_l3_main_clk_hz(plat) / 2;
return clk_get_l3_main_clk_hz(plat) / 4;
}
static u32 clk_get_emac_clk_hz(struct socfpga_clk_plat *plat, u32 emac_id)
{
bool emacsel_a;
u32 ctl;
u32 ctr_reg;
u32 clock;
u32 div;
u32 reg;
/* Get EMAC clock source */
ctl = CM_REG_READL(plat, CLKMGR_PERPLL_EMACCTL);
if (emac_id == AGILEX_EMAC0_CLK)
ctl = (ctl >> CLKMGR_PERPLLGRP_EMACCTL_EMAC0SELB_OFFSET) &
CLKMGR_PERPLLGRP_EMACCTL_EMAC0SELB_MASK;
else if (emac_id == AGILEX_EMAC1_CLK)
ctl = (ctl >> CLKMGR_PERPLLGRP_EMACCTL_EMAC1SELB_OFFSET) &
CLKMGR_PERPLLGRP_EMACCTL_EMAC1SELB_MASK;
else if (emac_id == AGILEX_EMAC2_CLK)
ctl = (ctl >> CLKMGR_PERPLLGRP_EMACCTL_EMAC2SELB_OFFSET) &
CLKMGR_PERPLLGRP_EMACCTL_EMAC2SELB_MASK;
else
return 0;
if (ctl) {
/* EMAC B source */
emacsel_a = false;
ctr_reg = CLKMGR_ALTR_EMACBCTR;
} else {
/* EMAC A source */
emacsel_a = true;
ctr_reg = CLKMGR_ALTR_EMACACTR;
}
reg = CM_REG_READL(plat, ctr_reg);
clock = (reg & CLKMGR_ALT_EMACCTR_SRC_MASK)
>> CLKMGR_ALT_EMACCTR_SRC_OFFSET;
div = (reg & CLKMGR_ALT_EMACCTR_CNT_MASK)
>> CLKMGR_ALT_EMACCTR_CNT_OFFSET;
switch (clock) {
case CLKMGR_CLKSRC_MAIN:
clock = clk_get_main_vco_clk_hz(plat);
if (emacsel_a) {
clock /= (CM_REG_READL(plat, CLKMGR_MAINPLL_PLLC2) &
CLKMGR_CLKCNT_MSK);
} else {
clock /= (CM_REG_READL(plat, CLKMGR_MAINPLL_PLLC3) &
CLKMGR_CLKCNT_MSK);
}
break;
case CLKMGR_CLKSRC_PER:
clock = clk_get_per_vco_clk_hz(plat);
if (emacsel_a) {
clock /= (CM_REG_READL(plat, CLKMGR_PERPLL_PLLC2) &
CLKMGR_CLKCNT_MSK);
} else {
clock /= (CM_REG_READL(plat, CLKMGR_PERPLL_PLLC3) &
CLKMGR_CLKCNT_MSK);
}
break;
case CLKMGR_CLKSRC_OSC1:
clock = cm_get_osc_clk_hz();
break;
case CLKMGR_CLKSRC_INTOSC:
clock = cm_get_intosc_clk_hz();
break;
case CLKMGR_CLKSRC_FPGA:
clock = cm_get_fpga_clk_hz();
break;
}
clock /= 1 + div;
return clock;
}
static ulong socfpga_clk_get_rate(struct clk *clk)
{
struct socfpga_clk_plat *plat = dev_get_plat(clk->dev);
switch (clk->id) {
case AGILEX_MPU_CLK:
return clk_get_mpu_clk_hz(plat);
case AGILEX_L4_MAIN_CLK:
return clk_get_l4_main_clk_hz(plat);
case AGILEX_L4_SYS_FREE_CLK:
return clk_get_l4_sys_free_clk_hz(plat);
case AGILEX_L4_MP_CLK:
return clk_get_l4_mp_clk_hz(plat);
case AGILEX_L4_SP_CLK:
return clk_get_l4_sp_clk_hz(plat);
case AGILEX_SDMMC_CLK:
return clk_get_sdmmc_clk_hz(plat);
case AGILEX_EMAC0_CLK:
case AGILEX_EMAC1_CLK:
case AGILEX_EMAC2_CLK:
return clk_get_emac_clk_hz(plat, clk->id);
case AGILEX_USB_CLK:
case AGILEX_NAND_X_CLK:
return clk_get_l4_mp_clk_hz(plat);
case AGILEX_NAND_CLK:
return clk_get_l4_mp_clk_hz(plat) / 4;
default:
return -ENXIO;
}
}
static int socfpga_clk_enable(struct clk *clk)
{
return 0;
}
static int socfpga_clk_probe(struct udevice *dev)
{
const struct cm_config *cm_default_cfg = cm_get_default_config();
clk_basic_init(dev, cm_default_cfg);
return 0;
}
static int socfpga_clk_of_to_plat(struct udevice *dev)
{
struct socfpga_clk_plat *plat = dev_get_plat(dev);
fdt_addr_t addr;
addr = dev_read_addr(dev);
if (addr == FDT_ADDR_T_NONE)
return -EINVAL;
plat->regs = (void __iomem *)addr;
return 0;
}
static struct clk_ops socfpga_clk_ops = {
.enable = socfpga_clk_enable,
.get_rate = socfpga_clk_get_rate,
};
static const struct udevice_id socfpga_clk_match[] = {
{ .compatible = "intel,agilex-clkmgr" },
{}
};
U_BOOT_DRIVER(socfpga_agilex_clk) = {
.name = "clk-agilex",
.id = UCLASS_CLK,
.of_match = socfpga_clk_match,
.ops = &socfpga_clk_ops,
.probe = socfpga_clk_probe,
.of_to_plat = socfpga_clk_of_to_plat,
.plat_auto = sizeof(struct socfpga_clk_plat),
};