* Patch by Martin Krause, 11 Sep 2003:

add burn-in tests for TRAB board

* Enable instruction cache on MPC5200 board
This commit is contained in:
wdenk 2003-09-11 23:06:34 +00:00
parent a43278a43d
commit 4f7cb08ee7
15 changed files with 1878 additions and 7 deletions

View File

@ -2,6 +2,11 @@
Changes for U-Boot 1.0.0:
======================================================================
* Patch by Martin Krause, 11 Sep 2003:
add burn-in tests for TRAB board
* Enable instruction cache on MPC5200 board
* Patch by Denis Peter, 11 Sep 2003:
- fix USB data pointer assignment for bulk only transfer.
- prevent to display erased directories in FAT filesystem.

View File

@ -117,6 +117,8 @@ LIBS += drivers/sk98lin/libsk98lin.a
LIBS += post/libpost.a post/cpu/libcpu.a
LIBS += common/libcommon.a
LIBS += lib_generic/libgeneric.a
# Add GCC lib
PLATFORM_LIBS += -L $(shell dirname `$(CC) -print-libgcc-file-name`) -lgcc
#########################################################################
#########################################################################

View File

@ -25,7 +25,7 @@ include $(TOPDIR)/config.mk
LIB = lib$(BOARD).a
OBJS := trab.o flash.o vfd.o
OBJS := trab.o flash.o vfd.o cmd_trab.o memory.o tsc2000.o
SOBJS := memsetup.o
$(LIB): $(OBJS) $(SOBJS)

View File

@ -0,0 +1,71 @@
/*
* Data file for tsc2000 driver.
* Copyright (C) 2002, 2003 DENX Software Engineering, Wolfgang Denk, wd@denx.de
*/
#ifndef _PT1000_TEMP_DATA_H
#define _PT1000_TEMP_DATA_H
long Pt1000_temp_table[][2] = {
/* For quick range checking the largest element
* is placed at index 0.
* U, nV T, C*100
*/
{ 44000000 , 12165 },
{ -10000000 , -2644 },
{ -9000000 , -2381 },
{ -8000000 , -2118 },
{ -7000000 , -1855 },
{ -6000000 , -1591 },
{ -5000000 , -1327 },
{ -4000000 , -1063 },
{ -3000000 , -798 },
{ -2000000 , -532 },
{ -1000000 , -266 },
{ 0 , 000 },
{ 1000000 , 267 },
{ 2000000 , 534 },
{ 3000000 , 802 },
{ 4000000 , 1070 },
{ 5000000 , 1338 },
{ 6000000 , 1607 },
{ 7000000 , 1876 },
{ 8000000 , 2146 },
{ 9000000 , 2416 },
{ 10000000 , 2687 },
{ 11000000 , 2958 },
{ 12000000 , 3230 },
{ 13000000 , 3502 },
{ 14000000 , 3774 },
{ 15000000 , 4047 },
{ 16000000 , 4321 },
{ 17000000 , 4595 },
{ 18000000 , 4869 },
{ 19000000 , 5144 },
{ 20000000 , 5419 },
{ 21000000 , 5694 },
{ 22000000 , 5971 },
{ 23000000 , 6247 },
{ 24000000 , 6524 },
{ 25000000 , 6802 },
{ 26000000 , 7080 },
{ 27000000 , 7358 },
{ 28000000 , 7637 },
{ 29000000 , 7916 },
{ 30000000 , 8196 },
{ 31000000 , 8476 },
{ 32000000 , 8757 },
{ 33000000 , 9039 },
{ 34000000 , 9320 },
{ 35000000 , 9602 },
{ 36000000 , 9885 },
{ 37000000 , 10168 },
{ 38000000 , 10452 },
{ 39000000 , 10736 },
{ 40000000 , 11021 },
{ 41000000 , 11306 },
{ 42000000 , 11592 },
{ 43000000 , 11879 },
{ 44000000 , 12165 },
};
#endif /* _PT1000_TEMP_DATA_H */

