OMAP4 panda rev A6 is a 4430 es2.3 IC with an updated memory
part.
The panda rev A6 uses Elpida 2x4Gb memory and no longer uses Micron
so the timings needs to be updated
Signed-off-by: Dan Murphy <dmurphy@ti.com>
Adding System Manager driver which will configure the
pin mux for real hardware Cyclone V development kit
(not Virtual Platform)
Signed-off-by: Chin Liang See <clsee@altera.com>
Reviewed-by: Pavel Machek <pavel@denx.de>
Acked-by: Dinh Nguyen <dinguyen@altera.com>
Cc: Wolfgang Denk <wd@denx.de>
CC: Pavel Machek <pavel@denx.de>
Cc: Dinh Nguyen <dinguyen@altera.com>
Cc: Tom Rini <trini@ti.com>
Cc: Albert Aribaud <albert.u.boot@aribaud.net>
Clock requirement for qspi clk is 192 Mhz.
According to the below formulae,
f dpll = f ref * 2 * m /(n + 1)
clockoutx2_Hmn = f dpll / (hmn+ 1)
fref = 20 Mhz, m = 96, n = 4 gives f dpll = 768 Mhz
For clockoutx2_Hmn to be 768, hmn + 1 should be 4.
Signed-off-by: Sourav Poddar <sourav.poddar@ti.com>
Reviewed-by: Jagannadha Sutradharudu Teki <jagannadh.teki@gmail.com>
The original creation of arch/arm/cpu/armv7/{virt-v7.c,nonsec_virt.S}
predates the SPDX conversion, so the original elaborate license
statements sneaked in.
Fix this by replacing them with the proper abbreviation.
Signed-off-by: Andre Przywara <andre.przywara@linaro.org>
For the KVM and XEN hypervisors to be usable, we need to enter the
kernel in HYP mode. Now that we already are in non-secure state,
HYP mode switching is within short reach.
While doing the non-secure switch, we have to enable the HVC
instruction and setup the HYP mode HVBAR (while still secure).
The actual switch is done by dropping back from a HYP mode handler
without actually leaving HYP mode, so we introduce a new handler
routine in our new secure exception vector table.
In the assembly switching routine we save and restore the banked LR
and SP registers around the hypercall to do the actual HYP mode
switch.
The C routine first checks whether we are in HYP mode already and
also whether the virtualization extensions are available. It also
checks whether the HYP mode switch was finally successful.
The bootm command part only calls the new function after the
non-secure switch.
Signed-off-by: Andre Przywara <andre.przywara@linaro.org>
Currently the non-secure switch is only done for the boot processor.
To enable full SMP support, we have to switch all secondary cores
into non-secure state also.
So we add an entry point for secondary CPUs coming out of low-power
state and make sure we put them into WFI again after having switched
to non-secure state.
For this we acknowledge and EOI the wake-up IPI, then go into WFI.
Once being kicked out of it later, we sanity check that the start
address has actually been changed (since another attempt to switch
to non-secure would block the core) and jump to the new address.
The actual CPU kick is done by sending an inter-processor interrupt
via the GIC to all CPU interfaces except the requesting processor.
The secondary cores will then setup their respective GIC CPU
interface.
While this approach is pretty universal across several ARMv7 boards,
we make this function weak in case someone needs to tweak this for
a specific board.
The way of setting the secondary's start address is board specific,
but mostly different only in the actual SMP pen address, so we also
provide a weak default implementation and just depend on the proper
address to be set in the config file.
Signed-off-by: Andre Przywara <andre.przywara@linaro.org>
The core specific part of the work is done in the assembly routine
in nonsec_virt.S, introduced with the previous patch, but for the full
glory we need to setup the GIC distributor interface once for the
whole system, which is done in C here.
The routine is placed in arch/arm/cpu/armv7 to allow easy access from
other ARMv7 boards.
We check the availability of the security extensions first.
Since we need a safe way to access the GIC, we use the PERIPHBASE
registers on Cortex-A15 and A7 CPUs and do some sanity checks.
Boards not implementing the CBAR can override this value via a
configuration file variable.
Then we actually do the GIC enablement:
a) enable the GIC distributor, both for non-secure and secure state
(GICD_CTLR[1:0] = 11b)
b) allow all interrupts to be handled from non-secure state
(GICD_IGROUPRn = 0xFFFFFFFF)
The core specific GIC setup is then done in the assembly routine.
Signed-off-by: Andre Przywara <andre.przywara@linaro.org>
While actually switching to non-secure state is one thing, another
part of this process is to make sure that we still have full access
to the interrupt controller (GIC).
The GIC is fully aware of secure vs. non-secure state, some
registers are banked, others may be configured to be accessible from
secure state only.
To be as generic as possible, we get the GIC memory mapped address
based on the PERIPHBASE value in the CBAR register. Since this
register is not architecturally defined, we check the MIDR before to
be from an A15 or A7.
For CPUs not having the CBAR or boards with wrong information herein
we allow providing the base address as a configuration variable.
