imx: imx9: Add CCM and clock API support

Add clock API to support CCM root clock and LPCG setting
Set the CCM AUTHEN register to allow non-secure world to set
root clock and lpcg.

Signed-off-by: Ye Li <ye.li@nxp.com>
Signed-off-by: Peng Fan <peng.fan@nxp.com>
This commit is contained in:
Peng Fan 2022-07-26 16:40:43 +08:00 committed by Stefano Babic
parent 07110c6f53
commit f79c162668
7 changed files with 1720 additions and 3 deletions

View File

@ -0,0 +1,266 @@
/* SPDX-License-Identifier: GPL-2.0+ */
/*
* Copyright 2022 NXP
*/
#ifndef __ASM_ARCH_IMX9_CCM_REGS_H__
#define __ASM_ARCH_IMX9_CCM_REGS_H__
#define IMX93_CLK_ROOT_MAX 95
#define IMX93_CLK_CCGR_MAX 127
#define ARM_A55_PERIPH_CLK_ROOT 0
#define ARM_A55_MTR_BUS_CLK_ROOT 1
#define ARM_A55_CLK_ROOT 2
#define M33_CLK_ROOT 3
#define SENTINEL_CLK_ROOT 4
#define BUS_WAKEUP_CLK_ROOT 5
#define BUS_AON_CLK_ROOT 6
#define WAKEUP_AXI_CLK_ROOT 7
#define SWO_TRACE_CLK_ROOT 8
#define M33_SYSTICK_CLK_ROOT 9
#define FLEXIO1_CLK_ROOT 10
#define FLEXIO2_CLK_ROOT 11
#define LPIT1_CLK_ROOT 12
#define LPIT2_CLK_ROOT 13
#define LPTMR1_CLK_ROOT 14
#define LPTMR2_CLK_ROOT 15
#define TPM1_CLK_ROOT 16
#define TPM2_CLK_ROOT 17
#define TPM3_CLK_ROOT 18
#define TPM4_CLK_ROOT 19
#define TPM5_CLK_ROOT 20
#define TPM6_CLK_ROOT 21
#define FLEXSPI1_CLK_ROOT 22
#define CAN1_CLK_ROOT 23
#define CAN2_CLK_ROOT 24
#define LPUART1_CLK_ROOT 25
#define LPUART2_CLK_ROOT 26
#define LPUART3_CLK_ROOT 27
#define LPUART4_CLK_ROOT 28
#define LPUART5_CLK_ROOT 29
#define LPUART6_CLK_ROOT 30
#define LPUART7_CLK_ROOT 31
#define LPUART8_CLK_ROOT 32
#define LPI2C1_CLK_ROOT 33
#define LPI2C2_CLK_ROOT 34
#define LPI2C3_CLK_ROOT 35
#define LPI2C4_CLK_ROOT 36
#define LPI2C5_CLK_ROOT 37
#define LPI2C6_CLK_ROOT 38
#define LPI2C7_CLK_ROOT 39
#define LPI2C8_CLK_ROOT 40
#define LPSPI1_CLK_ROOT 41
#define LPSPI2_CLK_ROOT 42
#define LPSPI3_CLK_ROOT 43
#define LPSPI4_CLK_ROOT 44
#define LPSPI5_CLK_ROOT 45
#define LPSPI6_CLK_ROOT 46
#define LPSPI7_CLK_ROOT 47
#define LPSPI8_CLK_ROOT 48
#define I3C1_CLK_ROOT 49
#define I3C2_CLK_ROOT 50
#define USDHC1_CLK_ROOT 51
#define USDHC2_CLK_ROOT 52
#define USDHC3_CLK_ROOT 53
#define SAI1_CLK_ROOT 54
#define SAI2_CLK_ROOT 55
#define SAI3_CLK_ROOT 56
#define CCM_CKO1_CLK_ROOT 57
#define CCM_CKO2_CLK_ROOT 58
#define CCM_CKO3_CLK_ROOT 59
#define CCM_CKO4_CLK_ROOT 60
#define HSIO_CLK_ROOT 61
#define HSIO_USB_TEST_60M_CLK_ROOT 62
#define HSIO_ACSCAN_80M_CLK_ROOT 63
#define HSIO_ACSCAN_480M_CLK_ROOT 64
#define NIC_CLK_ROOT 65
#define NIC_APB_CLK_ROOT 66
#define ML_APB_CLK_ROOT 67
#define ML_CLK_ROOT 68
#define MEDIA_AXI_CLK_ROOT 69
#define MEDIA_APB_CLK_ROOT 70
#define MEDIA_LDB_CLK_ROOT 71
#define MEDIA_DISP_PIX_CLK_ROOT 72
#define CAM_PIX_CLK_ROOT 73
#define MIPI_TEST_BYTE_CLK_ROOT 74
#define MIPI_PHY_CFG_CLK_ROOT 75
#define DRAM_ALT_CLK_ROOT 76
#define DRAM_APB_CLK_ROOT 77
#define ADC_CLK_ROOT 78
#define PDM_CLK_ROOT 79
#define TSTMR1_CLK_ROOT 80
#define TSTMR2_CLK_ROOT 81
#define MQS1_CLK_ROOT 82
#define MQS2_CLK_ROOT 83
#define AUDIO_XCVR_CLK_ROOT 84
#define SPDIF_CLK_ROOT 85
#define ENET_CLK_ROOT 86
#define ENET_TIMER1_CLK_ROOT 87
#define ENET_TIMER2_CLK_ROOT 88
#define ENET_REF_CLK_ROOT 89
#define ENET_REF_PHY_CLK_ROOT 90
#define I3C1_SLOW_CLK_ROOT 91
#define I3C2_SLOW_CLK_ROOT 92
#define USB_PHY_BURUNIN_CLK_ROOT 93
#define PAL_CAME_SCAN_CLK_ROOT 94
#define CLK_ROOT_NUM 95
#define CCGR_A55 0
#define CCGR_CM33 1
#define CCGR_ARMTROUT 2
#define CCGR_SENT 3
#define CCGR_BUSM 4
