mirror of
https://github.com/u-boot/u-boot.git
synced 2024-11-23 20:24:26 +08:00
lib: crypto: add public key utility
Imported from linux kernel v5.3: asymmetric-type.h with changes marked as __UBOOT__ asymmetric_type.c with changes marked as __UBOOT__ public_key.h with changes marked as __UBOOT__ public_key.c with changes marked as __UBOOT__ Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
This commit is contained in:
parent
a9b45e6e83
commit
c4e961ecec
90
include/crypto/public_key.h
Normal file
90
include/crypto/public_key.h
Normal file
@ -0,0 +1,90 @@
|
||||
/* SPDX-License-Identifier: GPL-2.0-or-later */
|
||||
/* Asymmetric public-key algorithm definitions
|
||||
*
|
||||
* See Documentation/crypto/asymmetric-keys.txt
|
||||
*
|
||||
* Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
|
||||
* Written by David Howells (dhowells@redhat.com)
|
||||
*/
|
||||
|
||||
#ifndef _LINUX_PUBLIC_KEY_H
|
||||
#define _LINUX_PUBLIC_KEY_H
|
||||
|
||||
#ifdef __UBOOT__
|
||||
#include <linux/types.h>
|
||||
#else
|
||||
#include <linux/keyctl.h>
|
||||
#endif
|
||||
#include <linux/oid_registry.h>
|
||||
|
||||
/*
|
||||
* Cryptographic data for the public-key subtype of the asymmetric key type.
|
||||
*
|
||||
* Note that this may include private part of the key as well as the public
|
||||
* part.
|
||||
*/
|
||||
struct public_key {
|
||||
void *key;
|
||||
u32 keylen;
|
||||
enum OID algo;
|
||||
void *params;
|
||||
u32 paramlen;
|
||||
bool key_is_private;
|
||||
const char *id_type;
|
||||
const char *pkey_algo;
|
||||
};
|
||||
|
||||
extern void public_key_free(struct public_key *key);
|
||||
|
||||
/*
|
||||
* Public key cryptography signature data
|
||||
*/
|
||||
struct public_key_signature {
|
||||
struct asymmetric_key_id *auth_ids[2];
|
||||
u8 *s; /* Signature */
|
||||
u32 s_size; /* Number of bytes in signature */
|
||||
u8 *digest;
|
||||
u8 digest_size; /* Number of bytes in digest */
|
||||
const char *pkey_algo;
|
||||
const char *hash_algo;
|
||||
const char *encoding;
|
||||
};
|
||||
|
||||
extern void public_key_signature_free(struct public_key_signature *sig);
|
||||
|
||||
#ifndef __UBOOT__
|
||||
extern struct asymmetric_key_subtype public_key_subtype;
|
||||
|
||||
struct key;
|
||||
struct key_type;
|
||||
union key_payload;
|
||||
|
||||
extern int restrict_link_by_signature(struct key *dest_keyring,
|
||||
const struct key_type *type,
|
||||
const union key_payload *payload,
|
||||
struct key *trust_keyring);
|
||||
|
||||
extern int restrict_link_by_key_or_keyring(struct key *dest_keyring,
|
||||
const struct key_type *type,
|
||||
const union key_payload *payload,
|
||||
struct key *trusted);
|
||||
|
||||
extern int restrict_link_by_key_or_keyring_chain(struct key *trust_keyring,
|
||||
const struct key_type *type,
|
||||
const union key_payload *payload,
|
||||
struct key *trusted);
|
||||
|
||||
extern int query_asymmetric_key(const struct kernel_pkey_params *,
|
||||
struct kernel_pkey_query *);
|
||||
|
||||
extern int encrypt_blob(struct kernel_pkey_params *, const void *, void *);
|
||||
extern int decrypt_blob(struct kernel_pkey_params *, const void *, void *);
|
||||
extern int create_signature(struct kernel_pkey_params *, const void *, void *);
|
||||
extern int verify_signature(const struct key *,
|
||||
const struct public_key_signature *);
|
||||
|
||||
int public_key_verify_signature(const struct public_key *pkey,
|
||||
const struct public_key_signature *sig);
|
||||
#endif /* !__UBOOT__ */
|
||||
|
||||
#endif /* _LINUX_PUBLIC_KEY_H */
|
88
include/keys/asymmetric-type.h
Normal file
88
include/keys/asymmetric-type.h
Normal file
@ -0,0 +1,88 @@
|
||||
/* SPDX-License-Identifier: GPL-2.0-or-later */
|
||||
/* Asymmetric Public-key cryptography key type interface
|
||||
*
|
||||
* See Documentation/crypto/asymmetric-keys.txt
|
||||
*
|
||||
* Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
|
||||
* Written by David Howells (dhowells@redhat.com)
|
||||
*/
|
||||
|
||||
#ifndef _KEYS_ASYMMETRIC_TYPE_H
|
||||
#define _KEYS_ASYMMETRIC_TYPE_H
|
||||
|
||||
#ifndef __UBOOT__
|
||||
#include <linux/key-type.h>
|
||||
#include <linux/verification.h>
|
||||
|
||||
extern struct key_type key_type_asymmetric;
|
||||
|
||||
/*
|
||||
* The key payload is four words. The asymmetric-type key uses them as
|
||||
* follows:
|
||||
*/
|
||||
enum asymmetric_payload_bits {
|
||||
asym_crypto, /* The data representing the key */
|
||||
asym_subtype, /* Pointer to an asymmetric_key_subtype struct */
|
||||
asym_key_ids, /* Pointer to an asymmetric_key_ids struct */
|
||||
asym_auth /* The key's authorisation (signature, parent key ID) */
|
||||
};
|
||||
#endif /* !__UBOOT__ */
|
||||
|
||||
/*
|
||||
* Identifiers for an asymmetric key ID. We have three ways of looking up a
|
||||
* key derived from an X.509 certificate:
|
||||
*
|
||||
* (1) Serial Number & Issuer. Non-optional. This is the only valid way to
|
||||
* map a PKCS#7 signature to an X.509 certificate.
|
||||
*
|
||||
* (2) Issuer & Subject Unique IDs. Optional. These were the original way to
|
||||
* match X.509 certificates, but have fallen into disuse in favour of (3).
|
||||
*
|
||||
* (3) Auth & Subject Key Identifiers. Optional. SKIDs are only provided on
|
||||
* CA keys that are intended to sign other keys, so don't appear in end
|
||||
* user certificates unless forced.
|
||||
*
|
||||
* We could also support an PGP key identifier, which is just a SHA1 sum of the
|
||||
* public key and certain parameters, but since we don't support PGP keys at
|
||||
* the moment, we shall ignore those.
