mirror of
https://github.com/u-boot/u-boot.git
synced 2024-11-23 20:24:26 +08:00
arm: mvebu: Implement secure boot
The patch implements secure booting for the mvebu architecture. This includes: - The addition of secure headers and all needed signatures and keys in mkimage - Commands capable of writing the board's efuses to both write the needed cryptographic data and enable the secure booting mechanism - The creation of convenience text files containing the necessary commands to write the efuses The KAK and CSK keys are expected to reside in the files kwb_kak.key and kwb_csk.key (OpenSSL 2048 bit private keys) in the top-level directory. Signed-off-by: Reinhard Pfau <reinhard.pfau@gdsys.cc> Signed-off-by: Mario Six <mario.six@gdsys.cc> Reviewed-by: Stefan Roese <sr@denx.de> Reviewed-by: Simon Glass <sjg@chromium.org> Signed-off-by: Stefan Roese <sr@denx.de>
This commit is contained in:
parent
4991b4f7f1
commit
a1b6b0a9c1
3
Makefile
3
Makefile
@ -957,7 +957,8 @@ MKIMAGEFLAGS_u-boot.kwb = -n $(srctree)/$(CONFIG_SYS_KWD_CONFIG:"%"=%) \
|
||||
-T kwbimage -a $(CONFIG_SYS_TEXT_BASE) -e $(CONFIG_SYS_TEXT_BASE)
|
||||
|
||||
MKIMAGEFLAGS_u-boot-spl.kwb = -n $(srctree)/$(CONFIG_SYS_KWD_CONFIG:"%"=%) \
|
||||
-T kwbimage -a $(CONFIG_SYS_TEXT_BASE) -e $(CONFIG_SYS_TEXT_BASE)
|
||||
-T kwbimage -a $(CONFIG_SYS_TEXT_BASE) -e $(CONFIG_SYS_TEXT_BASE) \
|
||||
$(if $(KEYDIR),-k $(KEYDIR))
|
||||
|
||||
MKIMAGEFLAGS_u-boot.pbl = -n $(srctree)/$(CONFIG_SYS_FSL_PBL_RCW:"%"=%) \
|
||||
-R $(srctree)/$(CONFIG_SYS_FSL_PBL_PBI:"%"=%) -T pblimage
|
||||
|
@ -1,5 +1,9 @@
|
||||
if ARCH_MVEBU
|
||||
|
||||
config HAVE_MVEBU_EFUSE
|
||||
bool
|
||||
default n
|
||||
|
||||
config ARMADA_32BIT
|
||||
bool
|
||||
select CPU_V7
|
||||
@ -23,6 +27,7 @@ config ARMADA_375
|
||||
config ARMADA_38X
|
||||
bool
|
||||
select ARMADA_32BIT
|
||||
select HAVE_MVEBU_EFUSE
|
||||
|
||||
config ARMADA_XP
|
||||
bool
|
||||
@ -146,4 +151,34 @@ config SYS_VENDOR
|
||||
config SYS_SOC
|
||||
default "mvebu"
|
||||
|
||||
config MVEBU_EFUSE
|
||||
bool "Enable eFuse support"
|
||||
default n
|
||||
depends on HAVE_MVEBU_EFUSE
|
||||
help
|
||||
Enable support for reading and writing eFuses on mvebu SoCs.
|
||||
|
||||
config MVEBU_EFUSE_FAKE
|
||||
bool "Fake eFuse access (dry run)"
|
||||
default n
|
||||
depends on MVEBU_EFUSE
|
||||
help
|
||||
This enables a "dry run" mode where eFuses are not really programmed.
|
||||
Instead the eFuse accesses are emulated by writing to and reading
|
||||
from a memory block.
|
||||
This is can be used for testing prog scripts.
|
||||
|
||||
config SECURED_MODE_IMAGE
|
||||
bool "Build image for trusted boot"
|
||||
default false
|
||||
depends on 88F6820
|
||||
help
|
||||
Build an image that employs the ARMADA SoC's trusted boot framework
|
||||
for securely booting images.
|
||||
|
||||
config SECURED_MODE_CSK_INDEX
|
||||
int "Index of active CSK"
|
||||
default 0
|
||||
depends on SECURED_MODE_IMAGE
|
||||
|
||||
endif
|
||||
|
@ -27,6 +27,7 @@ ifndef CONFIG_SPL_BUILD
|
||||
obj-$(CONFIG_ARMADA_375) += ../../../drivers/ddr/marvell/axp/xor.o
|
||||
obj-$(CONFIG_ARMADA_38X) += ../../../drivers/ddr/marvell/a38x/xor.o
|
||||
obj-$(CONFIG_ARMADA_XP) += ../../../drivers/ddr/marvell/axp/xor.o
|
||||
obj-$(CONFIG_MVEBU_EFUSE) += efuse.o
|
||||
endif # CONFIG_SPL_BUILD
|
||||
obj-y += gpio.o
|
||||
obj-y += mbus.o
|
||||
|
264
arch/arm/mach-mvebu/efuse.c
Normal file
264
arch/arm/mach-mvebu/efuse.c
Normal file
@ -0,0 +1,264 @@
|
||||
/*
|
||||
* Copyright (C) 2015-2016 Reinhard Pfau <reinhard.pfau@gdsys.cc>
|
||||
*
|
||||
* SPDX-License-Identifier: GPL-2.0+
|
||||
*/
|
||||
|
||||
#include <config.h>
|
||||
#include <common.h>
|
||||
#include <errno.h>
|
||||
#include <asm/io.h>
|
||||
#include <asm/arch/cpu.h>
|
||||
#include <asm/arch/efuse.h>
|
||||
#include <asm/arch/soc.h>
|
||||
#include <linux/mbus.h>
|
||||
|
||||
#if defined(CONFIG_MVEBU_EFUSE_FAKE)
|
||||
#define DRY_RUN
|
||||
#else
|
||||
#undef DRY_RUN
|
||||
#endif
|
||||
|
||||
#define MBUS_EFUSE_BASE 0xF6000000
|
||||
#define MBUS_EFUSE_SIZE BIT(20)
|
||||
|
||||
#define MVEBU_EFUSE_CONTROL (MVEBU_REGISTER(0xE4008))
|
||||
|
||||
enum {
|
||||
MVEBU_EFUSE_CTRL_PROGRAM_ENABLE = (1 << 31),
|
||||
};
|
||||
|
||||
struct mvebu_hd_efuse {
|
||||
u32 bits_31_0;
|
||||
u32 bits_63_32;
|
||||
u32 bit64;
|
||||
u32 reserved0;
|
||||
};
|
||||
|
||||
#ifndef DRY_RUN
|
||||
static struct mvebu_hd_efuse *efuses =
|
||||
(struct mvebu_hd_efuse *)(MBUS_EFUSE_BASE + 0xF9000);
|
||||
#else
|
||||
static struct mvebu_hd_efuse efuses[EFUSE_LINE_MAX + 1];
|
||||
#endif
|
||||
|
||||
static int efuse_initialised;
|
||||
|
||||
static struct mvebu_hd_efuse *get_efuse_line(int nr)
|
||||
{
|
||||
if (nr < 0 || nr > 63 || !efuse_initialised)
|
||||
return NULL;
|
||||
|
||||
return efuses + nr;
|
||||
}
|
||||
|
||||
static void enable_efuse_program(void)
|
||||
{
|
||||
#ifndef DRY_RUN
|
||||
setbits_le32(MVEBU_EFUSE_CONTROL, MVEBU_EFUSE_CTRL_PROGRAM_ENABLE);
|
||||
#endif
|
||||
}
|
||||
|
||||
static void disable_efuse_program(void)
|
||||
{
|
||||
#ifndef DRY_RUN
|
||||
clrbits_le32(MVEBU_EFUSE_CONTROL, MVEBU_EFUSE_CTRL_PROGRAM_ENABLE);
|
||||
#endif
|
||||
}
|
||||
|
||||
static int do_prog_efuse(struct mvebu_hd_efuse *efuse,
|
||||
struct efuse_val *new_val, u32 mask0, u32 mask1)
|
||||
{
|
||||
struct efuse_val val;
|
||||
|
||||
val.dwords.d[0] = readl(&efuse->bits_31_0);
|
||||
val.dwords.d[1] = readl(&efuse->bits_63_32);
|
||||
val.lock = readl(&efuse->bit64);
|
||||
|
||||
if (val.lock & 1)
|
||||
return -EPERM;
|
||||
|
||||
val.dwords.d[0] |= (new_val->dwords.d[0] & mask0);
|
||||
val.dwords.d[1] |= (new_val->dwords.d[1] & mask1);
|
||||
val.lock |= new_val->lock;
|
||||
|
||||
writel(val.dwords.d[0], &efuse->bits_31_0);
|
||||
mdelay(1);
|
||||
writel(val.dwords.d[1], &efuse->bits_63_32);
|
||||
mdelay(1);
|
||||
writel(val.lock, &efuse->bit64);
|
||||
mdelay(5);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int prog_efuse(int nr, struct efuse_val *new_val, u32 mask0, u32 mask1)
|
||||
{
|
||||
struct mvebu_hd_efuse *efuse;
|
||||
int res = 0;
|
||||
|
||||
res = mvebu_efuse_init_hw();
|
||||
if (res)
|
||||
return res;
|
||||
|
||||
efuse = get_efuse_line(nr);
|
||||
if (!efuse)
|
||||
return -ENODEV;
|
||||
|
||||
if (!new_val)
|
||||
return -EINVAL;
|
||||
|
||||
/* only write a fuse line with lock bit */
|
||||
if (!new_val->lock)
|
||||
return -EINVAL;
|
||||
|
||||
/* according to specs ECC protection bits must be 0 on write */
|
||||
if (new_val->bytes.d[7] & 0xFE)
|
||||
return -EINVAL;
|
||||
|
||||
