Merge branch 'master' of git://git.denx.de/u-boot-net

This commit is contained in:
Wolfgang Denk 2010-05-04 22:57:37 +02:00
commit 679ec15462
25 changed files with 2121 additions and 212 deletions

5
README
View File

@ -3303,6 +3303,11 @@ o If both the SROM and the environment contain a MAC address, and the
o If neither SROM nor the environment contain a MAC address, an error
is raised.
If Ethernet drivers implement the 'write_hwaddr' function, valid MAC addresses
will be programmed into hardware as part of the initialization process. This
may be skipped by setting the appropriate 'ethmacskip' environment variable.
The naming convention is as follows:
"ethmacskip" (=>eth0), "eth1macskip" (=>eth1) etc.
Image Formats:
==============

View File

@ -1,5 +1,5 @@
/*
* (C) Copyright 2003
* (C) Copyright 2003-2010
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*
* This file is based on mpc4200fec.c,
@ -27,10 +27,6 @@ static void tfifo_print (char *devname, mpc8220_fec_priv * fec);
static void rfifo_print (char *devname, mpc8220_fec_priv * fec);
#endif /* DEBUG */
#ifdef DEBUG
static u32 local_crc32 (char *string, unsigned int crc_value, int len);
#endif
typedef struct {
u8 data[1500]; /* actual data */
int length; /* actual length */
@ -962,39 +958,4 @@ int fec8220_miiphy_write (char *devname, u8 phyAddr, u8 regAddr, u16 data)
return 0;
}
#ifdef DEBUG
static u32 local_crc32 (char *string, unsigned int crc_value, int len)
{
int i;
char c;
unsigned int crc, count;
/*
* crc32 algorithm
*/
/*
* crc = 0xffffffff; * The initialized value should be 0xffffffff
*/
crc = crc_value;
for (i = len; --i >= 0;) {
c = *string++;
for (count = 0; count < 8; count++) {
if ((c & 0x01) ^ (crc & 0x01)) {
crc >>= 1;
crc = crc ^ 0xedb88320;
} else {
crc >>= 1;
}
c >>= 1;
}
}
/*
* In big endian system, do byte swaping for crc value
*/
return crc;
}
#endif /* DEBUG */
#endif /* CONFIG_MPC8220_FEC */

View File

@ -70,6 +70,7 @@ int ape_register(bd_t *bis, int iobase)
dev->halt = ape_halt;
dev->send = ape_send;
dev->recv = ape_recv;
dev->write_hwaddr = ape_write_hwaddr;
eth_register(dev);
@ -102,11 +103,12 @@ not checking its state or doing random probing.
-----------
Now that we've registered with the ethernet layer, we can start getting some
real work done. You will need four functions:
real work done. You will need five functions:
int ape_init(struct eth_device *dev, bd_t *bis);
int ape_send(struct eth_device *dev, volatile void *packet, int length);
int ape_recv(struct eth_device *dev);
int ape_halt(struct eth_device *dev);
int ape_write_hwaddr(struct eth_device *dev);
The init function checks the hardware (probing/identifying) and gets it ready
for send/recv operations. You often do things here such as resetting the MAC
@ -150,6 +152,9 @@ The halt function should turn off / disable the hardware and place it back in
its reset state. It can be called at any time (before any call to the related
init function), so make sure it can handle this sort of thing.
The write_hwaddr function should program the MAC address stored in dev->enetaddr
into the Ethernet controller.
So the call graph at this stage would look something like:
some net operation (ping / tftp / whatever...)
eth_init()

View File

@ -33,11 +33,13 @@ Correct flow of setting up the MAC address (summarized):
1. Read from hardware in initialize() function
2. Read from environment in net/eth.c after initialize()
3. Give priority to the value in the environment if a conflict
4. Program hardware in the device's init() function.
4. Program the address into hardware if the following conditions are met:
a) The relevant driver has a 'write_addr' function
b) The user hasn't set an 'ethmacskip' environment variable
c) The address is valid (unicast, not all-zeros)
If somebody wants to subvert the design philosophy, this can be done
in the board-specific board_eth_init() function by calling eth_init()
after all the NICs have been registered.
Previous behavior had the MAC address always being programmed into hardware
in the device's init() function.
-------
Usage

View File

@ -27,6 +27,7 @@ LIB := $(obj)libnet.a
COBJS-$(CONFIG_DRIVER_3C589) += 3c589.o
COBJS-$(CONFIG_PPC4xx_EMAC) += 4xx_enet.o
COBJS-$(CONFIG_ALTERA_TSE) += altera_tse.o
COBJS-$(CONFIG_DRIVER_AT91EMAC) += at91_emac.o
COBJS-$(CONFIG_DRIVER_AX88180) += ax88180.o
COBJS-$(CONFIG_BCM570x) += bcm570x.o bcm570x_autoneg.o 5701rls.o
@ -39,6 +40,7 @@ COBJS-$(CONFIG_E1000) += e1000.o
COBJS-$(CONFIG_EEPRO100) += eepro100.o
COBJS-$(CONFIG_ENC28J60) += enc28j60.o
COBJS-$(CONFIG_EP93XX) += ep93xx_eth.o
COBJS-$(CONFIG_ETHOC) += ethoc.o
COBJS-$(CONFIG_FEC_MXC) += fec_mxc.o
COBJS-$(CONFIG_FSLDMAFEC) += fsl_mcdmafec.o mcfmii.o
COBJS-$(CONFIG_FTMAC100) += ftmac100.o