|
||||
*
|
||||
* What we actually do is provide a place where binary identifiers can be
|
||||
* stashed and then compare against them when checking for an id match.
|
||||
*/
|
||||
struct asymmetric_key_id {
|
||||
unsigned short len;
|
||||
unsigned char data[];
|
||||
};
|
||||
|
||||
struct asymmetric_key_ids {
|
||||
void *id[2];
|
||||
};
|
||||
|
||||
extern bool asymmetric_key_id_same(const struct asymmetric_key_id *kid1,
|
||||
const struct asymmetric_key_id *kid2);
|
||||
|
||||
extern bool asymmetric_key_id_partial(const struct asymmetric_key_id *kid1,
|
||||
const struct asymmetric_key_id *kid2);
|
||||
|
||||
extern struct asymmetric_key_id *asymmetric_key_generate_id(const void *val_1,
|
||||
size_t len_1,
|
||||
const void *val_2,
|
||||
size_t len_2);
|
||||
#ifndef __UBOOT__
|
||||
static inline
|
||||
const struct asymmetric_key_ids *asymmetric_key_ids(const struct key *key)
|
||||
{
|
||||
return key->payload.data[asym_key_ids];
|
||||
}
|
||||
|
||||
extern struct key *find_asymmetric_key(struct key *keyring,
|
||||
const struct asymmetric_key_id *id_0,
|
||||
const struct asymmetric_key_id *id_1,
|
||||
bool partial);
|
||||
#endif
|
||||
|
||||
/*
|
||||
* The payload is at the discretion of the subtype.
|
||||
*/
|
||||
|
||||
#endif /* _KEYS_ASYMMETRIC_TYPE_H */
|
19
lib/crypto/Kconfig
Normal file
19
lib/crypto/Kconfig
Normal file
@ -0,0 +1,19 @@
|
||||
menuconfig ASYMMETRIC_KEY_TYPE
|
||||
bool "Asymmetric (public-key cryptographic) key Support"
|
||||
help
|
||||
This option provides support for a key type that holds the data for
|
||||
the asymmetric keys used for public key cryptographic operations such
|
||||
as encryption, decryption, signature generation and signature
|
||||
verification.
|
||||
|
||||
if ASYMMETRIC_KEY_TYPE
|
||||
|
||||
config ASYMMETRIC_PUBLIC_KEY_SUBTYPE
|
||||
bool "Asymmetric public-key crypto algorithm subtype"
|
||||
help
|
||||
This option provides support for asymmetric public key type handling.
|
||||
If signature generation and/or verification are to be used,
|
||||
appropriate hash algorithms (such as SHA-1) must be available.
|
||||
ENOPKG will be reported if the requisite algorithm is unavailable.
|
||||
|
||||
endif # ASYMMETRIC_KEY_TYPE
|
10
lib/crypto/Makefile
Normal file
10
lib/crypto/Makefile
Normal file
@ -0,0 +1,10 @@
|
||||
# SPDX-License-Identifier: GPL-2.0+
|
||||
#
|
||||
# Makefile for asymmetric cryptographic keys
|
||||
#
|
||||
|
||||
obj-$(CONFIG_ASYMMETRIC_KEY_TYPE) += asymmetric_keys.o
|
||||
|
||||
asymmetric_keys-y := asymmetric_type.o
|
||||
|
||||
obj-$(CONFIG_ASYMMETRIC_PUBLIC_KEY_SUBTYPE) += public_key.o
|
668
lib/crypto/asymmetric_type.c
Normal file
668
lib/crypto/asymmetric_type.c
Normal file
@ -0,0 +1,668 @@
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
/* Asymmetric public-key cryptography key type
|
||||
*
|
||||
* See Documentation/crypto/asymmetric-keys.txt
|
||||
*
|
||||
* Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
|
||||
* Written by David Howells (dhowells@redhat.com)
|
||||
*/
|
||||
#ifndef __UBOOT__
|
||||
#include <keys/asymmetric-subtype.h>
|
||||
#include <keys/asymmetric-parser.h>
|
||||
#endif
|
||||
#include <crypto/public_key.h>
|
||||
#ifdef __UBOOT__
|
||||
#include <linux/compat.h>
|
||||
#include <linux/ctype.h>
|
||||
#include <linux/string.h>
|
||||
#else
|
||||
#include <linux/seq_file.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/ctype.h>
|
||||
#endif
|
||||
#ifdef __UBOOT__
|
||||
#include <keys/asymmetric-type.h>
|
||||
#else
|
||||
#include <keys/system_keyring.h>
|
||||
#include <keys/user-type.h>
|
||||
#include "asymmetric_keys.h"
|
||||
#endif
|
||||
|
||||
MODULE_LICENSE("GPL");
|
||||
|
||||
#ifndef __UBOOT__
|
||||
const char *const key_being_used_for[NR__KEY_BEING_USED_FOR] = {
|
||||
[VERIFYING_MODULE_SIGNATURE] = "mod sig",
|
||||
[VERIFYING_FIRMWARE_SIGNATURE] = "firmware sig",
|
||||
[VERIFYING_KEXEC_PE_SIGNATURE] = "kexec PE sig",
|
||||
[VERIFYING_KEY_SIGNATURE] = "key sig",
|
||||
[VERIFYING_KEY_SELF_SIGNATURE] = "key self sig",
|
||||
[VERIFYING_UNSPECIFIED_SIGNATURE] = "unspec sig",
|
||||
};
|
||||
EXPORT_SYMBOL_GPL(key_being_used_for);
|
||||
|
||||
static LIST_HEAD(asymmetric_key_parsers);
|
||||
static DECLARE_RWSEM(asymmetric_key_parsers_sem);
|
||||
|
||||
/**
|
||||
* find_asymmetric_key - Find a key by ID.
|
||||
* @keyring: The keys to search.
|
||||
* @id_0: The first ID to look for or NULL.
|
||||
* @id_1: The second ID to look for or NULL.
|
||||
* @partial: Use partial match if true, exact if false.
|
||||
*
|
||||
* Find a key in the given keyring by identifier. The preferred identifier is
|
||||
* the id_0 and the fallback identifier is the id_1. If both are given, the
|
||||
* lookup is by the former, but the latter must also match.