if (!new_val->dwords.d[0] && !new_val->dwords.d[1] && (mask0 | mask1))
|
||||
return 0;
|
||||
|
||||
enable_efuse_program();
|
||||
|
||||
res = do_prog_efuse(efuse, new_val, mask0, mask1);
|
||||
|
||||
disable_efuse_program();
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
int mvebu_efuse_init_hw(void)
|
||||
{
|
||||
int ret;
|
||||
|
||||
if (efuse_initialised)
|
||||
return 0;
|
||||
|
||||
ret = mvebu_mbus_add_window_by_id(
|
||||
CPU_TARGET_SATA23_DFX, 0xA, MBUS_EFUSE_BASE, MBUS_EFUSE_SIZE);
|
||||
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
efuse_initialised = 1;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int mvebu_read_efuse(int nr, struct efuse_val *val)
|
||||
{
|
||||
struct mvebu_hd_efuse *efuse;
|
||||
int res;
|
||||
|
||||
res = mvebu_efuse_init_hw();
|
||||
if (res)
|
||||
return res;
|
||||
|
||||
efuse = get_efuse_line(nr);
|
||||
if (!efuse)
|
||||
return -ENODEV;
|
||||
|
||||
if (!val)
|
||||
return -EINVAL;
|
||||
|
||||
val->dwords.d[0] = readl(&efuse->bits_31_0);
|
||||
val->dwords.d[1] = readl(&efuse->bits_63_32);
|
||||
val->lock = readl(&efuse->bit64);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int mvebu_write_efuse(int nr, struct efuse_val *val)
|
||||
{
|
||||
return prog_efuse(nr, val, ~0, ~0);
|
||||
}
|
||||
|
||||
int mvebu_lock_efuse(int nr)
|
||||
{
|
||||
struct efuse_val val = {
|
||||
.lock = 1,
|
||||
};
|
||||
|
||||
return prog_efuse(nr, &val, 0, 0);
|
||||
}
|
||||
|
||||
/*
|
||||
* wrapper funcs providing the fuse API
|
||||
*
|
||||
* we use the following mapping:
|
||||
* "bank" -> eFuse line
|
||||
* "word" -> 0: bits 0-31
|
||||
* 1: bits 32-63
|
||||
* 2: bit 64 (lock)
|
||||
*/
|
||||
|
||||
static struct efuse_val prog_val;
|
||||
static int valid_prog_words;
|
||||
|
||||
int fuse_read(u32 bank, u32 word, u32 *val)
|
||||
{
|
||||
struct efuse_val fuse_line;
|
||||
int res;
|
||||
|
||||
if (bank < EFUSE_LINE_MIN || bank > EFUSE_LINE_MAX || word > 2)
|
||||
return -EINVAL;
|
||||
|
||||
res = mvebu_read_efuse(bank, &fuse_line);
|
||||
if (res)
|
||||
return res;
|
||||
|
||||
if (word < 2)
|
||||
*val = fuse_line.dwords.d[word];
|
||||
else
|
||||
*val = fuse_line.lock;
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
int fuse_sense(u32 bank, u32 word, u32 *val)
|
||||
{
|
||||
/* not supported */
|
||||
return -ENOSYS;
|
||||
}
|
||||
|
||||
int fuse_prog(u32 bank, u32 word, u32 val)
|
||||
{
|
||||
int res = 0;
|
||||
|
||||
/*
|
||||
* NOTE: Fuse line should be written as whole.
|
||||
* So how can we do that with this API?
|
||||
* For now: remember values for word == 0 and word == 1 and write the
|
||||
* whole line when word == 2.
|
||||
* This implies that we always require all 3 fuse prog cmds (one for
|
||||
* for each word) to write a single fuse line.
|
||||
* Exception is a single write to word 2 which will lock the fuse line.
|
||||
*
|
||||
* Hope that will be OK.
|
||||
*/
|
||||
|
||||
if (bank < EFUSE_LINE_MIN || bank > EFUSE_LINE_MAX || word > 2)
|
||||
return -EINVAL;
|
||||
|
||||
if (word < 2) {
|
||||
prog_val.dwords.d[word] = val;
|
||||
valid_prog_words |= (1 << word);
|
||||
} else if ((valid_prog_words & 3) == 0 && val) {
|
||||
res = mvebu_lock_efuse(bank);
|
||||
valid_prog_words = 0;
|
||||
} else if ((valid_prog_words & 3) != 3 || !val) {
|
||||
res = -EINVAL;
|
||||
} else {
|
||||
prog_val.lock = val != 0;
|
||||
res = mvebu_write_efuse(bank, &prog_val);
|
||||
valid_prog_words = 0;
|
||||
}
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
int fuse_override(u32 bank, u32 word, u32 val)
|
||||
{
|
||||
/* not supported */
|
||||
return -ENOSYS;
|
||||
}
|
@ -36,7 +36,9 @@ enum cpu_target {
|
||||
CPU_TARGET_ETH01 = 0x7,
|
||||
CPU_TARGET_PCIE13 = 0x8,
|
||||
CPU_TARGET_SASRAM = 0x9,
|
||||
CPU_TARGET_SATA01 = 0xa, /* A38X */
|
||||
CPU_TARGET_NAND = 0xd,
|
||||
CPU_TARGET_SATA23_DFX = 0xe, /* A38X */
|
||||
};
|
||||
|
||||
enum cpu_attrib {
|
||||
|
69
arch/arm/mach-mvebu/include/mach/efuse.h
Normal file
69
arch/arm/mach-mvebu/include/mach/efuse.h
Normal file
@ -0,0 +1,69 @@
|
||||
/*
|
||||
* Copyright (C) 2015 Reinhard Pfau <reinhard.pfau@gdsys.cc>
|
||||
*
|
||||
* SPDX-License-Identifier: GPL-2.0+
|
||||
*/
|
||||
|
||||
#ifndef _MVEBU_EFUSE_H
|
||||
#define _MVEBU_EFUSE_H
|
||||
|
||||
#include <common.h>
|
||||
|
||||
struct efuse_val {
|
||||
union {
|
||||
struct {
|
||||
u8 d[8];
|
||||
} bytes;
|
||||
struct {
|
||||
u16 d[4];
|
||||
} words;
|
||||
struct {
|
||||
u32 d[2];
|
||||
} dwords;
|
||||
};
|
||||
u32 lock;
|
||||
};
|
||||
|
||||
#if defined(CONFIG_ARMADA_38X)
|
||||
|
||||
enum efuse_line {
|
||||
EFUSE_LINE_SECURE_BOOT = 24,
|
||||
EFUSE_LINE_PUBKEY_DIGEST_0 = 26,
|
||||
EFUSE_LINE_PUBKEY_DIGEST_1 = 27,
|
||||
EFUSE_LINE_PUBKEY_DIGEST_2 = 28,
|
||||
EFUSE_LINE_PUBKEY_DIGEST_3 = 29,
|
||||
EFUSE_LINE_PUBKEY_DIGEST_4 = 30,
|
||||
EFUSE_LINE_CSK_0_VALID = 31,
|
||||
EFUSE_LINE_CSK_1_VALID = 32,
|
||||
EFUSE_LINE_CSK_2_VALID = 33,
|
||||
EFUSE_LINE_CSK_3_VALID = 34,
|
||||
EFUSE_LINE_CSK_4_VALID = 35,
|
||||
EFUSE_LINE_CSK_5_VALID = 36,
|
||||
EFUSE_LINE_CSK_6_VALID = 37,
|
||||
EFUSE_LINE_CSK_7_VALID = 38,
|
||||
EFUSE_LINE_CSK_8_VALID = 39,
|
||||
EFUSE_LINE_CSK_9_VALID = 40,
|
||||
EFUSE_LINE_CSK_10_VALID = 41,
|
||||
EFUSE_LINE_CSK_11_VALID = 42,
|
||||
EFUSE_LINE_CSK_12_VALID = 43,
|
||||
EFUSE_LINE_CSK_13_VALID = 44,
|
||||
EFUSE_LINE_CSK_14_VALID = 45,
|
||||
EFUSE_LINE_CSK_15_VALID = 46,
|
||||
EFUSE_LINE_FLASH_ID = 47,
|
||||
EFUSE_LINE_BOX_ID = 48,
|
||||
|
||||
EFUSE_LINE_MIN = 0,
|
||||
EFUSE_LINE_MAX = 63,
|
||||
};
|
||||
|
||||
#endif
|
||||
|
||||
int mvebu_efuse_init_hw(void);
|
||||
|
||||
int mvebu_read_efuse(int nr, struct efuse_val *val);
|
||||
|
||||
int mvebu_write_efuse(int nr, struct efuse_val *val);
|
||||
|
||||
int mvebu_lock_efuse(int nr);
|
||||
|
||||
#endif
|
373
doc/README.armada-secureboot
Normal file
373
doc/README.armada-secureboot
Normal file
@ -0,0 +1,373 @@
|
||||
The trusted boot framework on Marvell Armada 38x
|
||||
================================================
|
||||
|
||||
Contents:
|
||||
|
||||
1. Overview of the trusted boot
|
||||
2. Terminology
|
||||
3. Boot image layout
|
||||
4. The secured header
|
||||
5. The secured boot flow
|
||||
6. Usage example
|
||||
7. Work to be done
|
||||
8. Bibliography
|
||||
|
||||
1. Overview of the trusted boot
|
||||
-------------------------------
|
||||
|
||||
The Armada's trusted boot framework enables the SoC to cryptographically verify
|
||||
a specially prepared boot image. This can be used to establish a chain of trust
|
||||
from the boot firmware all the way to the OS.