942
drivers/net/altera_tse.c Normal file
View File

@ -0,0 +1,942 @@
/*
* Altera 10/100/1000 triple speed ethernet mac driver
*
* Copyright (C) 2008 Altera Corporation.
* Copyright (C) 2010 Thomas Chou <thomas@wytron.com.tw>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <config.h>
#include <common.h>
#include <malloc.h>
#include <net.h>
#include <command.h>
#include <asm/cache.h>
#include <asm/dma-mapping.h>
#include <miiphy.h>
#include "altera_tse.h"
/* sgdma debug - print descriptor */
static void alt_sgdma_print_desc(volatile struct alt_sgdma_descriptor *desc)
{
debug("SGDMA DEBUG :\n");
debug("desc->source : 0x%x \n", (unsigned int)desc->source);
debug("desc->destination : 0x%x \n", (unsigned int)desc->destination);
debug("desc->next : 0x%x \n", (unsigned int)desc->next);
debug("desc->source_pad : 0x%x \n", (unsigned int)desc->source_pad);
debug("desc->destination_pad : 0x%x \n",
(unsigned int)desc->destination_pad);
debug("desc->next_pad : 0x%x \n", (unsigned int)desc->next_pad);
debug("desc->bytes_to_transfer : 0x%x \n",
(unsigned int)desc->bytes_to_transfer);
debug("desc->actual_bytes_transferred : 0x%x \n",
(unsigned int)desc->actual_bytes_transferred);
debug("desc->descriptor_status : 0x%x \n",
(unsigned int)desc->descriptor_status);
debug("desc->descriptor_control : 0x%x \n",
(unsigned int)desc->descriptor_control);
}
/* This is a generic routine that the SGDMA mode-specific routines
* call to populate a descriptor.
* arg1 :pointer to first SGDMA descriptor.
* arg2 :pointer to next SGDMA descriptor.
* arg3 :Address to where data to be written.
* arg4 :Address from where data to be read.
* arg5 :no of byte to transaction.
* arg6 :variable indicating to generate start of packet or not
* arg7 :read fixed
* arg8 :write fixed
* arg9 :read burst
* arg10 :write burst
* arg11 :atlantic_channel number
*/
static void alt_sgdma_construct_descriptor_burst(
volatile struct alt_sgdma_descriptor *desc,
volatile struct alt_sgdma_descriptor *next,
unsigned int *read_addr,
unsigned int *write_addr,
unsigned short length_or_eop,
int generate_eop,
int read_fixed,
int write_fixed_or_sop,
int read_burst,
int write_burst,
unsigned char atlantic_channel)
{
/*
* Mark the "next" descriptor as "not" owned by hardware. This prevents
* The SGDMA controller from continuing to process the chain. This is
* done as a single IO write to bypass cache, without flushing
* the entire descriptor, since only the 8-bit descriptor status must
* be flushed.
*/
if (!next)
debug("Next descriptor not defined!!\n");
next->descriptor_control = (next->descriptor_control &
~ALT_SGDMA_DESCRIPTOR_CONTROL_OWNED_BY_HW_MSK);
desc->source = (unsigned int *)((unsigned int)read_addr & 0x1FFFFFFF);
desc->destination =
(unsigned int *)((unsigned int)write_addr & 0x1FFFFFFF);
desc->next = (unsigned int *)((unsigned int)next & 0x1FFFFFFF);
desc->source_pad = 0x0;
desc->destination_pad = 0x0;
desc->next_pad = 0x0;
desc->bytes_to_transfer = length_or_eop;
desc->actual_bytes_transferred = 0;
desc->descriptor_status = 0x0;
/* SGDMA burst not currently supported */
desc->read_burst = 0;
desc->write_burst = 0;
/*
* Set the descriptor control block as follows:
* - Set "owned by hardware" bit
* - Optionally set "generate EOP" bit
* - Optionally set the "read from fixed address" bit
* - Optionally set the "write to fixed address bit (which serves
* serves as a "generate SOP" control bit in memory-to-stream mode).
* - Set the 4-bit atlantic channel, if specified
*
* Note this step is performed after all other descriptor information
* has been filled out so that, if the controller already happens to be
* pointing at this descriptor, it will not run (via the "owned by
* hardware" bit) until all other descriptor has been set up.
*/
desc->descriptor_control =
((ALT_SGDMA_DESCRIPTOR_CONTROL_OWNED_BY_HW_MSK) |
(generate_eop ?
ALT_SGDMA_DESCRIPTOR_CONTROL_GENERATE_EOP_MSK : 0x0) |
(read_fixed ?
ALT_SGDMA_DESCRIPTOR_CONTROL_READ_FIXED_ADDRESS_MSK : 0x0) |
(write_fixed_or_sop ?
ALT_SGDMA_DESCRIPTOR_CONTROL_WRITE_FIXED_ADDRESS_MSK : 0x0) |
(atlantic_channel ? ((atlantic_channel & 0x0F) << 3) : 0)
);
}
static int alt_sgdma_do_sync_transfer(volatile struct alt_sgdma_registers *dev,
volatile struct alt_sgdma_descriptor *desc)
{
unsigned int status;
int counter = 0;
/* Wait for any pending transfers to complete */
alt_sgdma_print_desc(desc);
status = dev->status;
counter = 0;
while (dev->status & ALT_SGDMA_STATUS_BUSY_MSK) {
if (counter++ > ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR)
break;
}
if (counter >= ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR)
debug("Timeout waiting sgdma in do sync!\n");
/*
* Clear any (previous) status register information
* that might occlude our error checking later.
*/
dev->status = 0xFF;
/* Point the controller at the descriptor */
dev->next_descriptor_pointer = (unsigned int)desc & 0x1FFFFFFF;
debug("next desc in sgdma 0x%x\n",
(unsigned int)dev->next_descriptor_pointer);
/*
* Set up SGDMA controller to:
* - Disable interrupt generation
* - Run once a valid descriptor is written to controller
* - Stop on an error with any particular descriptor
*/
dev->control = (ALT_SGDMA_CONTROL_RUN_MSK |
ALT_SGDMA_CONTROL_STOP_DMA_ER_MSK);
/* Wait for the descriptor (chain) to complete */
status = dev->status;
debug("wait for sgdma....");
while (dev->status & ALT_SGDMA_STATUS_BUSY_MSK)
;
debug("done\n");
/* Clear Run */
dev->control = (dev->control & (~ALT_SGDMA_CONTROL_RUN_MSK));
/* Get & clear status register contents */
status = dev->status;
dev->status = 0xFF;
/* we really should check if the transfer completes properly */
debug("tx sgdma status = 0x%x", status);
return 0;
}
static int alt_sgdma_do_async_transfer(volatile struct alt_sgdma_registers *dev,
volatile struct alt_sgdma_descriptor *desc)
{
unsigned int status;
int counter = 0;
/* Wait for any pending transfers to complete */
alt_sgdma_print_desc(desc);
status = dev->status;
counter = 0;
while (dev->status & ALT_SGDMA_STATUS_BUSY_MSK) {
if (counter++ > ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR)
break;
}
if (counter >= ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR)
debug("Timeout waiting sgdma in do async!\n");
/*
* Clear any (previous) status register information
* that might occlude our error checking later.
*/
dev->status = 0xFF;
/* Point the controller at the descriptor */
dev->next_descriptor_pointer = (unsigned int)desc & 0x1FFFFFFF;
/*
* Set up SGDMA controller to:
* - Disable interrupt generation
* - Run once a valid descriptor is written to controller
* - Stop on an error with any particular descriptor
*/
dev->control = (ALT_SGDMA_CONTROL_RUN_MSK |
ALT_SGDMA_CONTROL_STOP_DMA_ER_MSK);
/* we really should check if the transfer completes properly */
return 0;
}
/* u-boot interface */
static int tse_adjust_link(struct altera_tse_priv *priv)
{
unsigned int refvar;
refvar = priv->mac_dev->command_config.image;
if (!(priv->duplexity))
refvar |= ALTERA_TSE_CMD_HD_ENA_MSK;
else
refvar &= ~ALTERA_TSE_CMD_HD_ENA_MSK;
switch (priv->speed) {
case 1000:
refvar |= ALTERA_TSE_CMD_ETH_SPEED_MSK;
refvar &= ~ALTERA_TSE_CMD_ENA_10_MSK;
break;
case 100:
refvar &= ~ALTERA_TSE_CMD_ETH_SPEED_MSK;
refvar &= ~ALTERA_TSE_CMD_ENA_10_MSK;
break;
case 10:
refvar &= ~ALTERA_TSE_CMD_ETH_SPEED_MSK;
refvar |= ALTERA_TSE_CMD_ENA_10_MSK;
break;
}
priv->mac_dev->command_config.image = refvar;
return 0;
}
static int tse_eth_send(struct eth_device *dev,
volatile void *packet, int length)
{
struct altera_tse_priv *priv = dev->priv;
volatile struct alt_sgdma_registers *tx_sgdma = priv->sgdma_tx;
volatile struct alt_sgdma_descriptor *tx_desc =
(volatile struct alt_sgdma_descriptor *)priv->tx_desc;
volatile struct alt_sgdma_descriptor *tx_desc_cur =
(volatile struct alt_sgdma_descriptor *)&tx_desc[0];
flush_dcache((unsigned long)packet, length);
alt_sgdma_construct_descriptor_burst(
(volatile struct alt_sgdma_descriptor *)&tx_desc[0],
(volatile struct alt_sgdma_descriptor *)&tx_desc[1],
(unsigned int *)packet, /* read addr */
(unsigned int *)0,
length, /* length or EOP ,will change for each tx */
0x1, /* gen eop */
0x0, /* read fixed */
0x1, /* write fixed or sop */
0x0, /* read burst */
0x0, /* write burst */
0x0 /* channel */
);
debug("TX Packet @ 0x%x,0x%x bytes", (unsigned int)packet, length);
/* send the packet */
debug("sending packet\n");
alt_sgdma_do_sync_transfer(tx_sgdma, tx_desc_cur);
debug("sent %d bytes\n", tx_desc_cur->actual_bytes_transferred);
return tx_desc_cur->actual_bytes_transferred;
}
static int tse_eth_rx(struct eth_device *dev)
{
int packet_length = 0;
struct altera_tse_priv *priv = dev->priv;
volatile struct alt_sgdma_descriptor *rx_desc =
(volatile struct alt_sgdma_descriptor *)priv->rx_desc;
volatile struct alt_sgdma_descriptor *rx_desc_cur = &rx_desc[0];
if (rx_desc_cur->descriptor_status &
ALT_SGDMA_DESCRIPTOR_STATUS_TERMINATED_BY_EOP_MSK) {
debug("got packet\n");
packet_length = rx_desc->actual_bytes_transferred;
NetReceive(NetRxPackets[0], packet_length);
/* start descriptor again */
flush_dcache((unsigned long)(NetRxPackets[0]), PKTSIZE_ALIGN);
alt_sgdma_construct_descriptor_burst(
(volatile struct alt_sgdma_descriptor *)&rx_desc[0],
(volatile struct alt_sgdma_descriptor *)&rx_desc[1],
(unsigned int)0x0, /* read addr */
(unsigned int *)NetRxPackets[0],
0x0, /* length or EOP */
0x0, /* gen eop */
0x0, /* read fixed */
0x0, /* write fixed or sop */
0x0, /* read burst */
0x0, /* write burst */
0x0 /* channel */
);
/* setup the sgdma */
alt_sgdma_do_async_transfer(priv->sgdma_rx, &rx_desc[0]);
}
return -1;
}
static void tse_eth_halt(struct eth_device *dev)
{
/* don't do anything! */
/* this gets called after each uboot */
/* network command. don't need to reset the thing all of the time */
}
static void tse_eth_reset(struct eth_device *dev)
{
/* stop sgdmas, disable tse receive */
struct altera_tse_priv *priv = dev->priv;
volatile struct alt_tse_mac *mac_dev = priv->mac_dev;
volatile struct alt_sgdma_registers *rx_sgdma = priv->sgdma_rx;
volatile struct alt_sgdma_registers *tx_sgdma = priv->sgdma_tx;
int counter;
volatile struct alt_sgdma_descriptor *rx_desc =
(volatile struct alt_sgdma_descriptor *)&priv->rx_desc[0];
/* clear rx desc & wait for sgdma to complete */
rx_desc->descriptor_control = 0;
rx_sgdma->control = 0;
counter = 0;
while (rx_sgdma->status & ALT_SGDMA_STATUS_BUSY_MSK) {
if (counter++ > ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR)
break;
}
if (counter >= ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR) {
debug("Timeout waiting for rx sgdma!\n");
rx_sgdma->control &= ALT_SGDMA_CONTROL_SOFTWARERESET_MSK;
rx_sgdma->control &= ALT_SGDMA_CONTROL_SOFTWARERESET_MSK;
}
counter = 0;
tx_sgdma->control = 0;
while (tx_sgdma->status & ALT_SGDMA_STATUS_BUSY_MSK) {
if (counter++ > ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR)
break;
}
if (counter >= ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR) {
debug("Timeout waiting for tx sgdma!\n");
tx_sgdma->control &= ALT_SGDMA_CONTROL_SOFTWARERESET_MSK;
tx_sgdma->control &= ALT_SGDMA_CONTROL_SOFTWARERESET_MSK;
}
/* reset the mac */
mac_dev->command_config.bits.transmit_enable = 1;
mac_dev->command_config.bits.receive_enable = 1;
mac_dev->command_config.bits.software_reset = 1;
counter = 0;
while (mac_dev->command_config.bits.software_reset) {
if (counter++ > ALT_TSE_SW_RESET_WATCHDOG_CNTR)
break;
}
if (counter >= ALT_TSE_SW_RESET_WATCHDOG_CNTR)
debug("TSEMAC SW reset bit never cleared!\n");
}
static int tse_mdio_read(struct altera_tse_priv *priv, unsigned int regnum)
{
volatile struct alt_tse_mac *mac_dev;
unsigned int *mdio_regs;
unsigned int data;
u16 value;
mac_dev = priv->mac_dev;
/* set mdio address */
mac_dev->mdio_phy1_addr = priv->phyaddr;
mdio_regs = (unsigned int *)&mac_dev->mdio_phy1;
/* get the data */
data = mdio_regs[regnum];
value = data & 0xffff;
return value;
}
static int tse_mdio_write(struct altera_tse_priv *priv, unsigned int regnum,
unsigned int value)
{
volatile struct alt_tse_mac *mac_dev;
unsigned int *mdio_regs;
unsigned int data;
mac_dev = priv->mac_dev;
/* set mdio address */
mac_dev->mdio_phy1_addr = priv->phyaddr;
mdio_regs = (unsigned int *)&mac_dev->mdio_phy1;
/* get the data */
data = (unsigned int)value;
mdio_regs[regnum] = data;
return 0;
}
/* MDIO access to phy */
#if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) && !defined(BITBANGMII)