821
board/trab/cmd_trab.c Normal file
View File

@ -0,0 +1,821 @@
/*
* (C) Copyright 2003
* Martin Krause, TQ-Systems GmbH, martin.krause@tqs.de.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <command.h>
#include <s3c2400.h>
/*
* TRAB board specific commands. Especially commands for burn-in and function
* test.
*/
#if (CONFIG_COMMANDS & CFG_CMD_BSP)
/* limits for valid range of VCC5V in mV */
#define VCC5V_MIN 4500
#define VCC5V_MAX 5500
/*
* Test strings for EEPROM test. Length of string 2 must not exceed length of
* string 1. Otherwise a buffer overrun could occur!
*/
#define EEPROM_TEST_STRING_1 "0987654321 :tset a si siht"
#define EEPROM_TEST_STRING_2 "this is a test: 1234567890"
/*
* min/max limits for valid contact temperature during burn in test (in
* degree Centigrade * 100)
*/
#define MIN_CONTACT_TEMP -1000
#define MAX_CONTACT_TEMP +9000
/* blinking frequency of status LED */
#define LED_BLINK_FREQ 5
/* delay time between burn in cycles in seconds */
#ifndef BURN_IN_CYCLE_DELAY /* if not defined in include/configs/trab.h */
#define BURN_IN_CYCLE_DELAY 5
#endif
/* physical SRAM parameters */
#define SRAM_ADDR 0x02000000 /* GCS1 */
#define SRAM_SIZE 0x40000 /* 256 kByte */
/* CPLD-Register for controlling TRAB hardware functions */
#define CPLD_BUTTONS ((volatile unsigned long *)0x04020000)
#define CPLD_FILL_LEVEL ((volatile unsigned long *)0x04008000)
#define CPLD_ROTARY_SWITCH ((volatile unsigned long *)0x04018000)
#define CPLD_RS485_RE ((volatile unsigned long *)0x04028000)
/* I2C EEPROM device address */
#define I2C_EEPROM_DEV_ADDR 0x54
/* EEPROM address map */
#define EE_ADDR_TEST 128
#define EE_ADDR_MAX_CYCLES 256
#define EE_ADDR_STATUS 258
#define EE_ADDR_PASS_CYCLES 259
#define EE_ADDR_FIRST_ERROR_CYCLE 261
#define EE_ADDR_FIRST_ERROR_NUM 263
#define EE_ADDR_FIRST_ERROR_NAME 264
#define EE_ADDR_ACT_CYCLE 280
/* Bit definitions for ADCCON */
#define ADC_ENABLE_START 0x1
#define ADC_READ_START 0x2
#define ADC_STDBM 0x4
#define ADC_INP_AIN0 (0x0 << 3)
#define ADC_INP_AIN1 (0x1 << 3)
#define ADC_INP_AIN2 (0x2 << 3)
#define ADC_INP_AIN3 (0x3 << 3)
#define ADC_INP_AIN4 (0x4 << 3)
#define ADC_INP_AIN5 (0x5 << 3)
#define ADC_INP_AIN6 (0x6 << 3)
#define ADC_INP_AIN7 (0x7 << 3)
#define ADC_PRSCEN 0x4000
#define ADC_ECFLG 0x800
/* misc */
/* externals */
extern int memory_post_tests (unsigned long start, unsigned long size);
extern int i2c_write (uchar, uint, int , uchar* , int);
extern int i2c_read (uchar, uint, int , uchar* , int);
extern void tsc2000_reg_init (void);
extern s32 tsc2000_contact_temp (void);
extern void spi_init(void);
/* function declarations */
int do_dip (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]);
int do_vcc5v (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]);
int do_burn_in (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]);
int do_contact_temp (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]);
int do_burn_in_status (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]);
/* helper functions */
static void adc_init (void);
static int adc_read (unsigned int channel);
static int read_dip (void);
static int read_vcc5v (void);
static int test_dip (void);
static int test_vcc5v (void);
static int test_rotary_switch (void);
static int test_sram (void);
static int test_eeprom (void);
static int test_contact_temp (void);
static int i2c_write_multiple (uchar chip, uint addr, int alen,
uchar *buffer, int len);
static int i2c_read_multiple (uchar chip, uint addr, int alen,
uchar *buffer, int len);
static void led_set (unsigned int);
static void led_blink (void);
static void led_init (void);
static void sdelay (unsigned long seconds); /* delay in seconds */
static int dummy (void);
static int read_max_cycles(void);
static void test_function_table_init (void);
static void global_vars_init (void);
static int global_vars_write_to_eeprom (void);
/* globals */
u16 max_cycles;
u8 status;
u16 pass_cycles;
u16 first_error_cycle;
u8 first_error_num;
unsigned char first_error_name[16];
u16 act_cycle;
typedef struct test_function_s {
unsigned char *name;
int (*pf)(void);
} test_function_t;
/* max number of Burn In Functions */
#define BIF_MAX 6
/* table with burn in functions */
test_function_t test_function[BIF_MAX];
int do_burn_in (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
int i;
int cycle_status;
if (argc > 1) {
printf ("Usage:\n%s\n", cmdtp->usage);
return 1;
}
led_init ();
global_vars_init ();
test_function_table_init ();
if (global_vars_write_to_eeprom () != 0) {
printf ("%s: error writing global_vars to eeprom\n",
__FUNCTION__);
return (1);
}
if (read_max_cycles () != 0) {
printf ("%s: error reading max_cycles from eeprom\n",
__FUNCTION__);
return (1);
}
if (max_cycles == 0) {
printf ("%s: error, burn in max_cycles = 0\n", __FUNCTION__);
return (1);
}
status = 0;
for (act_cycle = 1; act_cycle <= max_cycles; act_cycle++) {
cycle_status = 0;
for (i = 0; i < BIF_MAX; i++) {
/* call test function */
if ((*test_function[i].pf)() != 0) {
printf ("error in %s test\n",
test_function[i].name);
/* is it the first error? */
if (status == 0) {
status = 1;
first_error_cycle = act_cycle;
/* do not use error_num 0 */
first_error_num = i+1;
strncpy (first_error_name,
test_function[i].name,
sizeof (first_error_name));
led_set (0);
}
cycle_status = 1;
}
}
/* were all tests of actual cycle OK? */
if (cycle_status == 0)
pass_cycles++;
/* set status LED if no error is occoured since yet */
if (status == 0)
led_set (1);
printf ("%s: cycle %d finished\n", __FUNCTION__, act_cycle);
/* pause between cycles */
sdelay (BURN_IN_CYCLE_DELAY);
}
if (global_vars_write_to_eeprom () != 0) {
