Merge branch 'sun9i-a80-spl' of http://git.denx.de/u-boot-sunxi

This commit is contained in:
Tom Rini 2016-10-30 08:12:00 -04:00
commit 48d2fc47c9
17 changed files with 1719 additions and 29 deletions

View File

@ -37,64 +37,65 @@ struct sunxi_ccm_reg {
u8 reserved3[0x04]; /* 0x7c */
u32 ats_cfg; /* 0x80 ats clock configuration */
u32 trace_cfg; /* 0x84 trace clock configuration */
u8 reserved4[0xf8]; /* 0x88 */
u8 reserved4[0x14]; /* 0x88 */
u32 pll_stable_status; /* 0x9c */
u8 reserved5[0xe0]; /* 0xa0 */
u32 clk_output_a; /* 0x180 clk_output_a */
u32 clk_output_b; /* 0x184 clk_output_a */
u8 reserved5[0x278]; /* 0x188 */
u8 reserved6[0x278]; /* 0x188 */
u32 nand0_clk_cfg; /* 0x400 nand0 clock configuration0 */
u32 nand0_clk_cfg1; /* 0x404 nand1 clock configuration */
u8 reserved6[0x08]; /* 0x408 */
u8 reserved7[0x08]; /* 0x408 */
u32 sd0_clk_cfg; /* 0x410 sd0 clock configuration */
u32 sd1_clk_cfg; /* 0x414 sd1 clock configuration */
u32 sd2_clk_cfg; /* 0x418 sd2 clock configuration */
u32 sd3_clk_cfg; /* 0x41c sd3 clock configuration */
u8 reserved7[0x08]; /* 0x420 */
u8 reserved8[0x08]; /* 0x420 */
u32 ts_clk_cfg; /* 0x428 transport stream clock cfg */
u32 ss_clk_cfg; /* 0x42c security system clock cfg */
u32 spi0_clk_cfg; /* 0x430 spi0 clock configuration */
u32 spi1_clk_cfg; /* 0x434 spi1 clock configuration */
u32 spi2_clk_cfg; /* 0x438 spi2 clock configuration */
u32 spi3_clk_cfg; /* 0x43c spi3 clock configuration */
u8 reserved8[0x50]; /* 0x440 */
u8 reserved9[0x44]; /* 0x440 */
u32 dram_clk_cfg; /* 0x484 DRAM (controller) clock config */
u8 reserved10[0x8]; /* 0x488 */
u32 de_clk_cfg; /* 0x490 display engine clock configuration */
u8 reserved9[0x04]; /* 0x494 */
u8 reserved11[0x04]; /* 0x494 */
u32 mp_clk_cfg; /* 0x498 mp clock configuration */
u32 lcd0_clk_cfg; /* 0x49c LCD0 module clock */
u32 lcd1_clk_cfg; /* 0x4a0 LCD1 module clock */
u8 reserved10[0x1c]; /* 0x4a4 */
u8 reserved12[0x1c]; /* 0x4a4 */
u32 csi_isp_clk_cfg; /* 0x4c0 CSI ISP module clock */
u32 csi0_clk_cfg; /* 0x4c4 CSI0 module clock */
u32 csi1_clk_cfg; /* 0x4c8 CSI1 module clock */
u32 fd_clk_cfg; /* 0x4cc FD module clock */
u32 ve_clk_cfg; /* 0x4d0 VE module clock */
u32 avs_clk_cfg; /* 0x4d4 AVS module clock */
u8 reserved11[0x18]; /* 0x4d8 */
u8 reserved13[0x18]; /* 0x4d8 */
u32 gpu_core_clk_cfg; /* 0x4f0 GPU core clock config */