|
||||
|
||||
To achieve this, the Armada SoC requires a specially prepared boot image, which
|
||||
contains the relevant cryptographic data, as well as other information
|
||||
pertaining to the boot process. Furthermore, a eFuse structure (a
|
||||
one-time-writeable memory) need to be configured in the correct way.
|
||||
|
||||
Roughly, the secure boot process works as follows:
|
||||
|
||||
* Load the header block of the boot image, extract a special "root" public RSA
|
||||
key from it, and verify its SHA-256 hash against a SHA-256 stored in a eFuse
|
||||
field.
|
||||
* Load an array of code signing public RSA keys from the header block, and
|
||||
verify its RSA signature (contained in the header block as well) using the
|
||||
"root" RSA key.
|
||||
* Choose a code signing key, and use it to verify the header block (excluding
|
||||
the key array).
|
||||
* Verify the binary image's signature (contained in the header block) using the
|
||||
code signing key.
|
||||
* If all checks pass successfully, boot the image.
|
||||
|
||||
The chain of trust is thus as follows:
|
||||
|
||||
* The SHA-256 value in the eFuse field verifies the "root" public key.
|
||||
* The "root" public key verifies the code signing key array.
|
||||
* The selected code signing key verifies the header block and the binary image.
|
||||
|
||||
In the special case of building a boot image containing U-Boot as the binary
|
||||
image, which employs this trusted boot framework, the following tasks need to
|
||||
be addressed:
|
||||
|
||||
1. Creation of the needed cryptographic key material.
|
||||
2. Creation of a conforming boot image containing the U-Boot image as binary
|
||||
image.
|
||||
3. Burning the necessary eFuse values.
|
||||
|
||||
(1) will be addressed later, (2) will be taken care of by U-Boot's build
|
||||
system (some user configuration is required, though), and for (3) the necessary
|
||||
data (essentially a series of U-Boot commands to be entered at the U-Boot
|
||||
command prompt) will be created by the build system as well.
|
||||
|
||||
The documentation of the trusted boot mode is contained in part 1, chapter
|
||||
7.2.5 in the functional specification [1], and in application note [2].
|
||||
|
||||
2. Terminology
|
||||
--------------
|
||||
|
||||
CSK - Code Signing Key(s): An array of RSA key pairs, which
|
||||
are used to sign and verify the secured header and the
|
||||
boot loader image.
|
||||
KAK - Key Authentication Key: A RSA key pair, which is used
|
||||
to sign and verify the array of CSKs.
|
||||
Header block - The first part of the boot image, which contains the
|
||||
image's headers (also known as "headers block", "boot
|
||||
header", and "image header")
|
||||
eFuse - A one-time-writeable memory.
|
||||
BootROM - The Armada's built-in boot firmware, which is
|
||||
responsible for verifying and starting secure images.
|
||||
Boot image - The complete image the SoC's boot firmware loads
|
||||
(contains the header block and the binary image)
|
||||
Main header - The header in the header block containing information
|
||||
and data pertaining to the boot process (used for both
|
||||
the regular and secured boot processes)
|
||||
Binary image - The binary code payload of the boot image; in this
|
||||
case the U-Boot's code (also known as "source image",
|
||||
or just "image")
|
||||
Secured header - The specialized header in the header block that
|
||||
contains information and data pertaining to the
|
||||
trusted boot (also known as "security header")
|
||||
Secured boot mode - A special boot mode of the Armada SoC in which secured
|
||||
images are verified (non-secure images won't boot);
|
||||
the mode is activated by setting a eFuse field.
|
||||
Trusted debug mode - A special mode for the trusted boot that allows
|
||||
debugging of devices employing the trusted boot
|
||||
framework in a secure manner (untested in the current
|
||||
implementation).
|
||||
Trusted boot framework - The ARMADA SoC's implementation of a secure verified
|
||||
boot process.
|
||||
|
||||
3. Boot image layout
|
||||
--------------------
|
||||
|
||||
+-- Boot image --------------------------------------------+
|
||||
| |
|
||||
| +-- Header block --------------------------------------+ |
|
||||
| | Main header | |
|
||||
| +------------------------------------------------------+ |
|
||||
| | Secured header | |
|
||||
| +------------------------------------------------------+ |
|
||||
| | BIN header(s) | |
|
||||
| +------------------------------------------------------+ |
|
||||
| | REG header(s) | |
|
||||
| +------------------------------------------------------+ |
|
||||
| | Padding | |
|
||||
| +------------------------------------------------------+ |
|
||||
| |
|
||||
| +------------------------------------------------------+ |
|
||||
| | Binary image + checksum | |
|
||||
| +------------------------------------------------------+ |
|
||||
+----------------------------------------------------------+
|
||||
|
||||
4. The secured header
|
||||
---------------------
|
||||
|
||||
For the trusted boot framework, a additional header is added to the boot image.
|
||||
The following data are relevant for the secure boot:
|
||||
|
||||
KAK: The KAK is contained in the secured header in the form
|
||||
of a RSA-2048 public key in DER format with a length of
|
||||
524 bytes.
|
||||
Header block signature: The RSA signature of the header block (excluding the
|
||||
CSK array), created using the selected CSK.
|
||||
Binary image signature: The RSA signature of the binary image, created using
|
||||
the selected CSK.
|
||||
CSK array: The array of the 16 CSKs as RSA-2048 public keys in DER
|
||||
format with a length of 8384 = 16 * 524 bytes.
|
||||
CSK block signature: The RSA signature of the CSK array, created using the
|
||||
KAK.
|
||||
|
||||
NOTE: The JTAG delay, Box ID, and Flash ID header fields do play a role in the
|
||||
trusted boot process to enable and configure secure debugging, but they were
|
||||
not tested in the current implementation of the trusted boot in U-Boot.
|
||||
|
||||
5. The secured boot flow
|
||||
------------------------
|
||||
|
||||
The steps in the boot flow that are relevant for the trusted boot framework
|
||||
proceed as follows:
|
||||
|
||||
1) Check if trusted boot is enabled, and perform regular boot if it is not.
|
||||
2) Load the secured header, and verify its checksum.
|
||||
3) Select the lowest valid CSK from CSK0 to CSK15.
|
||||
4) Verify the SHA-256 hash of the KAK embedded in the secured header.
|
||||
5) Verify the RSA signature of the CSK block from the secured header with the
|
||||
KAK.
|
||||
6) Verify the header block signature (which excludes the CSK block) from the
|
||||
secured header with the selected CSK.
|
||||
7) Load the binary image to the main memory and verify its checksum.
|
||||
8) Verify the binary image's RSA signature from the secured header with the
|
||||
selected CSK.
|
||||
9) Continue the boot process as in the case of the regular boot.
|
||||
|
||||
NOTE: All RSA signatures are verified according to the PKCS #1 v2.1 standard
|
||||
described in [3].
|
||||
|
||||
NOTE: The Box ID and Flash ID are checked after step 6, and the trusted debug
|
||||
mode may be entered there, but since this mode is untested in the current
|
||||
implementation, it is not described further.
|
||||
|
||||
6. Usage example
|
||||
----------------
|
||||
|
||||
### Create key material
|
||||
|
||||
To employ the trusted boot framework, cryptographic key material needs to be
|
||||
created. In the current implementation, two keys are needed to build a valid
|
||||
secured boot image: The KAK private key and a CSK private key (both have to be
|
||||
2048 bit RSA keys in PEM format). Note that the usage of more than one CSK is
|
||||
currently not supported.
|
||||
|
||||
NOTE: Since the public key can be generated from the private key, it is
|
||||
sufficient to store the private key for each key pair.
|
||||
|
||||
OpenSSL can be used to generate the needed files kwb_kak.key and kwb_csk.key
|
||||
(the names of these files have to be configured, see the next section on
|
||||
kwbimage.cfg settings):
|
||||
|
||||
openssl genrsa -out kwb_kak.key 2048
|
||||
openssl genrsa -out kwb_csk.key 2048
|
||||
|
||||
The generated files have to be placed in the U-Boot root directory.
|
||||
|
||||
Alternatively, instead of copying the files, symlinks to the private keys can
|
||||
be placed in the U-Boot root directory.
|
||||
|
||||
WARNING: Knowledge of the KAK or CSK private key would enable an attacker to
|
||||
generate secured boot images containing arbitrary code. Hence, the private keys
|
||||
should be carefully guarded.
|
||||
|
||||
### Create/Modifiy kwbimage.cfg
|
||||
|
||||
The Kirkwook architecture in U-Boot employs a special board-specific
|
||||
configuration file (kwbimage.cfg), which controls various boot image settings
|
||||
that are interpreted by the BootROM, such as the boot medium. The support the
|
||||
trusted boot framework, several new options were added to faciliate
|
||||
configuration of the secured boot.
|
||||
|
||||
The configuration file's layout has been retained, only the following new
|
||||
options were added:
|
||||
|
||||
KAK - The name of the KAK RSA private key file in the U-Boot
|
||||
root directory, without the trailing extension of ".key".
|
||||
CSK - The name of the (active) CSK RSA private key file in the
|
||||
U-Boot root directory, without the trailing extension of
|
||||
".key".