static int altera_tse_miiphy_write(char *devname, unsigned char addr,
unsigned char reg, unsigned short value)
{
struct eth_device *dev;
struct altera_tse_priv *priv;
dev = eth_get_dev_by_name(devname);
priv = dev->priv;
tse_mdio_write(priv, (uint) reg, (uint) value);
return 0;
}
static int altera_tse_miiphy_read(char *devname, unsigned char addr,
unsigned char reg, unsigned short *value)
{
struct eth_device *dev;
struct altera_tse_priv *priv;
volatile struct alt_tse_mac *mac_dev;
unsigned int *mdio_regs;
dev = eth_get_dev_by_name(devname);
priv = dev->priv;
mac_dev = priv->mac_dev;
mac_dev->mdio_phy1_addr = (int)addr;
mdio_regs = (unsigned int *)&mac_dev->mdio_phy1;
*value = 0xffff & mdio_regs[reg];
return 0;
}
#endif
/*
* Also copied from tsec.c
*/
/* Parse the status register for link, and then do
* auto-negotiation
*/
static uint mii_parse_sr(uint mii_reg, struct altera_tse_priv *priv)
{
/*
* Wait if the link is up, and autonegotiation is in progress
* (ie - we're capable and it's not done)
*/
mii_reg = tse_mdio_read(priv, MIIM_STATUS);
if (!(mii_reg & MIIM_STATUS_LINK) && (mii_reg & PHY_BMSR_AUTN_ABLE)
&& !(mii_reg & PHY_BMSR_AUTN_COMP)) {
int i = 0;
puts("Waiting for PHY auto negotiation to complete");
while (!(mii_reg & PHY_BMSR_AUTN_COMP)) {
/*
* Timeout reached ?
*/
if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
puts(" TIMEOUT !\n");
priv->link = 0;
return 0;
}
if ((i++ % 1000) == 0)
putc('.');
udelay(1000); /* 1 ms */
mii_reg = tse_mdio_read(priv, MIIM_STATUS);
}
puts(" done\n");
priv->link = 1;
udelay(500000); /* another 500 ms (results in faster booting) */
} else {
if (mii_reg & MIIM_STATUS_LINK) {
debug("Link is up\n");
priv->link = 1;
} else {
debug("Link is down\n");
priv->link = 0;
}
}
return 0;
}
/* Parse the 88E1011's status register for speed and duplex
* information
*/
static uint mii_parse_88E1011_psr(uint mii_reg, struct altera_tse_priv *priv)
{
uint speed;
mii_reg = tse_mdio_read(priv, MIIM_88E1011_PHY_STATUS);
if ((mii_reg & MIIM_88E1011_PHYSTAT_LINK) &&
!(mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE)) {
int i = 0;
puts("Waiting for PHY realtime link");
while (!(mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE)) {
/* Timeout reached ? */
if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
puts(" TIMEOUT !\n");
priv->link = 0;
break;
}
if ((i++ == 1000) == 0) {
i = 0;
puts(".");
}
udelay(1000); /* 1 ms */
mii_reg = tse_mdio_read(priv, MIIM_88E1011_PHY_STATUS);
}
puts(" done\n");
udelay(500000); /* another 500 ms (results in faster booting) */
} else {
if (mii_reg & MIIM_88E1011_PHYSTAT_LINK)
priv->link = 1;
else
priv->link = 0;
}
if (mii_reg & MIIM_88E1011_PHYSTAT_DUPLEX)
priv->duplexity = 1;
else
priv->duplexity = 0;
speed = (mii_reg & MIIM_88E1011_PHYSTAT_SPEED);
switch (speed) {
case MIIM_88E1011_PHYSTAT_GBIT:
priv->speed = 1000;
debug("PHY Speed is 1000Mbit\n");
break;
case MIIM_88E1011_PHYSTAT_100:
debug("PHY Speed is 100Mbit\n");
priv->speed = 100;
break;
default:
debug("PHY Speed is 10Mbit\n");
priv->speed = 10;
}
return 0;
}
static uint mii_m88e1111s_setmode_sr(uint mii_reg, struct altera_tse_priv *priv)
{
uint mii_data = tse_mdio_read(priv, mii_reg);
mii_data &= 0xfff0;
mii_data |= 0xb;
return mii_data;
}
static uint mii_m88e1111s_setmode_cr(uint mii_reg, struct altera_tse_priv *priv)
{
uint mii_data = tse_mdio_read(priv, mii_reg);
mii_data &= ~0x82;
mii_data |= 0x82;
return mii_data;
}
/*
* Returns which value to write to the control register.
* For 10/100, the value is slightly different
*/
static uint mii_cr_init(uint mii_reg, struct altera_tse_priv *priv)
{
return MIIM_CONTROL_INIT;
}
/*
* PHY & MDIO code
* Need to add SGMII stuff
*
*/
static struct phy_info phy_info_M88E1111S = {
0x01410cc,
"Marvell 88E1111S",
4,
(struct phy_cmd[]){ /* config */
/* Reset and configure the PHY */
{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
{MIIM_88E1111_PHY_EXT_SR, 0x848f,
&mii_m88e1111s_setmode_sr},
/* Delay RGMII TX and RX */
{MIIM_88E1111_PHY_EXT_CR, 0x0cd2,
&mii_m88e1111s_setmode_cr},
{MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
{MIIM_ANAR, MIIM_ANAR_INIT, NULL},
{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
{miim_end,}
},
(struct phy_cmd[]){ /* startup */
/* Status is read once to clear old link state */
{MIIM_STATUS, miim_read, NULL},
/* Auto-negotiate */
{MIIM_STATUS, miim_read, &mii_parse_sr},
/* Read the status */
{MIIM_88E1011_PHY_STATUS, miim_read,
&mii_parse_88E1011_psr},
{miim_end,}
},
(struct phy_cmd[]){ /* shutdown */
{miim_end,}
},
};
/* a generic flavor. */
static struct phy_info phy_info_generic = {
0,
"Unknown/Generic PHY",
32,
(struct phy_cmd[]){ /* config */
{PHY_BMCR, PHY_BMCR_RESET, NULL},
{PHY_BMCR, PHY_BMCR_AUTON | PHY_BMCR_RST_NEG, NULL},
{miim_end,}
},
(struct phy_cmd[]){ /* startup */
{PHY_BMSR, miim_read, NULL},
{PHY_BMSR, miim_read, &mii_parse_sr},
{miim_end,}
},
(struct phy_cmd[]){ /* shutdown */
{miim_end,}
}
};
static struct phy_info *phy_info[] = {
&phy_info_M88E1111S,
NULL
};
/* Grab the identifier of the device's PHY, and search through
* all of the known PHYs to see if one matches. If so, return
* it, if not, return NULL
*/
static struct phy_info *get_phy_info(struct eth_device *dev)
{
struct altera_tse_priv *priv = (struct altera_tse_priv *)dev->priv;
uint phy_reg, phy_ID;
int i;
struct phy_info *theInfo = NULL;
/* Grab the bits from PHYIR1, and put them in the upper half */
phy_reg = tse_mdio_read(priv, MIIM_PHYIR1);
phy_ID = (phy_reg & 0xffff) << 16;
/* Grab the bits from PHYIR2, and put them in the lower half */
phy_reg = tse_mdio_read(priv, MIIM_PHYIR2);
phy_ID |= (phy_reg & 0xffff);
/* loop through all the known PHY types, and find one that */
/* matches the ID we read from the PHY. */
for (i = 0; phy_info[i]; i++) {
if (phy_info[i]->id == (phy_ID >> phy_info[i]->shift)) {
theInfo = phy_info[i];
break;
}
}
if (theInfo == NULL) {
theInfo = &phy_info_generic;
debug("%s: No support for PHY id %x; assuming generic\n",
dev->name, phy_ID);
} else
debug("%s: PHY is %s (%x)\n", dev->name, theInfo->name, phy_ID);
return theInfo;
}
/* Execute the given series of commands on the given device's
* PHY, running functions as necessary
*/
static void phy_run_commands(struct altera_tse_priv *priv, struct phy_cmd *cmd)
{
int i;
uint result;
for (i = 0; cmd->mii_reg != miim_end; i++) {
if (cmd->mii_data == miim_read) {
result = tse_mdio_read(priv, cmd->mii_reg);
if (cmd->funct != NULL)
(*(cmd->funct)) (result, priv);
} else {
if (cmd->funct != NULL)
result = (*(cmd->funct)) (cmd->mii_reg, priv);
else
result = cmd->mii_data;
tse_mdio_write(priv, cmd->mii_reg, result);
}
cmd++;
}
}
/* Phy init code */
static int init_phy(struct eth_device *dev)
{
struct altera_tse_priv *priv = (struct altera_tse_priv *)dev->priv;
struct phy_info *curphy;
/* Get the cmd structure corresponding to the attached
* PHY */
curphy = get_phy_info(dev);
if (curphy == NULL) {
priv->phyinfo = NULL;
debug("%s: No PHY found\n", dev->name);
return 0;
} else
debug("%s found\n", curphy->name);
priv->phyinfo = curphy;
phy_run_commands(priv, priv->phyinfo->config);
return 1;
}
static int tse_set_mac_address(struct eth_device *dev)
{
struct altera_tse_priv *priv = dev->priv;
volatile struct alt_tse_mac *mac_dev = priv->mac_dev;
debug("Setting MAC address to 0x%02x%02x%02x%02x%02x%02x\n",
dev->enetaddr[5], dev->enetaddr[4],
dev->enetaddr[3], dev->enetaddr[2],
dev->enetaddr[1], dev->enetaddr[0]);
mac_dev->mac_addr_0 = ((dev->enetaddr[3]) << 24 |
(dev->enetaddr[2]) << 16 |
(dev->enetaddr[1]) << 8 | (dev->enetaddr[0]));
mac_dev->mac_addr_1 = ((dev->enetaddr[5] << 8 |
(dev->enetaddr[4])) & 0xFFFF);
/* Set the MAC address */
mac_dev->supp_mac_addr_0_0 = mac_dev->mac_addr_0;
mac_dev->supp_mac_addr_0_1 = mac_dev->mac_addr_1;
/* Set the MAC address */
mac_dev->supp_mac_addr_1_0 = mac_dev->mac_addr_0;
mac_dev->supp_mac_addr_1_1 = mac_dev->mac_addr_1;
/* Set the MAC address */
mac_dev->supp_mac_addr_2_0 = mac_dev->mac_addr_0;
mac_dev->supp_mac_addr_2_1 = mac_dev->mac_addr_1;
/* Set the MAC address */
mac_dev->supp_mac_addr_3_0 = mac_dev->mac_addr_0;
mac_dev->supp_mac_addr_3_1 = mac_dev->mac_addr_1;
return 0;
}
static int tse_eth_init(struct eth_device *dev, bd_t * bd)
{
int dat;
struct altera_tse_priv *priv = dev->priv;
volatile struct alt_tse_mac *mac_dev = priv->mac_dev;
volatile struct alt_sgdma_descriptor *tx_desc = priv->tx_desc;
volatile struct alt_sgdma_descriptor *rx_desc = priv->rx_desc;
volatile struct alt_sgdma_descriptor *rx_desc_cur =
(volatile struct alt_sgdma_descriptor *)&rx_desc[0];
/* stop controller */
debug("Reseting TSE & SGDMAs\n");
tse_eth_reset(dev);
/* start the phy */
debug("Configuring PHY\n");
phy_run_commands(priv, priv->phyinfo->startup);
/* need to create sgdma */
debug("Configuring tx desc\n");
alt_sgdma_construct_descriptor_burst(
(volatile struct alt_sgdma_descriptor *)&tx_desc[0],
(volatile struct alt_sgdma_descriptor *)&tx_desc[1],
(unsigned int *)NULL, /* read addr */
(unsigned int *)0,
0, /* length or EOP ,will change for each tx */
0x1, /* gen eop */
0x0, /* read fixed */
0x1, /* write fixed or sop */
0x0, /* read burst */
0x0, /* write burst */
0x0 /* channel */
);
debug("Configuring rx desc\n");
flush_dcache((unsigned long)(NetRxPackets[0]), PKTSIZE_ALIGN);
alt_sgdma_construct_descriptor_burst(
(volatile struct alt_sgdma_descriptor *)&rx_desc[0],
(volatile struct alt_sgdma_descriptor *)&rx_desc[1],
(unsigned int)0x0, /* read addr */
(unsigned int *)NetRxPackets[0],
0x0, /* length or EOP */
0x0, /* gen eop */
0x0, /* read fixed */
0x0, /* write fixed or sop */
0x0, /* read burst */
0x0, /* write burst */
0x0 /* channel */
);
/* start rx async transfer */
debug("Starting rx sgdma\n");
alt_sgdma_do_async_transfer(priv->sgdma_rx, rx_desc_cur);
/* start TSE */
debug("Configuring TSE Mac\n");
/* Initialize MAC registers */
mac_dev->max_frame_length = PKTSIZE_ALIGN;
mac_dev->rx_almost_empty_threshold = 8;
mac_dev->rx_almost_full_threshold = 8;
mac_dev->tx_almost_empty_threshold = 8;
mac_dev->tx_almost_full_threshold = 3;
mac_dev->tx_sel_empty_threshold =
CONFIG_SYS_ALTERA_TSE_TX_FIFO - 16;
mac_dev->tx_sel_full_threshold = 0;
mac_dev->rx_sel_empty_threshold =
CONFIG_SYS_ALTERA_TSE_TX_FIFO - 16;
mac_dev->rx_sel_full_threshold = 0;
/* NO Shift */
mac_dev->rx_cmd_stat.bits.rx_shift16 = 0;
mac_dev->tx_cmd_stat.bits.tx_shift16 = 0;
/* enable MAC */
dat = 0;
dat = ALTERA_TSE_CMD_TX_ENA_MSK | ALTERA_TSE_CMD_RX_ENA_MSK;
mac_dev->command_config.image = dat;
/* configure the TSE core */
/* -- output clocks, */
/* -- and later config stuff for SGMII */
if (priv->link) {
debug("Adjusting TSE to link speed\n");
tse_adjust_link(priv);
}
return priv->link ? 0 : -1;
}
/* TSE init code */
int altera_tse_initialize(u8 dev_num, int mac_base,
int sgdma_rx_base, int sgdma_tx_base)
{
struct altera_tse_priv *priv;
struct eth_device *dev;
struct alt_sgdma_descriptor *rx_desc;
struct alt_sgdma_descriptor *tx_desc;
unsigned long dma_handle;
dev = (struct eth_device *)malloc(sizeof *dev);
if (NULL == dev)
return 0;
memset(dev, 0, sizeof *dev);
priv = malloc(sizeof(*priv));
if (!priv) {
free(dev);
return 0;
}
tx_desc = dma_alloc_coherent(sizeof(*tx_desc) * (3 + PKTBUFSRX),
&dma_handle);
rx_desc = tx_desc + 2;
debug("tx desc: address = 0x%x\n", (unsigned int)tx_desc);
debug("rx desc: address = 0x%x\n", (unsigned int)rx_desc);
if (!tx_desc) {
free(priv);
free(dev);
return 0;
}
memset(rx_desc, 0, (sizeof *rx_desc) * (PKTBUFSRX + 1));
memset(tx_desc, 0, (sizeof *tx_desc) * 2);
/* initialize tse priv */
priv->mac_dev = (volatile struct alt_tse_mac *)mac_base;
priv->sgdma_rx = (volatile struct alt_sgdma_registers *)sgdma_rx_base;
priv->sgdma_tx = (volatile struct alt_sgdma_registers *)sgdma_tx_base;
priv->phyaddr = CONFIG_SYS_ALTERA_TSE_PHY_ADDR;
priv->flags = CONFIG_SYS_ALTERA_TSE_FLAGS;
priv->rx_desc = rx_desc;
priv->tx_desc = tx_desc;
/* init eth structure */
dev->priv = priv;
dev->init = tse_eth_init;
dev->halt = tse_eth_halt;
dev->send = tse_eth_send;
dev->recv = tse_eth_rx;
dev->write_hwaddr = tse_set_mac_address;
sprintf(dev->name, "%s-%hu", "ALTERA_TSE", dev_num);
eth_register(dev);
#if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) && !defined(BITBANGMII)
miiphy_register(dev->name, altera_tse_miiphy_read,
altera_tse_miiphy_write);
#endif
init_phy(dev);
return 1;
}