#define CCGR_BUS7 5
#define CCGR_BUSD 6
#define CCGR_ANAD 7
#define CCGR_SRC 8
#define CCGR_CCM 9
#define CCGR_GPC 10
#define CCGR_ADC 11
#define CCGR_WDG1 12
#define CCGR_WDG2 13
#define CCGR_WDG3 14
#define CCGR_WDG4 15
#define CCGR_WDG5 16
#define CCGR_SEM1 17
#define CCGR_SEM2 18
#define CCGR_MUA 19
#define CCGR_MUB 20
#define CCGR_DMA1 21
#define CCGR_DMA2 22
#define CCGR_ROMCA55 23
#define CCGR_ROMCM33 24
#define CCGR_QSP1 25
#define CCGR_AONRDC 26
#define CCGR_WKUPRDC 27
#define CCGR_FUSE 28
#define CCGR_SNVH 29
#define CCGR_SNVS 30
#define CCGR_TRAC 31
#define CCGR_SWO 32
#define CCGR_IOCG 33
#define CCGR_PIO1 34
#define CCGR_PIO2 35
#define CCGR_PIO3 36
#define CCGR_PIO4 37
#define CCGR_FIO1 38
#define CCGR_FIO2 39
#define CCGR_PIT1 40
#define CCGR_PIT2 41
#define CCGR_GPT1 42
#define CCGR_GPT2 43
#define CCGR_TPM1 44
#define CCGR_TPM2 45
#define CCGR_TPM3 46
#define CCGR_TPM4 47
#define CCGR_TPM5 48
#define CCGR_TPM6 49
#define CCGR_CAN1 50
#define CCGR_CAN2 51
#define CCGR_URT1 52
#define CCGR_URT2 53
#define CCGR_URT3 54
#define CCGR_URT4 55
#define CCGR_URT5 56
#define CCGR_URT6 57
#define CCGR_URT7 58
#define CCGR_URT8 59
#define CCGR_I2C1 60
#define CCGR_I2C2 61
#define CCGR_I2C3 62
#define CCGR_I2C4 63
#define CCGR_I2C5 64
#define CCGR_I2C6 65
#define CCGR_I2C7 66
#define CCGR_I2C8 67
#define CCGR_SPI1 68
#define CCGR_SPI2 69
#define CCGR_SPI3 70
#define CCGR_SPI4 71
#define CCGR_SPI5 72
#define CCGR_SPI6 73
#define CCGR_SPI7 74
#define CCGR_SPI8 75
#define CCGR_I3C1 76
#define CCGR_I3C2 77
#define CCGR_USDHC1 78
#define CCGR_USDHC2 79
#define CCGR_USDHC3 80
#define CCGR_SAI1 81
#define CCGR_SAI2 82
#define CCGR_SAI3 83
#define CCGR_W2AO 84
#define CCGR_AO2W 85
#define CCGR_MIPIC 86
#define CCGR_MIPID 87
#define CCGR_LVDS 88
#define CCGR_LCDIF 89
#define CCGR_PXP 90
#define CCGR_ISI 91
#define CCGR_NMED 92
#define CCGR_DFI 93
#define CCGR_DDRC 94
#define CCGR_DFIC 95
#define CCGR_DSSI 96
#define CCGR_DBYP 97
#define CCGR_DAPB 98
#define CCGR_DRAMP 99
#define CCGR_DCLKC 100
#define CCGR_NCTL 101
#define CCGR_GIC 102
#define CCGR_NICAPB 103
#define CCGR_USBC 104
#define CCGR_USBT 105
#define CCGR_HSIO 106
#define CCGR_PDM 107
#define CCGR_MQS1 108
#define CCGR_MQS2 109
#define CCGR_AXCVR 110
#define CCGR_MECC 111
#define CCGR_SPDIF 112
#define CCGR_ML2NIC 113
#define CCGR_MED2NIC 114
#define CCGR_HSIO2NIC 115
#define CCGR_W2NIC 116
#define CCGR_NIC2W 117
#define CCGR_NIC2DDR 118
#define CCGR_HSIO32K 119
#define CCGR_ENET1 120
#define CCGR_ENETQOS 121
#define CCGR_SYSCNT 122
#define CCGR_TSTMR1 123
#define CCGR_TSTMR2 124
#define CCGR_TMC 125
#define CCGR_PMRO 126
#define CCGR_NUM 127
#define SHARED_GPR_EXT_CLK 0
#define SHARED_GPR_EXT_CLK_SEL_EXT1 0
#define SHARED_GPR_EXT_CLK_SEL_EXT2 BIT(0)
#define SHARED_GPR_EXT_CLK_SEL_EXT3 BIT(1)
#define SHARED_GPR_EXT_CLK_SEL_EXT4 GENMASK(1, 0)
#define SHARED_GPR_A55_CLK 1
#define SHARED_GPR_A55_CLK_SEL_CCM 0
#define SHARED_GPR_A55_CLK_SEL_PLL BIT(0)
#define SHARED_GPR_DRAM_CLK 2
#define SHARED_GPR_DRAM_CLK_SEL_PLL 0
#define SHARED_GPR_DRAM_CLK_SEL_CCM BIT(0)
#define SHARED_GPR_NUM 8
#define PRIVATE_GPR_NUM 8
#define CLK_ROOT_STATUS_OFF BIT(24)
#define CLK_ROOT_STATUS_CHANGING BIT(31)
#define CLK_ROOT_MUX_MASK GENMASK(9, 8)
#define CLK_ROOT_MUX_SHIFT 8
#define CLK_ROOT_DIV_MASK GENMASK(7, 0)
#define CCM_AUTHEN_LOCK_TZ BIT(11)
#define CCM_AUTHEN_TZ_NS BIT(9)
#define CCM_AUTHEN_TZ_USER BIT(8)
#define CCM_AUTHEN_CPULPM_MODE BIT(2)
#define CCM_AUTHEN_AUTO_CTRL BIT(3)
#endif