|
||||
BOX_ID - The BoxID to be used for trusted debugging (a integer
|
||||
value).
|
||||
FLASH_ID - The FlashID to be used for trusted debugging (a integer
|
||||
value).
|
||||
JTAG_DELAY - The JTAG delay to be used for trusted debugging (a
|
||||
integer value).
|
||||
CSK_INDEX - The index of the active CSK (a integer value).
|
||||
SEC_SPECIALIZED_IMG - Flag to indicate whether to include the BoxID and FlashID
|
||||
in the image (that is, whether to use the trusted debug
|
||||
mode or not); no parameters.
|
||||
SEC_BOOT_DEV - The boot device from which the trusted boot is allowed to
|
||||
proceed, identified via a numeric ID. The tested values
|
||||
are 0x34 = NOR flash, 0x31 = SDIO/MMC card; for
|
||||
additional ID values, consult the documentation in [1].
|
||||
SEC_FUSE_DUMP - Dump the "fuse prog" commands necessary for writing the
|
||||
correct eFuse values to a text file in the U-Boot root
|
||||
directory. The parameter is the architecture for which to
|
||||
dump the commands (currently only "a38x" is supported).
|
||||
|
||||
The parameter values may be hardcoded into the file, but it is also possible to
|
||||
employ a dynamic approach of creating a Autoconf-like kwbimage.cfg.in, then
|
||||
reading configuration values from Kconfig options or from the board config
|
||||
file, and generating the actual kwbimage.cfg from this template using Makefile
|
||||
mechanisms (see board/gdsys/a38x/Makefile as an example for this approach).
|
||||
|
||||
### Set config options
|
||||
|
||||
To enable the generation of trusted boot images, the corresponding support
|
||||
needs to be activated, and a index for the active CSK needs to be selected as
|
||||
well.
|
||||
|
||||
Furthermore, eFuse writing support has to be activated in order to burn the
|
||||
eFuse structure's values (this option is just needed for programming the eFuse
|
||||
structure; production boot images may disable it).
|
||||
|
||||
ARM architecture
|
||||
-> [*] Build image for trusted boot
|
||||
(0) Index of active CSK
|
||||
-> [*] Enable eFuse support
|
||||
[ ] Fake eFuse access (dry run)
|
||||
|
||||
### Build and test boot image
|
||||
|
||||
The creation of the boot image is done via the usual invocation of make (with a
|
||||
suitably set CROSS_COMPILE environment variable, of course). The resulting boot
|
||||
image u-boot-spl.kwb can then be tested, if so desired. The hdrparser from [5]
|
||||
can be used for this purpose. To build the tool, invoke make in the
|
||||
'tools/marvell/doimage_mv' directory of [5], which builds a stand-alone
|
||||
hdrparser executable. A test can be conducted by calling hdrparser with the
|
||||
produced boot image and the following (mandatory) parameters:
|
||||
|
||||
./hdrparser -k 0 -t u-boot-spl.kwb
|
||||
|
||||
Here we assume that the CSK index is 0 and the boot image file resides in the
|
||||
same directory (adapt accordingly if needed). The tool should report that all
|
||||
checksums are valid ("GOOD"), that all signature verifications succeed
|
||||
("PASSED"), and, finally, that the overall test was successful
|
||||
("T E S T S U C C E E D E D" in the last line of output).
|
||||
|
||||
### Burn eFuse structure
|
||||
|
||||
+----------------------------------------------------------+
|
||||
| WARNING: Burning the eFuse structure is a irreversible |
|
||||
| operation! Should wrong or corrupted values be used, the |
|
||||
| board won't boot anymore, and recovery is likely |
|
||||
| impossible! |
|
||||
+----------------------------------------------------------+
|
||||
|
||||
After the build process has finished, and the SEC_FUSE_DUMP option was set in
|
||||
the kwbimage.cfg was set, a text file kwb_fuses_a38x.txt should be present in
|
||||
the U-Boot top-level directory. It contains all the necessary commands to set
|
||||
the eFuse structure to the values needed for the used KAK digest, as well as
|
||||
the CSK index, Flash ID and Box ID that were selected in kwbimage.cfg.
|
||||
|
||||
Sequentially executing the commands in this file at the U-Boot command prompt
|
||||
will write these values to the eFuse structure.
|
||||
|
||||
If the SEC_FUSE_DUMP option was not set, the commands needed to burn the fuses
|
||||
have to be crafted by hand. The needed fuse lines can be looked up in [1]; a
|
||||
rough overview of the process is:
|
||||
|
||||
* Burn the KAK public key hash. The hash itself can be found in the file
|
||||
pub_kak_hash.txt in the U-Boot top-level directory; be careful to account for
|
||||
the endianness!
|
||||
* Burn the CSK selection, BoxID, and FlashID
|
||||
* Enable trusted boot by burning the corresponding fuse (WARNING: this must be
|
||||
the last fuse line written!)
|
||||
* Lock the unused fuse lines
|
||||
|
||||
The command to employ is the "fuse prog" command previously enabled by setting
|
||||
the corresponding configuration option.
|
||||
|
||||
For the trusted boot, the fuse prog command has a special syntax, since the
|
||||
ARMADA SoC demands that whole fuse lines (64 bit values) have to be written as
|
||||
a whole. The fuse prog command itself allows lists of 32 bit words to be
|
||||
written at a time, but this is translated to a series of single 32 bit write
|
||||
operations to the fuse line, where the individual 32 bit words are identified
|
||||
by a "word" counter that is increased for each write.
|
||||
|
||||
To work around this restriction, we interpret each line to have three "words"
|
||||
(0-2): The first and second words are the values to be written to the fuse
|
||||
line, and the third is a lock flag, which is supposed to lock the fuse line
|
||||
when set to 1. Writes to the first and second words are memoized between
|
||||
function calls, and the fuse line is only really written and locked (on writing
|
||||
the third word) if both words were previously set, so that "incomplete" writes
|
||||
are prevented. An exception to this is a single write to the third word (index
|
||||
2) without previously writing neither the first nor the second word, which
|
||||
locks the fuse line without setting any value; this is needed to lock the
|
||||
unused fuse lines.
|
||||
|
||||
As an example, to write the value 0011223344556677 to fuse line 10, we would
|
||||
use the following command:
|
||||
|
||||
fuse prog -y 10 0 00112233 44556677 1
|
||||
|
||||
Here 10 is the fuse line number, 0 is the index of the first word to be
|
||||
written, 00112233 and 44556677 are the values to be written to the fuse line
|
||||
(first and second word) and the trailing 1 is the value for the third word
|
||||
responsible for locking the line.
|
||||
|
||||
A "lock-only" command would look like this:
|
||||
|
||||
fuse prog -y 11 2 1
|
||||
|
||||
Here 11 is the fuse number, 2 is the index of the first word to be written
|
||||
(notice that we only write to word 2 here; the third word for fuse line
|
||||
locking), and the 1 is the value for the word we are writing to.
|
||||
|
||||
WARNING: According to application note [4], the VHV pin of the SoC must be
|
||||
connected to a 1.8V source during eFuse programming, but *must* be disconnected
|
||||
for normal operation. The AN [4] describes a software-controlled circuit (based
|
||||
on a N-channel or P-channel FET and a free GPIO pin of the SoC) to achieve
|
||||
this, but a jumper-based circuit should suffice as well. Regardless of the
|
||||
chosen circuit, the issue needs to be addressed accordingly!