|
||||
*/
|
||||
struct key *find_asymmetric_key(struct key *keyring,
|
||||
const struct asymmetric_key_id *id_0,
|
||||
const struct asymmetric_key_id *id_1,
|
||||
bool partial)
|
||||
{
|
||||
struct key *key;
|
||||
key_ref_t ref;
|
||||
const char *lookup;
|
||||
char *req, *p;
|
||||
int len;
|
||||
|
||||
BUG_ON(!id_0 && !id_1);
|
||||
|
||||
if (id_0) {
|
||||
lookup = id_0->data;
|
||||
len = id_0->len;
|
||||
} else {
|
||||
lookup = id_1->data;
|
||||
len = id_1->len;
|
||||
}
|
||||
|
||||
/* Construct an identifier "id:<keyid>". */
|
||||
p = req = kmalloc(2 + 1 + len * 2 + 1, GFP_KERNEL);
|
||||
if (!req)
|
||||
return ERR_PTR(-ENOMEM);
|
||||
|
||||
if (partial) {
|
||||
*p++ = 'i';
|
||||
*p++ = 'd';
|
||||
} else {
|
||||
*p++ = 'e';
|
||||
*p++ = 'x';
|
||||
}
|
||||
*p++ = ':';
|
||||
p = bin2hex(p, lookup, len);
|
||||
*p = 0;
|
||||
|
||||
pr_debug("Look up: \"%s\"\n", req);
|
||||
|
||||
ref = keyring_search(make_key_ref(keyring, 1),
|
||||
&key_type_asymmetric, req, true);
|
||||
if (IS_ERR(ref))
|
||||
pr_debug("Request for key '%s' err %ld\n", req, PTR_ERR(ref));
|
||||
kfree(req);
|
||||
|
||||
if (IS_ERR(ref)) {
|
||||
switch (PTR_ERR(ref)) {
|
||||
/* Hide some search errors */
|
||||
case -EACCES:
|
||||
case -ENOTDIR:
|
||||
case -EAGAIN:
|
||||
return ERR_PTR(-ENOKEY);
|
||||
default:
|
||||
return ERR_CAST(ref);
|
||||
}
|
||||
}
|
||||
|
||||
key = key_ref_to_ptr(ref);
|
||||
if (id_0 && id_1) {
|
||||
const struct asymmetric_key_ids *kids = asymmetric_key_ids(key);
|
||||
|
||||
if (!kids->id[1]) {
|
||||
pr_debug("First ID matches, but second is missing\n");
|
||||
goto reject;
|
||||
}
|
||||
if (!asymmetric_key_id_same(id_1, kids->id[1])) {
|
||||
pr_debug("First ID matches, but second does not\n");
|
||||
goto reject;
|
||||
}
|
||||
}
|
||||
|
||||
pr_devel("<==%s() = 0 [%x]\n", __func__, key_serial(key));
|
||||
return key;
|
||||
|
||||
reject:
|
||||
key_put(key);
|
||||
return ERR_PTR(-EKEYREJECTED);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(find_asymmetric_key);
|
||||
#endif /* !__UBOOT__ */
|
||||
|
||||
/**
|
||||
* asymmetric_key_generate_id: Construct an asymmetric key ID
|
||||
* @val_1: First binary blob
|
||||
* @len_1: Length of first binary blob
|
||||
* @val_2: Second binary blob
|
||||
* @len_2: Length of second binary blob
|
||||
*
|
||||
* Construct an asymmetric key ID from a pair of binary blobs.
|
||||
*/
|
||||
struct asymmetric_key_id *asymmetric_key_generate_id(const void *val_1,
|
||||
size_t len_1,
|
||||
const void *val_2,
|
||||
size_t len_2)
|
||||
{
|
||||
struct asymmetric_key_id *kid;
|
||||
|
||||
kid = kmalloc(sizeof(struct asymmetric_key_id) + len_1 + len_2,
|
||||
GFP_KERNEL);
|
||||
if (!kid)
|
||||
return ERR_PTR(-ENOMEM);
|
||||
kid->len = len_1 + len_2;
|
||||
memcpy(kid->data, val_1, len_1);
|
||||
memcpy(kid->data + len_1, val_2, len_2);
|
||||
return kid;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(asymmetric_key_generate_id);
|
||||
|
||||
/**
|
||||
* asymmetric_key_id_same - Return true if two asymmetric keys IDs are the same.
|
||||
* @kid_1, @kid_2: The key IDs to compare
|
||||
*/
|
||||
bool asymmetric_key_id_same(const struct asymmetric_key_id *kid1,
|
||||
const struct asymmetric_key_id *kid2)
|
||||
{
|
||||
if (!kid1 || !kid2)
|
||||
return false;
|
||||
if (kid1->len != kid2->len)
|
||||
return false;
|
||||
return memcmp(kid1->data, kid2->data, kid1->len) == 0;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(asymmetric_key_id_same);
|
||||
|
||||
/**
|
||||
* asymmetric_key_id_partial - Return true if two asymmetric keys IDs
|
||||
* partially match
|
||||
* @kid_1, @kid_2: The key IDs to compare
|
||||
*/
|
||||
bool asymmetric_key_id_partial(const struct asymmetric_key_id *kid1,
|
||||
const struct asymmetric_key_id *kid2)
|
||||
{
|
||||
if (!kid1 || !kid2)
|
||||
return false;
|
||||
if (kid1->len < kid2->len)
|
||||
return false;
|
||||
return memcmp(kid1->data + (kid1->len - kid2->len),
|
||||
kid2->data, kid2->len) == 0;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(asymmetric_key_id_partial);
|
||||
|
||||
#ifndef __UBOOT__
|
||||
/**
|
||||
* asymmetric_match_key_ids - Search asymmetric key IDs
|
||||
* @kids: The list of key IDs to check
|
||||
* @match_id: The key ID we're looking for
|
||||
* @match: The match function to use
|
||||
*/
|
||||
static bool asymmetric_match_key_ids(
|
||||
const struct asymmetric_key_ids *kids,
|
||||
const struct asymmetric_key_id *match_id,
|
||||
bool (*match)(const struct asymmetric_key_id *kid1,
|
||||
const struct asymmetric_key_id *kid2))
|
||||
{
|
||||
int i;
|
||||
|
||||
if (!kids || !match_id)
|
||||
return false;
|
||||
for (i = 0; i < ARRAY_SIZE(kids->id); i++)
|
||||
if (match(kids->id[i], match_id))
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
/* helper function can be called directly with pre-allocated memory */
|
||||
inline int __asymmetric_key_hex_to_key_id(const char *id,
|
||||
struct asymmetric_key_id *match_id,
|
||||
size_t hexlen)
|
||||
{
|
||||
match_id->len = hexlen;
|
||||
return hex2bin(match_id->data, id, hexlen);
|
||||
}
|
||||
|
||||
/**
|
||||
* asymmetric_key_hex_to_key_id - Convert a hex string into a key ID.