View File

@ -0,0 +1,239 @@
/* SPDX-License-Identifier: GPL-2.0+ */
/*
* Copyright 2022 NXP
*
* Peng Fan <peng.fan at nxp.com>
*/
#ifndef __CLOCK_IMX9__
#define __CLOCK_IMX9__
#include <linux/bitops.h>
#define MHZ(x) ((x) * 1000000UL)
enum enet_freq {
ENET_25MHZ = 0,
ENET_50MHZ,
ENET_125MHZ,
};
enum ccm_clk_src {
OSC_24M_CLK,
ARM_PLL,
ARM_PLL_CLK,
SYS_PLL_PG,
SYS_PLL_PFD0_PG,
SYS_PLL_PFD0,
SYS_PLL_PFD0_DIV2,
SYS_PLL_PFD1_PG,
SYS_PLL_PFD1,
SYS_PLL_PFD1_DIV2,
SYS_PLL_PFD2_PG,
SYS_PLL_PFD2,
SYS_PLL_PFD2_DIV2,
AUDIO_PLL,
AUDIO_PLL_CLK,
DRAM_PLL,
DRAM_PLL_CLK,
VIDEO_PLL,
VIDEO_PLL_CLK,
OSCPLL_END,
EXT_CLK,
};
/* Mainly for compatible to imx common code. */
enum mxc_clock {
MXC_ARM_CLK = 0,
MXC_IPG_CLK,
MXC_FLEXSPI_CLK,
MXC_CSPI_CLK,
MXC_ESDHC_CLK,
MXC_ESDHC2_CLK,
MXC_ESDHC3_CLK,
MXC_UART_CLK,
MXC_I2C_CLK,
MXC_FEC_CLK,
};
struct ccm_obs {
u32 direct;
u32 reserved[31];
};
struct ccm_gpr {
u32 gpr;
u32 gpr_set;
u32 gpr_clr;
u32 gpr_tog;
u32 authen;
u32 authen_set;
u32 authen_clr;
u32 authen_tog;
};
struct ccm_lpcg_oscpll {
u32 direct;
u32 lpm_status0;
u32 lpm_status1;
u32 reserved0;
u32 lpm0;
u32 lpm1;
u32 reserved1;
u32 lpm_cur;
u32 status0;
u32 status1;
u32 reserved2[2];
u32 authen;
u32 reserved3[3];
};
struct ccm_root {
u32 control;
u32 control_set;
u32 control_clr;
u32 control_tog;
u32 reserved[4];
u32 status0;
u32 reserved1[3];
u32 authen;
u32 reserved2[19];
};
struct ccm_reg {
struct ccm_root clk_roots[95]; /* 0x0 */
u32 reserved_0[1312];
struct ccm_obs clk_obs[6]; /* 0x4400 */
u32 reserved_1[64];
struct ccm_gpr clk_shared_gpr[8]; /* 0x4800 */
u32 reserved_2[192];
struct ccm_gpr clk_private_gpr[8]; /* 0x4C00 */
u32 reserved_3[192];
struct ccm_lpcg_oscpll clk_oscplls[19]; /* 0x5000 */
u32 reserved_4[2768];
struct ccm_lpcg_oscpll clk_lpcgs[122]; /* 0x8000 */
};
struct ana_pll_reg_elem {
u32 reg;
u32 reg_set;
u32 reg_clr;
u32 reg_tog;
};
struct ana_pll_dfs {
struct ana_pll_reg_elem dfs_ctrl;
struct ana_pll_reg_elem dfs_div;
};
struct ana_pll_reg {
struct ana_pll_reg_elem ctrl;
struct ana_pll_reg_elem ana_prg;
struct ana_pll_reg_elem test;
struct ana_pll_reg_elem ss; /* Spread spectrum */
struct ana_pll_reg_elem num; /* numerator */
struct ana_pll_reg_elem denom; /* demoninator */
struct ana_pll_reg_elem div;
struct ana_pll_dfs dfs[4];
u32 pll_status;
u32 dfs_status;
u32 reserved[2];
};
struct anatop_reg {
u32 osc_ctrl;
u32 osc_state;
u32 reserved_0[510];
u32 chip_version;
u32 reserved_1[511];
struct ana_pll_reg arm_pll;
struct ana_pll_reg sys_pll;
struct ana_pll_reg audio_pll;
struct ana_pll_reg dram_pll;
struct ana_pll_reg video_pll;
};
#define PLL_CTRL_HW_CTRL_SEL BIT(16)
#define PLL_CTRL_CLKMUX_BYPASS BIT(2)
#define PLL_CTRL_CLKMUX_EN BIT(1)
#define PLL_CTRL_POWERUP BIT(0)
#define PLL_STATUS_PLL_LOCK BIT(0)
#define PLL_DFS_CTRL_ENABLE BIT(31)
#define PLL_DFS_CTRL_CLKOUT BIT(30)
#define PLL_DFS_CTRL_CLKOUT_DIV2 BIT(29)
#define PLL_DFS_CTRL_BYPASS BIT(23)
#define PLL_SS_EN BIT(15)
struct imx_intpll_rate_table {
u32 rate; /*khz*/
int rdiv;
int mfi;
int odiv;
};
struct imx_fracpll_rate_table {
u32 rate; /*khz*/
int rdiv;
int mfi;
int odiv;
int mfn;
int mfd;
};
#define INT_PLL_RATE(_rate, _r, _m, _o) \
{ \
.rate = (_rate), \
.rdiv = (_r), \
.mfi = (_m), \
.odiv = (_o), \
}
#define FRAC_PLL_RATE(_rate, _r, _m, _o, _n, _d) \
{ \
.rate = (_rate), \
.rdiv = (_r), \
.mfi = (_m), \
.odiv = (_o), \
.mfn = (_n), \
.mfd = (_d), \
}
struct clk_root_map {
u32 clk_root_id;
u32 mux_type;
};
int clock_init(void);
u32 get_clk_src_rate(enum ccm_clk_src source);
u32 get_lpuart_clk(void);
void init_uart_clk(u32 index);
void init_clk_usdhc(u32 index);
int enable_i2c_clk(unsigned char enable, u32 i2c_num);
u32 imx_get_i2cclk(u32 i2c_num);
u32 mxc_get_clock(enum mxc_clock clk);
int ccm_clk_src_on(enum ccm_clk_src oscpll, bool enable);
int ccm_clk_src_auto(enum ccm_clk_src oscpll, bool enable);
int ccm_clk_src_lpm(enum ccm_clk_src oscpll, bool enable);
int ccm_clk_src_config_lpm(enum ccm_clk_src oscpll, u32 domain, u32 lpm_val);
bool ccm_clk_src_is_clk_on(enum ccm_clk_src oscpll);
int ccm_clk_src_tz_access(enum ccm_clk_src oscpll, bool non_secure, bool user_mode, bool lock_tz);
int ccm_clk_root_cfg(u32 clk_root_id, enum ccm_clk_src src, u32 div);
u32 ccm_clk_root_get_rate(u32 clk_root_id);
int ccm_clk_root_tz_access(u32 clk_root_id, bool non_secure, bool user_mode, bool lock_tz);
int ccm_lpcg_on(u32 lpcg, bool enable);
int ccm_lpcg_lpm(u32 lpcg, bool enable);
int ccm_lpcg_config_lpm(u32 lpcg, u32 domain, u32 lpm_val);
bool ccm_lpcg_is_clk_on(u32 lpcg);
int ccm_lpcg_tz_access(u32 lpcg, bool non_secure, bool user_mode, bool lock_tz);
int ccm_shared_gpr_set(u32 gpr, u32 val);
int ccm_shared_gpr_get(u32 gpr, u32 *val);
int ccm_shared_gpr_tz_access(u32 gpr, bool non_secure, bool user_mode, bool lock_tz);
void enable_usboh3_clk(unsigned char enable);
int set_clk_enet(enum enet_freq type);
int set_clk_eqos(enum enet_freq type);
#endif