|
||||
|
||||
7. Work to be done
|
||||
------------------
|
||||
|
||||
* Add the ability to populate more than one CSK
|
||||
* Test secure debug
|
||||
* Test on Armada XP
|
||||
|
||||
8. Bibliography
|
||||
---------------
|
||||
|
||||
[1] ARMADA(R) 38x Family High-Performance Single/Dual CPU System on Chip
|
||||
Functional Specification; MV-S109094-00, Rev. C; August 2, 2015,
|
||||
Preliminary
|
||||
[2] AN-383: ARMADA(R) 38x Families Secure Boot Mode Support; MV-S302501-00
|
||||
Rev. A; March 11, 2015, Preliminary
|
||||
[3] Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography
|
||||
Specifications Version 2.1; February 2003;
|
||||
https://www.ietf.org/rfc/rfc3447.txt
|
||||
[4] AN-389: ARMADA(R) VHV Power; MV-S302545-00 Rev. B; January 28, 2016,
|
||||
Released
|
||||
[5] Marvell Armada 38x U-Boot support; November 25, 2015;
|
||||
https://github.com/MarvellEmbeddedProcessors/u-boot-marvell
|
||||
|
||||
2017-01-05, Mario Six <mario.six@gdsys.cc>
|
@ -142,8 +142,12 @@ ifdef CONFIG_SYS_U_BOOT_OFFS
|
||||
HOSTCFLAGS_kwbimage.o += -DCONFIG_SYS_U_BOOT_OFFS=$(CONFIG_SYS_U_BOOT_OFFS)
|
||||
endif
|
||||
|
||||
ifneq ($(CONFIG_ARMADA_38X)$(CONFIG_ARMADA_39X),)
|
||||
HOSTCFLAGS_kwbimage.o += -DCONFIG_KWB_SECURE
|
||||
endif
|
||||
|
||||
# MXSImage needs LibSSL
|
||||
ifneq ($(CONFIG_MX23)$(CONFIG_MX28)$(CONFIG_FIT_SIGNATURE),)
|
||||
ifneq ($(CONFIG_MX23)$(CONFIG_MX28)$(CONFIG_ARMADA_38X)$(CONFIG_ARMADA_39X)$(CONFIG_FIT_SIGNATURE),)
|
||||
HOSTLOADLIBES_mkimage += \
|
||||
$(shell pkg-config --libs libssl libcrypto 2> /dev/null || echo "-lssl -lcrypto")
|
||||
|
||||
|
744
tools/kwbimage.c
744
tools/kwbimage.c
@ -1,30 +1,47 @@
|
||||
/*
|
||||
* Image manipulator for Marvell SoCs
|
||||
* supports Kirkwood, Dove, Armada 370, and Armada XP
|
||||
* supports Kirkwood, Dove, Armada 370, Armada XP, and Armada 38x
|
||||
*
|
||||
* (C) Copyright 2013 Thomas Petazzoni
|
||||
* <thomas.petazzoni@free-electrons.com>
|
||||
*
|
||||
* SPDX-License-Identifier: GPL-2.0+
|
||||
*
|
||||
* Not implemented: support for the register headers and secure
|
||||
* headers in v1 images
|
||||
* Not implemented: support for the register headers in v1 images
|
||||
*/
|
||||
|
||||
#include "imagetool.h"
|
||||
#include <limits.h>
|
||||
#include <image.h>
|
||||
#include <stdarg.h>
|
||||
#include <stdint.h>
|
||||
#include "kwbimage.h"
|
||||
|
||||
#ifdef CONFIG_KWB_SECURE
|
||||
#include <openssl/rsa.h>
|
||||
#include <openssl/pem.h>
|
||||
#include <openssl/err.h>
|
||||
#include <openssl/evp.h>
|
||||
#endif
|
||||
|
||||
static struct image_cfg_element *image_cfg;
|
||||
static int cfgn;
|
||||
#ifdef CONFIG_KWB_SECURE
|
||||
static int verbose_mode;
|
||||
#endif
|
||||
|
||||
struct boot_mode {
|
||||
unsigned int id;
|
||||
const char *name;
|
||||
};
|
||||
|
||||
/*
|
||||
* SHA2-256 hash
|
||||
*/
|
||||
struct hash_v1 {
|
||||
uint8_t hash[32];
|
||||
};
|
||||
|
||||
struct boot_mode boot_modes[] = {
|
||||
{ 0x4D, "i2c" },
|
||||
{ 0x5A, "spi" },
|
||||
@ -70,6 +87,16 @@ enum image_cfg_type {
|
||||
IMAGE_CFG_DATA,
|
||||
IMAGE_CFG_BAUDRATE,
|
||||
IMAGE_CFG_DEBUG,
|
||||
IMAGE_CFG_KAK,
|
||||
IMAGE_CFG_CSK,
|
||||
IMAGE_CFG_CSK_INDEX,
|
||||
IMAGE_CFG_JTAG_DELAY,
|
||||
IMAGE_CFG_BOX_ID,
|
||||
IMAGE_CFG_FLASH_ID,
|
||||
IMAGE_CFG_SEC_COMMON_IMG,
|
||||
IMAGE_CFG_SEC_SPECIALIZED_IMG,
|
||||
IMAGE_CFG_SEC_BOOT_DEV,
|
||||
IMAGE_CFG_SEC_FUSE_DUMP,
|
||||
|
||||
IMAGE_CFG_COUNT
|
||||
} type;
|
||||
@ -88,6 +115,16 @@ static const char * const id_strs[] = {
|
||||
[IMAGE_CFG_DATA] = "DATA",
|
||||
[IMAGE_CFG_BAUDRATE] = "BAUDRATE",
|
||||
[IMAGE_CFG_DEBUG] = "DEBUG",
|
||||
[IMAGE_CFG_KAK] = "KAK",
|
||||
[IMAGE_CFG_CSK] = "CSK",
|
||||
[IMAGE_CFG_CSK_INDEX] = "CSK_INDEX",
|
||||
[IMAGE_CFG_JTAG_DELAY] = "JTAG_DELAY",
|
||||
[IMAGE_CFG_BOX_ID] = "BOX_ID",
|
||||
[IMAGE_CFG_FLASH_ID] = "FLASH_ID",
|
||||
[IMAGE_CFG_SEC_COMMON_IMG] = "SEC_COMMON_IMG",
|
||||
[IMAGE_CFG_SEC_SPECIALIZED_IMG] = "SEC_SPECIALIZED_IMG",
|
||||
[IMAGE_CFG_SEC_BOOT_DEV] = "SEC_BOOT_DEV",
|
||||
[IMAGE_CFG_SEC_FUSE_DUMP] = "SEC_FUSE_DUMP"
|
||||
};
|
||||
|
||||
struct image_cfg_element {
|
||||
@ -110,6 +147,14 @@ struct image_cfg_element {
|
||||
struct ext_hdr_v0_reg regdata;
|
||||
unsigned int baudrate;
|
||||
unsigned int debug;
|
||||
const char *key_name;
|
||||
int csk_idx;
|
||||
uint8_t jtag_delay;
|
||||
uint32_t boxid;
|
||||
uint32_t flashid;
|
||||
bool sec_specialized_img;
|
||||
unsigned int sec_boot_dev;
|
||||
const char *name;
|
||||
};
|
||||
};
|
||||
|
||||
@ -178,6 +223,32 @@ image_count_options(unsigned int optiontype)
|
||||
return count;
|
||||
}
|
||||
|
||||
#if defined(CONFIG_KWB_SECURE)
|
||||
|
||||
static int image_get_csk_index(void)
|
||||
{
|
||||
struct image_cfg_element *e;
|
||||
|
||||
e = image_find_option(IMAGE_CFG_CSK_INDEX);
|
||||
if (!e)
|
||||
return -1;
|
||||
|
||||
return e->csk_idx;
|
||||
}
|
||||
|
||||
static bool image_get_spezialized_img(void)
|
||||
{
|
||||
struct image_cfg_element *e;
|
||||
|
||||
e = image_find_option(IMAGE_CFG_SEC_SPECIALIZED_IMG);
|
||||
if (!e)
|
||||
return false;
|
||||
|
||||
return e->sec_specialized_img;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Compute a 8-bit checksum of a memory area. This algorithm follows
|
||||
* the requirements of the Marvell SoC BootROM specifications.
|
||||
@ -245,6 +316,493 @@ static uint8_t baudrate_to_option(unsigned int baudrate)
|
||||
}
|
||||
}
|
||||
|
||||
#if defined(CONFIG_KWB_SECURE)
|
||||
static void kwb_msg(const char *fmt, ...)
|
||||
{
|
||||
if (verbose_mode) {
|
||||
va_list ap;
|
||||
|
||||
va_start(ap, fmt);
|
||||
vfprintf(stdout, fmt, ap);
|
||||
va_end(ap);
|
||||
}
|
||||
}
|
||||
|
||||
static int openssl_err(const char *msg)
|
||||
{
|
||||
unsigned long ssl_err = ERR_get_error();
|
||||
|
||||
fprintf(stderr, "%s", msg);
|
||||
fprintf(stderr, ": %s\n",
|
||||
ERR_error_string(ssl_err, 0));
|
||||
|
||||
return -1;
|
||||
}
|
||||
|
||||
static int kwb_load_rsa_key(const char *keydir, const char *name, RSA **p_rsa)
|
||||
{
|
||||
char path[PATH_MAX];
|
||||
RSA *rsa;
|
||||
FILE *f;
|
||||
|
||||
if (!keydir)
|
||||
keydir = ".";
|
||||
|
||||
snprintf(path, sizeof(path), "%s/%s.key", keydir, name);
|
||||
f = fopen(path, "r");
|
||||
if (!f) {
|
||||
fprintf(stderr, "Couldn't open RSA private key: '%s': %s\n",
|
||||
path, strerror(errno));
|
||||
return -ENOENT;
|
||||
}
|
||||
|
||||
rsa = PEM_read_RSAPrivateKey(f, 0, NULL, "");
|
||||
if (!rsa) {
|
||||
openssl_err("Failure reading private key");
|
||||
fclose(f);
|
||||
return -EPROTO;
|
||||
}
|
||||
fclose(f);
|
||||
*p_rsa = rsa;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int kwb_load_cfg_key(struct image_tool_params *params,
|
||||
unsigned int cfg_option, const char *key_name,
|
||||
RSA **p_key)
|
||||
{
|
||||