|
||||
* @id: The ID as a hex string.
|
||||
*/
|
||||
struct asymmetric_key_id *asymmetric_key_hex_to_key_id(const char *id)
|
||||
{
|
||||
struct asymmetric_key_id *match_id;
|
||||
size_t asciihexlen;
|
||||
int ret;
|
||||
|
||||
if (!*id)
|
||||
return ERR_PTR(-EINVAL);
|
||||
asciihexlen = strlen(id);
|
||||
if (asciihexlen & 1)
|
||||
return ERR_PTR(-EINVAL);
|
||||
|
||||
match_id = kmalloc(sizeof(struct asymmetric_key_id) + asciihexlen / 2,
|
||||
GFP_KERNEL);
|
||||
if (!match_id)
|
||||
return ERR_PTR(-ENOMEM);
|
||||
ret = __asymmetric_key_hex_to_key_id(id, match_id, asciihexlen / 2);
|
||||
if (ret < 0) {
|
||||
kfree(match_id);
|
||||
return ERR_PTR(-EINVAL);
|
||||
}
|
||||
return match_id;
|
||||
}
|
||||
|
||||
/*
|
||||
* Match asymmetric keys by an exact match on an ID.
|
||||
*/
|
||||
static bool asymmetric_key_cmp(const struct key *key,
|
||||
const struct key_match_data *match_data)
|
||||
{
|
||||
const struct asymmetric_key_ids *kids = asymmetric_key_ids(key);
|
||||
const struct asymmetric_key_id *match_id = match_data->preparsed;
|
||||
|
||||
return asymmetric_match_key_ids(kids, match_id,
|
||||
asymmetric_key_id_same);
|
||||
}
|
||||
|
||||
/*
|
||||
* Match asymmetric keys by a partial match on an IDs.
|
||||
*/
|
||||
static bool asymmetric_key_cmp_partial(const struct key *key,
|
||||
const struct key_match_data *match_data)
|
||||
{
|
||||
const struct asymmetric_key_ids *kids = asymmetric_key_ids(key);
|
||||
const struct asymmetric_key_id *match_id = match_data->preparsed;
|
||||
|
||||
return asymmetric_match_key_ids(kids, match_id,
|
||||
asymmetric_key_id_partial);
|
||||
}
|
||||
|
||||
/*
|
||||
* Preparse the match criterion. If we don't set lookup_type and cmp,
|
||||
* the default will be an exact match on the key description.
|
||||
*
|
||||
* There are some specifiers for matching key IDs rather than by the key
|
||||
* description:
|
||||
*
|
||||
* "id:<id>" - find a key by partial match on any available ID
|
||||
* "ex:<id>" - find a key by exact match on any available ID
|
||||
*
|
||||
* These have to be searched by iteration rather than by direct lookup because
|
||||
* the key is hashed according to its description.
|
||||
*/
|
||||
static int asymmetric_key_match_preparse(struct key_match_data *match_data)
|
||||
{
|
||||
struct asymmetric_key_id *match_id;
|
||||
const char *spec = match_data->raw_data;
|
||||
const char *id;
|
||||
bool (*cmp)(const struct key *, const struct key_match_data *) =
|
||||
asymmetric_key_cmp;
|
||||
|
||||
if (!spec || !*spec)
|
||||
return -EINVAL;
|
||||
if (spec[0] == 'i' &&
|
||||
spec[1] == 'd' &&
|
||||
spec[2] == ':') {
|
||||
id = spec + 3;
|
||||
cmp = asymmetric_key_cmp_partial;
|
||||
} else if (spec[0] == 'e' &&
|
||||
spec[1] == 'x' &&
|
||||
spec[2] == ':') {
|
||||
id = spec + 3;
|
||||
} else {
|
||||
goto default_match;
|
||||
}
|
||||
|
||||
match_id = asymmetric_key_hex_to_key_id(id);
|
||||
if (IS_ERR(match_id))
|
||||
return PTR_ERR(match_id);
|
||||
|
||||
match_data->preparsed = match_id;
|
||||
match_data->cmp = cmp;
|
||||
match_data->lookup_type = KEYRING_SEARCH_LOOKUP_ITERATE;
|
||||
return 0;
|
||||
|
||||
default_match:
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Free the preparsed the match criterion.
|
||||
*/
|
||||
static void asymmetric_key_match_free(struct key_match_data *match_data)
|
||||
{
|
||||
kfree(match_data->preparsed);
|
||||
}
|
||||
|
||||
/*
|
||||
* Describe the asymmetric key
|
||||
*/
|
||||
static void asymmetric_key_describe(const struct key *key, struct seq_file *m)
|
||||
{
|
||||
const struct asymmetric_key_subtype *subtype = asymmetric_key_subtype(key);
|
||||
const struct asymmetric_key_ids *kids = asymmetric_key_ids(key);
|
||||
const struct asymmetric_key_id *kid;
|
||||
const unsigned char *p;
|
||||
int n;
|
||||
|
||||
seq_puts(m, key->description);
|
||||
|
||||
if (subtype) {
|
||||
seq_puts(m, ": ");
|
||||
subtype->describe(key, m);
|
||||
|
||||
if (kids && kids->id[1]) {
|
||||
kid = kids->id[1];
|
||||
seq_putc(m, ' ');
|
||||
n = kid->len;
|
||||
p = kid->data;
|
||||
if (n > 4) {
|
||||
p += n - 4;
|
||||
n = 4;
|
||||
}
|
||||
seq_printf(m, "%*phN", n, p);
|
||||
}
|
||||
|
||||
seq_puts(m, " [");
|
||||
/* put something here to indicate the key's capabilities */
|
||||
seq_putc(m, ']');
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Preparse a asymmetric payload to get format the contents appropriately for the
|
||||
* internal payload to cut down on the number of scans of the data performed.
|
||||
*
|
||||
* We also generate a proposed description from the contents of the key that
|
||||
* can be used to name the key if the user doesn't want to provide one.