View File

@ -9,5 +9,9 @@
#define ARCH_MXC
#define IOMUXC_BASE_ADDR 0x443C0000UL
#define CCM_BASE_ADDR 0x44450000UL
#define CCM_CCGR_BASE_ADDR 0x44458000UL
#define ANATOP_BASE_ADDR 0x44480000UL
#endif

View File

@ -3,4 +3,4 @@
# Copyright 2022 NXP
obj-y += lowlevel_init.o
obj-y += soc.o clock.o
obj-y += soc.o clock.o clock_root.o

View File

@ -9,6 +9,7 @@
#include <command.h>
#include <asm/arch/clock.h>
#include <asm/arch/imx-regs.h>
#include <asm/arch/ccm_regs.h>
#include <asm/arch/sys_proto.h>
#include <asm/global_data.h>
#include <asm/io.h>
@ -20,7 +21,773 @@
DECLARE_GLOBAL_DATA_PTR;
static struct anatop_reg *ana_regs = (struct anatop_reg *)ANATOP_BASE_ADDR;
static struct imx_intpll_rate_table imx9_intpll_tbl[] = {
INT_PLL_RATE(1800000000U, 1, 150, 2), /* 1.8Ghz */
INT_PLL_RATE(1700000000U, 1, 141, 2), /* 1.7Ghz */
INT_PLL_RATE(1400000000U, 1, 175, 3), /* 1.4Ghz */
INT_PLL_RATE(1000000000U, 1, 166, 4), /* 1000Mhz */
INT_PLL_RATE(900000000U, 1, 150, 4), /* 900Mhz */
};
static struct imx_fracpll_rate_table imx9_fracpll_tbl[] = {
FRAC_PLL_RATE(1000000000U, 1, 166, 4, 2, 3), /* 1000Mhz */
FRAC_PLL_RATE(933000000U, 1, 155, 4, 1, 2), /* 933Mhz */
FRAC_PLL_RATE(700000000U, 1, 145, 5, 5, 6), /* 700Mhz */
FRAC_PLL_RATE(466000000U, 1, 155, 8, 1, 3), /* 466Mhz */
FRAC_PLL_RATE(400000000U, 1, 200, 12, 0, 1), /* 400Mhz */
};
/* return in khz */
static u32 decode_pll_vco(struct ana_pll_reg *reg, bool fracpll)
{
u32 ctrl;
u32 pll_status;
u32 div;
int rdiv, mfi, mfn, mfd;
int clk = 24000;
ctrl = readl(&reg->ctrl.reg);
pll_status = readl(&reg->pll_status);
div = readl(&reg->div.reg);
if (!(ctrl & PLL_CTRL_POWERUP))
return 0;
if (!(pll_status & PLL_STATUS_PLL_LOCK))
return 0;
mfi = (div & GENMASK(24, 16)) >> 16;
rdiv = (div & GENMASK(15, 13)) >> 13;
if (rdiv == 0)
rdiv = 1;
if (fracpll) {
mfn = (int)readl(&reg->num.reg);
mfn >>= 2;
mfd = (int)(readl(&reg->denom.reg) & GENMASK(29, 0));
clk = clk * (mfi * mfd + mfn) / mfd / rdiv;
} else {
clk = clk * mfi / rdiv;
}
return (u32)clk;
}
/* return in khz */
static u32 decode_pll_out(struct ana_pll_reg *reg, bool fracpll)
{
u32 ctrl = readl(&reg->ctrl.reg);
u32 div;
if (ctrl & PLL_CTRL_CLKMUX_BYPASS)
return 24000;
if (!(ctrl & PLL_CTRL_CLKMUX_EN))
return 0;
div = readl(&reg->div.reg);
div &= 0xff; /* odiv */
if (div == 0)
div = 2;
else if (div == 1)
div = 3;
return decode_pll_vco(reg, fracpll) / div;
}
/* return in khz */
static u32 decode_pll_pfd(struct ana_pll_reg *reg, struct ana_pll_dfs *dfs_reg,
bool div2, bool fracpll)
{
u32 pllvco = decode_pll_vco(reg, fracpll);
u32 dfs_ctrl = readl(&dfs_reg->dfs_ctrl.reg);
u32 dfs_div = readl(&dfs_reg->dfs_div.reg);
u32 mfn, mfi;
u32 output;
if (dfs_ctrl & PLL_DFS_CTRL_BYPASS)
return pllvco;
if (!(dfs_ctrl & PLL_DFS_CTRL_ENABLE) ||
(div2 && !(dfs_ctrl & PLL_DFS_CTRL_CLKOUT_DIV2)) ||
(!div2 && !(dfs_ctrl & PLL_DFS_CTRL_CLKOUT)))
return 0;
mfn = dfs_div & GENMASK(2, 0);
mfi = (dfs_div & GENMASK(15, 8)) >> 8;
if (mfn > 3)
return 0; /* valid mfn 0-3 */
if (mfi == 0 || mfi == 1)
return 0; /* valid mfi 2-255 */
output = (pllvco * 5) / (mfi * 5 + mfn);
if (div2)
return output >> 1;
return output;
}
static u32 decode_pll(enum ccm_clk_src pll)
{
switch (pll) {
case ARM_PLL_CLK:
return decode_pll_out(&ana_regs->arm_pll, false);
case SYS_PLL_PG:
return decode_pll_out(&ana_regs->sys_pll, false);
case SYS_PLL_PFD0:
return decode_pll_pfd(&ana_regs->sys_pll,
&ana_regs->sys_pll.dfs[0], false, true);
case SYS_PLL_PFD0_DIV2:
return decode_pll_pfd(&ana_regs->sys_pll,
&ana_regs->sys_pll.dfs[0], true, true);
case SYS_PLL_PFD1:
return decode_pll_pfd(&ana_regs->sys_pll,
&ana_regs->sys_pll.dfs[1], false, true);
case SYS_PLL_PFD1_DIV2:
return decode_pll_pfd(&ana_regs->sys_pll,
&ana_regs->sys_pll.dfs[1], true, true);
case SYS_PLL_PFD2:
return decode_pll_pfd(&ana_regs->sys_pll,
&ana_regs->sys_pll.dfs[2], false, true);
case SYS_PLL_PFD2_DIV2:
return decode_pll_pfd(&ana_regs->sys_pll,
&ana_regs->sys_pll.dfs[2], true, true);
case AUDIO_PLL_CLK:
return decode_pll_out(&ana_regs->audio_pll, true);
case DRAM_PLL_CLK:
return decode_pll_out(&ana_regs->dram_pll, true);
case VIDEO_PLL_CLK:
return decode_pll_out(&ana_regs->video_pll, true);
default:
printf("Invalid clock source to decode\n");
break;
}
return 0;
}
int configure_intpll(enum ccm_clk_src pll, u32 freq)
{
int i;
struct imx_intpll_rate_table *rate;
struct ana_pll_reg *reg;
u32 pll_status;
for (i = 0; i < ARRAY_SIZE(imx9_intpll_tbl); i++) {
if (freq == imx9_intpll_tbl[i].rate)
break;
}
if (i == ARRAY_SIZE(imx9_intpll_tbl)) {
debug("No matched freq table %u\n", freq);
return -EINVAL;
}
rate = &imx9_intpll_tbl[i];
/* ROM has configured SYS PLL and PFD, no need for it */
switch (pll) {
case ARM_PLL_CLK:
reg = &ana_regs->arm_pll;
break;
default:
return -EPERM;
}
/* Bypass the PLL to ref */
writel(PLL_CTRL_CLKMUX_BYPASS, &reg->ctrl.reg_set);
/* disable pll and output */
writel(PLL_CTRL_CLKMUX_EN | PLL_CTRL_POWERUP, &reg->ctrl.reg_clr);
/* Program the ODIV, RDIV, MFI */
writel((rate->odiv & GENMASK(7, 0)) | ((rate->rdiv << 13) & GENMASK(15, 13)) |
((rate->mfi << 16) & GENMASK(24, 16)), &reg->div.reg);
/* wait 5us */
udelay(5);
/* power up the PLL and wait lock (max wait time 100 us) */
writel(PLL_CTRL_POWERUP, &reg->ctrl.reg_set);
udelay(100);
pll_status = readl(&reg->pll_status);
if (pll_status & PLL_STATUS_PLL_LOCK) {
writel(PLL_CTRL_CLKMUX_EN, &reg->ctrl.reg_set);
/* clear bypass */
writel(PLL_CTRL_CLKMUX_BYPASS, &reg->ctrl.reg_clr);
} else {
debug("Fail to lock PLL %u\n", pll);
return -EIO;
}
return 0;
}
int configure_fracpll(enum ccm_clk_src pll, u32 freq)
{
struct imx_fracpll_rate_table *rate;
struct ana_pll_reg *reg;
u32 pll_status;
int i;
for (i = 0; i < ARRAY_SIZE(imx9_fracpll_tbl); i++) {
if (freq == imx9_fracpll_tbl[i].rate)