494
drivers/net/altera_tse.h Normal file
View File

@ -0,0 +1,494 @@
/*
* Altera 10/100/1000 triple speed ethernet mac
*
* Copyright (C) 2008 Altera Corporation.
* Copyright (C) 2010 Thomas Chou <thomas@wytron.com.tw>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifndef _ALTERA_TSE_H_
#define _ALTERA_TSE_H_
#define __packed_1_ __attribute__ ((packed, aligned(1)))
/* PHY Stuff */
#define miim_end -2
#define miim_read -1
#define PHY_AUTONEGOTIATE_TIMEOUT 5000 /* in ms */
#ifndef CONFIG_SYS_TBIPA_VALUE
#define CONFIG_SYS_TBIPA_VALUE 0x1f
#endif
#define MIIMCFG_INIT_VALUE 0x00000003
#define MIIMCFG_RESET 0x80000000
#define MIIMIND_BUSY 0x00000001
#define MIIMIND_NOTVALID 0x00000004
#define MIIM_CONTROL 0x00
#define MIIM_CONTROL_RESET 0x00009140
#define MIIM_CONTROL_INIT 0x00001140
#define MIIM_CONTROL_RESTART 0x00001340
#define MIIM_ANEN 0x00001000
#define MIIM_CR 0x00
#define MIIM_CR_RST 0x00008000
#define MIIM_CR_INIT 0x00001000
#define MIIM_STATUS 0x1
#define MIIM_STATUS_AN_DONE 0x00000020
#define MIIM_STATUS_LINK 0x0004
#define PHY_BMSR_AUTN_ABLE 0x0008
#define PHY_BMSR_AUTN_COMP 0x0020
#define MIIM_PHYIR1 0x2
#define MIIM_PHYIR2 0x3
#define MIIM_ANAR 0x4
#define MIIM_ANAR_INIT 0x1e1
#define MIIM_TBI_ANLPBPA 0x5
#define MIIM_TBI_ANLPBPA_HALF 0x00000040
#define MIIM_TBI_ANLPBPA_FULL 0x00000020
#define MIIM_TBI_ANEX 0x6
#define MIIM_TBI_ANEX_NP 0x00000004
#define MIIM_TBI_ANEX_PRX 0x00000002
#define MIIM_GBIT_CONTROL 0x9
#define MIIM_GBIT_CONTROL_INIT 0xe00
#define MIIM_EXT_PAGE_ACCESS 0x1f
/* 88E1011 PHY Status Register */
#define MIIM_88E1011_PHY_STATUS 0x11
#define MIIM_88E1011_PHYSTAT_SPEED 0xc000
#define MIIM_88E1011_PHYSTAT_GBIT 0x8000
#define MIIM_88E1011_PHYSTAT_100 0x4000
#define MIIM_88E1011_PHYSTAT_DUPLEX 0x2000
#define MIIM_88E1011_PHYSTAT_SPDDONE 0x0800
#define MIIM_88E1011_PHYSTAT_LINK 0x0400
#define MIIM_88E1011_PHY_SCR 0x10
#define MIIM_88E1011_PHY_MDI_X_AUTO 0x0060
#define MIIM_88E1111_PHY_EXT_CR 0x14
#define MIIM_88E1111_PHY_EXT_SR 0x1b
/* 88E1111 PHY LED Control Register */
#define MIIM_88E1111_PHY_LED_CONTROL 24
#define MIIM_88E1111_PHY_LED_DIRECT 0x4100
#define MIIM_88E1111_PHY_LED_COMBINE 0x411C
#define MIIM_READ_COMMAND 0x00000001
/* struct phy_info: a structure which defines attributes for a PHY
* id will contain a number which represents the PHY. During
* startup, the driver will poll the PHY to find out what its
* UID--as defined by registers 2 and 3--is. The 32-bit result
* gotten from the PHY will be shifted right by "shift" bits to
* discard any bits which may change based on revision numbers
* unimportant to functionality
*
* The struct phy_cmd entries represent pointers to an arrays of
* commands which tell the driver what to do to the PHY.
*/
struct phy_info {
uint id;
char *name;
uint shift;
/* Called to configure the PHY, and modify the controller
* based on the results */
struct phy_cmd *config;
/* Called when starting up the controller */
struct phy_cmd *startup;
/* Called when bringing down the controller */
struct phy_cmd *shutdown;
};
/* SGDMA Stuff */
#define ALT_SGDMA_STATUS_ERROR_MSK (0x00000001)
#define ALT_SGDMA_STATUS_EOP_ENCOUNTERED_MSK (0x00000002)
#define ALT_SGDMA_STATUS_DESC_COMPLETED_MSK (0x00000004)
#define ALT_SGDMA_STATUS_CHAIN_COMPLETED_MSK (0x00000008)
#define ALT_SGDMA_STATUS_BUSY_MSK (0x00000010)
#define ALT_SGDMA_CONTROL_IE_ERROR_MSK (0x00000001)
#define ALT_SGDMA_CONTROL_IE_EOP_ENCOUNTERED_MSK (0x00000002)
#define ALT_SGDMA_CONTROL_IE_DESC_COMPLETED_MSK (0x00000004)
#define ALT_SGDMA_CONTROL_IE_CHAIN_COMPLETED_MSK (0x00000008)
#define ALT_SGDMA_CONTROL_IE_GLOBAL_MSK (0x00000010)
#define ALT_SGDMA_CONTROL_RUN_MSK (0x00000020)
#define ALT_SGDMA_CONTROL_STOP_DMA_ER_MSK (0x00000040)
#define ALT_SGDMA_CONTROL_IE_MAX_DESC_PROCESSED_MSK (0x00000080)
#define ALT_SGDMA_CONTROL_MAX_DESC_PROCESSED_MSK (0x0000FF00)
#define ALT_SGDMA_CONTROL_SOFTWARERESET_MSK (0x00010000)
#define ALT_SGDMA_CONTROL_PARK_MSK (0x00020000)
#define ALT_SGDMA_CONTROL_CLEAR_INTERRUPT_MSK (0x80000000)
#define ALTERA_TSE_SGDMA_INTR_MASK (ALT_SGDMA_CONTROL_IE_CHAIN_COMPLETED_MSK \
| ALT_SGDMA_STATUS_DESC_COMPLETED_MSK \
| ALT_SGDMA_CONTROL_IE_GLOBAL_MSK)
/*
* Descriptor control bit masks & offsets
*
* Note: The control byte physically occupies bits [31:24] in memory.
* The following bit-offsets are expressed relative to the LSB of
* the control register bitfield.
*/
#define ALT_SGDMA_DESCRIPTOR_CONTROL_GENERATE_EOP_MSK (0x00000001)
#define ALT_SGDMA_DESCRIPTOR_CONTROL_READ_FIXED_ADDRESS_MSK (0x00000002)
#define ALT_SGDMA_DESCRIPTOR_CONTROL_WRITE_FIXED_ADDRESS_MSK (0x00000004)
#define ALT_SGDMA_DESCRIPTOR_CONTROL_ATLANTIC_CHANNEL_MSK (0x00000008)
#define ALT_SGDMA_DESCRIPTOR_CONTROL_OWNED_BY_HW_MSK (0x00000080)
/*
* Descriptor status bit masks & offsets
*
* Note: The status byte physically occupies bits [23:16] in memory.
* The following bit-offsets are expressed relative to the LSB of
* the status register bitfield.
*/
#define ALT_SGDMA_DESCRIPTOR_STATUS_E_CRC_MSK (0x00000001)
#define ALT_SGDMA_DESCRIPTOR_STATUS_E_PARITY_MSK (0x00000002)
#define ALT_SGDMA_DESCRIPTOR_STATUS_E_OVERFLOW_MSK (0x00000004)
#define ALT_SGDMA_DESCRIPTOR_STATUS_E_SYNC_MSK (0x00000008)
#define ALT_SGDMA_DESCRIPTOR_STATUS_E_UEOP_MSK (0x00000010)
#define ALT_SGDMA_DESCRIPTOR_STATUS_E_MEOP_MSK (0x00000020)
#define ALT_SGDMA_DESCRIPTOR_STATUS_E_MSOP_MSK (0x00000040)
#define ALT_SGDMA_DESCRIPTOR_STATUS_TERMINATED_BY_EOP_MSK (0x00000080)
#define ALT_SGDMA_DESCRIPTOR_STATUS_ERROR_MSK (0x0000007F)
/*
* The SGDMA controller buffer descriptor allocates
* 64 bits for each address. To support ANSI C, the
* struct implementing a descriptor places 32-bits
* of padding directly above each address; each pad must
* be cleared when initializing a descriptor.
*/
/*
* Buffer Descriptor data structure
*
*/
struct alt_sgdma_descriptor {
unsigned int *source; /* the address of data to be read. */
unsigned int source_pad;
unsigned int *destination; /* the address to write data */
unsigned int destination_pad;
unsigned int *next; /* the next descriptor in the list. */
unsigned int next_pad;
unsigned short bytes_to_transfer; /* the number of bytes to transfer */
unsigned char read_burst;
unsigned char write_burst;
unsigned short actual_bytes_transferred;/* bytes transferred by DMA */
unsigned char descriptor_status;
unsigned char descriptor_control;
} __packed_1_;
/* SG-DMA Control/Status Slave registers map */
struct alt_sgdma_registers {
unsigned int status;
unsigned int status_pad[3];
unsigned int control;
unsigned int control_pad[3];
unsigned int next_descriptor_pointer;
unsigned int descriptor_pad[3];
};
/* TSE Stuff */
#define ALTERA_TSE_CMD_TX_ENA_MSK (0x00000001)
#define ALTERA_TSE_CMD_RX_ENA_MSK (0x00000002)
#define ALTERA_TSE_CMD_XON_GEN_MSK (0x00000004)
#define ALTERA_TSE_CMD_ETH_SPEED_MSK (0x00000008)
#define ALTERA_TSE_CMD_PROMIS_EN_MSK (0x00000010)
#define ALTERA_TSE_CMD_PAD_EN_MSK (0x00000020)
#define ALTERA_TSE_CMD_CRC_FWD_MSK (0x00000040)
#define ALTERA_TSE_CMD_PAUSE_FWD_MSK (0x00000080)
#define ALTERA_TSE_CMD_PAUSE_IGNORE_MSK (0x00000100)
#define ALTERA_TSE_CMD_TX_ADDR_INS_MSK (0x00000200)
#define ALTERA_TSE_CMD_HD_ENA_MSK (0x00000400)
#define ALTERA_TSE_CMD_EXCESS_COL_MSK (0x00000800)
#define ALTERA_TSE_CMD_LATE_COL_MSK (0x00001000)
#define ALTERA_TSE_CMD_SW_RESET_MSK (0x00002000)
#define ALTERA_TSE_CMD_MHASH_SEL_MSK (0x00004000)
#define ALTERA_TSE_CMD_LOOPBACK_MSK (0x00008000)
/* Bits (18:16) = address select */
#define ALTERA_TSE_CMD_TX_ADDR_SEL_MSK (0x00070000)
#define ALTERA_TSE_CMD_MAGIC_ENA_MSK (0x00080000)
#define ALTERA_TSE_CMD_SLEEP_MSK (0x00100000)
#define ALTERA_TSE_CMD_WAKEUP_MSK (0x00200000)
#define ALTERA_TSE_CMD_XOFF_GEN_MSK (0x00400000)
#define ALTERA_TSE_CMD_CNTL_FRM_ENA_MSK (0x00800000)
#define ALTERA_TSE_CMD_NO_LENGTH_CHECK_MSK (0x01000000)
#define ALTERA_TSE_CMD_ENA_10_MSK (0x02000000)
#define ALTERA_TSE_CMD_RX_ERR_DISC_MSK (0x04000000)
/* Bits (30..27) reserved */
#define ALTERA_TSE_CMD_CNT_RESET_MSK (0x80000000)
#define ALTERA_TSE_TX_CMD_STAT_TX_SHIFT16 (0x00040000)
#define ALTERA_TSE_TX_CMD_STAT_OMIT_CRC (0x00020000)
#define ALTERA_TSE_RX_CMD_STAT_RX_SHIFT16 (0x02000000)
#define ALT_TSE_SW_RESET_WATCHDOG_CNTR 10000
#define ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR 90000000
/* Command_Config Register Bit Definitions */
typedef volatile union __alt_tse_command_config {
unsigned int image;
struct {
unsigned int
transmit_enable:1, /* bit 0 */
receive_enable:1, /* bit 1 */
pause_frame_xon_gen:1, /* bit 2 */
ethernet_speed:1, /* bit 3 */
promiscuous_enable:1, /* bit 4 */
pad_enable:1, /* bit 5 */
crc_forward:1, /* bit 6 */
pause_frame_forward:1, /* bit 7 */
pause_frame_ignore:1, /* bit 8 */
set_mac_address_on_tx:1, /* bit 9 */
halfduplex_enable:1, /* bit 10 */
excessive_collision:1, /* bit 11 */
late_collision:1, /* bit 12 */
software_reset:1, /* bit 13 */
multicast_hash_mode_sel:1, /* bit 14 */
loopback_enable:1, /* bit 15 */
src_mac_addr_sel_on_tx:3, /* bit 18:16 */
magic_packet_detect:1, /* bit 19 */
sleep_mode_enable:1, /* bit 20 */
wake_up_request:1, /* bit 21 */
pause_frame_xoff_gen:1, /* bit 22 */
control_frame_enable:1, /* bit 23 */
payload_len_chk_disable:1, /* bit 24 */
enable_10mbps_intf:1, /* bit 25 */
rx_error_discard_enable:1, /* bit 26 */
reserved_bits:4, /* bit 30:27 */
self_clear_counter_reset:1; /* bit 31 */
} __packed_1_ bits;
} __packed_1_ alt_tse_command_config;
/* Tx_Cmd_Stat Register Bit Definitions */
typedef volatile union __alt_tse_tx_cmd_stat {
unsigned int image;
struct {
unsigned int reserved_lsbs:17, /* bit 16:0 */
omit_crc:1, /* bit 17 */
tx_shift16:1, /* bit 18 */
reserved_msbs:13; /* bit 31:19 */
} __packed_1_ bits;
} alt_tse_tx_cmd_stat;
/* Rx_Cmd_Stat Register Bit Definitions */
typedef volatile union __alt_tse_rx_cmd_stat {
unsigned int image;
struct {
unsigned int reserved_lsbs:25, /* bit 24:0 */
rx_shift16:1, /* bit 25 */
reserved_msbs:6; /* bit 31:26 */
} __packed_1_ bits;
} alt_tse_rx_cmd_stat;
struct alt_tse_mdio {
unsigned int control; /*PHY device operation control register */
unsigned int status; /*PHY device operation status register */
unsigned int phy_id1; /*Bits 31:16 of PHY identifier. */
unsigned int phy_id2; /*Bits 15:0 of PHY identifier. */
unsigned int auto_negotiation_advertisement;
unsigned int remote_partner_base_page_ability;
unsigned int reg6;
unsigned int reg7;
unsigned int reg8;
unsigned int reg9;
unsigned int rega;
unsigned int regb;
unsigned int regc;
unsigned int regd;
unsigned int rege;
unsigned int regf;
unsigned int reg10;
unsigned int reg11;
unsigned int reg12;
unsigned int reg13;
unsigned int reg14;
unsigned int reg15;
unsigned int reg16;
unsigned int reg17;
unsigned int reg18;
unsigned int reg19;
unsigned int reg1a;
unsigned int reg1b;
unsigned int reg1c;
unsigned int reg1d;
unsigned int reg1e;
unsigned int reg1f;
};
/* MAC register Space */
struct alt_tse_mac {
unsigned int megacore_revision;
unsigned int scratch_pad;
alt_tse_command_config command_config;
unsigned int mac_addr_0;
unsigned int mac_addr_1;
unsigned int max_frame_length;
unsigned int pause_quanta;
unsigned int rx_sel_empty_threshold;
unsigned int rx_sel_full_threshold;
unsigned int tx_sel_empty_threshold;
unsigned int tx_sel_full_threshold;
unsigned int rx_almost_empty_threshold;
unsigned int rx_almost_full_threshold;
unsigned int tx_almost_empty_threshold;
unsigned int tx_almost_full_threshold;
unsigned int mdio_phy0_addr;
unsigned int mdio_phy1_addr;
/* only if 100/1000 BaseX PCS, reserved otherwise */
unsigned int reservedx44[5];
unsigned int reg_read_access_status;
unsigned int min_tx_ipg_length;
/* IEEE 802.3 oEntity Managed Object Support */
unsigned int aMACID_1; /*The MAC addresses */
unsigned int aMACID_2;
unsigned int aFramesTransmittedOK;
unsigned int aFramesReceivedOK;
unsigned int aFramesCheckSequenceErrors;
unsigned int aAlignmentErrors;
unsigned int aOctetsTransmittedOK;
unsigned int aOctetsReceivedOK;
/* IEEE 802.3 oPausedEntity Managed Object Support */
unsigned int aTxPAUSEMACCtrlFrames;
unsigned int aRxPAUSEMACCtrlFrames;
/* IETF MIB (MIB-II) Object Support */
unsigned int ifInErrors;
unsigned int ifOutErrors;
unsigned int ifInUcastPkts;
unsigned int ifInMulticastPkts;
unsigned int ifInBroadcastPkts;
unsigned int ifOutDiscards;
unsigned int ifOutUcastPkts;
unsigned int ifOutMulticastPkts;
unsigned int ifOutBroadcastPkts;
/* IETF RMON MIB Object Support */
unsigned int etherStatsDropEvent;
unsigned int etherStatsOctets;
unsigned int etherStatsPkts;
unsigned int etherStatsUndersizePkts;
unsigned int etherStatsOversizePkts;
unsigned int etherStatsPkts64Octets;
unsigned int etherStatsPkts65to127Octets;
unsigned int etherStatsPkts128to255Octets;
unsigned int etherStatsPkts256to511Octets;
unsigned int etherStatsPkts512to1023Octets;
unsigned int etherStatsPkts1024to1518Octets;
unsigned int etherStatsPkts1519toXOctets;
unsigned int etherStatsJabbers;
unsigned int etherStatsFragments;
unsigned int reservedxE4;
/*FIFO control register. */
alt_tse_tx_cmd_stat tx_cmd_stat;
alt_tse_rx_cmd_stat rx_cmd_stat;
unsigned int ipaccTxConf;
unsigned int ipaccRxConf;
unsigned int ipaccRxStat;
unsigned int ipaccRxStatSum;
/*Multicast address resolution table */
unsigned int hash_table[64];
/*Registers 0 to 31 within PHY device 0/1 */
struct alt_tse_mdio mdio_phy0;
struct alt_tse_mdio mdio_phy1;
/*4 Supplemental MAC Addresses */
unsigned int supp_mac_addr_0_0;
unsigned int supp_mac_addr_0_1;
unsigned int supp_mac_addr_1_0;
unsigned int supp_mac_addr_1_1;
unsigned int supp_mac_addr_2_0;
unsigned int supp_mac_addr_2_1;
unsigned int supp_mac_addr_3_0;
unsigned int supp_mac_addr_3_1;
unsigned int reservedx320[56];
};
/* flags: TSE MII modes */
/* GMII/MII = 0 */
/* RGMII = 1 */
/* RGMII_ID = 2 */
/* RGMII_TXID = 3 */
/* RGMII_RXID = 4 */
/* SGMII = 5 */
struct altera_tse_priv {
char devname[16];
volatile struct alt_tse_mac *mac_dev;
volatile struct alt_sgdma_registers *sgdma_rx;
volatile struct alt_sgdma_registers *sgdma_tx;
unsigned int rx_sgdma_irq;
unsigned int tx_sgdma_irq;
unsigned int has_descriptor_mem;
unsigned int descriptor_mem_base;
unsigned int descriptor_mem_size;
volatile struct alt_sgdma_descriptor *rx_desc;
volatile struct alt_sgdma_descriptor *tx_desc;
volatile unsigned char *rx_buf;
struct phy_info *phyinfo;
unsigned int phyaddr;
unsigned int flags;
unsigned int link;
unsigned int duplexity;
unsigned int speed;
};
/* Phy stuff continued */
/*
* struct phy_cmd: A command for reading or writing a PHY register
*
* mii_reg: The register to read or write
*
* mii_data: For writes, the value to put in the register.
* A value of -1 indicates this is a read.
*
* funct: A function pointer which is invoked for each command.
* For reads, this function will be passed the value read
* from the PHY, and process it.
* For writes, the result of this function will be written
* to the PHY register
*/
struct phy_cmd {
uint mii_reg;
uint mii_data;
uint(*funct) (uint mii_reg, struct altera_tse_priv *priv);
};
#endif /* _ALTERA_TSE_H_ */