|
||||
*/
|
||||
static int asymmetric_key_preparse(struct key_preparsed_payload *prep)
|
||||
{
|
||||
struct asymmetric_key_parser *parser;
|
||||
int ret;
|
||||
|
||||
pr_devel("==>%s()\n", __func__);
|
||||
|
||||
if (prep->datalen == 0)
|
||||
return -EINVAL;
|
||||
|
||||
down_read(&asymmetric_key_parsers_sem);
|
||||
|
||||
ret = -EBADMSG;
|
||||
list_for_each_entry(parser, &asymmetric_key_parsers, link) {
|
||||
pr_debug("Trying parser '%s'\n", parser->name);
|
||||
|
||||
ret = parser->parse(prep);
|
||||
if (ret != -EBADMSG) {
|
||||
pr_debug("Parser recognised the format (ret %d)\n",
|
||||
ret);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
up_read(&asymmetric_key_parsers_sem);
|
||||
pr_devel("<==%s() = %d\n", __func__, ret);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Clean up the key ID list
|
||||
*/
|
||||
static void asymmetric_key_free_kids(struct asymmetric_key_ids *kids)
|
||||
{
|
||||
int i;
|
||||
|
||||
if (kids) {
|
||||
for (i = 0; i < ARRAY_SIZE(kids->id); i++)
|
||||
kfree(kids->id[i]);
|
||||
kfree(kids);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Clean up the preparse data
|
||||
*/
|
||||
static void asymmetric_key_free_preparse(struct key_preparsed_payload *prep)
|
||||
{
|
||||
struct asymmetric_key_subtype *subtype = prep->payload.data[asym_subtype];
|
||||
struct asymmetric_key_ids *kids = prep->payload.data[asym_key_ids];
|
||||
|
||||
pr_devel("==>%s()\n", __func__);
|
||||
|
||||
if (subtype) {
|
||||
subtype->destroy(prep->payload.data[asym_crypto],
|
||||
prep->payload.data[asym_auth]);
|
||||
module_put(subtype->owner);
|
||||
}
|
||||
asymmetric_key_free_kids(kids);
|
||||
kfree(prep->description);
|
||||
}
|
||||
|
||||
/*
|
||||
* dispose of the data dangling from the corpse of a asymmetric key
|
||||
*/
|
||||
static void asymmetric_key_destroy(struct key *key)
|
||||
{
|
||||
struct asymmetric_key_subtype *subtype = asymmetric_key_subtype(key);
|
||||
struct asymmetric_key_ids *kids = key->payload.data[asym_key_ids];
|
||||
void *data = key->payload.data[asym_crypto];
|
||||
void *auth = key->payload.data[asym_auth];
|
||||
|
||||
key->payload.data[asym_crypto] = NULL;
|
||||
key->payload.data[asym_subtype] = NULL;
|
||||
key->payload.data[asym_key_ids] = NULL;
|
||||
key->payload.data[asym_auth] = NULL;
|
||||
|
||||
if (subtype) {
|
||||
subtype->destroy(data, auth);
|
||||
module_put(subtype->owner);
|
||||
}
|
||||
|
||||
asymmetric_key_free_kids(kids);
|
||||
}
|
||||
|
||||
static struct key_restriction *asymmetric_restriction_alloc(
|
||||
key_restrict_link_func_t check,
|
||||
struct key *key)
|
||||
{
|
||||
struct key_restriction *keyres =
|
||||
kzalloc(sizeof(struct key_restriction), GFP_KERNEL);
|
||||
|
||||
if (!keyres)
|
||||
return ERR_PTR(-ENOMEM);
|
||||
|
||||
keyres->check = check;
|
||||
keyres->key = key;
|
||||
keyres->keytype = &key_type_asymmetric;
|
||||
|
||||
return keyres;
|
||||
}
|
||||
|
||||
/*
|
||||
* look up keyring restrict functions for asymmetric keys
|
||||
*/
|
||||
static struct key_restriction *asymmetric_lookup_restriction(
|
||||
const char *restriction)
|
||||
{
|
||||
char *restrict_method;
|
||||
char *parse_buf;
|
||||
char *next;
|
||||
struct key_restriction *ret = ERR_PTR(-EINVAL);
|
||||
|
||||
if (strcmp("builtin_trusted", restriction) == 0)
|
||||
return asymmetric_restriction_alloc(
|
||||
restrict_link_by_builtin_trusted, NULL);
|
||||
|
||||
if (strcmp("builtin_and_secondary_trusted", restriction) == 0)
|
||||
return asymmetric_restriction_alloc(
|
||||
restrict_link_by_builtin_and_secondary_trusted, NULL);
|
||||
|
||||
parse_buf = kstrndup(restriction, PAGE_SIZE, GFP_KERNEL);
|
||||
if (!parse_buf)
|
||||
return ERR_PTR(-ENOMEM);
|
||||
|
||||
next = parse_buf;
|
||||
restrict_method = strsep(&next, ":");
|
||||
|
||||
if ((strcmp(restrict_method, "key_or_keyring") == 0) && next) {
|
||||
char *key_text;
|
||||
key_serial_t serial;
|
||||
struct key *key;
|
||||
key_restrict_link_func_t link_fn =
|
||||
restrict_link_by_key_or_keyring;
|
||||
bool allow_null_key = false;
|
||||
|
||||
key_text = strsep(&next, ":");
|
||||
|
||||
if (next) {
|
||||
if (strcmp(next, "chain") != 0)
|
||||
goto out;
|
||||
|
||||
link_fn = restrict_link_by_key_or_keyring_chain;
|
||||
allow_null_key = true;
|
||||
}
|
||||
|
||||
if (kstrtos32(key_text, 0, &serial) < 0)
|
||||
goto out;
|
||||
|
||||
if ((serial == 0) && allow_null_key) {
|
||||
key = NULL;
|
||||
} else {
|
||||
key = key_lookup(serial);
|
||||
if (IS_ERR(key)) {
|
||||
ret = ERR_CAST(key);
|
||||
goto out;
|
||||
}
|
||||
}
|
||||
|
||||
ret = asymmetric_restriction_alloc(link_fn, key);
|
||||
if (IS_ERR(ret))
|
||||
key_put(key);
|
||||
}
|
||||
|
||||
out:
|
||||
kfree(parse_buf);
|
||||
return ret;
|
||||
}
|
||||
|
||||
int asymmetric_key_eds_op(struct kernel_pkey_params *params,
|
||||
const void *in, void *out)
|
||||
{
|
||||
const struct asymmetric_key_subtype *subtype;
|
||||
struct key *key = params->key;
|
||||
int ret;
|
||||
|
||||
pr_devel("==>%s()\n", __func__);
|
||||
|
||||
if (key->type != &key_type_asymmetric)
|
||||
return -EINVAL;
|
||||
subtype = asymmetric_key_subtype(key);
|
||||
if (!subtype ||
|
||||
!key->payload.data[0])
|
||||