break;
}
if (i == ARRAY_SIZE(imx9_fracpll_tbl)) {
debug("No matched freq table %u\n", freq);
return -EINVAL;
}
rate = &imx9_fracpll_tbl[i];
switch (pll) {
case SYS_PLL_PG:
reg = &ana_regs->sys_pll;
break;
case DRAM_PLL_CLK:
reg = &ana_regs->dram_pll;
break;
case VIDEO_PLL_CLK:
reg = &ana_regs->video_pll;
break;
default:
return -EPERM;
}
/* Bypass the PLL to ref */
writel(PLL_CTRL_CLKMUX_BYPASS, &reg->ctrl.reg_set);
/* disable pll and output */
writel(PLL_CTRL_CLKMUX_EN | PLL_CTRL_POWERUP, &reg->ctrl.reg_clr);
/* Program the ODIV, RDIV, MFI */
writel((rate->odiv & GENMASK(7, 0)) | ((rate->rdiv << 13) & GENMASK(15, 13)) |
((rate->mfi << 16) & GENMASK(24, 16)), &reg->div.reg);
/* Set SPREAD_SPECRUM enable to 0 */
writel(PLL_SS_EN, &reg->ss.reg_clr);
/* Program NUMERATOR and DENOMINATOR */
writel((rate->mfn << 2), &reg->num.reg);
writel((rate->mfd & GENMASK(29, 0)), &reg->denom.reg);
/* wait 5us */
udelay(5);
/* power up the PLL and wait lock (max wait time 100 us) */
writel(PLL_CTRL_POWERUP, &reg->ctrl.reg_set);
udelay(100);
pll_status = readl(&reg->pll_status);
if (pll_status & PLL_STATUS_PLL_LOCK) {
writel(PLL_CTRL_CLKMUX_EN, &reg->ctrl.reg_set);
/* check the MFN is updated */
pll_status = readl(&reg->pll_status);
if ((pll_status & ~0x3) != (rate->mfn << 2)) {
debug("MFN update not matched, pll_status 0x%x, mfn 0x%x\n",
pll_status, rate->mfn);
return -EIO;
}
/* clear bypass */
writel(PLL_CTRL_CLKMUX_BYPASS, &reg->ctrl.reg_clr);
} else {
debug("Fail to lock PLL %u\n", pll);
return -EIO;
}
return 0;
}
int configure_pll_pfd(enum ccm_clk_src pll_pfg, u32 mfi, u32 mfn, bool div2_en)
{
struct ana_pll_dfs *dfs;
struct ana_pll_reg *reg;
u32 dfs_status;
u32 index;
if (mfn > 3)
return -EINVAL; /* valid mfn 0-3 */
if (mfi < 2 || mfi > 255)
return -EINVAL; /* valid mfi 2-255 */
switch (pll_pfg) {
case SYS_PLL_PFD0:
reg = &ana_regs->sys_pll;
index = 0;
break;
case SYS_PLL_PFD1:
reg = &ana_regs->sys_pll;
index = 1;
break;
case SYS_PLL_PFD2:
reg = &ana_regs->sys_pll;
index = 2;
break;
default:
return -EPERM;
}
dfs = &reg->dfs[index];
/* Bypass the DFS to PLL VCO */
writel(PLL_DFS_CTRL_BYPASS, &dfs->dfs_ctrl.reg_set);
/* disable DFS and output */
writel(PLL_DFS_CTRL_ENABLE | PLL_DFS_CTRL_CLKOUT |
PLL_DFS_CTRL_CLKOUT_DIV2, &dfs->dfs_ctrl.reg_clr);
writel(((mfi << 8) & GENMASK(15, 8)) | (mfn & GENMASK(2, 0)), &dfs->dfs_div.reg);
writel(PLL_DFS_CTRL_CLKOUT, &dfs->dfs_ctrl.reg_set);
if (div2_en)
writel(PLL_DFS_CTRL_CLKOUT_DIV2, &dfs->dfs_ctrl.reg_set);
writel(PLL_DFS_CTRL_ENABLE, &dfs->dfs_ctrl.reg_set);
/*
* As HW expert said: after enabling the DFS, clock will start
* coming after 6 cycles output clock period.
* 5us is much bigger than expected, so it will be safe
*/
udelay(5);
dfs_status = readl(&reg->dfs_status);
if (!(dfs_status & (1 << index))) {
debug("DFS lock failed\n");
return -EIO;
}
/* Bypass the DFS to PLL VCO */
writel(PLL_DFS_CTRL_BYPASS, &dfs->dfs_ctrl.reg_clr);
return 0;
}
int update_fracpll_mfn(enum ccm_clk_src pll, int mfn)
{
struct ana_pll_reg *reg;
bool repoll = false;
u32 pll_status;
int count = 20;
switch (pll) {
case AUDIO_PLL_CLK:
reg = &ana_regs->audio_pll;
break;
case DRAM_PLL_CLK:
reg = &ana_regs->dram_pll;
break;
case VIDEO_PLL_CLK:
reg = &ana_regs->video_pll;
break;
default:
printf("Invalid pll %u for update FRAC PLL MFN\n", pll);
return -EINVAL;
}
if (readl(&reg->pll_status) & PLL_STATUS_PLL_LOCK)
repoll = true;
mfn <<= 2;
writel(mfn, &reg->num);
if (repoll) {
do {
pll_status = readl(&reg->pll_status);
udelay(5);
count--;
} while (((pll_status & ~0x3) != (u32)mfn) && count > 0);
if (count <= 0) {
printf("update MFN timeout, pll_status 0x%x, mfn 0x%x\n", pll_status, mfn);
return -EIO;
}
}
return 0;
}
int update_pll_pfd_mfn(enum ccm_clk_src pll_pfd, u32 mfn)
{
struct ana_pll_dfs *dfs;
u32 val;
u32 index;
switch (pll_pfd) {
case SYS_PLL_PFD0:
case SYS_PLL_PFD0_DIV2:
index = 0;
break;
case SYS_PLL_PFD1:
case SYS_PLL_PFD1_DIV2:
index = 1;
break;
case SYS_PLL_PFD2:
case SYS_PLL_PFD2_DIV2:
index = 2;
break;
default:
printf("Invalid pfd %u for update PLL PFD MFN\n", pll_pfd);
return -EINVAL;
}
dfs = &ana_regs->sys_pll.dfs[index];
val = readl(&dfs->dfs_div.reg);
val &= ~0x3;
val |= mfn & 0x3;
writel(val, &dfs->dfs_div.reg);
return 0;
}
/* return in khz */
u32 get_clk_src_rate(enum ccm_clk_src source)
{
u32 ctrl;
bool clk_on;
switch (source) {
case ARM_PLL_CLK:
ctrl = readl(&ana_regs->arm_pll.ctrl.reg);
case AUDIO_PLL_CLK:
ctrl = readl(&ana_regs->audio_pll.ctrl.reg);
break;
case DRAM_PLL_CLK:
ctrl = readl(&ana_regs->dram_pll.ctrl.reg);
break;
case VIDEO_PLL_CLK:
ctrl = readl(&ana_regs->video_pll.ctrl.reg);
break;
case SYS_PLL_PFD0:
case SYS_PLL_PFD0_DIV2:
ctrl = readl(&ana_regs->sys_pll.dfs[0].dfs_ctrl.reg);
break;
case SYS_PLL_PFD1:
case SYS_PLL_PFD1_DIV2:
ctrl = readl(&ana_regs->sys_pll.dfs[1].dfs_ctrl.reg);
break;
case SYS_PLL_PFD2:
case SYS_PLL_PFD2_DIV2:
ctrl = readl(&ana_regs->sys_pll.dfs[2].dfs_ctrl.reg);
break;
case OSC_24M_CLK:
return 24000;
default:
printf("Invalid clock source to get rate\n");
return 0;
}
if (ctrl & PLL_CTRL_HW_CTRL_SEL) {
/* When using HW ctrl, check OSCPLL */
clk_on = ccm_clk_src_is_clk_on(source);
if (clk_on)
return decode_pll(source);
else
return 0;
} else {
/* controlled by pll registers */
return decode_pll(source);
}
}
u32 get_arm_core_clk(void)
{
u32 val;
ccm_shared_gpr_get(SHARED_GPR_A55_CLK, &val);
if (val & SHARED_GPR_A55_CLK_SEL_PLL)
return decode_pll(ARM_PLL_CLK) * 1000;
return ccm_clk_root_get_rate(ARM_A55_CLK_ROOT);
}
unsigned int mxc_get_clock(enum mxc_clock clk)
{
switch (clk) {
case MXC_ARM_CLK:
return get_arm_core_clk();
case MXC_IPG_CLK:
return ccm_clk_root_get_rate(BUS_WAKEUP_CLK_ROOT);
case MXC_CSPI_CLK:
return ccm_clk_root_get_rate(LPSPI1_CLK_ROOT);
case MXC_ESDHC_CLK:
return ccm_clk_root_get_rate(USDHC1_CLK_ROOT);
case MXC_ESDHC2_CLK:
return ccm_clk_root_get_rate(USDHC2_CLK_ROOT);
case MXC_ESDHC3_CLK:
return ccm_clk_root_get_rate(USDHC3_CLK_ROOT);
case MXC_UART_CLK:
return ccm_clk_root_get_rate(LPUART1_CLK_ROOT);
case MXC_FLEXSPI_CLK:
return ccm_clk_root_get_rate(FLEXSPI1_CLK_ROOT);
default:
return -1;
};
return -1;
};
int enable_i2c_clk(unsigned char enable, u32 i2c_num)
{
if (i2c_num > 7)
return -EINVAL;
if (enable) {
/* 24M */
ccm_lpcg_on(CCGR_I2C1 + i2c_num, false);
ccm_clk_root_cfg(LPI2C1_CLK_ROOT + i2c_num, OSC_24M_CLK, 1);
ccm_lpcg_on(CCGR_I2C1 + i2c_num, true);
} else {
ccm_lpcg_on(CCGR_I2C1 + i2c_num, false);
}
return 0;
}
u32 imx_get_i2cclk(u32 i2c_num)
{
if (i2c_num > 7)
return -EINVAL;
return ccm_clk_root_get_rate(LPUART1_CLK_ROOT + i2c_num);
}
u32 get_lpuart_clk(void)
{
return 24000000;
return mxc_get_clock(MXC_UART_CLK);
}
void init_uart_clk(u32 index)
{
switch (index) {
case LPUART1_CLK_ROOT:
/* 24M */
ccm_lpcg_on(CCGR_URT1, false);
ccm_clk_root_cfg(LPUART1_CLK_ROOT, OSC_24M_CLK, 1);
ccm_lpcg_on(CCGR_URT1, true);
break;
default:
break;
}
}
void init_clk_usdhc(u32 index)
{
/* 400 Mhz */
switch (index) {
case 0:
ccm_lpcg_on(CCGR_USDHC1, 0);
ccm_clk_root_cfg(USDHC1_CLK_ROOT, SYS_PLL_PFD1, 2);
ccm_lpcg_on(CCGR_USDHC1, 1);
break;
case 1:
ccm_lpcg_on(CCGR_USDHC2, 0);
ccm_clk_root_cfg(USDHC2_CLK_ROOT, SYS_PLL_PFD1, 2);
ccm_lpcg_on(CCGR_USDHC2, 1);
break;
case 2:
ccm_lpcg_on(CCGR_USDHC3, 0);
ccm_clk_root_cfg(USDHC3_CLK_ROOT, SYS_PLL_PFD1, 2);
ccm_lpcg_on(CCGR_USDHC3, 1);
break;
default:
return;
};
}
void enable_usboh3_clk(unsigned char enable)
{
if (enable) {
ccm_clk_root_cfg(HSIO_CLK_ROOT, SYS_PLL_PFD1_DIV2, 3);
ccm_lpcg_on(CCGR_USBC, 1);
} else {
ccm_lpcg_on(CCGR_USBC, 0);
}
}
int clock_init(void)
{
int i;
/* Set A55 periphal to 333M */
ccm_clk_root_cfg(ARM_A55_PERIPH_CLK_ROOT, SYS_PLL_PFD0, 3);
/* Set A55 mtr bus to 133M */
ccm_clk_root_cfg(ARM_A55_MTR_BUS_CLK_ROOT, SYS_PLL_PFD1_DIV2, 3);
/* Sentinel to 200M */
ccm_clk_root_cfg(SENTINEL_CLK_ROOT, SYS_PLL_PFD1_DIV2, 2);
/* Bus_wakeup to 133M */
ccm_clk_root_cfg(BUS_WAKEUP_CLK_ROOT, SYS_PLL_PFD1_DIV2, 3);
/* Bus_AON to 133M */
ccm_clk_root_cfg(BUS_AON_CLK_ROOT, SYS_PLL_PFD1_DIV2, 3);
/* M33 to 200M */
ccm_clk_root_cfg(M33_CLK_ROOT, SYS_PLL_PFD1_DIV2, 2);
/*
* WAKEUP_AXI to 312.5M, because of FEC only can support to 320M for
* generating MII clock at 2.5M
*/
ccm_clk_root_cfg(WAKEUP_AXI_CLK_ROOT, SYS_PLL_PFD2, 2);
/* SWO TRACE to 133M */
ccm_clk_root_cfg(SWO_TRACE_CLK_ROOT, SYS_PLL_PFD1_DIV2, 3);
/* M33 systetick to 133M */
ccm_clk_root_cfg(M33_SYSTICK_CLK_ROOT, SYS_PLL_PFD1_DIV2, 3);
/* NIC to 400M */
ccm_clk_root_cfg(NIC_CLK_ROOT, SYS_PLL_PFD1, 2);
/* NIC_APB to 133M */
ccm_clk_root_cfg(NIC_APB_CLK_ROOT, SYS_PLL_PFD1_DIV2, 3);
/* allow for non-secure access */
for (i = 0; i < OSCPLL_END; i++)
ccm_clk_src_tz_access(i, true, false, false);
for (i = 0; i < CLK_ROOT_NUM; i++)
ccm_clk_root_tz_access(i, true, false, false);
for (i = 0; i < CCGR_NUM; i++)
ccm_lpcg_tz_access(i, true, false, false);
for (i = 0; i < SHARED_GPR_NUM; i++)
ccm_shared_gpr_tz_access(i, true, false, false);
return 0;
}
int set_clk_eqos(enum enet_freq type)
{
u32 eqos_post_div;
switch (type) {
case ENET_125MHZ:
eqos_post_div = 2; /* 250M clock */
break;
case ENET_50MHZ:
eqos_post_div = 5; /* 100M clock */
break;
case ENET_25MHZ:
eqos_post_div = 10; /* 50M clock*/
break;
default:
return -EINVAL;
}
/* disable the clock first */
ccm_lpcg_on(CCGR_ENETQOS, false);
ccm_clk_root_cfg(ENET_CLK_ROOT, SYS_PLL_PFD0_DIV2, eqos_post_div);
ccm_clk_root_cfg(ENET_TIMER2_CLK_ROOT, SYS_PLL_PFD0_DIV2, 5);
/* enable clock */
ccm_lpcg_on(CCGR_ENETQOS, true);
return 0;
}
u32 imx_get_eqos_csr_clk(void)
{
return ccm_clk_root_get_rate(WAKEUP_AXI_CLK_ROOT);
}
u32 imx_get_fecclk(void)
{
return ccm_clk_root_get_rate(WAKEUP_AXI_CLK_ROOT);
}
int set_clk_enet(enum enet_freq type)
{
u32 div;
/* disable the clock first */
ccm_lpcg_on(CCGR_ENET1, false);
switch (type) {
case ENET_125MHZ:
div = 2; /* 250Mhz */
break;
case ENET_50MHZ:
div = 5; /* 100Mhz */
break;
case ENET_25MHZ:
div = 10; /* 50Mhz */
break;
default:
return -EINVAL;
}
ccm_clk_root_cfg(ENET_REF_CLK_ROOT, SYS_PLL_PFD0_DIV2, div);
ccm_clk_root_cfg(ENET_TIMER1_CLK_ROOT, SYS_PLL_PFD0_DIV2, 5);
#ifdef CONFIG_FEC_MXC_25M_REF_CLK
ccm_clk_root_cfg(ENET_REF_PHY_CLK_ROOT, SYS_PLL_PFD0_DIV2, 20);
#endif
/* enable clock */
ccm_lpcg_on(CCGR_ENET1, true);
return 0;
}
/*
* Dump some clockes.
*/
#ifndef CONFIG_SPL_BUILD
int do_showclocks(struct cmd_tbl *cmdtp, int flag, int argc, char * const argv[])
{
u32 freq;
freq = decode_pll(ARM_PLL_CLK);
printf("ARM_PLL %8d MHz\n", freq / 1000);
freq = decode_pll(DRAM_PLL_CLK);
printf("DRAM_PLL %8d MHz\n", freq / 1000);
freq = decode_pll(SYS_PLL_PFD0);
printf("SYS_PLL_PFD0 %8d MHz\n", freq / 1000);
freq = decode_pll(SYS_PLL_PFD0_DIV2);
printf("SYS_PLL_PFD0_DIV2 %8d MHz\n", freq / 1000);
freq = decode_pll(SYS_PLL_PFD1);
printf("SYS_PLL_PFD1 %8d MHz\n", freq / 1000);
freq = decode_pll(SYS_PLL_PFD1_DIV2);
printf("SYS_PLL_PFD1_DIV2 %8d MHz\n", freq / 1000);
freq = decode_pll(SYS_PLL_PFD2);
printf("SYS_PLL_PFD2 %8d MHz\n", freq / 1000);
freq = decode_pll(SYS_PLL_PFD2_DIV2);
printf("SYS_PLL_PFD2_DIV2 %8d MHz\n", freq / 1000);
freq = mxc_get_clock(MXC_ARM_CLK);
printf("ARM CORE %8d MHz\n", freq / 1000000);
freq = mxc_get_clock(MXC_IPG_CLK);
printf("IPG %8d MHz\n", freq / 1000000);
freq = mxc_get_clock(MXC_UART_CLK);
printf("UART3 %8d MHz\n", freq / 1000000);
freq = mxc_get_clock(MXC_ESDHC_CLK);
printf("USDHC1 %8d MHz\n", freq / 1000000);
freq = mxc_get_clock(MXC_FLEXSPI_CLK);
printf("FLEXSPI %8d MHz\n", freq / 1000000);
return 0;
}
U_BOOT_CMD(
clocks, CONFIG_SYS_MAXARGS, 1, do_showclocks,
"display clocks",
""
);
#endif