led_set (0);
printf ("%s: error writing global_vars to eeprom\n",
__FUNCTION__);
status = 1;
}
if (status == 0) {
led_blink (); /* endless loop!! */
return (0);
} else {
led_set (0);
return (1);
}
}
U_BOOT_CMD(
burn_in, 1, 1, do_burn_in,
"burn_in - start burn-in test application on TRAB\n",
"\n"
" - start burn-in test application\n"
" The burn-in test could took a while to finish!\n"
" The content of the onboard EEPROM is modified!\n"
);
int do_dip (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
int i, dip;
if (argc > 1) {
printf ("Usage:\n%s\n", cmdtp->usage);
return 1;
}
if ((dip = read_dip ()) == -1) {
return 1;
}
for (i = 0; i < 4; i++) {
if ((dip & (1 << i)) == 0)
printf("0");
else
printf("1");
}
printf("\n");
return 0;
}
U_BOOT_CMD(
dip, 1, 1, do_dip,
"dip - read dip switch on TRAB\n",
"\n"
" - read state of dip switch (S1) on TRAB board\n"
" read sequence: 1-2-3-4; ON=1; OFF=0; e.g.: \"0100\"\n"
);
int do_vcc5v (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
int vcc5v;
if (argc > 1) {
printf ("Usage:\n%s\n", cmdtp->usage);
return 1;
}
if ((vcc5v = read_vcc5v ()) == -1) {
return (1);
}
printf ("%d", (vcc5v / 1000));
printf (".%d", (vcc5v % 1000) / 100);
printf ("%d V\n", (vcc5v % 100) / 10) ;
return 0;
}
U_BOOT_CMD(
vcc5v, 1, 1, do_vcc5v,
"vcc5v - read VCC5V on TRAB\n",
"\n"
" - read actual value of voltage VCC5V\n"
);
int do_contact_temp (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
int contact_temp;
if (argc > 1) {
printf ("Usage:\n%s\n", cmdtp->usage);
return 1;
}
spi_init ();
tsc2000_reg_init ();
contact_temp = tsc2000_contact_temp();
printf ("%d degree C * 100\n", contact_temp) ;
return 0;
}
U_BOOT_CMD(
c_temp, 1, 1, do_contact_temp,
"c_temp - read contact temperature on TRAB\n",
"\n"
" - reads the onboard temperature (=contact temperature)\n"
);
int do_burn_in_status (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
if (argc > 1) {
printf ("Usage:\n%s\n", cmdtp->usage);
return 1;
}
if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_STATUS, 1,
(unsigned char*) &status, 1)) {
return (1);
}
if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_PASS_CYCLES, 1,
(unsigned char*) &pass_cycles, 2)) {
return (1);
}
if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_FIRST_ERROR_CYCLE,
1, (unsigned char*) &first_error_cycle, 2)) {
return (1);
}
if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_FIRST_ERROR_NUM,
1, (unsigned char*) &first_error_num, 1)) {
return (1);
}
if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_FIRST_ERROR_NAME,
1, first_error_name,
sizeof (first_error_name))) {
return (1);
}
if (read_max_cycles () != 0) {
return (1);
}
printf ("max_cycles = %d\n", max_cycles);
printf ("status = %d\n", status);
printf ("pass_cycles = %d\n", pass_cycles);
printf ("first_error_cycle = %d\n", first_error_cycle);
printf ("first_error_num = %d\n", first_error_num);
printf ("first_error_name = %.*s\n",(int) sizeof(first_error_name),
first_error_name);
return 0;
}
U_BOOT_CMD(
bis, 1, 1, do_burn_in_status,
"bis - print burn in status on TRAB\n",
"\n"
" - prints the status variables of the last burn in test\n"
" stored in the onboard EEPROM on TRAB board\n"
);
static int read_dip (void)
{
unsigned int result = 0;
int adc_val;
int i;
/***********************************************************
DIP switch connection (according to wa4-cpu.sp.301.pdf, page 3):
SW1 - AIN4
SW2 - AIN5
SW3 - AIN6
SW4 - AIN7
"On" DIP switch position short-circuits the voltage from
the input channel (i.e. '0' conversion result means "on").
*************************************************************/
for (i = 7; i > 3; i--) {
if ((adc_val = adc_read (i)) == -1) {
printf ("%s: Channel %d could not be read\n",
__FUNCTION__, i);
return (-1);
}
/*
* Input voltage (switch open) is 1.8 V.
* (Vin_High/VRef)*adc_res = (1,8V/2,5V)*1023) = 736
* Set trigger at halve that value.
*/
if (adc_val < 368)
result |= (1 << (i-4));
}
return (result);
}
static int read_vcc5v (void)
{
s32 result;
/* VCC5V is connected to channel 2 */
if ((result = adc_read (2)) == -1) {
printf ("%s: VCC5V could not be read\n", __FUNCTION__);
return (-1);
}
/*
* Calculate voltage value. Split in two parts because there is no
* floating point support. VCC5V is connected over an resistor divider:
* VCC5V=ADCval*2,5V/1023*(10K+30K)/10K.
*/
result = result * 10 * 1000 / 1023; /* result in mV */
return (result);
}
static int test_dip (void)
{
static int first_run = 1;
static int first_dip;
if (first_run) {
if ((first_dip = read_dip ()) == -1) {
return (1);
}
first_run = 0;
debug ("%s: first_dip=%d\n", __FUNCTION__, first_dip);
}
if (first_dip != read_dip ()) {
return (1);
} else {
return (0);
}
}
static int test_vcc5v (void)
{
int vcc5v;
if ((vcc5v = read_vcc5v ()) == -1) {
return (1);
}
if ((vcc5v > VCC5V_MAX) || (vcc5v < VCC5V_MIN)) {
return (1);
} else {
return (0);
}
}
static int test_rotary_switch (void)
{
static int first_run = 1;
static int first_rs;
if (first_run) {
/*
* clear bits in CPLD, because they have random values after
* power-up or reset.
*/
*CPLD_ROTARY_SWITCH |= (1 << 16) | (1 << 17);
first_rs = ((*CPLD_ROTARY_SWITCH >> 16) & 0x7);
first_run = 0;
debug ("%s: first_rs=%d\n", __FUNCTION__, first_rs);
}
if (first_rs != ((*CPLD_ROTARY_SWITCH >> 16) & 0x7)) {
return (1);
} else {
return (0);
}
}
static int test_sram (void)
{
return (memory_post_tests (SRAM_ADDR, SRAM_SIZE));
}
static int test_eeprom (void)
{
unsigned char temp[sizeof (EEPROM_TEST_STRING_1)];
int result = 0;
/* write test string 1, read back and verify */
if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_TEST, 1,