View File

@ -106,6 +106,7 @@ int bfin_EMAC_initialize(bd_t *bis)
dev->halt = bfin_EMAC_halt;
dev->send = bfin_EMAC_send;
dev->recv = bfin_EMAC_recv;
dev->write_hwaddr = bfin_EMAC_setup_addr;
eth_register(dev);
@ -303,6 +304,19 @@ static int bfin_miiphy_init(struct eth_device *dev, int *opmode)
return 0;
}
static int bfin_EMAC_setup_addr(struct eth_device *dev)
{
*pEMAC_ADDRLO =
dev->enetaddr[0] |
dev->enetaddr[1] << 8 |
dev->enetaddr[2] << 16 |
dev->enetaddr[3] << 24;
*pEMAC_ADDRHI =
dev->enetaddr[4] |
dev->enetaddr[5] << 8;
return 0;
}
static int bfin_EMAC_init(struct eth_device *dev, bd_t *bd)
{
u32 opmode;
@ -318,7 +332,7 @@ static int bfin_EMAC_init(struct eth_device *dev, bd_t *bd)
return -1;
/* Initialize EMAC address */
bfin_EMAC_setup_addr(dev->enetaddr);
bfin_EMAC_setup_addr(dev);
/* Initialize TX and RX buffer */
for (i = 0; i < PKTBUFSRX; i++) {
@ -376,18 +390,6 @@ static void bfin_EMAC_halt(struct eth_device *dev)
}
void bfin_EMAC_setup_addr(uchar *enetaddr)
{
*pEMAC_ADDRLO =
enetaddr[0] |
enetaddr[1] << 8 |
enetaddr[2] << 16 |
enetaddr[3] << 24;
*pEMAC_ADDRHI =
enetaddr[4] |
enetaddr[5] << 8;
}
ADI_ETHER_BUFFER *SetupRxBuffer(int no)
{
ADI_ETHER_FRAME_BUFFER *frmbuf;

View File

@ -60,7 +60,6 @@ static int bfin_EMAC_init(struct eth_device *dev, bd_t *bd);
static void bfin_EMAC_halt(struct eth_device *dev);
static int bfin_EMAC_send(struct eth_device *dev, volatile void *packet, int length);
static int bfin_EMAC_recv(struct eth_device *dev);
void bfin_EMAC_setup_addr(uchar *enetaddr);
static int bfin_EMAC_setup_addr(struct eth_device *dev);
#endif

View File

@ -117,12 +117,12 @@ static void DM9000_iow(int reg, u8 value);
/* DM9000 network board routine ---------------------------- */
#define DM9000_outb(d,r) ( *(volatile u8 *)r = d )
#define DM9000_outw(d,r) ( *(volatile u16 *)r = d )
#define DM9000_outl(d,r) ( *(volatile u32 *)r = d )
#define DM9000_inb(r) (*(volatile u8 *)r)
#define DM9000_inw(r) (*(volatile u16 *)r)
#define DM9000_inl(r) (*(volatile u32 *)r)
#define DM9000_outb(d,r) outb(d, r)
#define DM9000_outw(d,r) outw(d, r)
#define DM9000_outl(d,r) outl(d, r)
#define DM9000_inb(r) inb(r)
#define DM9000_inw(r) inw(r)
#define DM9000_inl(r) inl(r)
#ifdef CONFIG_DM9000_DEBUG
static void