return -EINVAL;
|
||||
if (!subtype->eds_op)
|
||||
return -ENOTSUPP;
|
||||
|
||||
ret = subtype->eds_op(params, in, out);
|
||||
|
||||
pr_devel("<==%s() = %d\n", __func__, ret);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int asymmetric_key_verify_signature(struct kernel_pkey_params *params,
|
||||
const void *in, const void *in2)
|
||||
{
|
||||
struct public_key_signature sig = {
|
||||
.s_size = params->in2_len,
|
||||
.digest_size = params->in_len,
|
||||
.encoding = params->encoding,
|
||||
.hash_algo = params->hash_algo,
|
||||
.digest = (void *)in,
|
||||
.s = (void *)in2,
|
||||
};
|
||||
|
||||
return verify_signature(params->key, &sig);
|
||||
}
|
||||
|
||||
struct key_type key_type_asymmetric = {
|
||||
.name = "asymmetric",
|
||||
.preparse = asymmetric_key_preparse,
|
||||
.free_preparse = asymmetric_key_free_preparse,
|
||||
.instantiate = generic_key_instantiate,
|
||||
.match_preparse = asymmetric_key_match_preparse,
|
||||
.match_free = asymmetric_key_match_free,
|
||||
.destroy = asymmetric_key_destroy,
|
||||
.describe = asymmetric_key_describe,
|
||||
.lookup_restriction = asymmetric_lookup_restriction,
|
||||
.asym_query = query_asymmetric_key,
|
||||
.asym_eds_op = asymmetric_key_eds_op,
|
||||
.asym_verify_signature = asymmetric_key_verify_signature,
|
||||
};
|
||||
EXPORT_SYMBOL_GPL(key_type_asymmetric);
|
||||
|
||||
/**
|
||||
* register_asymmetric_key_parser - Register a asymmetric key blob parser
|
||||
* @parser: The parser to register
|
||||
*/
|
||||
int register_asymmetric_key_parser(struct asymmetric_key_parser *parser)
|
||||
{
|
||||
struct asymmetric_key_parser *cursor;
|
||||
int ret;
|
||||
|
||||
down_write(&asymmetric_key_parsers_sem);
|
||||
|
||||
list_for_each_entry(cursor, &asymmetric_key_parsers, link) {
|
||||
if (strcmp(cursor->name, parser->name) == 0) {
|
||||
pr_err("Asymmetric key parser '%s' already registered\n",
|
||||
parser->name);
|
||||
ret = -EEXIST;
|
||||
goto out;
|
||||
}
|
||||
}
|
||||
|
||||
list_add_tail(&parser->link, &asymmetric_key_parsers);
|
||||
|
||||
pr_notice("Asymmetric key parser '%s' registered\n", parser->name);
|
||||
ret = 0;
|
||||
|
||||
out:
|
||||
up_write(&asymmetric_key_parsers_sem);
|
||||
return ret;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(register_asymmetric_key_parser);
|
||||
|
||||
/**
|
||||
* unregister_asymmetric_key_parser - Unregister a asymmetric key blob parser
|
||||
* @parser: The parser to unregister
|
||||
*/
|
||||
void unregister_asymmetric_key_parser(struct asymmetric_key_parser *parser)
|
||||
{
|
||||
down_write(&asymmetric_key_parsers_sem);
|
||||
list_del(&parser->link);
|
||||
up_write(&asymmetric_key_parsers_sem);
|
||||
|
||||
pr_notice("Asymmetric key parser '%s' unregistered\n", parser->name);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(unregister_asymmetric_key_parser);
|
||||
|
||||
/*
|
||||
* Module stuff
|
||||
*/
|
||||
static int __init asymmetric_key_init(void)
|
||||
{
|
||||
return register_key_type(&key_type_asymmetric);
|
||||
}
|
||||
|
||||
static void __exit asymmetric_key_cleanup(void)
|
||||
{
|
||||
unregister_key_type(&key_type_asymmetric);
|
||||
}
|
||||
|
||||
module_init(asymmetric_key_init);
|
||||
module_exit(asymmetric_key_cleanup);
|
||||
#endif /* !__UBOOT__ */
|
376
lib/crypto/public_key.c
Normal file
376
lib/crypto/public_key.c
Normal file
@ -0,0 +1,376 @@
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
/* In-software asymmetric public-key crypto subtype
|
||||
*
|
||||
* See Documentation/crypto/asymmetric-keys.txt
|
||||
*
|
||||
* Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
|
||||
* Written by David Howells (dhowells@redhat.com)
|
||||
*/
|
||||
|
||||
#define pr_fmt(fmt) "PKEY: "fmt
|
||||
#ifdef __UBOOT__
|
||||
#include <linux/compat.h>
|
||||
#else
|
||||
#include <linux/module.h>
|
||||
#include <linux/export.h>
|
||||
#endif
|
||||
#include <linux/kernel.h>
|
||||
#ifndef __UBOOT__
|
||||
#include <linux/slab.h>
|
||||
#include <linux/seq_file.h>
|
||||
#include <linux/scatterlist.h>
|
||||
#include <keys/asymmetric-subtype.h>
|
||||
#endif
|
||||
#include <crypto/public_key.h>
|
||||
#ifndef __UBOOT__
|
||||
#include <crypto/akcipher.h>
|
||||
#endif
|
||||
|
||||
MODULE_DESCRIPTION("In-software asymmetric public-key subtype");
|
||||
MODULE_AUTHOR("Red Hat, Inc.");
|
||||
MODULE_LICENSE("GPL");
|
||||
|
||||
#ifndef __UBOOT__
|
||||
/*
|
||||
* Provide a part of a description of the key for /proc/keys.
|
||||
*/
|
||||
static void public_key_describe(const struct key *asymmetric_key,
|
||||
struct seq_file *m)
|
||||
{
|
||||
struct public_key *key = asymmetric_key->payload.data[asym_crypto];
|
||||
|
||||
if (key)
|
||||
seq_printf(m, "%s.%s", key->id_type, key->pkey_algo);
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Destroy a public key algorithm key.
|
||||
*/
|
||||
void public_key_free(struct public_key *key)
|
||||
{
|
||||
if (key) {
|
||||
kfree(key->key);
|
||||
kfree(key->params);
|
||||
kfree(key);
|
||||
}
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(public_key_free);
|
||||
|
||||
#ifdef __UBOOT__
|
||||
/*
|
||||
* from <linux>/crypto/asymmetric_keys/signature.c
|
||||
*
|
||||
* Destroy a public key signature.