EEPROM_TEST_STRING_1,
sizeof (EEPROM_TEST_STRING_1))) {
return (1);
}
if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_TEST, 1,
temp, sizeof (EEPROM_TEST_STRING_1))) {
return (1);
}
if (strcmp (temp, EEPROM_TEST_STRING_1) != 0) {
result = 1;
printf ("%s: error; read_str = \"%s\"\n", __FUNCTION__, temp);
}
/* write test string 2, read back and verify */
if (result == 0) {
if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_TEST, 1,
EEPROM_TEST_STRING_2,
sizeof (EEPROM_TEST_STRING_2))) {
return (1);
}
if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_TEST, 1,
temp, sizeof (EEPROM_TEST_STRING_2))) {
return (1);
}
if (strcmp (temp, EEPROM_TEST_STRING_2) != 0) {
result = 1;
printf ("%s: error; read str = \"%s\"\n",
__FUNCTION__, temp);
}
}
return (result);
}
static int test_contact_temp (void)
{
int contact_temp;
spi_init ();
contact_temp = tsc2000_contact_temp ();
if ((contact_temp < MIN_CONTACT_TEMP)
|| (contact_temp > MAX_CONTACT_TEMP))
return (1);
else
return (0);
}
static int i2c_write_multiple (uchar chip, uint addr, int alen,
uchar *buffer, int len)
{
int i;
if (alen != 1) {
printf ("%s: addr len other than 1 not supported\n",
__FUNCTION__);
return (1);
}
for (i = 0; i < len; i++) {
if (i2c_write (chip, addr+i, alen, buffer+i, 1)) {
printf ("%s: could not write to i2c device %d"
", addr %d\n", __FUNCTION__, chip, addr);
return (1);
}
#if 0
printf ("chip=%#x, addr+i=%#x+%d=%p, alen=%d, *buffer+i="
"%#x+%d=%p=\"%.1s\"\n", chip, addr, i, addr+i,
alen, buffer, i, buffer+i, buffer+i);
#endif
udelay (30000);
}
return (0);
}
static int i2c_read_multiple (uchar chip, uint addr, int alen,
uchar *buffer, int len)
{
int i;
if (alen != 1) {
printf ("%s: addr len other than 1 not supported\n",
__FUNCTION__);
return (1);
}
for (i = 0; i < len; i++) {
if (i2c_read (chip, addr+i, alen, buffer+i, 1)) {
printf ("%s: could not read from i2c device %#x"
", addr %d\n", __FUNCTION__, chip, addr);
return (1);
}
}
return (0);
}
static int adc_read (unsigned int channel)
{
int j = 1000; /* timeout value for wait loop in us */
S3C2400_ADC *padc;
padc = S3C2400_GetBase_ADC();
channel &= 0x7;
adc_init ();
debug ("%s: adccon %#x\n", __FUNCTION__, padc->ADCCON);
padc->ADCCON &= ~ADC_STDBM; /* select normal mode */
padc->ADCCON &= ~(0x7 << 3); /* clear the channel bits */
padc->ADCCON |= ((channel << 3) | ADC_ENABLE_START);
debug ("%s: reading ch %d, addcon %#x\n", __FUNCTION__,
(padc->ADCCON >> 3) & 0x7, padc->ADCCON);
while (j--) {
if ((padc->ADCCON & ADC_ENABLE_START) == 0)
break;
udelay (1);
}
if (j == 0) {
printf("%s: ADC timeout\n", __FUNCTION__);
padc->ADCCON |= ADC_STDBM; /* select standby mode */
return -1;
}
padc->ADCCON |= ADC_STDBM; /* select standby mode */
debug ("%s: return %#x, adccon %#x\n", __FUNCTION__,
padc->ADCDAT & 0x3FF, padc->ADCCON);
return (padc->ADCDAT & 0x3FF);
}
static void adc_init (void)
{
S3C2400_ADC *padc;
padc = S3C2400_GetBase_ADC();
padc->ADCCON &= ~(0xff << 6); /* clear prescaler bits */
padc->ADCCON |= ((65 << 6) | ADC_PRSCEN); /* set prescaler */
return;
}
static void led_set (unsigned int state)
{
S3C24X0_GPIO * const gpio = S3C24X0_GetBase_GPIO();
led_init ();
switch (state) {
case 0: /* turn LED off */
gpio->PADAT |= (1 << 12);
break;
case 1: /* turn LED on */
gpio->PADAT &= ~(1 << 12);
break;
default:
}
}
static void led_blink (void)
{
led_init ();
/* blink LED. This function does not return! */
while (1) {
led_set (1);
udelay (1000000 / LED_BLINK_FREQ / 2);
led_set (0);
udelay (1000000 / LED_BLINK_FREQ / 2);
}
}
static void led_init (void)
{
S3C24X0_GPIO * const gpio = S3C24X0_GetBase_GPIO();
/* configure GPA12 as output and set to High -> LED off */
gpio->PACON &= ~(1 << 12);
gpio->PADAT |= (1 << 12);
}
static void sdelay (unsigned long seconds)
{
unsigned long i;
for (i = 0; i < seconds; i++) {
udelay (1000000);
}
}
static int global_vars_write_to_eeprom (void)
{
if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_STATUS, 1,
(unsigned char*) &status, 1)) {
return (1);
}
if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_PASS_CYCLES, 1,
(unsigned char*) &pass_cycles, 2)) {
return (1);
}
if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_FIRST_ERROR_CYCLE,
1, (unsigned char*) &first_error_cycle, 2)) {
return (1);
}
if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_FIRST_ERROR_NUM,
1, (unsigned char*) &first_error_num, 1)) {
return (1);
}
if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_FIRST_ERROR_NAME,
1, first_error_name,
sizeof(first_error_name))) {
return (1);
}
return (0);
}
static void global_vars_init (void)
{
status = 1; /* error */
pass_cycles = 0;
first_error_cycle = 0;
first_error_num = 0;
first_error_name[0] = '\0';
act_cycle = 0;
max_cycles = 0;
}
static void test_function_table_init (void)
{
int i;
for (i = 0; i < BIF_MAX; i++)
test_function[i].pf = dummy;
/*
* the length of "name" must not exceed 16, including the '\0'
* termination. See also the EEPROM address map.
*/
test_function[0].pf = test_dip;
test_function[0].name = "dip";
test_function[1].pf = test_vcc5v;
test_function[1].name = "vcc5v";
test_function[2].pf = test_rotary_switch;
test_function[2].name = "rotary_switch";
test_function[3].pf = test_sram;
test_function[3].name = "sram";
test_function[4].pf = test_eeprom;
test_function[4].name = "eeprom";
test_function[5].pf = test_contact_temp;
test_function[5].name = "contact_temp";
}
static int read_max_cycles (void)
{
if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_MAX_CYCLES, 1,
(unsigned char *) &max_cycles, 2) != 0) {
return (1);
}
return (0);
}
static int dummy(void)
{
return (0);
}
#endif /* CFG_CMD_BSP */