u32 gpu_mem_clk_cfg; /* 0x4f4 GPU memory clock config */
u32 gpu_axi_clk_cfg; /* 0x4f8 GPU AXI clock config */
u8 reserved12[0x10]; /* 0x4fc */
u8 reserved14[0x10]; /* 0x4fc */
u32 gp_adc_clk_cfg; /* 0x50c General Purpose ADC clk config */
u8 reserved13[0x70]; /* 0x510 */
u8 reserved15[0x70]; /* 0x510 */
u32 ahb_gate0; /* 0x580 AHB0 Gating Register */
u32 ahb_gate1; /* 0x584 AHB1 Gating Register */
u32 ahb_gate2; /* 0x588 AHB2 Gating Register */
u8 reserved14[0x04]; /* 0x58c */
u8 reserved16[0x04]; /* 0x58c */
u32 apb0_gate; /* 0x590 APB0 Clock Gating Register */
u32 apb1_gate; /* 0x594 APB1 Clock Gating Register */
u8 reserved15[0x08]; /* 0x598 */
u8 reserved17[0x08]; /* 0x598 */
u32 ahb_reset0_cfg; /* 0x5a0 AHB0 Software Reset Register */
u32 ahb_reset1_cfg; /* 0x5a4 AHB1 Software Reset Register */
u32 ahb_reset2_cfg; /* 0x5a8 AHB2 Software Reset Register */
u8 reserved16[0x04]; /* 0x5ac */
u8 reserved18[0x04]; /* 0x5ac */
u32 apb0_reset_cfg; /* 0x5b0 Bus Software Reset Register 3 */
u32 apb1_reset_cfg; /* 0x5b4 Bus Software Reset Register 4 */
};
/* pll4_periph0_cfg */
#define PLL4_CFG_DEFAULT 0x90002800 /* 960 MHz */
#define CCM_PLL4_CTRL_N_SHIFT 8
#define CCM_PLL4_CTRL_N_MASK (0xff << CCM_PLL4_CTRL_N_SHIFT)
#define CCM_PLL4_CTRL_P_SHIFT 16
@ -102,6 +103,80 @@ struct sunxi_ccm_reg {
#define CCM_PLL4_CTRL_M_SHIFT 18
#define CCM_PLL4_CTRL_M_MASK (0x1 << CCM_PLL4_CTRL_M_SHIFT)
/* pllx_cfg bits */
#define CCM_PLL1_CTRL_N(n) (((n) & 0xff) << 8)
#define CCM_PLL1_CTRL_P(n) (((n) & 0x1) << 16)
#define CCM_PLL1_CTRL_EN (1 << 31)
#define CCM_PLL1_CLOCK_TIME_2 (2 << 24)
#define CCM_PLL2_CTRL_N(n) (((n) & 0xff) << 8)
#define CCM_PLL2_CTRL_P(n) (((n) & 0x1) << 16)
#define CCM_PLL2_CTRL_EN (1 << 31)
#define CCM_PLL2_CLOCK_TIME_2 (2 << 24)
#define CCM_PLL4_CTRL_N(n) (((n) & 0xff) << 8)
#define CCM_PLL4_CTRL_EN (1 << 31)
#define CCM_PLL6_CTRL_N(n) (((n) & 0xff) << 8)
#define CCM_PLL6_CTRL_P(p) (((p) & 0x1) << 16)
#define CCM_PLL6_CTRL_EN (1 << 31)
#define CCM_PLL6_CFG_UPDATE (1 << 30)
#define CCM_PLL12_CTRL_N(n) (((n) & 0xff) << 8)
#define CCM_PLL12_CTRL_EN (1 << 31)
#define PLL_C0CPUX_STATUS (1 << 0)
#define PLL_C1CPUX_STATUS (1 << 1)
#define PLL_DDR_STATUS (1 << 5)
#define PLL_PERIPH1_STATUS (1 << 11)
/* cpu_clk_source bits */
#define C0_CPUX_CLK_SRC_SHIFT 0