struct image_cfg_element *e_key;
|
||||
RSA *key;
|
||||
int res;
|
||||
|
||||
*p_key = NULL;
|
||||
|
||||
e_key = image_find_option(cfg_option);
|
||||
if (!e_key) {
|
||||
fprintf(stderr, "%s not configured\n", key_name);
|
||||
return -ENOENT;
|
||||
}
|
||||
|
||||
res = kwb_load_rsa_key(params->keydir, e_key->key_name, &key);
|
||||
if (res < 0) {
|
||||
fprintf(stderr, "Failed to load %s\n", key_name);
|
||||
return -ENOENT;
|
||||
}
|
||||
|
||||
*p_key = key;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int kwb_load_kak(struct image_tool_params *params, RSA **p_kak)
|
||||
{
|
||||
return kwb_load_cfg_key(params, IMAGE_CFG_KAK, "KAK", p_kak);
|
||||
}
|
||||
|
||||
static int kwb_load_csk(struct image_tool_params *params, RSA **p_csk)
|
||||
{
|
||||
return kwb_load_cfg_key(params, IMAGE_CFG_CSK, "CSK", p_csk);
|
||||
}
|
||||
|
||||
static int kwb_compute_pubkey_hash(struct pubkey_der_v1 *pk,
|
||||
struct hash_v1 *hash)
|
||||
{
|
||||
EVP_MD_CTX *ctx;
|
||||
unsigned int key_size;
|
||||
unsigned int hash_size;
|
||||
int ret = 0;
|
||||
|
||||
if (!pk || !hash || pk->key[0] != 0x30 || pk->key[1] != 0x82)
|
||||
return -EINVAL;
|
||||
|
||||
key_size = (pk->key[2] << 8) + pk->key[3] + 4;
|
||||
|
||||
ctx = EVP_MD_CTX_create();
|
||||
if (!ctx)
|
||||
return openssl_err("EVP context creation failed");
|
||||
|
||||
EVP_MD_CTX_init(ctx);
|
||||
if (!EVP_DigestInit(ctx, EVP_sha256())) {
|
||||
ret = openssl_err("Digest setup failed");
|
||||
goto hash_err_ctx;
|
||||
}
|
||||
|
||||
if (!EVP_DigestUpdate(ctx, pk->key, key_size)) {
|
||||
ret = openssl_err("Hashing data failed");
|
||||
goto hash_err_ctx;
|
||||
}
|
||||
|
||||
if (!EVP_DigestFinal(ctx, hash->hash, &hash_size)) {
|
||||
ret = openssl_err("Could not obtain hash");
|
||||
goto hash_err_ctx;
|
||||
}
|
||||
|
||||
EVP_MD_CTX_cleanup(ctx);
|
||||
|
||||
hash_err_ctx:
|
||||
EVP_MD_CTX_destroy(ctx);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int kwb_import_pubkey(RSA **key, struct pubkey_der_v1 *src, char *keyname)
|
||||
{
|
||||
RSA *rsa;
|
||||
const unsigned char *ptr;
|
||||
|
||||
if (!key || !src)
|
||||
goto fail;
|
||||
|
||||
ptr = src->key;
|
||||
rsa = d2i_RSAPublicKey(key, &ptr, sizeof(src->key));
|
||||
if (!rsa) {
|
||||
openssl_err("error decoding public key");
|
||||
goto fail;
|
||||
}
|
||||
|
||||
return 0;
|
||||
fail:
|
||||
fprintf(stderr, "Failed to decode %s pubkey\n", keyname);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
static int kwb_export_pubkey(RSA *key, struct pubkey_der_v1 *dst, FILE *hashf,
|
||||
char *keyname)
|
||||
{
|
||||
int size_exp, size_mod, size_seq;
|
||||
uint8_t *cur;
|
||||
char *errmsg = "Failed to encode %s\n";
|
||||
|
||||
if (!key || !key->e || !key->n || !dst) {
|
||||
fprintf(stderr, "export pk failed: (%p, %p, %p, %p)",
|
||||
key, key->e, key->n, dst);
|
||||
fprintf(stderr, errmsg, keyname);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
/*
|
||||
* According to the specs, the key should be PKCS#1 DER encoded.
|
||||
* But unfortunately the really required encoding seems to be different;
|
||||
* it violates DER...! (But it still conformes to BER.)
|
||||
* (Length always in long form w/ 2 byte length code; no leading zero
|
||||
* when MSB of first byte is set...)
|
||||
* So we cannot use the encoding func provided by OpenSSL and have to
|
||||
* do the encoding manually.
|
||||
*/
|
||||
|
||||
size_exp = BN_num_bytes(key->e);
|
||||
size_mod = BN_num_bytes(key->n);
|
||||
size_seq = 4 + size_mod + 4 + size_exp;
|
||||
|
||||
if (size_mod > 256) {
|
||||
fprintf(stderr, "export pk failed: wrong mod size: %d\n",
|
||||
size_mod);
|
||||
fprintf(stderr, errmsg, keyname);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
if (4 + size_seq > sizeof(dst->key)) {
|
||||
fprintf(stderr, "export pk failed: seq too large (%d, %lu)\n",
|
||||
4 + size_seq, sizeof(dst->key));
|
||||
fprintf(stderr, errmsg, keyname);
|
||||
return -ENOBUFS;
|
||||
}
|
||||
|
||||
cur = dst->key;
|
||||
|
||||
/* PKCS#1 (RFC3447) RSAPublicKey structure */
|
||||
*cur++ = 0x30; /* SEQUENCE */
|
||||
*cur++ = 0x82;
|
||||
*cur++ = (size_seq >> 8) & 0xFF;
|
||||
*cur++ = size_seq & 0xFF;
|
||||
/* Modulus */
|
||||
*cur++ = 0x02; /* INTEGER */
|
||||
*cur++ = 0x82;
|
||||
*cur++ = (size_mod >> 8) & 0xFF;
|
||||
*cur++ = size_mod & 0xFF;
|
||||
BN_bn2bin(key->n, cur);
|
||||
cur += size_mod;
|
||||
/* Exponent */
|
||||
*cur++ = 0x02; /* INTEGER */
|
||||
*cur++ = 0x82;
|
||||
*cur++ = (size_exp >> 8) & 0xFF;
|
||||
*cur++ = size_exp & 0xFF;
|
||||
BN_bn2bin(key->e, cur);
|
||||
|
||||
if (hashf) {
|
||||
struct hash_v1 pk_hash;
|
||||
int i;
|
||||
int ret = 0;
|
||||
|
||||
ret = kwb_compute_pubkey_hash(dst, &pk_hash);
|
||||
if (ret < 0) {
|
||||
fprintf(stderr, errmsg, keyname);
|
||||
return ret;
|
||||
}
|
||||
|
||||
fprintf(hashf, "SHA256 = ");
|
||||
for (i = 0 ; i < sizeof(pk_hash.hash); ++i)
|
||||
fprintf(hashf, "%02X", pk_hash.hash[i]);
|
||||
fprintf(hashf, "\n");
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int kwb_sign(RSA *key, void *data, int datasz, struct sig_v1 *sig, char *signame)
|
||||
{
|
||||
EVP_PKEY *evp_key;
|
||||
EVP_MD_CTX *ctx;
|
||||
unsigned int sig_size;
|
||||
int size;
|
||||
int ret = 0;
|
||||
|
||||
evp_key = EVP_PKEY_new();
|
||||
if (!evp_key)
|
||||
return openssl_err("EVP_PKEY object creation failed");
|
||||
|
||||
if (!EVP_PKEY_set1_RSA(evp_key, key)) {
|
||||
ret = openssl_err("EVP key setup failed");
|
||||
goto err_key;
|
||||
}
|
||||
|
||||
size = EVP_PKEY_size(evp_key);
|
||||
if (size > sizeof(sig->sig)) {
|
||||
fprintf(stderr, "Buffer to small for signature (%d bytes)\n",
|
||||
size);
|
||||
ret = -ENOBUFS;
|
||||
goto err_key;
|
||||
}
|
||||
|
||||
ctx = EVP_MD_CTX_create();
|
||||
if (!ctx) {
|
||||
ret = openssl_err("EVP context creation failed");
|
||||
goto err_key;
|
||||
}
|
||||
EVP_MD_CTX_init(ctx);
|
||||
if (!EVP_SignInit(ctx, EVP_sha256())) {
|
||||
ret = openssl_err("Signer setup failed");
|
||||
goto err_ctx;
|
||||
}
|
||||
|
||||
if (!EVP_SignUpdate(ctx, data, datasz)) {
|
||||
ret = openssl_err("Signing data failed");
|
||||
goto err_ctx;
|
||||
}
|
||||
|
||||
if (!EVP_SignFinal(ctx, sig->sig, &sig_size, evp_key)) {
|
||||
ret = openssl_err("Could not obtain signature");
|
||||
goto err_ctx;
|
||||
}
|
||||
|
||||
EVP_MD_CTX_cleanup(ctx);
|
||||
EVP_MD_CTX_destroy(ctx);
|
||||
EVP_PKEY_free(evp_key);
|
||||
|
||||
return 0;
|
||||
|
||||
err_ctx:
|
||||
EVP_MD_CTX_destroy(ctx);
|
||||
err_key:
|
||||
EVP_PKEY_free(evp_key);
|
||||
fprintf(stderr, "Failed to create %s signature\n", signame);
|
||||
return ret;
|
||||
}
|
||||
|
||||
int kwb_verify(RSA *key, void *data, int datasz, struct sig_v1 *sig,
|
||||
char *signame)
|
||||
{
|
||||
EVP_PKEY *evp_key;
|
||||
EVP_MD_CTX *ctx;
|
||||
int size;
|
||||
int ret = 0;
|
||||
|
||||