484
board/trab/memory.c Normal file
View File

@ -0,0 +1,484 @@
/*
* (C) Copyright 2002-2003
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
/* Memory test
*
* General observations:
* o The recommended test sequence is to test the data lines: if they are
* broken, nothing else will work properly. Then test the address
* lines. Finally, test the cells in the memory now that the test
* program knows that the address and data lines work properly.
* This sequence also helps isolate and identify what is faulty.
*
* o For the address line test, it is a good idea to use the base
* address of the lowest memory location, which causes a '1' bit to
* walk through a field of zeros on the address lines and the highest
* memory location, which causes a '0' bit to walk through a field of
* '1's on the address line.
*
* o Floating buses can fool memory tests if the test routine writes
* a value and then reads it back immediately. The problem is, the
* write will charge the residual capacitance on the data bus so the
* bus retains its state briefely. When the test program reads the
* value back immediately, the capacitance of the bus can allow it
* to read back what was written, even though the memory circuitry
* is broken. To avoid this, the test program should write a test
* pattern to the target location, write a different pattern elsewhere
* to charge the residual capacitance in a differnt manner, then read
* the target location back.
*
* o Always read the target location EXACTLY ONCE and save it in a local
* variable. The problem with reading the target location more than
* once is that the second and subsequent reads may work properly,
* resulting in a failed test that tells the poor technician that
* "Memory error at 00000000, wrote aaaaaaaa, read aaaaaaaa" which
* doesn't help him one bit and causes puzzled phone calls. Been there,
* done that.
*
* Data line test:
* ---------------
* This tests data lines for shorts and opens by forcing adjacent data
* to opposite states. Because the data lines could be routed in an
* arbitrary manner the must ensure test patterns ensure that every case
* is tested. By using the following series of binary patterns every
* combination of adjacent bits is test regardless of routing.
*
* ...101010101010101010101010
* ...110011001100110011001100
* ...111100001111000011110000
* ...111111110000000011111111
*
* Carrying this out, gives us six hex patterns as follows:
*
* 0xaaaaaaaaaaaaaaaa
* 0xcccccccccccccccc
* 0xf0f0f0f0f0f0f0f0
* 0xff00ff00ff00ff00
* 0xffff0000ffff0000
* 0xffffffff00000000
*
* To test for short and opens to other signals on our boards, we
* simply test with the 1's complemnt of the paterns as well, resulting
* in twelve patterns total.
*
* After writing a test pattern. a special pattern 0x0123456789ABCDEF is
* written to a different address in case the data lines are floating.
* Thus, if a byte lane fails, you will see part of the special
* pattern in that byte lane when the test runs. For example, if the
* xx__xxxxxxxxxxxx byte line fails, you will see aa23aaaaaaaaaaaa
* (for the 'a' test pattern).
*
* Address line test:
* ------------------
* This function performs a test to verify that all the address lines
* hooked up to the RAM work properly. If there is an address line
* fault, it usually shows up as two different locations in the address
* map (related by the faulty address line) mapping to one physical
* memory storage location. The artifact that shows up is writing to
* the first location "changes" the second location.
*
* To test all address lines, we start with the given base address and
* xor the address with a '1' bit to flip one address line. For each
* test, we shift the '1' bit left to test the next address line.
*
* In the actual code, we start with address sizeof(ulong) since our
* test pattern we use is a ulong and thus, if we tried to test lower
* order address bits, it wouldn't work because our pattern would
* overwrite itself.
*
* Example for a 4 bit address space with the base at 0000:
* 0000 <- base
* 0001 <- test 1
* 0010 <- test 2
* 0100 <- test 3
* 1000 <- test 4
* Example for a 4 bit address space with the base at 0010:
* 0010 <- base
* 0011 <- test 1
* 0000 <- (below the base address, skipped)
* 0110 <- test 2
* 1010 <- test 3
*
* The test locations are successively tested to make sure that they are
* not "mirrored" onto the base address due to a faulty address line.
* Note that the base and each test location are related by one address
* line flipped. Note that the base address need not be all zeros.
*
* Memory tests 1-4:
* -----------------
* These tests verify RAM using sequential writes and reads
* to/from RAM. There are several test cases that use different patterns to
* verify RAM. Each test case fills a region of RAM with one pattern and
* then reads the region back and compares its contents with the pattern.
* The following patterns are used:
*
* 1a) zero pattern (0x00000000)
* 1b) negative pattern (0xffffffff)
* 1c) checkerboard pattern (0x55555555)
* 1d) checkerboard pattern (0xaaaaaaaa)
* 2) bit-flip pattern ((1 << (offset % 32))
* 3) address pattern (offset)
* 4) address pattern (~offset)
*
* Being run in normal mode, the test verifies only small 4Kb
* regions of RAM around each 1Mb boundary. For example, for 64Mb
* RAM the following areas are verified: 0x00000000-0x00000800,
* 0x000ff800-0x00100800, 0x001ff800-0x00200800, ..., 0x03fff800-
* 0x04000000. If the test is run in slow-test mode, it verifies
* the whole RAM.
*/
/* #ifdef CONFIG_POST */
#include <post.h>
#include <watchdog.h>
/* #if CONFIG_POST & CFG_POST_MEMORY */
/*
* Define INJECT_*_ERRORS for testing error detection in the presence of
* _good_ hardware.
*/
#undef INJECT_DATA_ERRORS
#undef INJECT_ADDRESS_ERRORS
#ifdef INJECT_DATA_ERRORS
#warning "Injecting data line errors for testing purposes"
#endif
#ifdef INJECT_ADDRESS_ERRORS
#warning "Injecting address line errors for testing purposes"
#endif
/*
* This function performs a double word move from the data at
* the source pointer to the location at the destination pointer.
* This is helpful for testing memory on processors which have a 64 bit
* wide data bus.
*