View File

@ -0,0 +1,438 @@
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2022 NXP
*
* Peng Fan <peng.fan@nxp.com>
*/
#include <common.h>
#include <command.h>
#include <asm/arch/clock.h>
#include <asm/arch/sys_proto.h>
#include <asm/arch/ccm_regs.h>
#include <asm/global_data.h>
#include <linux/iopoll.h>
DECLARE_GLOBAL_DATA_PTR;
static struct ccm_reg *ccm_reg = (struct ccm_reg *)CCM_BASE_ADDR;
static enum ccm_clk_src clk_root_mux[][4] = {
{ OSC_24M_CLK, SYS_PLL_PFD0, SYS_PLL_PFD1, SYS_PLL_PFD2 }, /* bus */
{ OSC_24M_CLK, SYS_PLL_PFD0_DIV2, SYS_PLL_PFD1_DIV2, SYS_PLL_PFD2_DIV2 }, /* non-IO */
{ OSC_24M_CLK, SYS_PLL_PFD0_DIV2, SYS_PLL_PFD1_DIV2, VIDEO_PLL_CLK }, /* IO*/
{ OSC_24M_CLK, SYS_PLL_PFD0, AUDIO_PLL_CLK, EXT_CLK }, /* TPM */
{ OSC_24M_CLK, AUDIO_PLL_CLK, VIDEO_PLL_CLK, EXT_CLK }, /* Audio */
{ OSC_24M_CLK, AUDIO_PLL_CLK, VIDEO_PLL_CLK, SYS_PLL_PFD0 }, /* Video */
{ OSC_24M_CLK, SYS_PLL_PFD0, SYS_PLL_PFD1, AUDIO_PLL_CLK }, /* CKO1 */
{ OSC_24M_CLK, SYS_PLL_PFD0, SYS_PLL_PFD1, VIDEO_PLL_CLK }, /* CKO2 */
{ OSC_24M_CLK, AUDIO_PLL_CLK, VIDEO_PLL_CLK, SYS_PLL_PFD2 }, /* CAMSCAN */
};
static struct clk_root_map clk_root_array[] = {
{ ARM_A55_PERIPH_CLK_ROOT, 0 },
{ ARM_A55_MTR_BUS_CLK_ROOT, 2 },
{ ARM_A55_CLK_ROOT, 0 },
{ M33_CLK_ROOT, 2 },
{ SENTINEL_CLK_ROOT, 2 },
{ BUS_WAKEUP_CLK_ROOT, 2 },
{ BUS_AON_CLK_ROOT, 2 },
{ WAKEUP_AXI_CLK_ROOT, 0 },
{ SWO_TRACE_CLK_ROOT, 2 },
{ M33_SYSTICK_CLK_ROOT, 2 },
{ FLEXIO1_CLK_ROOT, 2 },
{ FLEXIO2_CLK_ROOT, 2 },
{ LPIT1_CLK_ROOT, 2 },
{ LPIT2_CLK_ROOT, 2 },
{ LPTMR1_CLK_ROOT, 2 },
{ LPTMR2_CLK_ROOT, 2 },
{ TPM1_CLK_ROOT, 3 },
{ TPM2_CLK_ROOT, 3 },
{ TPM3_CLK_ROOT, 3 },
{ TPM4_CLK_ROOT, 3 },
{ TPM5_CLK_ROOT, 3 },
{ TPM6_CLK_ROOT, 3 },
{ FLEXSPI1_CLK_ROOT, 0 },
{ CAN1_CLK_ROOT, 2 },
{ CAN2_CLK_ROOT, 2 },
{ LPUART1_CLK_ROOT, 2 },
{ LPUART2_CLK_ROOT, 2 },
{ LPUART3_CLK_ROOT, 2 },
{ LPUART4_CLK_ROOT, 2 },
{ LPUART5_CLK_ROOT, 2 },
{ LPUART6_CLK_ROOT, 2 },
{ LPUART7_CLK_ROOT, 2 },
{ LPUART8_CLK_ROOT, 2 },
{ LPI2C1_CLK_ROOT, 2 },
{ LPI2C2_CLK_ROOT, 2 },
{ LPI2C3_CLK_ROOT, 2 },
{ LPI2C4_CLK_ROOT, 2 },
{ LPI2C5_CLK_ROOT, 2 },
{ LPI2C6_CLK_ROOT, 2 },
{ LPI2C7_CLK_ROOT, 2 },
{ LPI2C8_CLK_ROOT, 2 },
{ LPSPI1_CLK_ROOT, 2 },
{ LPSPI2_CLK_ROOT, 2 },
{ LPSPI3_CLK_ROOT, 2 },
{ LPSPI4_CLK_ROOT, 2 },
{ LPSPI5_CLK_ROOT, 2 },
{ LPSPI6_CLK_ROOT, 2 },
{ LPSPI7_CLK_ROOT, 2 },
{ LPSPI8_CLK_ROOT, 2 },
{ I3C1_CLK_ROOT, 2 },
{ I3C2_CLK_ROOT, 2 },
{ USDHC1_CLK_ROOT, 0 },
{ USDHC2_CLK_ROOT, 0 },
{ USDHC3_CLK_ROOT, 0 },
{ SAI1_CLK_ROOT, 4 },
{ SAI2_CLK_ROOT, 4 },
{ SAI3_CLK_ROOT, 4 },
{ CCM_CKO1_CLK_ROOT, 6 },
{ CCM_CKO2_CLK_ROOT, 7 },
{ CCM_CKO3_CLK_ROOT, 6 },
{ CCM_CKO4_CLK_ROOT, 7 },
{ HSIO_CLK_ROOT, 2 },
{ HSIO_USB_TEST_60M_CLK_ROOT, 2 },
{ HSIO_ACSCAN_80M_CLK_ROOT, 2 },
{ HSIO_ACSCAN_480M_CLK_ROOT, 0 },
{ NIC_CLK_ROOT, 0 },
{ NIC_APB_CLK_ROOT, 2 },
{ ML_APB_CLK_ROOT, 2 },
{ ML_CLK_ROOT, 0 },
{ MEDIA_AXI_CLK_ROOT, 0 },
{ MEDIA_APB_CLK_ROOT, 2 },
{ MEDIA_LDB_CLK_ROOT, 5 },
{ MEDIA_DISP_PIX_CLK_ROOT, 5 },
{ CAM_PIX_CLK_ROOT, 5 },
{ MIPI_TEST_BYTE_CLK_ROOT, 5 },
{ MIPI_PHY_CFG_CLK_ROOT, 5 },
{ DRAM_ALT_CLK_ROOT, 0 },
{ DRAM_APB_CLK_ROOT, 1 },
{ ADC_CLK_ROOT, 2 },
{ PDM_CLK_ROOT, 4 },
{ TSTMR1_CLK_ROOT, 2 },
{ TSTMR2_CLK_ROOT, 2 },
{ MQS1_CLK_ROOT, 4 },
{ MQS2_CLK_ROOT, 4 },
{ AUDIO_XCVR_CLK_ROOT, 1 },
{ SPDIF_CLK_ROOT, 4 },
{ ENET_CLK_ROOT, 1 },
{ ENET_TIMER1_CLK_ROOT, 2 },
{ ENET_TIMER2_CLK_ROOT, 2 },
{ ENET_REF_CLK_ROOT, 1 },
{ ENET_REF_PHY_CLK_ROOT, 2 },
{ I3C1_SLOW_CLK_ROOT, 2 },
{ I3C2_SLOW_CLK_ROOT, 2 },
{ USB_PHY_BURUNIN_CLK_ROOT, 2 },
{ PAL_CAME_SCAN_CLK_ROOT, 8 },
};
int ccm_clk_src_on(enum ccm_clk_src oscpll, bool enable)
{
u32 authen;
if (oscpll >= OSCPLL_END)
return -EINVAL;
authen = readl(&ccm_reg->clk_oscplls[oscpll].authen);
/* If using cpulpm, need disable it first */
if (authen & CCM_AUTHEN_CPULPM_MODE)
return -EPERM;
if (enable)
writel(1, &ccm_reg->clk_oscplls[oscpll].direct);
else
writel(0, &ccm_reg->clk_oscplls[oscpll].direct);
return 0;
}
/* auto mode, enable = DIRECT[ON] | STATUS0[IN_USE] */
int ccm_clk_src_auto(enum ccm_clk_src oscpll, bool enable)
{
u32 authen;
if (oscpll >= OSCPLL_END)
return -EINVAL;
authen = readl(&ccm_reg->clk_oscplls[oscpll].authen);
/* AUTO CTRL and CPULPM are mutual exclusion, need disable CPULPM first */
if (authen & CCM_AUTHEN_CPULPM_MODE)
return -EPERM;
if (enable)
writel(authen | CCM_AUTHEN_AUTO_CTRL, &ccm_reg->clk_oscplls[oscpll].authen);
else
writel((authen & ~CCM_AUTHEN_AUTO_CTRL), &ccm_reg->clk_oscplls[oscpll].authen);
return 0;
}
int ccm_clk_src_lpm(enum ccm_clk_src oscpll, bool enable)
{
u32 authen;
if (oscpll >= OSCPLL_END)
return -EINVAL;
authen = readl(&ccm_reg->clk_oscplls[oscpll].authen);
/* AUTO CTRL and CPULPM are mutual exclusion, need disable AUTO CTRL first */
if (authen & CCM_AUTHEN_AUTO_CTRL)
return -EPERM;
if (enable)
writel(authen | CCM_AUTHEN_CPULPM_MODE, &ccm_reg->clk_oscplls[oscpll].authen);
else
writel((authen & ~CCM_AUTHEN_CPULPM_MODE), &ccm_reg->clk_oscplls[oscpll].authen);
return 0;
}
int ccm_clk_src_config_lpm(enum ccm_clk_src oscpll, u32 domain, u32 lpm_val)
{
u32 lpm, authen;
if (oscpll >= OSCPLL_END || domain >= 16)
return -EINVAL;
authen = readl(&ccm_reg->clk_oscplls[oscpll].authen);