evp_key = EVP_PKEY_new();
|
||||
if (!evp_key)
|
||||
return openssl_err("EVP_PKEY object creation failed");
|
||||
|
||||
if (!EVP_PKEY_set1_RSA(evp_key, key)) {
|
||||
ret = openssl_err("EVP key setup failed");
|
||||
goto err_key;
|
||||
}
|
||||
|
||||
size = EVP_PKEY_size(evp_key);
|
||||
if (size > sizeof(sig->sig)) {
|
||||
fprintf(stderr, "Invalid signature size (%d bytes)\n",
|
||||
size);
|
||||
ret = -EINVAL;
|
||||
goto err_key;
|
||||
}
|
||||
|
||||
ctx = EVP_MD_CTX_create();
|
||||
if (!ctx) {
|
||||
ret = openssl_err("EVP context creation failed");
|
||||
goto err_key;
|
||||
}
|
||||
EVP_MD_CTX_init(ctx);
|
||||
if (!EVP_VerifyInit(ctx, EVP_sha256())) {
|
||||
ret = openssl_err("Verifier setup failed");
|
||||
goto err_ctx;
|
||||
}
|
||||
|
||||
if (!EVP_VerifyUpdate(ctx, data, datasz)) {
|
||||
ret = openssl_err("Hashing data failed");
|
||||
goto err_ctx;
|
||||
}
|
||||
|
||||
if (!EVP_VerifyFinal(ctx, sig->sig, sizeof(sig->sig), evp_key)) {
|
||||
ret = openssl_err("Could not verify signature");
|
||||
goto err_ctx;
|
||||
}
|
||||
|
||||
EVP_MD_CTX_cleanup(ctx);
|
||||
EVP_MD_CTX_destroy(ctx);
|
||||
EVP_PKEY_free(evp_key);
|
||||
|
||||
return 0;
|
||||
|
||||
err_ctx:
|
||||
EVP_MD_CTX_destroy(ctx);
|
||||
err_key:
|
||||
EVP_PKEY_free(evp_key);
|
||||
fprintf(stderr, "Failed to verify %s signature\n", signame);
|
||||
return ret;
|
||||
}
|
||||
|
||||
int kwb_sign_and_verify(RSA *key, void *data, int datasz, struct sig_v1 *sig,
|
||||
char *signame)
|
||||
{
|
||||
if (kwb_sign(key, data, datasz, sig, signame) < 0)
|
||||
return -1;
|
||||
|
||||
if (kwb_verify(key, data, datasz, sig, signame) < 0)
|
||||
return -1;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
int kwb_dump_fuse_cmds_38x(FILE *out, struct secure_hdr_v1 *sec_hdr)
|
||||
{
|
||||
struct hash_v1 kak_pub_hash;
|
||||
struct image_cfg_element *e;
|
||||
unsigned int fuse_line;
|
||||
int i, idx;
|
||||
uint8_t *ptr;
|
||||
uint32_t val;
|
||||
int ret = 0;
|
||||
|
||||
if (!out || !sec_hdr)
|
||||
return -EINVAL;
|
||||
|
||||
ret = kwb_compute_pubkey_hash(&sec_hdr->kak, &kak_pub_hash);
|
||||
if (ret < 0)
|
||||
goto done;
|
||||
|
||||
fprintf(out, "# burn KAK pub key hash\n");
|
||||
ptr = kak_pub_hash.hash;
|
||||
for (fuse_line = 26; fuse_line <= 30; ++fuse_line) {
|
||||
fprintf(out, "fuse prog -y %u 0 ", fuse_line);
|
||||
|
||||
for (i = 4; i-- > 0;)
|
||||
fprintf(out, "%02hx", (ushort)ptr[i]);
|
||||
ptr += 4;
|
||||
fprintf(out, " 00");
|
||||
|
||||
if (fuse_line < 30) {
|
||||
for (i = 3; i-- > 0;)
|
||||
fprintf(out, "%02hx", (ushort)ptr[i]);
|
||||
ptr += 3;
|
||||
} else {
|
||||
fprintf(out, "000000");
|
||||
}
|
||||
|
||||
fprintf(out, " 1\n");
|
||||
}
|
||||
|
||||
fprintf(out, "# burn CSK selection\n");
|
||||
|
||||
idx = image_get_csk_index();
|
||||
if (idx < 0 || idx > 15) {
|
||||
ret = -EINVAL;
|
||||
goto done;
|
||||
}
|
||||
if (idx > 0) {
|
||||
for (fuse_line = 31; fuse_line < 31 + idx; ++fuse_line)
|
||||
fprintf(out, "fuse prog -y %u 0 00000001 00000000 1\n",
|
||||
fuse_line);
|
||||
} else {
|
||||
fprintf(out, "# CSK index is 0; no mods needed\n");
|
||||
}
|
||||
|
||||
e = image_find_option(IMAGE_CFG_BOX_ID);
|
||||
if (e) {
|
||||
fprintf(out, "# set box ID\n");
|
||||
fprintf(out, "fuse prog -y 48 0 %08x 00000000 1\n", e->boxid);
|
||||
}
|
||||
|
||||
e = image_find_option(IMAGE_CFG_FLASH_ID);
|
||||
if (e) {
|
||||
fprintf(out, "# set flash ID\n");
|
||||
fprintf(out, "fuse prog -y 47 0 %08x 00000000 1\n", e->flashid);
|
||||
}
|
||||
|
||||
fprintf(out, "# enable secure mode ");
|
||||
fprintf(out, "(must be the last fuse line written)\n");
|
||||
|
||||
val = 1;
|
||||
e = image_find_option(IMAGE_CFG_SEC_BOOT_DEV);
|
||||
if (!e) {
|
||||
fprintf(stderr, "ERROR: secured mode boot device not given\n");
|
||||
ret = -EINVAL;
|
||||
goto done;
|
||||
}
|
||||
|
||||
if (e->sec_boot_dev > 0xff) {
|
||||
fprintf(stderr, "ERROR: secured mode boot device invalid\n");
|
||||
ret = -EINVAL;
|
||||
goto done;
|
||||
}
|
||||
|
||||
val |= (e->sec_boot_dev << 8);
|
||||
|
||||
fprintf(out, "fuse prog -y 24 0 %08x 0103e0a9 1\n", val);
|
||||
|
||||
fprintf(out, "# lock (unused) fuse lines (0-23)s\n");
|
||||
for (fuse_line = 0; fuse_line < 24; ++fuse_line)
|
||||
fprintf(out, "fuse prog -y %u 2 1\n", fuse_line);
|
||||
|
||||
fprintf(out, "# OK, that's all :-)\n");
|
||||
|
||||
done:
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int kwb_dump_fuse_cmds(struct secure_hdr_v1 *sec_hdr)
|
||||
{
|
||||
int ret = 0;
|
||||
struct image_cfg_element *e;
|
||||
|
||||
e = image_find_option(IMAGE_CFG_SEC_FUSE_DUMP);
|
||||
if (!e)
|
||||
return 0;
|
||||
|
||||
if (!strcmp(e->name, "a38x")) {
|
||||
FILE *out = fopen("kwb_fuses_a38x.txt", "w+");
|
||||
|
||||
kwb_dump_fuse_cmds_38x(out, sec_hdr);
|
||||
fclose(out);
|
||||
goto done;
|
||||
}
|
||||
|
||||
ret = -ENOSYS;
|
||||
|
||||
done:
|
||||
return ret;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
static void *image_create_v0(size_t *imagesz, struct image_tool_params *params,
|
||||
int payloadsz)
|
||||
{
|
||||
@ -381,6 +939,14 @@ static size_t image_headersz_v1(int *hasext)
|
||||
*hasext = 1;
|
||||
}
|
||||
|
||||
#if defined(CONFIG_KWB_SECURE)
|
||||
if (image_get_csk_index() >= 0) {
|
||||
headersz += sizeof(struct secure_hdr_v1);
|
||||
if (hasext)
|
||||
*hasext = 1;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(CONFIG_SYS_U_BOOT_OFFS)
|
||||
if (headersz > CONFIG_SYS_U_BOOT_OFFS) {
|
||||
fprintf(stderr,
|
||||
@ -476,14 +1042,129 @@ int add_binary_header_v1(uint8_t *cur)
|
||||
return 0;
|
||||
}
|
||||
|
||||
#if defined(CONFIG_KWB_SECURE)
|
||||
|
||||
int export_pub_kak_hash(RSA *kak, struct secure_hdr_v1 *secure_hdr)
|
||||
{
|
||||
FILE *hashf;
|
||||
int res;
|
||||
|
||||
hashf = fopen("pub_kak_hash.txt", "w");
|
||||
|
||||
res = kwb_export_pubkey(kak, &secure_hdr->kak, hashf, "KAK");
|
||||
|
||||
fclose(hashf);
|
||||
|
||||
return res < 0 ? 1 : 0;
|
||||
}
|
||||
|
||||
int kwb_sign_csk_with_kak(struct image_tool_params *params,
|
||||
struct secure_hdr_v1 *secure_hdr, RSA *csk)
|
||||
{
|
||||
RSA *kak = NULL;
|
||||
RSA *kak_pub = NULL;
|
||||
int csk_idx = image_get_csk_index();
|
||||
struct sig_v1 tmp_sig;
|
||||
|
||||
if (csk_idx >= 16) {
|
||||
fprintf(stderr, "Invalid CSK index %d\n", csk_idx);
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (kwb_load_kak(params, &kak) < 0)
|
||||
return 1;
|
||||
|
||||
if (export_pub_kak_hash(kak, secure_hdr))
|
||||
return 1;
|
||||
|
||||
if (kwb_import_pubkey(&kak_pub, &secure_hdr->kak, "KAK") < 0)
|
||||
return 1;
|
||||
|
||||
if (kwb_export_pubkey(csk, &secure_hdr->csk[csk_idx], NULL, "CSK") < 0)
|
||||
return 1;
|
||||
|
||||
if (kwb_sign_and_verify(kak, &secure_hdr->csk,
|
||||
sizeof(secure_hdr->csk) +
|
||||
sizeof(secure_hdr->csksig),
|
||||