|
||||
*/
|
||||
void public_key_signature_free(struct public_key_signature *sig)
|
||||
{
|
||||
int i;
|
||||
|
||||
if (sig) {
|
||||
for (i = 0; i < ARRAY_SIZE(sig->auth_ids); i++)
|
||||
free(sig->auth_ids[i]);
|
||||
free(sig->s);
|
||||
free(sig->digest);
|
||||
free(sig);
|
||||
}
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(public_key_signature_free);
|
||||
|
||||
#else
|
||||
/*
|
||||
* Destroy a public key algorithm key.
|
||||
*/
|
||||
static void public_key_destroy(void *payload0, void *payload3)
|
||||
{
|
||||
public_key_free(payload0);
|
||||
public_key_signature_free(payload3);
|
||||
}
|
||||
|
||||
/*
|
||||
* Determine the crypto algorithm name.
|
||||
*/
|
||||
static
|
||||
int software_key_determine_akcipher(const char *encoding,
|
||||
const char *hash_algo,
|
||||
const struct public_key *pkey,
|
||||
char alg_name[CRYPTO_MAX_ALG_NAME])
|
||||
{
|
||||
int n;
|
||||
|
||||
if (strcmp(encoding, "pkcs1") == 0) {
|
||||
/* The data wangled by the RSA algorithm is typically padded
|
||||
* and encoded in some manner, such as EMSA-PKCS1-1_5 [RFC3447
|
||||
* sec 8.2].
|
||||
*/
|
||||
if (!hash_algo)
|
||||
n = snprintf(alg_name, CRYPTO_MAX_ALG_NAME,
|
||||
"pkcs1pad(%s)",
|
||||
pkey->pkey_algo);
|
||||
else
|
||||
n = snprintf(alg_name, CRYPTO_MAX_ALG_NAME,
|
||||
"pkcs1pad(%s,%s)",
|
||||
pkey->pkey_algo, hash_algo);
|
||||
return n >= CRYPTO_MAX_ALG_NAME ? -EINVAL : 0;
|
||||
}
|
||||
|
||||
if (strcmp(encoding, "raw") == 0) {
|
||||
strcpy(alg_name, pkey->pkey_algo);
|
||||
return 0;
|
||||
}
|
||||
|
||||
return -ENOPKG;
|
||||
}
|
||||
|
||||
static u8 *pkey_pack_u32(u8 *dst, u32 val)
|
||||
{
|
||||
memcpy(dst, &val, sizeof(val));
|
||||
return dst + sizeof(val);
|
||||
}
|
||||
|
||||
/*
|
||||
* Query information about a key.
|
||||
*/
|
||||
static int software_key_query(const struct kernel_pkey_params *params,
|
||||
struct kernel_pkey_query *info)
|
||||
{
|
||||
struct crypto_akcipher *tfm;
|
||||
struct public_key *pkey = params->key->payload.data[asym_crypto];
|
||||
char alg_name[CRYPTO_MAX_ALG_NAME];
|
||||
u8 *key, *ptr;
|
||||
int ret, len;
|
||||
|
||||
ret = software_key_determine_akcipher(params->encoding,
|
||||
params->hash_algo,
|
||||
pkey, alg_name);
|
||||
if (ret < 0)
|
||||
return ret;
|
||||
|
||||
tfm = crypto_alloc_akcipher(alg_name, 0, 0);
|
||||
if (IS_ERR(tfm))
|
||||
return PTR_ERR(tfm);
|
||||
|
||||
key = kmalloc(pkey->keylen + sizeof(u32) * 2 + pkey->paramlen,
|
||||
GFP_KERNEL);
|
||||
if (!key)
|
||||
goto error_free_tfm;
|
||||
memcpy(key, pkey->key, pkey->keylen);
|
||||
ptr = key + pkey->keylen;
|
||||
ptr = pkey_pack_u32(ptr, pkey->algo);
|
||||
ptr = pkey_pack_u32(ptr, pkey->paramlen);
|
||||
memcpy(ptr, pkey->params, pkey->paramlen);
|
||||
|
||||
if (pkey->key_is_private)
|
||||
ret = crypto_akcipher_set_priv_key(tfm, key, pkey->keylen);
|
||||
else
|
||||
ret = crypto_akcipher_set_pub_key(tfm, key, pkey->keylen);
|
||||
if (ret < 0)
|
||||
goto error_free_key;
|
||||
|
||||
len = crypto_akcipher_maxsize(tfm);
|
||||
info->key_size = len * 8;
|
||||
info->max_data_size = len;
|
||||
info->max_sig_size = len;
|
||||
info->max_enc_size = len;
|
||||
info->max_dec_size = len;
|
||||
info->supported_ops = (KEYCTL_SUPPORTS_ENCRYPT |
|
||||
KEYCTL_SUPPORTS_VERIFY);
|
||||
if (pkey->key_is_private)
|
||||
info->supported_ops |= (KEYCTL_SUPPORTS_DECRYPT |
|
||||
KEYCTL_SUPPORTS_SIGN);
|
||||
ret = 0;
|
||||
|
||||
error_free_key:
|
||||
kfree(key);
|
||||
error_free_tfm:
|
||||
crypto_free_akcipher(tfm);
|
||||
pr_devel("<==%s() = %d\n", __func__, ret);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Do encryption, decryption and signing ops.