* On those PowerPC with FPU, use assembly and a floating point move:
* this does a 64 bit move.
*
* For other processors, let the compiler generate the best code it can.
*/
static void move64(unsigned long long *src, unsigned long long *dest)
{
#if defined(CONFIG_MPC8260) || defined(CONFIG_MPC824X)
asm ("lfd 0, 0(3)\n\t" /* fpr0 = *scr */
"stfd 0, 0(4)" /* *dest = fpr0 */
: : : "fr0" ); /* Clobbers fr0 */
return;
#else
*dest = *src;
#endif
}
/*
* This is 64 bit wide test patterns. Note that they reside in ROM
* (which presumably works) and the tests write them to RAM which may
* not work.
*
* The "otherpattern" is written to drive the data bus to values other
* than the test pattern. This is for detecting floating bus lines.
*
*/
const static unsigned long long pattern[] = {
0xaaaaaaaaaaaaaaaa,
0xcccccccccccccccc,
0xf0f0f0f0f0f0f0f0,
0xff00ff00ff00ff00,
0xffff0000ffff0000,
0xffffffff00000000,
0x00000000ffffffff,
0x0000ffff0000ffff,
0x00ff00ff00ff00ff,
0x0f0f0f0f0f0f0f0f,
0x3333333333333333,
0x5555555555555555};
const unsigned long long otherpattern = 0x0123456789abcdef;
static int memory_post_dataline(unsigned long long * pmem)
{
unsigned long long temp64;
int num_patterns = sizeof(pattern)/ sizeof(pattern[0]);
int i;
unsigned int hi, lo, pathi, patlo;
int ret = 0;
for ( i = 0; i < num_patterns; i++) {
move64((unsigned long long *)&(pattern[i]), pmem++);
/*
* Put a different pattern on the data lines: otherwise they
* may float long enough to read back what we wrote.
*/
move64((unsigned long long *)&otherpattern, pmem--);
move64(pmem, &temp64);
#ifdef INJECT_DATA_ERRORS
temp64 ^= 0x00008000;
#endif
if (temp64 != pattern[i]){
pathi = (pattern[i]>>32) & 0xffffffff;
patlo = pattern[i] & 0xffffffff;
hi = (temp64>>32) & 0xffffffff;
lo = temp64 & 0xffffffff;
printf ("Memory (date line) error at %08lx, "
"wrote %08x%08x, read %08x%08x !\n",
(ulong)pmem, pathi, patlo, hi, lo);
ret = -1;
}
}
return ret;
}
static int memory_post_addrline(ulong *testaddr, ulong *base, ulong size)
{
ulong *target;
ulong *end;
ulong readback;
ulong xor;
int ret = 0;
end = (ulong *)((ulong)base + size); /* pointer arith! */
xor = 0;
for(xor = sizeof(ulong); xor > 0; xor <<= 1) {
target = (ulong *)((ulong)testaddr ^ xor);
if((target >= base) && (target < end)) {
*testaddr = ~*target;
readback = *target;
#ifdef INJECT_ADDRESS_ERRORS
if(xor == 0x00008000) {
readback = *testaddr;
}
#endif
if(readback == *testaddr) {
printf ("Memory (address line) error at %08lx<->%08lx, "
"XOR value %08lx !\n",
(ulong)testaddr, (ulong)target,
xor);
ret = -1;
}
}
}
return ret;
}
static int memory_post_test1 (unsigned long start,
unsigned long size,
unsigned long val)
{
unsigned long i;
ulong *mem = (ulong *) start;
ulong readback;
int ret = 0;
for (i = 0; i < size / sizeof (ulong); i++) {
mem[i] = val;
if (i % 1024 == 0)
WATCHDOG_RESET ();
}
for (i = 0; i < size / sizeof (ulong) && ret == 0; i++) {
readback = mem[i];
if (readback != val) {
printf ("Memory error at %08lx, "
"wrote %08lx, read %08lx !\n",
(ulong)(mem + i), val, readback);
ret = -1;
break;
}
if (i % 1024 == 0)
WATCHDOG_RESET ();
}
return ret;
}
static int memory_post_test2 (unsigned long start, unsigned long size)
{
unsigned long i;
ulong *mem = (ulong *) start;
ulong readback;
int ret = 0;
for (i = 0; i < size / sizeof (ulong); i++) {
mem[i] = 1 << (i % 32);
if (i % 1024 == 0)
WATCHDOG_RESET ();
}
for (i = 0; i < size / sizeof (ulong) && ret == 0; i++) {
readback = mem[i];
if (readback != (1 << (i % 32))) {
printf ("Memory error at %08lx, "
"wrote %08x, read %08lx !\n",
(ulong)(mem + i), 1 << (i % 32), readback);
ret = -1;
break;
}
if (i % 1024 == 0)
WATCHDOG_RESET ();
}
return ret;
}
static int memory_post_test3 (unsigned long start, unsigned long size)
{
unsigned long i;
ulong *mem = (ulong *) start;
ulong readback;
int ret = 0;
for (i = 0; i < size / sizeof (ulong); i++) {
mem[i] = i;
if (i % 1024 == 0)
WATCHDOG_RESET ();
}
for (i = 0; i < size / sizeof (ulong) && ret == 0; i++) {
readback = mem[i];
if (readback != i) {
printf ("Memory error at %08lx, "
"wrote %08lx, read %08lx !\n",
(ulong)(mem + i), i, readback);
ret = -1;
break;
}
if (i % 1024 == 0)
WATCHDOG_RESET ();
}
return ret;
}
static int memory_post_test4 (unsigned long start, unsigned long size)
{
unsigned long i;
ulong *mem = (ulong *) start;
ulong readback;
int ret = 0;
for (i = 0; i < size / sizeof (ulong); i++) {
mem[i] = ~i;
if (i % 1024 == 0)
WATCHDOG_RESET ();
}
for (i = 0; i < size / sizeof (ulong) && ret == 0; i++) {
readback = mem[i];
if (readback != ~i) {
printf ("Memory error at %08lx, "
"wrote %08lx, read %08lx !\n",
(ulong)(mem + i), ~i, readback);
ret = -1;
break;
}
if (i % 1024 == 0)
WATCHDOG_RESET ();
}
return ret;
}
int memory_post_tests (unsigned long start, unsigned long size)
{
int ret = 0;
if (ret == 0)
ret = memory_post_dataline ((long long *)start);
WATCHDOG_RESET ();
if (ret == 0)
ret = memory_post_addrline ((long *)start, (long *)start, size);
WATCHDOG_RESET ();
if (ret == 0)
ret = memory_post_addrline ((long *)(start + size - 8),
(long *)start, size);
WATCHDOG_RESET ();
if (ret == 0)
ret = memory_post_test1 (start, size, 0x00000000);
WATCHDOG_RESET ();
if (ret == 0)
ret = memory_post_test1 (start, size, 0xffffffff);
WATCHDOG_RESET ();
if (ret == 0)
ret = memory_post_test1 (start, size, 0x55555555);
WATCHDOG_RESET ();
if (ret == 0)
ret = memory_post_test1 (start, size, 0xaaaaaaaa);
WATCHDOG_RESET ();
if (ret == 0)
ret = memory_post_test2 (start, size);
WATCHDOG_RESET ();
if (ret == 0)
ret = memory_post_test3 (start, size);
WATCHDOG_RESET ();
if (ret == 0)
ret = memory_post_test4 (start, size);
WATCHDOG_RESET ();
return ret;
}
#if 0
int memory_post_test (int flags)
{
int ret = 0;
DECLARE_GLOBAL_DATA_PTR;
bd_t *bd = gd->bd;
unsigned long memsize = (bd->bi_memsize >= 256 << 20 ?
256 << 20 : bd->bi_memsize) - (1 << 20);
if (flags & POST_SLOWTEST) {
ret = memory_post_tests (CFG_SDRAM_BASE, memsize);
} else { /* POST_NORMAL */
unsigned long i;
for (i = 0; i < (memsize >> 20) && ret == 0; i++) {
if (ret == 0)
ret = memory_post_tests (i << 20, 0x800);
if (ret == 0)
ret = memory_post_tests ((i << 20) + 0xff800, 0x800);
}
}
return ret;
}
#endif 0
/* #endif */ /* CONFIG_POST & CFG_POST_MEMORY */
/* #endif */ /* CONFIG_POST */