Now that we know the GIC address, we:
a) allow private interrupts to be delivered to the core
(GICD_IGROUPR0 = 0xFFFFFFFF)
b) enable the CPU interface (GICC_CTLR[0] = 1)
c) set the priority filter to allow non-secure interrupts
(GICC_PMR = 0xFF)
Also we allow access to all coprocessor interfaces from non-secure
state by writing the appropriate bits in the NSACR register.
The generic timer base frequency register is only accessible from
secure state, so we have to program it now. Actually this should be
done from primary firmware before, but some boards seems to omit
this, so if needed we do this here with a board specific value.
The Versatile Express board does not need this, so we remove the
frequency from the configuration file here.
After having switched to non-secure state, we also enable the
non-secure GIC CPU interface, since this register is banked.
Since we need to call this routine also directly from the smp_pen
later (where we don't have any stack), we can only use caller saved
registers r0-r3 and r12 to not mess with the compiler.
Signed-off-by: Andre Przywara <andre.przywara@linaro.org>
A prerequisite for using virtualization is to be in HYP mode, which
requires the CPU to be in non-secure state first.
Add a new file in arch/arm/cpu/armv7 to hold a monitor handler routine
which switches the CPU to non-secure state by setting the NS and
associated bits.
According to the ARM architecture reference manual this should not be
done in SVC mode, so we have to setup a SMC handler for this.
We create a new vector table to avoid interference with other boards.
The MVBAR register will be programmed later just before the smc call.
Signed-off-by: Andre Przywara <andre.przywara@linaro.org>
The value MXC_CCM_CCGR3_IPU1_IPU_DI0_OFFSET that was used to initialize
the CCGR3 register caused an undefined value for CG0.
Signed-off-by: Pierre Aubert <p.aubert@staubli.com>
CC: Stefano Babic <sbabic@denx.de>
Acked-by: Eric Nelson <eric.nelson@boundarydevices.com>
This patch makes the necessary changes for making use of
I2S0 channel instead of I2S1 channel on smdk board. This
changes are done to maintain the uniformity to use I2S0 channel.
Signed-off-by: Dani Krishna Mohan <krishna.md@samsung.com>
To be more EABI compliant and as a preparation for building
with clang, use the platform-specific r9 register for gd
instead of r8.
note: The FIQ is not updated since it is not used in u-boot,
and under discussion for the time being.
The following checkpatch warning is ignored:
WARNING: Use of volatile is usually wrong: see
Documentation/volatile-considered-harmful.txt
Signed-off-by: Jeroen Hofstee <jeroen@myspectrum.nl>
cc: Albert ARIBAUD <albert.u.boot@aribaud.net>
Every ARM cpu config.mk (arch/arm/cpu/{CPUDIR}/config.mk) defines:
PLATFORM_RELFLAGS += -fno-common -ffixed-r8 -msoft-float
So, this patch moves the common compiler options to arch/arm/config.mk.
Signed-off-by: Masahiro Yamada <yamada.m@jp.panasonic.com>
Reload address was written to the counter register
instead of load register.
The problem happens when timer expires but never
reload to ~0UL (it is downcount timer).
Reported-by: Stephen MacMahon <stephenm@xilinx.com>
Signed-off-by: Michal Simek <michal.simek@xilinx.com>
Writing magic bits into LDO SRAM was suggested only for OMAP5432
ES1.0. Now these are no longer applicable. Moreover these bits should
not be overwritten as they are loaded from EFUSE. So avoid
writing into these registers.
Boot tested on OMAP5432 ES2.0
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
In Errata 1.0.24, if the board is running at OPP50 and has a warm reset,
the boot ROM sets the frequencies for OPP100. This patch attempts to
drop the frequencies back to OPP50 as soon as possible in the SPL. Then
later the voltages and frequencies up set higher.
Cc: Enric Balletbo i Serra <eballetbo@iseebcn.com>
Cc: Lars Poeschel <poeschel@lemonage.de>
Signed-off-by: Steve Kipisz <s-kipisz2@ti.com>
[trini: Adapt to current framework]
Signed-off-by: Tom Rini <trini@ti.com>
Add a am33xx_spl_board_init (and enable the PMICs) that we may see,
depending on the board we are running on. In all cases, we see if we
can rely on the efuse_sma register to tell us the maximum speed. In the
case of Beaglebone White, we need to make sure we are on AC power, and
are on later than rev A1, and then we can ramp up to the PG1.0 maximum
of 720Mhz. In the case of Beaglebone Black, we are either on PG2.0 that
supports 1GHz or PG2.1. As PG2.0 may or may not have efuse_sma set, we
cannot rely on this probe. In the case of the GP EVM, EVM SK and IDK we
need to rely on the efuse_sma if we are on PG2.1, and the defaults for
PG1.0/2.0.
Signed-off-by: Tom Rini <trini@ti.com>
We need to allow for a further call-out in spl_board_init. Call this
am33xx_spl_board_init and add a __weak version. This function may be
used to scale the MPU frequency up, depending on board needs.