511
drivers/net/ethoc.c Normal file
View File

@ -0,0 +1,511 @@
/*
* Opencore 10/100 ethernet mac driver
*
* Copyright (C) 2007-2008 Avionic Design Development GmbH
* Copyright (C) 2008-2009 Avionic Design GmbH
* Thierry Reding <thierry.reding@avionic-design.de>
* Copyright (C) 2010 Thomas Chou <thomas@wytron.com.tw>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <common.h>
#include <command.h>
#include <malloc.h>
#include <net.h>
#include <miiphy.h>
#include <asm/io.h>
#include <asm/cache.h>
/* register offsets */
#define MODER 0x00
#define INT_SOURCE 0x04
#define INT_MASK 0x08
#define IPGT 0x0c
#define IPGR1 0x10
#define IPGR2 0x14
#define PACKETLEN 0x18
#define COLLCONF 0x1c
#define TX_BD_NUM 0x20
#define CTRLMODER 0x24
#define MIIMODER 0x28
#define MIICOMMAND 0x2c
#define MIIADDRESS 0x30
#define MIITX_DATA 0x34
#define MIIRX_DATA 0x38
#define MIISTATUS 0x3c
#define MAC_ADDR0 0x40
#define MAC_ADDR1 0x44
#define ETH_HASH0 0x48
#define ETH_HASH1 0x4c
#define ETH_TXCTRL 0x50
/* mode register */
#define MODER_RXEN (1 << 0) /* receive enable */
#define MODER_TXEN (1 << 1) /* transmit enable */
#define MODER_NOPRE (1 << 2) /* no preamble */
#define MODER_BRO (1 << 3) /* broadcast address */
#define MODER_IAM (1 << 4) /* individual address mode */
#define MODER_PRO (1 << 5) /* promiscuous mode */
#define MODER_IFG (1 << 6) /* interframe gap for incoming frames */
#define MODER_LOOP (1 << 7) /* loopback */
#define MODER_NBO (1 << 8) /* no back-off */
#define MODER_EDE (1 << 9) /* excess defer enable */
#define MODER_FULLD (1 << 10) /* full duplex */
#define MODER_RESET (1 << 11) /* FIXME: reset (undocumented) */
#define MODER_DCRC (1 << 12) /* delayed CRC enable */
#define MODER_CRC (1 << 13) /* CRC enable */
#define MODER_HUGE (1 << 14) /* huge packets enable */
#define MODER_PAD (1 << 15) /* padding enabled */
#define MODER_RSM (1 << 16) /* receive small packets */
/* interrupt source and mask registers */
#define INT_MASK_TXF (1 << 0) /* transmit frame */
#define INT_MASK_TXE (1 << 1) /* transmit error */
#define INT_MASK_RXF (1 << 2) /* receive frame */
#define INT_MASK_RXE (1 << 3) /* receive error */
#define INT_MASK_BUSY (1 << 4)
#define INT_MASK_TXC (1 << 5) /* transmit control frame */
#define INT_MASK_RXC (1 << 6) /* receive control frame */
#define INT_MASK_TX (INT_MASK_TXF | INT_MASK_TXE)
#define INT_MASK_RX (INT_MASK_RXF | INT_MASK_RXE)
#define INT_MASK_ALL ( \
INT_MASK_TXF | INT_MASK_TXE | \
INT_MASK_RXF | INT_MASK_RXE | \
INT_MASK_TXC | INT_MASK_RXC | \
INT_MASK_BUSY \
)
/* packet length register */
#define PACKETLEN_MIN(min) (((min) & 0xffff) << 16)
#define PACKETLEN_MAX(max) (((max) & 0xffff) << 0)
#define PACKETLEN_MIN_MAX(min, max) (PACKETLEN_MIN(min) | \
PACKETLEN_MAX(max))
/* transmit buffer number register */
#define TX_BD_NUM_VAL(x) (((x) <= 0x80) ? (x) : 0x80)
/* control module mode register */
#define CTRLMODER_PASSALL (1 << 0) /* pass all receive frames */
#define CTRLMODER_RXFLOW (1 << 1) /* receive control flow */
#define CTRLMODER_TXFLOW (1 << 2) /* transmit control flow */
/* MII mode register */
#define MIIMODER_CLKDIV(x) ((x) & 0xfe) /* needs to be an even number */
#define MIIMODER_NOPRE (1 << 8) /* no preamble */
/* MII command register */
#define MIICOMMAND_SCAN (1 << 0) /* scan status */
#define MIICOMMAND_READ (1 << 1) /* read status */
#define MIICOMMAND_WRITE (1 << 2) /* write control data */
/* MII address register */
#define MIIADDRESS_FIAD(x) (((x) & 0x1f) << 0)
#define MIIADDRESS_RGAD(x) (((x) & 0x1f) << 8)
#define MIIADDRESS_ADDR(phy, reg) (MIIADDRESS_FIAD(phy) | \
MIIADDRESS_RGAD(reg))
/* MII transmit data register */
#define MIITX_DATA_VAL(x) ((x) & 0xffff)
/* MII receive data register */
#define MIIRX_DATA_VAL(x) ((x) & 0xffff)
/* MII status register */
#define MIISTATUS_LINKFAIL (1 << 0)
#define MIISTATUS_BUSY (1 << 1)
#define MIISTATUS_INVALID (1 << 2)
/* TX buffer descriptor */
#define TX_BD_CS (1 << 0) /* carrier sense lost */
#define TX_BD_DF (1 << 1) /* defer indication */
#define TX_BD_LC (1 << 2) /* late collision */
#define TX_BD_RL (1 << 3) /* retransmission limit */
#define TX_BD_RETRY_MASK (0x00f0)
#define TX_BD_RETRY(x) (((x) & 0x00f0) >> 4)
#define TX_BD_UR (1 << 8) /* transmitter underrun */
#define TX_BD_CRC (1 << 11) /* TX CRC enable */
#define TX_BD_PAD (1 << 12) /* pad enable */
#define TX_BD_WRAP (1 << 13)
#define TX_BD_IRQ (1 << 14) /* interrupt request enable */
#define TX_BD_READY (1 << 15) /* TX buffer ready */
#define TX_BD_LEN(x) (((x) & 0xffff) << 16)
#define TX_BD_LEN_MASK (0xffff << 16)
#define TX_BD_STATS (TX_BD_CS | TX_BD_DF | TX_BD_LC | \
TX_BD_RL | TX_BD_RETRY_MASK | TX_BD_UR)
/* RX buffer descriptor */
#define RX_BD_LC (1 << 0) /* late collision */
#define RX_BD_CRC (1 << 1) /* RX CRC error */
#define RX_BD_SF (1 << 2) /* short frame */
#define RX_BD_TL (1 << 3) /* too long */
#define RX_BD_DN (1 << 4) /* dribble nibble */
#define RX_BD_IS (1 << 5) /* invalid symbol */
#define RX_BD_OR (1 << 6) /* receiver overrun */
#define RX_BD_MISS (1 << 7)
#define RX_BD_CF (1 << 8) /* control frame */
#define RX_BD_WRAP (1 << 13)
#define RX_BD_IRQ (1 << 14) /* interrupt request enable */
#define RX_BD_EMPTY (1 << 15)
#define RX_BD_LEN(x) (((x) & 0xffff) << 16)
#define RX_BD_STATS (RX_BD_LC | RX_BD_CRC | RX_BD_SF | RX_BD_TL | \
RX_BD_DN | RX_BD_IS | RX_BD_OR | RX_BD_MISS)
#define ETHOC_BUFSIZ 1536
#define ETHOC_ZLEN 64
#define ETHOC_BD_BASE 0x400
#define ETHOC_TIMEOUT (HZ / 2)
#define ETHOC_MII_TIMEOUT (1 + (HZ / 5))
/**
* struct ethoc - driver-private device structure
* @num_tx: number of send buffers
* @cur_tx: last send buffer written
* @dty_tx: last buffer actually sent
* @num_rx: number of receive buffers
* @cur_rx: current receive buffer
*/
struct ethoc {
u32 num_tx;
u32 cur_tx;
u32 dty_tx;
u32 num_rx;
u32 cur_rx;
};
/**
* struct ethoc_bd - buffer descriptor
* @stat: buffer statistics
* @addr: physical memory address
*/
struct ethoc_bd {
u32 stat;
u32 addr;
};
static inline u32 ethoc_read(struct eth_device *dev, loff_t offset)
{
return readl(dev->iobase + offset);
}
static inline void ethoc_write(struct eth_device *dev, loff_t offset, u32 data)
{
writel(data, dev->iobase + offset);
}
static inline void ethoc_read_bd(struct eth_device *dev, int index,
struct ethoc_bd *bd)
{
loff_t offset = ETHOC_BD_BASE + (index * sizeof(struct ethoc_bd));
bd->stat = ethoc_read(dev, offset + 0);
bd->addr = ethoc_read(dev, offset + 4);
}
static inline void ethoc_write_bd(struct eth_device *dev, int index,
const struct ethoc_bd *bd)
{
loff_t offset = ETHOC_BD_BASE + (index * sizeof(struct ethoc_bd));
ethoc_write(dev, offset + 0, bd->stat);
ethoc_write(dev, offset + 4, bd->addr);
}
static int ethoc_set_mac_address(struct eth_device *dev)
{
u8 *mac = dev->enetaddr;
ethoc_write(dev, MAC_ADDR0, (mac[2] << 24) | (mac[3] << 16) |
(mac[4] << 8) | (mac[5] << 0));
ethoc_write(dev, MAC_ADDR1, (mac[0] << 8) | (mac[1] << 0));
return 0;
}
static inline void ethoc_ack_irq(struct eth_device *dev, u32 mask)
{
ethoc_write(dev, INT_SOURCE, mask);
}
static inline void ethoc_enable_rx_and_tx(struct eth_device *dev)
{
u32 mode = ethoc_read(dev, MODER);
mode |= MODER_RXEN | MODER_TXEN;
ethoc_write(dev, MODER, mode);
}
static inline void ethoc_disable_rx_and_tx(struct eth_device *dev)
{
u32 mode = ethoc_read(dev, MODER);
mode &= ~(MODER_RXEN | MODER_TXEN);
ethoc_write(dev, MODER, mode);
}
static int ethoc_init_ring(struct eth_device *dev)
{
struct ethoc *priv = (struct ethoc *)dev->priv;
struct ethoc_bd bd;
int i;
priv->cur_tx = 0;
priv->dty_tx = 0;
priv->cur_rx = 0;
/* setup transmission buffers */
bd.stat = TX_BD_IRQ | TX_BD_CRC;
for (i = 0; i < priv->num_tx; i++) {
if (i == priv->num_tx - 1)
bd.stat |= TX_BD_WRAP;
ethoc_write_bd(dev, i, &bd);
}
bd.stat = RX_BD_EMPTY | RX_BD_IRQ;
for (i = 0; i < priv->num_rx; i++) {
bd.addr = (u32)NetRxPackets[i];
if (i == priv->num_rx - 1)
bd.stat |= RX_BD_WRAP;
flush_dcache(bd.addr, PKTSIZE_ALIGN);
ethoc_write_bd(dev, priv->num_tx + i, &bd);
}
return 0;
}
static int ethoc_reset(struct eth_device *dev)
{
u32 mode;
/* TODO: reset controller? */
ethoc_disable_rx_and_tx(dev);
/* TODO: setup registers */
/* enable FCS generation and automatic padding */
mode = ethoc_read(dev, MODER);
mode |= MODER_CRC | MODER_PAD;
ethoc_write(dev, MODER, mode);
/* set full-duplex mode */
mode = ethoc_read(dev, MODER);
mode |= MODER_FULLD;
ethoc_write(dev, MODER, mode);
ethoc_write(dev, IPGT, 0x15);
ethoc_ack_irq(dev, INT_MASK_ALL);
ethoc_enable_rx_and_tx(dev);
return 0;
}
static int ethoc_init(struct eth_device *dev, bd_t * bd)
{
struct ethoc *priv = (struct ethoc *)dev->priv;
printf("ethoc\n");
priv->num_tx = 1;
priv->num_rx = PKTBUFSRX;
ethoc_write(dev, TX_BD_NUM, priv->num_tx);
ethoc_init_ring(dev);
ethoc_reset(dev);
return 0;
}
static int ethoc_update_rx_stats(struct ethoc_bd *bd)
{
int ret = 0;
if (bd->stat & RX_BD_TL) {
debug("ETHOC: " "RX: frame too long\n");
ret++;
}
if (bd->stat & RX_BD_SF) {
debug("ETHOC: " "RX: frame too short\n");
ret++;
}
if (bd->stat & RX_BD_DN)
debug("ETHOC: " "RX: dribble nibble\n");
if (bd->stat & RX_BD_CRC) {
debug("ETHOC: " "RX: wrong CRC\n");
ret++;
}
if (bd->stat & RX_BD_OR) {
debug("ETHOC: " "RX: overrun\n");
ret++;
}
if (bd->stat & RX_BD_LC) {
debug("ETHOC: " "RX: late collision\n");
ret++;
}
return ret;
}
static int ethoc_rx(struct eth_device *dev, int limit)
{
struct ethoc *priv = (struct ethoc *)dev->priv;
int count;
for (count = 0; count < limit; ++count) {
u32 entry;
struct ethoc_bd bd;
entry = priv->num_tx + (priv->cur_rx % priv->num_rx);
ethoc_read_bd(dev, entry, &bd);
if (bd.stat & RX_BD_EMPTY)
break;
debug("%s(): RX buffer %d, %x received\n",
__func__, priv->cur_rx, bd.stat);
if (ethoc_update_rx_stats(&bd) == 0) {
int size = bd.stat >> 16;
size -= 4; /* strip the CRC */
NetReceive((void *)bd.addr, size);
}
/* clear the buffer descriptor so it can be reused */
flush_dcache(bd.addr, PKTSIZE_ALIGN);
bd.stat &= ~RX_BD_STATS;
bd.stat |= RX_BD_EMPTY;
ethoc_write_bd(dev, entry, &bd);
priv->cur_rx++;
}
return count;
}
static int ethoc_update_tx_stats(struct ethoc_bd *bd)
{
if (bd->stat & TX_BD_LC)
debug("ETHOC: " "TX: late collision\n");
if (bd->stat & TX_BD_RL)
debug("ETHOC: " "TX: retransmit limit\n");
if (bd->stat & TX_BD_UR)
debug("ETHOC: " "TX: underrun\n");
if (bd->stat & TX_BD_CS)
debug("ETHOC: " "TX: carrier sense lost\n");
return 0;
}
static void ethoc_tx(struct eth_device *dev)
{
struct ethoc *priv = (struct ethoc *)dev->priv;
u32 entry = priv->dty_tx % priv->num_tx;
struct ethoc_bd bd;
ethoc_read_bd(dev, entry, &bd);
if ((bd.stat & TX_BD_READY) == 0)
(void)ethoc_update_tx_stats(&bd);
}
static int ethoc_send(struct eth_device *dev, volatile void *packet, int length)
{
struct ethoc *priv = (struct ethoc *)dev->priv;
struct ethoc_bd bd;
u32 entry;
u32 pending;
int tmo;
entry = priv->cur_tx % priv->num_tx;
ethoc_read_bd(dev, entry, &bd);
if (unlikely(length < ETHOC_ZLEN))
bd.stat |= TX_BD_PAD;
else
bd.stat &= ~TX_BD_PAD;
bd.addr = (u32)packet;
flush_dcache(bd.addr, length);
bd.stat &= ~(TX_BD_STATS | TX_BD_LEN_MASK);
bd.stat |= TX_BD_LEN(length);
ethoc_write_bd(dev, entry, &bd);
/* start transmit */
bd.stat |= TX_BD_READY;
ethoc_write_bd(dev, entry, &bd);
/* wait for transfer to succeed */
tmo = get_timer(0) + 5 * CONFIG_SYS_HZ;
while (1) {
pending = ethoc_read(dev, INT_SOURCE);
ethoc_ack_irq(dev, pending & ~INT_MASK_RX);
if (pending & INT_MASK_BUSY)
debug("%s(): packet dropped\n", __func__);
if (pending & INT_MASK_TX) {
ethoc_tx(dev);
break;
}
if (get_timer(0) >= tmo) {
debug("%s(): timed out\n", __func__);
return -1;
}
}
debug("%s(): packet sent\n", __func__);
return 0;
}
static void ethoc_halt(struct eth_device *dev)
{
ethoc_disable_rx_and_tx(dev);
}
static int ethoc_recv(struct eth_device *dev)
{
u32 pending;
pending = ethoc_read(dev, INT_SOURCE);
ethoc_ack_irq(dev, pending);
if (pending & INT_MASK_BUSY)
debug("%s(): packet dropped\n", __func__);
if (pending & INT_MASK_RX) {
debug("%s(): rx irq\n", __func__);
ethoc_rx(dev, PKTBUFSRX);
}
return 0;
}
int ethoc_initialize(u8 dev_num, int base_addr)
{
struct ethoc *priv;
struct eth_device *dev;
priv = malloc(sizeof(*priv));
if (!priv)
return 0;
dev = malloc(sizeof(*dev));
if (!dev) {
free(priv);
return 0;
}
memset(dev, 0, sizeof(*dev));
dev->priv = priv;
dev->iobase = base_addr;
dev->init = ethoc_init;
dev->halt = ethoc_halt;
dev->send = ethoc_send;
dev->recv = ethoc_recv;
dev->write_hwaddr = ethoc_set_mac_address;
sprintf(dev->name, "%s-%hu", "ETHOC", dev_num);
eth_register(dev);
return 1;
}