317
board/trab/tsc2000.c Normal file
View File

@ -0,0 +1,317 @@
/*
* Functions to access the TSC2000 controller on TRAB board (used for scanning
* thermo sensors)
*
* Copyright (C) 2003 Martin Krause, TQ-Systems GmbH, martin.krause@tqs.de
*
* Copyright (C) 2002 DENX Software Engineering, Wolfgang Denk, wd@denx.de
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <s3c2400.h>
#include "tsc2000.h"
void spi_init(void)
{
S3C24X0_GPIO * const gpio = S3C24X0_GetBase_GPIO();
S3C24X0_SPI * const spi = S3C24X0_GetBase_SPI();
int i;
/* Configure I/O ports. */
gpio->PDCON = (gpio->PDCON & 0xF3FFFF) | 0x040000;
gpio->PGCON = (gpio->PGCON & 0x0F3FFF) | 0x008000;
gpio->PGCON = (gpio->PGCON & 0x0CFFFF) | 0x020000;
gpio->PGCON = (gpio->PGCON & 0x03FFFF) | 0x080000;
CLR_CS_TOUCH();
spi->ch[0].SPPRE = 0x1F; /* Baud-rate ca. 514kHz */
spi->ch[0].SPPIN = 0x01; /* SPI-MOSI holds Level after last bit */
spi->ch[0].SPCON = 0x1A; /* Polling, Prescaler, Master, CPOL=0,
CPHA=1 */
/* Dummy byte ensures clock to be low. */
for (i = 0; i < 10; i++) {
spi->ch[0].SPTDAT = 0xFF;
}
spi_wait_transmit_done();
}
static void spi_wait_transmit_done(void)
{
S3C24X0_SPI * const spi = S3C24X0_GetBase_SPI();
while (!(spi->ch[0].SPSTA & 0x01)); /* wait until transfer is done */
}
static void tsc2000_write(unsigned short reg, unsigned short data)
{
S3C24X0_SPI * const spi = S3C24X0_GetBase_SPI();
unsigned int command;
SET_CS_TOUCH();
command = reg;
spi->ch[0].SPTDAT = (command & 0xFF00) >> 8;
spi_wait_transmit_done();
spi->ch[0].SPTDAT = (command & 0x00FF);
spi_wait_transmit_done();
spi->ch[0].SPTDAT = (data & 0xFF00) >> 8;
spi_wait_transmit_done();
spi->ch[0].SPTDAT = (data & 0x00FF);
spi_wait_transmit_done();
CLR_CS_TOUCH();
}
static unsigned short tsc2000_read (unsigned short reg)
{
unsigned short command, data;
S3C24X0_SPI * const spi = S3C24X0_GetBase_SPI();
SET_CS_TOUCH();
command = 0x8000 | reg;
spi->ch[0].SPTDAT = (command & 0xFF00) >> 8;
spi_wait_transmit_done();
spi->ch[0].SPTDAT = (command & 0x00FF);
spi_wait_transmit_done();
spi->ch[0].SPTDAT = 0xFF;
spi_wait_transmit_done();
data = spi->ch[0].SPRDAT;
spi->ch[0].SPTDAT = 0xFF;
spi_wait_transmit_done();
CLR_CS_TOUCH();
return (spi->ch[0].SPRDAT & 0x0FF) | (data << 8);
}
static void tsc2000_set_mux (unsigned int channel)
{
S3C24X0_GPIO * const gpio = S3C24X0_GetBase_GPIO();
CLR_MUX1_ENABLE; CLR_MUX2_ENABLE;
CLR_MUX3_ENABLE; CLR_MUX4_ENABLE;
switch (channel) {
case 0:
CLR_MUX0; CLR_MUX1;
SET_MUX1_ENABLE;
break;
case 1:
SET_MUX0; CLR_MUX1;
SET_MUX1_ENABLE;
break;
case 2:
CLR_MUX0; SET_MUX1;
SET_MUX1_ENABLE;
break;
case 3:
SET_MUX0; SET_MUX1;
SET_MUX1_ENABLE;
break;
case 4:
CLR_MUX0; CLR_MUX1;
SET_MUX2_ENABLE;
break;
case 5:
SET_MUX0; CLR_MUX1;
SET_MUX2_ENABLE;
break;
case 6:
CLR_MUX0; SET_MUX1;
SET_MUX2_ENABLE;
break;
case 7:
SET_MUX0; SET_MUX1;
SET_MUX2_ENABLE;
break;
case 8:
CLR_MUX0; CLR_MUX1;
SET_MUX3_ENABLE;
break;
case 9:
SET_MUX0; CLR_MUX1;
SET_MUX3_ENABLE;
break;
case 10:
CLR_MUX0; SET_MUX1;
SET_MUX3_ENABLE;
break;
case 11:
SET_MUX0; SET_MUX1;
SET_MUX3_ENABLE;
break;
case 12:
CLR_MUX0; CLR_MUX1;
SET_MUX4_ENABLE;
break;
case 13:
SET_MUX0; CLR_MUX1;
SET_MUX4_ENABLE;
break;
case 14:
CLR_MUX0; SET_MUX1;
SET_MUX4_ENABLE;
break;
case 15:
SET_MUX0; SET_MUX1;
SET_MUX4_ENABLE;
break;
default:
CLR_MUX0; CLR_MUX1;
}
}
static void tsc2000_set_range (unsigned int range)
{
S3C24X0_GPIO * const gpio = S3C24X0_GetBase_GPIO();
switch (range) {
case 1:
CLR_SEL_TEMP_V_0; SET_SEL_TEMP_V_1;
CLR_SEL_TEMP_V_2; CLR_SEL_TEMP_V_3;
break;
case 2:
CLR_SEL_TEMP_V_0; CLR_SEL_TEMP_V_1;
CLR_SEL_TEMP_V_2; SET_SEL_TEMP_V_3;
break;
case 3:
SET_SEL_TEMP_V_0; CLR_SEL_TEMP_V_1;
SET_SEL_TEMP_V_2; CLR_SEL_TEMP_V_3;
break;
}
}
static u16 tsc2000_read_channel (unsigned int channel)
{
u16 res;
tsc2000_set_mux(channel);
udelay(3 * TSC2000_DELAY_BASE);
tsc2000_write(TSC2000_REG_ADC, 0x2036);
adc_wait_conversion_done ();
res = tsc2000_read(TSC2000_REG_AUX1);
return res;
}
s32 tsc2000_contact_temp (void)
{
long adc_pt1000, offset;
long u_pt1000;
long contact_temp;
tsc2000_reg_init ();
tsc2000_set_range (3);
adc_pt1000 = tsc2000_read_channel (14);
debug ("read channel 14 (pt1000 adc value): %ld\n", adc_pt1000);
offset = tsc2000_read_channel (15);
debug ("read channel 15 (offset): %ld\n", offset);
/*
* Formula for calculating voltage drop on PT1000 resistor: u_pt1000 =
* x_range3 * (adc_raw - offset) / 10. Formula to calculate x_range3:
* x_range3 = (2500 * (1000000 + err_vref + err_amp3)) / (4095*6). The
* error correction Values err_vref and err_amp3 are assumed as 0 in
* u-boot, because this could cause only a very small error (< 1%).
*/
u_pt1000 = (101750 * (adc_pt1000 - offset)) / 10;
debug ("u_pt1000: %ld\n", u_pt1000);
if (tsc2000_interpolate(u_pt1000, Pt1000_temp_table,
&contact_temp) == -1) {
printf ("%s: error interpolating PT1000 vlaue\n",
__FUNCTION__);
return (-1000);
}
debug ("contact_temp: %ld\n", contact_temp);
return contact_temp;
}
void tsc2000_reg_init (void)
{
S3C24X0_GPIO * const gpio = S3C24X0_GetBase_GPIO();
tsc2000_write(TSC2000_REG_ADC, 0x2036);
tsc2000_write(TSC2000_REG_REF, 0x0011);
tsc2000_write(TSC2000_REG_DACCTL, 0x0000);
CON_MUX0;
CON_MUX1;
CON_MUX1_ENABLE;
CON_MUX2_ENABLE;
CON_MUX3_ENABLE;
CON_MUX4_ENABLE;
CON_SEL_TEMP_V_0;
CON_SEL_TEMP_V_1;
CON_SEL_TEMP_V_2;
CON_SEL_TEMP_V_3;
tsc2000_set_mux(0);
tsc2000_set_range(0);
}
static int tsc2000_interpolate(long value, long data[][2], long *result)
{
int i;
/* the data is sorted and the first element is upper
* limit so we can easily check for out-of-band values
*/
if (data[0][0] < value || data[1][0] > value)
return -1;
i = 1;
while (data[i][0] < value)
i++;
/* To prevent overflow we have to store the intermediate
result in 'long long'.
*/
*result = data[i-1][1] +
((unsigned long long)(data[i][1] - data[i-1][1])
* (unsigned long long)(value - data[i-1][0]))
/ (data[i][0] - data[i-1][0]);
return 0;
}
static void adc_wait_conversion_done(void)
{
while (!(tsc2000_read(TSC2000_REG_ADC) & (1 << 14)));
}