&tmp_sig, "CSK") < 0)
|
||||
return 1;
|
||||
|
||||
if (kwb_verify(kak_pub, &secure_hdr->csk,
|
||||
sizeof(secure_hdr->csk) +
|
||||
sizeof(secure_hdr->csksig),
|
||||
&tmp_sig, "CSK (2)") < 0)
|
||||
return 1;
|
||||
|
||||
secure_hdr->csksig = tmp_sig;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int add_secure_header_v1(struct image_tool_params *params, uint8_t *ptr,
|
||||
int payloadsz, size_t headersz, uint8_t *image,
|
||||
struct secure_hdr_v1 *secure_hdr)
|
||||
{
|
||||
struct image_cfg_element *e_jtagdelay;
|
||||
struct image_cfg_element *e_boxid;
|
||||
struct image_cfg_element *e_flashid;
|
||||
RSA *csk = NULL;
|
||||
unsigned char *image_ptr;
|
||||
size_t image_size;
|
||||
struct sig_v1 tmp_sig;
|
||||
bool specialized_img = image_get_spezialized_img();
|
||||
|
||||
kwb_msg("Create secure header content\n");
|
||||
|
||||
e_jtagdelay = image_find_option(IMAGE_CFG_JTAG_DELAY);
|
||||
e_boxid = image_find_option(IMAGE_CFG_BOX_ID);
|
||||
e_flashid = image_find_option(IMAGE_CFG_FLASH_ID);
|
||||
|
||||
if (kwb_load_csk(params, &csk) < 0)
|
||||
return 1;
|
||||
|
||||
secure_hdr->headertype = OPT_HDR_V1_SECURE_TYPE;
|
||||
secure_hdr->headersz_msb = 0;
|
||||
secure_hdr->headersz_lsb = cpu_to_le16(sizeof(struct secure_hdr_v1));
|
||||
if (e_jtagdelay)
|
||||
secure_hdr->jtag_delay = e_jtagdelay->jtag_delay;
|
||||
if (e_boxid && specialized_img)
|
||||
secure_hdr->boxid = cpu_to_le32(e_boxid->boxid);
|
||||
if (e_flashid && specialized_img)
|
||||
secure_hdr->flashid = cpu_to_le32(e_flashid->flashid);
|
||||
|
||||
if (kwb_sign_csk_with_kak(params, secure_hdr, csk))
|
||||
return 1;
|
||||
|
||||
image_ptr = ptr + headersz;
|
||||
image_size = payloadsz - headersz;
|
||||
|
||||
if (kwb_sign_and_verify(csk, image_ptr, image_size,
|
||||
&secure_hdr->imgsig, "image") < 0)
|
||||
return 1;
|
||||
|
||||
if (kwb_sign_and_verify(csk, image, headersz, &tmp_sig, "header") < 0)
|
||||
return 1;
|
||||
|
||||
secure_hdr->hdrsig = tmp_sig;
|
||||
|
||||
kwb_dump_fuse_cmds(secure_hdr);
|
||||
|
||||
return 0;
|
||||
}
|
||||
#endif
|
||||
|
||||
static void *image_create_v1(size_t *imagesz, struct image_tool_params *params,
|
||||
int payloadsz)
|
||||
uint8_t *ptr, int payloadsz)
|
||||
{
|
||||
struct image_cfg_element *e;
|
||||
struct main_hdr_v1 *main_hdr;
|
||||
#if defined(CONFIG_KWB_SECURE)
|
||||
struct secure_hdr_v1 *secure_hdr = NULL;
|
||||
#endif
|
||||
size_t headersz;
|
||||
uint8_t *image, *cur;
|
||||
int hasext = 0;
|
||||
uint8_t *next_ext = NULL;
|
||||
|
||||
/*
|
||||
* Calculate the size of the header and the size of the
|
||||
@ -502,7 +1183,9 @@ static void *image_create_v1(size_t *imagesz, struct image_tool_params *params,
|
||||
memset(image, 0, headersz);
|
||||
|
||||
main_hdr = (struct main_hdr_v1 *)image;
|
||||
cur = image + sizeof(struct main_hdr_v1);
|
||||
cur = image;
|
||||
cur += sizeof(struct main_hdr_v1);
|
||||
next_ext = &main_hdr->ext;
|
||||
|
||||
/* Fill the main header */
|
||||
main_hdr->blocksize =
|
||||
@ -531,9 +1214,28 @@ static void *image_create_v1(size_t *imagesz, struct image_tool_params *params,
|
||||
if (e)
|
||||
main_hdr->flags = e->debug ? 0x1 : 0;
|
||||
|
||||
#if defined(CONFIG_KWB_SECURE)
|
||||
if (image_get_csk_index() >= 0) {
|
||||
/*
|
||||
* only reserve the space here; we fill the header later since
|
||||
* we need the header to be complete to compute the signatures
|
||||
*/
|
||||
secure_hdr = (struct secure_hdr_v1 *)cur;
|
||||
cur += sizeof(struct secure_hdr_v1);
|
||||
next_ext = &secure_hdr->next;
|
||||
}
|
||||
#endif
|
||||
*next_ext = 1;
|
||||
|
||||
if (add_binary_header_v1(cur))
|
||||
return NULL;
|
||||
|
||||
#if defined(CONFIG_KWB_SECURE)
|
||||
if (secure_hdr && add_secure_header_v1(params, ptr, payloadsz,
|
||||
headersz, image, secure_hdr))
|
||||
return NULL;
|
||||
#endif
|
||||
|
||||
/* Calculate and set the header checksum */
|
||||
main_hdr->checksum = image_checksum8(main_hdr, headersz);
|
||||
|
||||
@ -645,6 +1347,36 @@ static int image_create_config_parse_oneline(char *line,
|
||||
case IMAGE_CFG_DEBUG:
|
||||
el->debug = strtoul(value1, NULL, 10);
|
||||
break;
|
||||
case IMAGE_CFG_KAK:
|
||||
el->key_name = strdup(value1);
|
||||
break;
|
||||
case IMAGE_CFG_CSK:
|
||||
el->key_name = strdup(value1);
|
||||
break;
|
||||
case IMAGE_CFG_CSK_INDEX:
|
||||
el->csk_idx = strtol(value1, NULL, 0);
|
||||
break;
|
||||
case IMAGE_CFG_JTAG_DELAY:
|
||||
el->jtag_delay = strtoul(value1, NULL, 0);
|
||||
break;
|
||||
case IMAGE_CFG_BOX_ID:
|
||||
el->boxid = strtoul(value1, NULL, 0);
|
||||
break;
|
||||
case IMAGE_CFG_FLASH_ID:
|
||||
el->flashid = strtoul(value1, NULL, 0);
|
||||
break;
|
||||
case IMAGE_CFG_SEC_SPECIALIZED_IMG:
|
||||
el->sec_specialized_img = true;
|
||||
break;
|
||||
case IMAGE_CFG_SEC_COMMON_IMG:
|
||||
el->sec_specialized_img = false;
|
||||
break;
|
||||
case IMAGE_CFG_SEC_BOOT_DEV:
|
||||
el->sec_boot_dev = strtoul(value1, NULL, 0);
|
||||
break;
|
||||
case IMAGE_CFG_SEC_FUSE_DUMP:
|
||||
el->name = strdup(value1);
|
||||
break;
|
||||
default:
|
||||
fprintf(stderr, unknown_msg, line);
|
||||
}
|
||||
@ -804,7 +1536,7 @@ static void kwbimage_set_header(void *ptr, struct stat *sbuf, int ifd,
|
||||
break;
|
||||
|
||||
case 1:
|
||||
image = image_create_v1(&headersz, params, sbuf->st_size);
|
||||
image = image_create_v1(&headersz, params, ptr, sbuf->st_size);
|
||||
break;
|
||||
|
||||
default:
|
||||
|
@ -113,6 +113,43 @@ struct opt_hdr_v1 {
|
||||
char data[0];
|
||||
};
|
||||
|
||||
/*
|
||||
* Public Key data in DER format
|
||||
*/
|
||||
struct pubkey_der_v1 {
|
||||
uint8_t key[524];
|
||||
};
|
||||
|
||||
/*
|
||||
* Signature (RSA 2048)
|
||||
*/
|
||||
struct sig_v1 {
|
||||
uint8_t sig[256];
|
||||
};
|
||||
|
||||
/*
|
||||
* Structure of secure header (Armada 38x)
|
||||
*/
|
||||
struct secure_hdr_v1 {
|
||||
uint8_t headertype; /* 0x0 */
|
||||
uint8_t headersz_msb; /* 0x1 */
|
||||
uint16_t headersz_lsb; /* 0x2 - 0x3 */
|
||||
uint32_t reserved1; /* 0x4 - 0x7 */
|
||||
struct pubkey_der_v1 kak; /* 0x8 - 0x213 */
|
||||
uint8_t jtag_delay; /* 0x214 */
|
||||
uint8_t reserved2; /* 0x215 */
|
||||
uint16_t reserved3; /* 0x216 - 0x217 */
|
||||
uint32_t boxid; /* 0x218 - 0x21B */
|
||||
uint32_t flashid; /* 0x21C - 0x21F */
|
||||
struct sig_v1 hdrsig; /* 0x220 - 0x31F */
|
||||
struct sig_v1 imgsig; /* 0x320 - 0x41F */
|
||||
struct pubkey_der_v1 csk[16]; /* 0x420 - 0x24DF */
|
||||
struct sig_v1 csksig; /* 0x24E0 - 0x25DF */
|
||||
uint8_t next; /* 0x25E0 */
|
||||
uint8_t reserved4; /* 0x25E1 */
|
||||
uint16_t reserved5; /* 0x25E2 - 0x25E3 */
|
||||
};
|
||||
|
||||
/*
|
||||
* Various values for the opt_hdr_v1->headertype field, describing the
|
||||
* different types of optional headers. The "secure" header contains
|
||||
|
Loading…
Reference in New Issue
Block a user