if (!(authen & CCM_AUTHEN_CPULPM_MODE))
return -EPERM;
if (domain > 7) {
lpm = readl(&ccm_reg->clk_oscplls[oscpll].lpm1);
lpm &= ~(0x3 << ((domain - 8) * 4));
lpm |= (lpm_val & 0x3) << ((domain - 8) * 4);
writel(lpm, &ccm_reg->clk_oscplls[oscpll].lpm1);
} else {
lpm = readl(&ccm_reg->clk_oscplls[oscpll].lpm0);
lpm &= ~(0x3 << (domain * 4));
lpm |= (lpm_val & 0x3) << (domain * 4);
writel(lpm, &ccm_reg->clk_oscplls[oscpll].lpm0);
}
return 0;
}
bool ccm_clk_src_is_clk_on(enum ccm_clk_src oscpll)
{
return !!(readl(&ccm_reg->clk_oscplls[oscpll].status0) & 0x1);
}
int ccm_clk_src_tz_access(enum ccm_clk_src oscpll, bool non_secure, bool user_mode, bool lock_tz)
{
u32 authen;
if (oscpll >= OSCPLL_END)
return -EINVAL;
authen = readl(&ccm_reg->clk_oscplls[oscpll].authen);
authen |= non_secure ? CCM_AUTHEN_TZ_NS : 0;
authen |= user_mode ? CCM_AUTHEN_TZ_USER : 0;
authen |= lock_tz ? CCM_AUTHEN_LOCK_TZ : 0;
writel(authen, &ccm_reg->clk_oscplls[oscpll].authen);
return 0;
}
int ccm_clk_root_cfg(u32 clk_root_id, enum ccm_clk_src src, u32 div)
{
int i;
int ret;
u32 mux, status;
if (clk_root_id >= CLK_ROOT_NUM || div > 256 || div == 0)
return -EINVAL;
mux = clk_root_array[clk_root_id].mux_type;
for (i = 0; i < 4; i++) {
if (src == clk_root_mux[mux][i])
break;
}
if (i == 4) {
printf("Invalid source [%u] for this clk root\n", src);
return -EINVAL;
}
writel((i << 8) | (div - 1), &ccm_reg->clk_roots[clk_root_id].control);
ret = readl_poll_timeout(&ccm_reg->clk_roots[clk_root_id].status0, status,
!(status & CLK_ROOT_STATUS_CHANGING), 200000);
if (ret)
printf("%s: failed, status: 0x%x\n", __func__,
readl(&ccm_reg->clk_roots[clk_root_id].status0));
return ret;
};
u32 ccm_clk_root_get_rate(u32 clk_root_id)
{
u32 mux, status, div, rate;
enum ccm_clk_src src;
if (clk_root_id >= CLK_ROOT_NUM)
return 0;
status = readl(&ccm_reg->clk_roots[clk_root_id].control);
if (status & CLK_ROOT_STATUS_OFF)
return 0; /* clock is off */
mux = (status & CLK_ROOT_MUX_MASK) >> CLK_ROOT_MUX_SHIFT;
div = status & CLK_ROOT_DIV_MASK;
src = clk_root_mux[clk_root_array[clk_root_id].mux_type][mux];
rate = get_clk_src_rate(src) * 1000;
return rate / (div + 1); /* return in hz */
}
int ccm_clk_root_tz_access(u32 clk_root_id, bool non_secure, bool user_mode, bool lock_tz)
{
u32 authen;
if (clk_root_id >= CLK_ROOT_NUM)
return -EINVAL;
authen = readl(&ccm_reg->clk_roots[clk_root_id].authen);
authen |= non_secure ? CCM_AUTHEN_TZ_NS : 0;
authen |= user_mode ? CCM_AUTHEN_TZ_USER : 0;
authen |= lock_tz ? CCM_AUTHEN_LOCK_TZ : 0;
writel(authen, &ccm_reg->clk_roots[clk_root_id].authen);
return 0;
}
int ccm_lpcg_on(u32 lpcg, bool enable)
{
u32 authen;
if (lpcg >= CCGR_NUM)
return -EINVAL;
authen = readl(&ccm_reg->clk_lpcgs[lpcg].authen);
/* If using cpulpm, need disable it first */
if (authen & CCM_AUTHEN_CPULPM_MODE)
return -EPERM;
if (enable)
writel(1, &ccm_reg->clk_lpcgs[lpcg].direct);
else
writel(0, &ccm_reg->clk_lpcgs[lpcg].direct);
return 0;
}
int ccm_lpcg_lpm(u32 lpcg, bool enable)
{
u32 authen;
if (lpcg >= CCGR_NUM)
return -EINVAL;
authen = readl(&ccm_reg->clk_lpcgs[lpcg].authen);
if (enable)
writel(authen | CCM_AUTHEN_CPULPM_MODE, &ccm_reg->clk_lpcgs[lpcg].authen);
else
writel((authen & ~CCM_AUTHEN_CPULPM_MODE), &ccm_reg->clk_lpcgs[lpcg].authen);
return 0;
}
int ccm_lpcg_config_lpm(u32 lpcg, u32 domain, u32 lpm_val)
{
u32 lpm, authen;
if (lpcg >= CCGR_NUM || domain >= 16)
return -EINVAL;
authen = readl(&ccm_reg->clk_lpcgs[lpcg].authen);
if (!(authen & CCM_AUTHEN_CPULPM_MODE))
return -EPERM;
if (domain > 7) {
lpm = readl(&ccm_reg->clk_lpcgs[lpcg].lpm1);
lpm &= ~(0x3 << ((domain - 8) * 4));
lpm |= (lpm_val & 0x3) << ((domain - 8) * 4);
writel(lpm, &ccm_reg->clk_lpcgs[lpcg].lpm1);
} else {
lpm = readl(&ccm_reg->clk_lpcgs[lpcg].lpm0);
lpm &= ~(0x3 << (domain * 4));
lpm |= (lpm_val & 0x3) << (domain * 4);
writel(lpm, &ccm_reg->clk_lpcgs[lpcg].lpm0);
}
return 0;
}
bool ccm_lpcg_is_clk_on(u32 lpcg)
{
return !!(readl(&ccm_reg->clk_lpcgs[lpcg].status0) & 0x1);
}
int ccm_lpcg_tz_access(u32 lpcg, bool non_secure, bool user_mode, bool lock_tz)
{
u32 authen;
if (lpcg >= CCGR_NUM)
return -EINVAL;
authen = readl(&ccm_reg->clk_lpcgs[lpcg].authen);
authen |= non_secure ? CCM_AUTHEN_TZ_NS : 0;
authen |= user_mode ? CCM_AUTHEN_TZ_USER : 0;
authen |= lock_tz ? CCM_AUTHEN_LOCK_TZ : 0;
writel(authen, &ccm_reg->clk_lpcgs[lpcg].authen);
return 0;
}
int ccm_shared_gpr_set(u32 gpr, u32 val)
{
if (gpr >= SHARED_GPR_NUM)
return -EINVAL;
writel(val, &ccm_reg->clk_shared_gpr[gpr].gpr);
return 0;
}
int ccm_shared_gpr_get(u32 gpr, u32 *val)
{
if (gpr >= SHARED_GPR_NUM || !val)
return -EINVAL;
*val = readl(&ccm_reg->clk_shared_gpr[gpr].gpr);
return 0;
}
int ccm_shared_gpr_tz_access(u32 gpr, bool non_secure, bool user_mode, bool lock_tz)
{
u32 authen;
if (gpr >= SHARED_GPR_NUM)
return -EINVAL;
authen = readl(&ccm_reg->clk_shared_gpr[gpr].authen);
authen |= non_secure ? CCM_AUTHEN_TZ_NS : 0;
authen |= user_mode ? CCM_AUTHEN_TZ_USER : 0;
authen |= lock_tz ? CCM_AUTHEN_LOCK_TZ : 0;
writel(authen, &ccm_reg->clk_shared_gpr[gpr].authen);
return 0;
}

View File

@ -123,5 +123,8 @@ int ft_system_setup(void *blob, struct bd_info *bd)
int arch_cpu_init(void)
{
if (IS_ENABLED(CONFIG_SPL_BUILD))
clock_init();
return 0;
}