147
board/trab/tsc2000.h Normal file
View File

@ -0,0 +1,147 @@
/*
* Functions to access the TSC2000 controller on TRAB board (used for scanning
* thermo sensors)
*
* Copyright (C) 2003 Martin Krause, TQ-Systems GmbH, martin.krause@tqs.de
*
* Copyright (C) 2002 DENX Software Engineering, Wolfgang Denk, wd@denx.de
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#ifndef _TSC2000_H_
#define _TSC2000_H_
#include "Pt1000_temp_data.h"
/* temperature channel multiplexer definitions */
#define CON_MUX0 (gpio->PCCON = (gpio->PCCON & 0x0FFFFFCFF) | 0x00000100)
#define CLR_MUX0 (gpio->PCDAT &= 0x0FFEF)
#define SET_MUX0 (gpio->PCDAT |= 0x00010)
#define CON_MUX1 (gpio->PCCON = (gpio->PCCON & 0x0FFFFF3FF) | 0x00000400)
#define CLR_MUX1 (gpio->PCDAT &= 0x0FFDF)
#define SET_MUX1 (gpio->PCDAT |= 0x00020)
#define CON_MUX1_ENABLE (gpio->PCCON = (gpio->PCCON & 0x0FFFFCFFF) | 0x00001000)
#define CLR_MUX1_ENABLE (gpio->PCDAT |= 0x00040)
#define SET_MUX1_ENABLE (gpio->PCDAT &= 0x0FFBF)
#define CON_MUX2_ENABLE (gpio->PCCON = (gpio->PCCON & 0x0FFFF3FFF) | 0x00004000)
#define CLR_MUX2_ENABLE (gpio->PCDAT |= 0x00080)
#define SET_MUX2_ENABLE (gpio->PCDAT &= 0x0FF7F)
#define CON_MUX3_ENABLE (gpio->PCCON = (gpio->PCCON & 0x0FFFCFFFF) | 0x00010000)
#define CLR_MUX3_ENABLE (gpio->PCDAT |= 0x00100)
#define SET_MUX3_ENABLE (gpio->PCDAT &= 0x0FEFF)
#define CON_MUX4_ENABLE (gpio->PCCON = (gpio->PCCON & 0x0FFF3FFFF) | 0x00040000)
#define CLR_MUX4_ENABLE (gpio->PCDAT |= 0x00200)
#define SET_MUX4_ENABLE (gpio->PCDAT &= 0x0FDFF)
#define CON_SEL_TEMP_V_0 (gpio->PCCON = (gpio->PCCON & 0x0FFCFFFFF) | 0x00100000)
#define CLR_SEL_TEMP_V_0 (gpio->PCDAT &= 0x0FBFF)
#define SET_SEL_TEMP_V_0 (gpio->PCDAT |= 0x00400)
#define CON_SEL_TEMP_V_1 (gpio->PCCON = (gpio->PCCON & 0x0FF3FFFFF) | 0x00400000)
#define CLR_SEL_TEMP_V_1 (gpio->PCDAT &= 0x0F7FF)
#define SET_SEL_TEMP_V_1 (gpio->PCDAT |= 0x00800)
#define CON_SEL_TEMP_V_2 (gpio->PCCON = (gpio->PCCON & 0x0FCFFFFFF) | 0x01000000)
#define CLR_SEL_TEMP_V_2 (gpio->PCDAT &= 0x0EFFF)
#define SET_SEL_TEMP_V_2 (gpio->PCDAT |= 0x01000)
#define CON_SEL_TEMP_V_3 (gpio->PCCON = (gpio->PCCON & 0x0F3FFFFFF) | 0x04000000)
#define CLR_SEL_TEMP_V_3 (gpio->PCDAT &= 0x0DFFF)
#define SET_SEL_TEMP_V_3 (gpio->PCDAT |= 0x02000)
/* TSC2000 register definition */
#define TSC2000_REG_X ((0 << 11) | (0 << 5))
#define TSC2000_REG_Y ((0 << 11) | (1 << 5))
#define TSC2000_REG_Z1 ((0 << 11) | (2 << 5))
#define TSC2000_REG_Z2 ((0 << 11) | (3 << 5))
#define TSC2000_REG_BAT1 ((0 << 11) | (5 << 5))
#define TSC2000_REG_BAT2 ((0 << 11) | (6 << 5))
#define TSC2000_REG_AUX1 ((0 << 11) | (7 << 5))
#define TSC2000_REG_AUX2 ((0 << 11) | (8 << 5))
#define TSC2000_REG_TEMP1 ((0 << 11) | (9 << 5))
#define TSC2000_REG_TEMP2 ((0 << 11) | (0xA << 5))
#define TSC2000_REG_DAC ((0 << 11) | (0xB << 5))
#define TSC2000_REG_ZERO ((0 << 11) | (0x10 << 5))
#define TSC2000_REG_ADC ((1 << 11) | (0 << 5))
#define TSC2000_REG_DACCTL ((1 << 11) | (2 << 5))
#define TSC2000_REG_REF ((1 << 11) | (3 << 5))
#define TSC2000_REG_RESET ((1 << 11) | (4 << 5))
#define TSC2000_REG_CONFIG ((1 << 11) | (5 << 5))
/* bit definition of TSC2000 ADC register */
#define TC_PSM (1 << 15)
#define TC_STS (1 << 14)
#define TC_AD3 (1 << 13)
#define TC_AD2 (1 << 12)
#define TC_AD1 (1 << 11)
#define TC_AD0 (1 << 10)
#define TC_RS1 (1 << 9)
#define TC_RS0 (1 << 8)
#define TC_AV1 (1 << 7)
#define TC_AV0 (1 << 6)
#define TC_CL1 (1 << 5)
#define TC_CL0 (1 << 4)
#define TC_PV2 (1 << 3)
#define TC_PV1 (1 << 2)
#define TC_PV0 (1 << 1)
/* default value for TSC2000 ADC register for use with touch functions */
#define DEFAULT_ADC (TC_PV1 | TC_AV0 | TC_AV1 | TC_RS0)
#define TSC2000_DELAY_BASE 500
#define TSC2000_NO_SENSOR -0x10000
#define ERROR_BATTERY 220 /* must be adjusted, if R68 is changed on
* TRAB */
static void tsc2000_write(unsigned short, unsigned short);
static unsigned short tsc2000_read (unsigned short);
static u16 tsc2000_read_channel (unsigned int);
static void tsc2000_set_mux (unsigned int);
static void tsc2000_set_range (unsigned int);
void tsc2000_reg_init (void);
s32 tsc2000_contact_temp (void);
static void spi_wait_transmit_done (void);
void spi_init(void);
static int tsc2000_interpolate(long value, long data[][2], long *result);
static void adc_wait_conversion_done(void);
static inline void SET_CS_TOUCH(void)
{
S3C24X0_GPIO * const gpio = S3C24X0_GetBase_GPIO();
gpio->PDDAT &= 0x5FF;
}
static inline void CLR_CS_TOUCH(void)
{
S3C24X0_GPIO * const gpio = S3C24X0_GetBase_GPIO();
gpio->PDDAT |= 0x200;
}
#endif /* _TSC2000_H_ */

View File

@ -54,7 +54,7 @@ int do_vfd (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
return 1;
}
if (argv[1][0] == '#') { /* select bitmap by number */
if (argv[1][0] == '/') { /* select bitmap by number */
bitmap = simple_strtoul(argv[1]+1, NULL, 10);
return (trab_vfd(bitmap));
}
@ -68,8 +68,10 @@ int do_vfd (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
U_BOOT_CMD(
vfd, 2, 0, do_vfd,
"vfd - load a bitmap to the VFDs on TRAB\n",
"N\n"
"/N\n"
" - load bitmap N to the VFDs (N is _decimal_ !!!)\n"
"vfd ADDR\n"
" - load bitmap at address ADDR\n"
);
#endif /* CFG_CMD_VFD */

View File

@ -27,5 +27,9 @@ void jumptable_init (void)
#if defined(CONFIG_I386) || defined(CONFIG_PPC)
gd->jt[XF_install_hdlr] = (void *) irq_install_handler;
gd->jt[XF_free_hdlr] = (void *) irq_free_handler;
#endif
#endif /* I386 || PPC */
#if (CONFIG_COMMANDS & CFG_CMD_I2C)
gd->jt[XF_i2c_write] = (void *) i2c_write;
gd->jt[XF_i2c_read] = (void *) i2c_read;
#endif /* CFG_CMD_I2C */
}

View File

@ -69,6 +69,11 @@ ifeq ($(BOARD),oxc)
SREC += eepro100_eeprom.srec
endif
##ifeq ($(BOARD),trab)
##SREC += trab_fkt.srec
##BIN += trab_fkt.bin
##endif
OBJS = $(SREC:.srec=.o)
LIB = libstubs.a

View File

@ -10,3 +10,7 @@ EXPORT_FUNC(malloc)
EXPORT_FUNC(free)
EXPORT_FUNC(udelay)
EXPORT_FUNC(get_timer)
#if (CONFIG_COMMANDS & CFG_CMD_I2C)
EXPORT_FUNC(i2c_write)
EXPORT_FUNC(i2c_read)
#endif /* CFG_CMD_I2C */

View File

@ -191,8 +191,8 @@
/*
* Various low-level settings
*/
#define CFG_HID0_INIT 0
#define CFG_HID0_FINAL 0
#define CFG_HID0_INIT HID0_ICE | HID0_ICFI
#define CFG_HID0_FINAL HID0_ICE
#define CFG_BOOTCS_START CFG_FLASH_BASE
#define CFG_BOOTCS_SIZE CFG_FLASH_SIZE

View File

@ -314,6 +314,11 @@
#define CONFIG_MISC_INIT_R /* have misc_init_r() function */
/*-----------------------------------------------------------------------
* burn-in test stuff
*/
#define BURN_IN_CYCLE_DELAY 20 /* delay in sec between burn-in test cycles */
/*-----------------------------------------------------------------------
* Stack sizes
*

View File

@ -18,6 +18,10 @@ void *malloc(size_t);
void free(void*);
void udelay(unsigned long);
unsigned long get_timer(unsigned long);
#if (CONFIG_COMMANDS & CFG_CMD_I2C)
int i2c_write (uchar, uint, int , uchar* , int);
int i2c_read (uchar, uint, int , uchar* , int);
#endif /* CFG_CMD_I2C */
void app_startup(char **);
@ -31,7 +35,7 @@ enum {
XF_MAX
};
#define XF_VERSION 1
#define XF_VERSION 2
#if defined(CONFIG_I386)
extern gd_t *global_data;