|
||||
*/
|
||||
static int software_key_eds_op(struct kernel_pkey_params *params,
|
||||
const void *in, void *out)
|
||||
{
|
||||
const struct public_key *pkey = params->key->payload.data[asym_crypto];
|
||||
struct akcipher_request *req;
|
||||
struct crypto_akcipher *tfm;
|
||||
struct crypto_wait cwait;
|
||||
struct scatterlist in_sg, out_sg;
|
||||
char alg_name[CRYPTO_MAX_ALG_NAME];
|
||||
char *key, *ptr;
|
||||
int ret;
|
||||
|
||||
pr_devel("==>%s()\n", __func__);
|
||||
|
||||
ret = software_key_determine_akcipher(params->encoding,
|
||||
params->hash_algo,
|
||||
pkey, alg_name);
|
||||
if (ret < 0)
|
||||
return ret;
|
||||
|
||||
tfm = crypto_alloc_akcipher(alg_name, 0, 0);
|
||||
if (IS_ERR(tfm))
|
||||
return PTR_ERR(tfm);
|
||||
|
||||
req = akcipher_request_alloc(tfm, GFP_KERNEL);
|
||||
if (!req)
|
||||
goto error_free_tfm;
|
||||
|
||||
key = kmalloc(pkey->keylen + sizeof(u32) * 2 + pkey->paramlen,
|
||||
GFP_KERNEL);
|
||||
if (!key)
|
||||
goto error_free_req;
|
||||
|
||||
memcpy(key, pkey->key, pkey->keylen);
|
||||
ptr = key + pkey->keylen;
|
||||
ptr = pkey_pack_u32(ptr, pkey->algo);
|
||||
ptr = pkey_pack_u32(ptr, pkey->paramlen);
|
||||
memcpy(ptr, pkey->params, pkey->paramlen);
|
||||
|
||||
if (pkey->key_is_private)
|
||||
ret = crypto_akcipher_set_priv_key(tfm, key, pkey->keylen);
|
||||
else
|
||||
ret = crypto_akcipher_set_pub_key(tfm, key, pkey->keylen);
|
||||
if (ret)
|
||||
goto error_free_key;
|
||||
|
||||
sg_init_one(&in_sg, in, params->in_len);
|
||||
sg_init_one(&out_sg, out, params->out_len);
|
||||
akcipher_request_set_crypt(req, &in_sg, &out_sg, params->in_len,
|
||||
params->out_len);
|
||||
crypto_init_wait(&cwait);
|
||||
akcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
|
||||
CRYPTO_TFM_REQ_MAY_SLEEP,
|
||||
crypto_req_done, &cwait);
|
||||
|
||||
/* Perform the encryption calculation. */
|
||||
switch (params->op) {
|
||||
case kernel_pkey_encrypt:
|
||||
ret = crypto_akcipher_encrypt(req);
|
||||
break;
|
||||
case kernel_pkey_decrypt:
|
||||
ret = crypto_akcipher_decrypt(req);
|
||||
break;
|
||||
case kernel_pkey_sign:
|
||||
ret = crypto_akcipher_sign(req);
|
||||
break;
|
||||
default:
|
||||
BUG();
|
||||
}
|
||||
|
||||
ret = crypto_wait_req(ret, &cwait);
|
||||
if (ret == 0)
|
||||
ret = req->dst_len;
|
||||
|
||||
error_free_key:
|
||||
kfree(key);
|
||||
error_free_req:
|
||||
akcipher_request_free(req);
|
||||
error_free_tfm:
|
||||
crypto_free_akcipher(tfm);
|
||||
pr_devel("<==%s() = %d\n", __func__, ret);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Verify a signature using a public key.
|
||||
*/
|
||||
int public_key_verify_signature(const struct public_key *pkey,
|
||||
const struct public_key_signature *sig)
|
||||
{
|
||||
struct crypto_wait cwait;
|
||||
struct crypto_akcipher *tfm;
|
||||
struct akcipher_request *req;
|
||||
struct scatterlist src_sg[2];
|
||||
char alg_name[CRYPTO_MAX_ALG_NAME];
|
||||
char *key, *ptr;
|
||||
int ret;
|
||||
|
||||
pr_devel("==>%s()\n", __func__);
|
||||
|
||||
BUG_ON(!pkey);
|
||||
BUG_ON(!sig);
|
||||
BUG_ON(!sig->s);
|
||||
|
||||
ret = software_key_determine_akcipher(sig->encoding,
|
||||
sig->hash_algo,
|
||||
pkey, alg_name);
|
||||
if (ret < 0)
|
||||
return ret;
|
||||
|
||||
tfm = crypto_alloc_akcipher(alg_name, 0, 0);
|
||||
if (IS_ERR(tfm))
|
||||
return PTR_ERR(tfm);
|
||||
|
||||
ret = -ENOMEM;
|
||||
req = akcipher_request_alloc(tfm, GFP_KERNEL);
|
||||
if (!req)
|
||||
goto error_free_tfm;
|
||||
|
||||
key = kmalloc(pkey->keylen + sizeof(u32) * 2 + pkey->paramlen,
|
||||
GFP_KERNEL);
|
||||
if (!key)
|
||||
goto error_free_req;
|
||||
|
||||
memcpy(key, pkey->key, pkey->keylen);
|
||||
ptr = key + pkey->keylen;
|
||||
ptr = pkey_pack_u32(ptr, pkey->algo);
|
||||
ptr = pkey_pack_u32(ptr, pkey->paramlen);
|
||||
memcpy(ptr, pkey->params, pkey->paramlen);
|
||||
|
||||
if (pkey->key_is_private)
|
||||
ret = crypto_akcipher_set_priv_key(tfm, key, pkey->keylen);
|
||||
else
|
||||
ret = crypto_akcipher_set_pub_key(tfm, key, pkey->keylen);
|
||||
if (ret)
|
||||
goto error_free_key;
|
||||
|
||||
sg_init_table(src_sg, 2);
|
||||
sg_set_buf(&src_sg[0], sig->s, sig->s_size);
|
||||
sg_set_buf(&src_sg[1], sig->digest, sig->digest_size);
|
||||
akcipher_request_set_crypt(req, src_sg, NULL, sig->s_size,
|
||||
sig->digest_size);
|
||||
crypto_init_wait(&cwait);
|
||||
akcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
|
||||
CRYPTO_TFM_REQ_MAY_SLEEP,
|
||||
crypto_req_done, &cwait);
|
||||
ret = crypto_wait_req(crypto_akcipher_verify(req), &cwait);
|
||||
|
||||
error_free_key:
|
||||
kfree(key);
|
||||
error_free_req:
|
||||
akcipher_request_free(req);
|
||||
error_free_tfm:
|
||||
crypto_free_akcipher(tfm);
|
||||
pr_devel("<==%s() = %d\n", __func__, ret);
|
||||
if (WARN_ON_ONCE(ret > 0))
|
||||
ret = -EINVAL;
|
||||
return ret;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(public_key_verify_signature);
|
||||
|
||||
static int public_key_verify_signature_2(const struct key *key,
|
||||
const struct public_key_signature *sig)
|
||||
{
|
||||
const struct public_key *pk = key->payload.data[asym_crypto];
|
||||
return public_key_verify_signature(pk, sig);
|
||||
}
|
||||
|
||||
/*
|
||||
* Public key algorithm asymmetric key subtype
|
||||
*/
|
||||
struct asymmetric_key_subtype public_key_subtype = {
|
||||
.owner = THIS_MODULE,
|
||||
.name = "public_key",
|
||||
.name_len = sizeof("public_key") - 1,
|
||||
.describe = public_key_describe,
|
||||
.destroy = public_key_destroy,
|
||||
.query = software_key_query,
|
||||
.eds_op = software_key_eds_op,
|
||||
.verify_signature = public_key_verify_signature_2,
|
||||
};
|
||||
EXPORT_SYMBOL_GPL(public_key_subtype);
|
||||
#endif /* !__UBOOT__ */
|
Loading…
Reference in New Issue
Block a user