Signed-off-by: Tom Rini <trini@ti.com>
This is porting of Freescale's patch from version imx_v2009.08_3.0.35_4.0.0,
that fixes the obvious mistype of bits offset macro name (ACLK_EMI_PODF_OFFSET
was used instead of ACLK_EMI_SLOW_PODF_OFFSET).
Using the occasion, change the variable name 'emi_slow_pof' to more consistent
'emi_slow_podf'.
Signed-off-by: Jason Liu <r64343@freescale.com>
Signed-off-by: Andrew Gabbasov <andrew_gabbasov@mentor.com>
Acked-by: Dirk Behme <dirk.behme@de.bosch.com>
Consolidating reset code into reset_manager.c. Also
separating reset configuration for virtual target and
real hardware Cyclone V development kit
Signed-off-by: Chin Liang See <clsee@altera.com>
Reviewed-by: Pavel Machek <pavel@denx.de>
Cc: Wolfgang Denk <wd@denx.de>
Cc: Pavel Machek <pavel@denx.de>
Cc: Dinh Nguyen <dinguyen@altera.com>
Cc: Tom Rini <trini@ti.com>
Cc: Albert Aribaud <albert.u.boot@aribaud.net>
Add functions to report the HAB (High Assurance Boot) status
of e.g. i.MX6 CPUs.
This is taken from
git://git.freescale.com/imx/uboot-imx.git branch imx_v2009.08_3.0.35_4.0.0
cpu/arm_cortexa8/mx6/generic.c
include/asm-arm/arch-mx6/mx6_secure.h
Signed-off-by: Stefano Babic <sbabic@denx.de>
Fix size calculation in copy of go_to_speed into SRAM.
Use SRAM_CLK_CODE in call to SRAM-based go_to_speed.
Signed-off-by: Albert ARIBAUD <albert.u.boot@aribaud.net>
OMAP4470 SDP SoM has EDB8164B3PF PoP memory on board.
This memory has 4Gb x 2CS = 8Gb configuration.
Add configuration for runtime calculation and precalculated cases.
Patch is based on a draft Lubomir's patch [1].
[1] http://lists.denx.de/pipermail/u-boot/2013-April/150851.html
Signed-off-by: Lubomir Popov <lpopov@mm-sol.com>
[taras@ti.com: cleaned up patch and fixed precalculated values]
Signed-off-by: Taras Kondratiuk <taras@ti.com>
OMAP4470 reference design uses TWL6032 PMIC
with a following connection scheme:
VDD_CORE = TWL6032 SMPS2
VDD_MPU = TWL6032 SMPS1
VDD_IVA = TWL6032 SMPS5
Set voltage and frequency values according to
OMAP4470 Data Manual Operating Condition Addendum v0.7
Signed-off-by: Taras Kondratiuk <taras@ti.com>
The 'enable' argument can be better expressed as boolean.
Signed-off-by: Fabio Estevam <fabio.estevam@freescale.com>
Reviewed-by: Otavio Salvador <otavio@ossystems.com.br>
add gmac support for sama5d3xek board, the gmac embedded in:
- sama5d33, sama5d34, sama5d35
Signed-off-by: Bo Shen <voice.shen@atmel.com>
Signed-off-by: Andreas Bießmann <andreas.devel@googlemail.com>
Fixup an easy conflict over adding the clk_get prototype and USB_OTG
defines for am33xx having moved.
Conflicts:
arch/arm/include/asm/arch-am33xx/hardware.h
Signed-off-by: Tom Rini <trini@ti.com>
Signed-off-by: Antoine Tenart <atenart@adeneo-embedded.com>
[trini: Fix warnings about vtp things in emif4.c, adapt AM43XX]
Signed-off-by: Tom Rini <trini@ti.com>
Rename some CONFIG_TI814X to a more generic CONFIG_TI81XX
Signed-off-by: Antoine Tenart <atenart@adeneo-embedded.com>
[trini: Adapt for CONFIG_OMAP_COMMON changes, AM43XX]
Signed-off-by: Tom Rini <trini@ti.com>
Commit "OMAP5: emif/ddr: Change emif settings as required for ES1.0 silicon"
(f40107345c)
changed sequence to set final DDR PHY config register value at the beginning.
Looks like it was made by mistake and should be reverted.
Signed-off-by: Taras Kondratiuk <taras@ti.com>
In chapter 'Advisory 2.1 USB Host Clock Drift Causes USB Spec Non-compliance in Certain Configurations' of the TI Errata it is recommended to use certain div/mult values for the DPLL5 clock setup.
So far u-boot used the old 34xx values, so I added the errata recommended values specificly for 36xx init only.
Also, the FSEL registers exist no longer, so removed them from init.
Tested this on a AM3703 board with 19.2MHz oscillator, which previously couldnt lock the dpll5 (kernel complained). As a consequence the EHCI USB port wasnt usable in U-Boot and kernel. With this patch, kernel panics disappear and USB working fine in u-boot and kernel.
Signed-off-by: Andreas Naumann <anaumann@ultratronik.de>
[trini: Add extern to <asm/arch-omap3/clock.h>
Signed-off-by: Tom Rini <trini@ti.com>