View File

@ -314,9 +314,9 @@ static int fec_get_hwaddr(struct eth_device *dev, unsigned char *mac)
{
/*
* The MX27 can store the mac address in internal eeprom
* This mechanism is not supported now by MX51
* This mechanism is not supported now by MX51 or MX25
*/
#ifdef CONFIG_MX51
#if defined(CONFIG_MX51) || defined(CONFIG_MX25)
return -1;
#else
struct iim_regs *iim = (struct iim_regs *)IMX_IIM_BASE;
@ -325,7 +325,7 @@ static int fec_get_hwaddr(struct eth_device *dev, unsigned char *mac)
for (i = 0; i < 6; i++)
mac[6-1-i] = readl(&iim->iim_bank_area0[IIM0_MAC + i]);
return is_valid_ether_addr(mac);
return !is_valid_ether_addr(mac);
#endif
}
@ -505,7 +505,6 @@ static int fec_init(struct eth_device *dev, bd_t* bd)
miiphy_restart_aneg(dev);
fec_open(dev);
fec_set_hwaddr(dev);
return 0;
}
@ -713,6 +712,7 @@ static int fec_probe(bd_t *bd)
edev->send = fec_send;
edev->recv = fec_recv;
edev->halt = fec_halt;
edev->write_hwaddr = fec_set_hwaddr;
fec->eth = (struct ethernet_regs *)IMX_FEC_BASE;
fec->bd = bd;

View File

@ -424,8 +424,6 @@ static int kwgbe_init(struct eth_device *dev)
KWGBEREG_WR(regs->pxc, PRT_CFG_VAL);
KWGBEREG_WR(regs->pxcx, PORT_CFG_EXTEND_VALUE);
KWGBEREG_WR(regs->psc0, PORT_SERIAL_CONTROL_VALUE);
/* Disable port initially */
KWGBEREG_BITS_SET(regs->psc0, KWGBE_SERIAL_PORT_EN);
/* Assign port SDMA configuration */
KWGBEREG_WR(regs->sdc, PORT_SDMA_CFG_VALUE);
@ -438,6 +436,9 @@ static int kwgbe_init(struct eth_device *dev)
KWGBEREG_WR(regs->psc0, KWGBE_MAX_RX_PACKET_9700BYTE
| (KWGBEREG_RD(regs->psc0) & MRU_MASK));
/* Enable port initially */
KWGBEREG_BITS_SET(regs->psc0, KWGBE_SERIAL_PORT_EN);
/*
* Set ethernet MTU for leaky bucket mechanism to 0 - this will
* disable the leaky bucket mechanism .
@ -445,7 +446,7 @@ static int kwgbe_init(struct eth_device *dev)
KWGBEREG_WR(regs->pmtu, 0);
/* Assignment of Rx CRDB of given RXUQ */
KWGBEREG_WR(regs->rxcdp[RXUQ].rxcdp, (u32) dkwgbe->p_rxdesc_curr);
KWGBEREG_WR(regs->rxcdp[RXUQ], (u32) dkwgbe->p_rxdesc_curr);
/* Enable port Rx. */
KWGBEREG_WR(regs->rqc, (1 << RXUQ));
@ -480,7 +481,7 @@ static int kwgbe_halt(struct eth_device *dev)
stop_queue(&regs->tqc);
stop_queue(&regs->rqc);
/* Enable port */
/* Disable port */
KWGBEREG_BITS_RESET(regs->psc0, KWGBE_SERIAL_PORT_EN);
/* Set port is not reset */
KWGBEREG_BITS_RESET(regs->psc1, 1 << 4);
@ -497,6 +498,16 @@ static int kwgbe_halt(struct eth_device *dev)
return 0;
}
static int kwgbe_write_hwaddr(struct eth_device *dev)
{
struct kwgbe_device *dkwgbe = to_dkwgbe(dev);
struct kwgbe_registers *regs = dkwgbe->regs;
/* Programs net device MAC address after initialization */
port_uc_addr_set(regs, dkwgbe->dev.enetaddr);
return 0;
}
static int kwgbe_send(struct eth_device *dev, volatile void *dataptr,
int datasize)
{
@ -525,7 +536,7 @@ static int kwgbe_send(struct eth_device *dev, volatile void *dataptr,
p_txdesc->buf_ptr = (u8 *) p;
p_txdesc->byte_cnt = datasize;
/* Apply send command using zeroth RXUQ */
/* Apply send command using zeroth TXUQ */
KWGBEREG_WR(regs->tcqdp[TXUQ], (u32) p_txdesc);
KWGBEREG_WR(regs->tqc, (1 << TXUQ));
@ -606,7 +617,7 @@ static int kwgbe_recv(struct eth_device *dev)
p_rxdesc_curr->buf_size = PKTSIZE_ALIGN;
p_rxdesc_curr->byte_cnt = 0;
writel((unsigned)p_rxdesc_curr->nxtdesc_p, &dkwgbe->p_rxdesc_curr);
writel((unsigned)p_rxdesc_curr->nxtdesc_p, (u32) &dkwgbe->p_rxdesc_curr);
return 0;
}
@ -693,6 +704,7 @@ int kirkwood_egiga_initialize(bd_t * bis)
dev->halt = (void *)kwgbe_halt;
dev->send = (void *)kwgbe_send;
dev->recv = (void *)kwgbe_recv;
dev->write_hwaddr = (void *)kwgbe_write_hwaddr;
eth_register(dev);

View File

@ -418,7 +418,7 @@ struct kwgbe_registers {
u32 pmtbs;
u8 pad14[0x60c - 0x4ec - 4];
struct kwgbe_rxcdp rxcdp[7];
u32 rxcdp7;
struct kwgbe_rxdesc *rxcdp7;
u32 rqc;
struct kwgbe_txdesc *tcsdp;
u8 pad15[0x6c0 - 0x684 - 4];

View File

@ -175,39 +175,40 @@ int mii_discover_phy(struct eth_device *dev)
#ifdef ET_DEBUG
printf("PHY type 0x%x pass %d type\n", phytype, pass);
#endif
if (phytype != 0xffff) {
phyaddr = phyno;
phytype <<= 16;
phytype |=
mii_send(mk_mii_read(phyno, PHY_PHYIDR2));
if (phytype == 0xffff)
continue;
phyaddr = phyno;
phytype <<= 16;
phytype |=
mii_send(mk_mii_read(phyno, PHY_PHYIDR2));
#ifdef ET_DEBUG
printf("PHY @ 0x%x pass %d\n", phyno, pass);
printf("PHY @ 0x%x pass %d\n", phyno, pass);
#endif
for (i = 0; i < (sizeof(phyinfo) / sizeof(phy_info_t)); i++) {
if (phyinfo[i].phyid == phytype) {
for (i = 0; (i < (sizeof(phyinfo) / sizeof(phy_info_t)))
&& (phyinfo[i].phyid != 0); i++) {
if (phyinfo[i].phyid == phytype) {
#ifdef ET_DEBUG
printf("phyid %x - %s\n",
phyinfo[i].phyid,
phyinfo[i].strid);
printf("phyid %x - %s\n",
phyinfo[i].phyid,
phyinfo[i].strid);
#endif
strcpy(info->phy_name, phyinfo[i].strid);
info->phyname_init = 1;
found = 1;
break;
}
}
if (!found) {
#ifdef ET_DEBUG
printf("0x%08x\n", phytype);
#endif
strcpy(info->phy_name, "unknown");
strcpy(info->phy_name, phyinfo[i].strid);
info->phyname_init = 1;
found = 1;
break;
}
}
if (!found) {
#ifdef ET_DEBUG
printf("0x%08x\n", phytype);
#endif
strcpy(info->phy_name, "unknown");
info->phyname_init = 1;
break;
}
}
}

View File

@ -1,5 +1,5 @@
/*
* (C) Copyright 2003-2009
* (C) Copyright 2003-2010
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*
* Derived from the MPC8xx FEC driver.
@ -25,10 +25,6 @@ DECLARE_GLOBAL_DATA_PTR;
#error "CONFIG_MII has to be defined!"
#endif
#if (DEBUG & 0x40)
static u32 local_crc32(char *string, unsigned int crc_value, int len);
#endif
int fec512x_miiphy_read(char *devname, u8 phyAddr, u8 regAddr, u16 * retVal);
int fec512x_miiphy_write(char *devname, u8 phyAddr, u8 regAddr, u16 data);
int mpc512x_fec_init_phy(struct eth_device *dev, bd_t * bis);
@ -164,7 +160,7 @@ static void mpc512x_fec_tbd_scrub (mpc512x_fec_priv *fec)
}
/********************************************************************/
static void mpc512x_fec_set_hwaddr (mpc512x_fec_priv *fec, char *mac)
static void mpc512x_fec_set_hwaddr (mpc512x_fec_priv *fec, unsigned char *mac)
{
u8 currByte; /* byte for which to compute the CRC */
int byte; /* loop - counter */
@ -230,6 +226,12 @@ static int mpc512x_fec_init (struct eth_device *dev, bd_t * bis)
printf ("mpc512x_fec_init... Begin\n");
#endif
mpc512x_fec_set_hwaddr (fec, dev->enetaddr);
out_be32(&fec->eth->gaddr1, 0x00000000);
out_be32(&fec->eth->gaddr2, 0x00000000);
mpc512x_fec_init_phy (dev, bis);
/* Set interrupt mask register */
out_be32(&fec->eth->imask, 0x00000000);
@ -615,8 +617,6 @@ int mpc512x_fec_initialize (bd_t * bis)
volatile immap_t *im = (immap_t *) CONFIG_SYS_IMMR;
mpc512x_fec_priv *fec;
struct eth_device *dev;
int i;
char *tmp, *end, env_enetaddr[6];
void * bd;
fec = (mpc512x_fec_priv *) malloc (sizeof(*fec));
@ -667,25 +667,6 @@ int mpc512x_fec_initialize (bd_t * bis)
*/
out_be32(&fec->eth->ievent, 0xffffffff);
/*
* Try to set the mac address now. The fec mac address is
* a garbage after reset. When not using fec for booting
* the Linux fec driver will try to work with this garbage.
*/
tmp = getenv ("ethaddr");
if (tmp) {
for (i=0; i<6; i++) {
env_enetaddr[i] = tmp ? simple_strtoul (tmp, &end, 16) : 0;
if (tmp)
tmp = (*end) ? end+1 : end;
}
mpc512x_fec_set_hwaddr (fec, env_enetaddr);
out_be32(&fec->eth->gaddr1, 0x00000000);
out_be32(&fec->eth->gaddr2, 0x00000000);
}
mpc512x_fec_init_phy (dev, bis);
return 1;
}
@ -775,39 +756,4 @@ int fec512x_miiphy_write (char *devname, u8 phyAddr, u8 regAddr, u16 data)
return 0;
}
#if (DEBUG & 0x40)
static u32 local_crc32 (char *string, unsigned int crc_value, int len)
{
int i;
char c;
unsigned int crc, count;
/*
* crc32 algorithm
*/
/*
* crc = 0xffffffff; * The initialized value should be 0xffffffff
*/
crc = crc_value;
for (i = len; --i >= 0;) {
c = *string++;
for (count = 0; count < 8; count++) {
if ((c & 0x01) ^ (crc & 0x01)) {
crc >>= 1;
crc = crc ^ 0xedb88320;
} else {
crc >>= 1;
}
c >>= 1;
}
}
/*
* In big endian system, do byte swaping for crc value
*/
/**/ return crc;
}
#endif /* DEBUG */
#endif /* CONFIG_MPC512x_FEC */

View File

@ -1,5 +1,5 @@
/*
* (C) Copyright 2003-2005
* (C) Copyright 2003-2010
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*
* This file is based on mpc4200fec.c,
@ -28,10 +28,6 @@ static void tfifo_print(char *devname, mpc5xxx_fec_priv *fec);
static void rfifo_print(char *devname, mpc5xxx_fec_priv *fec);
#endif /* DEBUG */
#if (DEBUG & 0x40)
static uint32 local_crc32(char *string, unsigned int crc_value, int len);
#endif
typedef struct {
uint8 data[1500]; /* actual data */
int length; /* actual length */
@ -1019,38 +1015,3 @@ int fec5xxx_miiphy_write(char *devname, uint8 phyAddr, uint8 regAddr, uint16 dat
return 0;
}
#if (DEBUG & 0x40)
static uint32 local_crc32(char *string, unsigned int crc_value, int len)
{
int i;
char c;
unsigned int crc, count;
/*
* crc32 algorithm
*/
/*
* crc = 0xffffffff; * The initialized value should be 0xffffffff
*/
crc = crc_value;
for (i = len; --i >= 0;) {
c = *string++;
for (count = 0; count < 8; count++) {
if ((c & 0x01) ^ (crc & 0x01)) {
crc >>= 1;
crc = crc ^ 0xedb88320;
} else {
crc >>= 1;
}
c >>= 1;
}
}
/*
* In big endian system, do byte swaping for crc value
*/
/**/ return crc;
}
#endif /* DEBUG */

View File

@ -220,7 +220,7 @@ static int smc911x_rx(struct eth_device *dev)
smc911x_reg_write(dev, RX_CFG, 0);
tmplen = (pktlen + 2+ 3) / 4;
tmplen = (pktlen + 3) / 4;
while (tmplen--)
*data++ = pkt_data_pull(dev, RX_DATA_FIFO);

View File

@ -1082,7 +1082,8 @@ static void tsec_halt(struct eth_device *dev)
regs->dmactrl &= ~(DMACTRL_GRS | DMACTRL_GTS);
regs->dmactrl |= (DMACTRL_GRS | DMACTRL_GTS);
while (!(regs->ievent & (IEVENT_GRSC | IEVENT_GTSC))) ;
while ((regs->ievent & (IEVENT_GRSC | IEVENT_GTSC))
!= (IEVENT_GRSC | IEVENT_GTSC)) ;
regs->maccfg1 &= ~(MACCFG1_TX_EN | MACCFG1_RX_EN);

View File

@ -595,8 +595,7 @@ static void phy_change(struct eth_device *dev)
adjust_link(dev);
}
#if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
&& !defined(BITBANGMII)
#if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
/*
* Find a device index from the devlist by name
@ -1388,8 +1387,7 @@ int uec_initialize(bd_t *bis, uec_info_t *uec_info)
return err;
}
#if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
&& !defined(BITBANGMII)
#if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
miiphy_register(dev->name, uec_miiphy_read, uec_miiphy_write);
#endif

View File

@ -93,6 +93,27 @@ static const struct fixed_phy_port fixed_phy_port[] = {
CONFIG_SYS_FIXED_PHY_PORTS /* defined in board configuration file */
};
/*--------------------------------------------------------------------+
* BitBang MII support for ethernet ports
*
* Based from MPC8560ADS implementation
*--------------------------------------------------------------------*/
/*
* Example board header file to define bitbang ethernet ports:
*
* #define CONFIG_SYS_BITBANG_PHY_PORT(name) name,
* #define CONFIG_SYS_BITBANG_PHY_PORTS CONFIG_SYS_BITBANG_PHY_PORT("FSL UEC0")
*/
#ifndef CONFIG_SYS_BITBANG_PHY_PORTS
#define CONFIG_SYS_BITBANG_PHY_PORTS /* default is an empty array */
#endif
#if defined(CONFIG_BITBANGMII)
static const char *bitbang_phy_port[] = {
CONFIG_SYS_BITBANG_PHY_PORTS /* defined in board configuration file */
};
#endif /* CONFIG_BITBANGMII */
static void config_genmii_advert (struct uec_mii_info *mii_info);
static void genmii_setup_forced (struct uec_mii_info *mii_info);
static void genmii_restart_aneg (struct uec_mii_info *mii_info);
@ -113,6 +134,19 @@ void uec_write_phy_reg (struct eth_device *dev, int mii_id, int regnum, int valu
enet_tbi_mii_reg_e mii_reg = (enet_tbi_mii_reg_e) regnum;
u32 tmp_reg;
#if defined(CONFIG_BITBANGMII)
u32 i = 0;
for (i = 0; i < ARRAY_SIZE(bitbang_phy_port); i++) {
if (strncmp(dev->name, bitbang_phy_port[i],
sizeof(dev->name)) == 0) {
(void)bb_miiphy_write(NULL, mii_id, regnum, value);
return;
}
}
#endif /* CONFIG_BITBANGMII */
ug_regs = ugeth->uec_mii_regs;
/* Stop the MII management read cycle */
@ -140,6 +174,19 @@ int uec_read_phy_reg (struct eth_device *dev, int mii_id, int regnum)
u32 tmp_reg;
u16 value;
#if defined(CONFIG_BITBANGMII)
u32 i = 0;
for (i = 0; i < ARRAY_SIZE(bitbang_phy_port); i++) {
if (strncmp(dev->name, bitbang_phy_port[i],
sizeof(dev->name)) == 0) {
(void)bb_miiphy_read(NULL, mii_id, regnum, &value);
return (value);
}
}
#endif /* CONFIG_BITBANGMII */
ug_regs = ugeth->uec_mii_regs;
/* Setting up the MII Mangement Address Register */

View File

@ -105,6 +105,7 @@ struct eth_device {
#ifdef CONFIG_MCAST_TFTP
int (*mcast) (struct eth_device*, u32 ip, u8 set);
#endif
int (*write_hwaddr) (struct eth_device*);
struct eth_device *next;
void *priv;
};

View File

@ -41,6 +41,8 @@ int board_eth_init(bd_t *bis);
int cpu_eth_init(bd_t *bis);
/* Driver initialization prototypes */
int altera_tse_initialize(u8 dev_num, int mac_base,
int sgdma_rx_base, int sgdma_tx_base);
int au1x00_enet_initialize(bd_t*);
int at91emac_register(bd_t *bis, unsigned long iobase);
int bfin_EMAC_initialize(bd_t *bis);
@ -51,6 +53,7 @@ int dnet_eth_initialize(int id, void *regs, unsigned int phy_addr);
int e1000_initialize(bd_t *bis);
int eepro100_initialize(bd_t *bis);
int ep93xx_eth_initialize(u8 dev_num, int base_addr);
int ethoc_initialize(u8 dev_num, int base_addr);
int eth_3com_initialize (bd_t * bis);
int fec_initialize (bd_t *bis);
int fecmxc_initialize (bd_t *bis);

View File

@ -1,5 +1,5 @@
/*
* (C) Copyright 2001-2004
* (C) Copyright 2001-2010
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*
* See file CREDITS for list of people who contributed to this
@ -60,6 +60,14 @@ int eth_getenv_enetaddr_by_index(int index, uchar *enetaddr)
return eth_getenv_enetaddr(enetvar, enetaddr);
}
static int eth_mac_skip(int index)
{
char enetvar[15];
char *skip_state;
sprintf(enetvar, index ? "eth%dmacskip" : "ethmacskip", index);
return ((skip_state = getenv(enetvar)) != NULL);
}
#ifdef CONFIG_NET_MULTI
/*
@ -173,7 +181,8 @@ int eth_register(struct eth_device* dev)
}
#endif
} else {
for (d=eth_devices; d->next!=eth_devices; d=d->next);
for (d=eth_devices; d->next!=eth_devices; d=d->next)
;
d->next = dev;
}
@ -241,6 +250,11 @@ int eth_initialize(bd_t *bis)
memcpy(dev->enetaddr, env_enetaddr, 6);
}
if (dev->write_hwaddr &&
!eth_mac_skip(eth_number) &&
is_valid_ether_addr(dev->enetaddr)) {
dev->write_hwaddr(dev);
}
eth_number++;
dev = dev->next;

View File

@ -1872,11 +1872,13 @@ void copy_filename (char *dst, char *src, int size)
#if defined(CONFIG_CMD_NFS) || defined(CONFIG_CMD_SNTP) || defined(CONFIG_CMD_DNS)
/*
* make port a little random, but use something trivial to compute
* make port a little random (1024-17407)
* This keeps the math somewhat trivial to compute, and seems to work with
* all supported protocols/clients/servers
*/
unsigned int random_port(void)
{
return 1024 + (get_timer(0) % 0x8000);;
return 1024 + (get_timer(0) % 0x4000);
}
#endif