#define C1_CPUX_CLK_SRC_SHIFT 8
#define C0_CPUX_CLK_SRC_MASK (1 << C0_CPUX_CLK_SRC_SHIFT)
#define C1_CPUX_CLK_SRC_MASK (1 << C1_CPUX_CLK_SRC_SHIFT)
#define C0_CPUX_CLK_SRC_OSC24M (0 << C0_CPUX_CLK_SRC_SHIFT)
#define C0_CPUX_CLK_SRC_PLL1 (1 << C0_CPUX_CLK_SRC_SHIFT)
#define C1_CPUX_CLK_SRC_OSC24M (0 << C1_CPUX_CLK_SRC_SHIFT)
#define C1_CPUX_CLK_SRC_PLL2 (1 << C1_CPUX_CLK_SRC_SHIFT)
/* c0_cfg */
#define C0_CFG_AXI0_CLK_DIV_RATIO(n) (((n - 1) & 0x3) << 0)
#define C0_CFG_APB0_CLK_DIV_RATIO(n) (((n - 1) & 0x3) << 8)
/* ahbx_cfg */
#define AHBx_SRC_CLK_SELECT_SHIFT 24
#define AHBx_SRC_MASK (0x3 << AHBx_SRC_CLK_SELECT_SHIFT)
#define AHB0_SRC_GTBUS_CLK (0x0 << AHBx_SRC_CLK_SELECT_SHIFT)
#define AHB1_SRC_GTBUS_CLK (0x0 << AHBx_SRC_CLK_SELECT_SHIFT)
#define AHB2_SRC_OSC24M (0x0 << AHBx_SRC_CLK_SELECT_SHIFT)
#define AHBx_SRC_PLL_PERIPH0 (0x1 << AHBx_SRC_CLK_SELECT_SHIFT)
#define AHBx_SRC_PLL_PERIPH1 (0x2 << AHBx_SRC_CLK_SELECT_SHIFT)
#define AHBx_CLK_DIV_RATIO(n) (((ffs(n) - 1) & 0x3) << 0)
/* apb0_cfg */
#define APB0_SRC_CLK_SELECT_SHIFT 24
#define APB0_SRC_MASK (0x1 << APB0_SRC_CLK_SELECT_SHIFT)
#define APB0_SRC_OSC24M (0x0 << APB0_SRC_CLK_SELECT_SHIFT)
#define APB0_SRC_PLL_PERIPH0 (0x1 << APB0_SRC_CLK_SELECT_SHIFT)
#define APB0_CLK_DIV_RATIO(n) (((ffs(n) - 1) & 0x3) << 0)
/* gtbus_clk_cfg */
#define GTBUS_SRC_CLK_SELECT_SHIFT 24
#define GTBUS_SRC_MASK (0x3 << GTBUS_SRC_CLK_SELECT_SHIFT)
#define GTBUS_SRC_OSC24M (0x0 << GTBUS_SRC_CLK_SELECT_SHIFT)
#define GTBUS_SRC_PLL_PERIPH0 (0x1 << GTBUS_SRC_CLK_SELECT_SHIFT)
#define GTBUS_SRC_PLL_PERIPH1 (0x2 << GTBUS_SRC_CLK_SELECT_SHIFT)
#define GTBUS_CLK_DIV_RATIO(n) (((n - 1) & 0x3) << 0)
/* cci400_clk_cfg */
#define CCI400_SRC_CLK_SELECT_SHIFT 24
#define CCI400_SRC_MASK (0x3 << CCI400_SRC_CLK_SELECT_SHIFT)
#define CCI400_SRC_OSC24M (0x0 << CCI400_SRC_CLK_SELECT_SHIFT)
#define CCI400_SRC_PLL_PERIPH0 (0x1 << CCI400_SRC_CLK_SELECT_SHIFT)
#define CCI400_SRC_PLL_PERIPH1 (0x2 << CCI400_SRC_CLK_SELECT_SHIFT)
#define CCI400_CLK_DIV_RATIO(n) (((n - 1) & 0x3) << 0)
/* sd#_clk_cfg fields */
#define CCM_MMC_CTRL_M(x) ((x) - 1)
#define CCM_MMC_CTRL_OCLK_DLY(x) ((x) << 8)
@ -112,6 +187,8 @@ struct sunxi_ccm_reg {
#define CCM_MMC_CTRL_ENABLE (1 << 31)
/* ahb_gate0 fields */
#define AHB_GATE_OFFSET_MCTL 14
/* On sun9i all sdc-s share their ahb gate, so ignore (x) */
#define AHB_GATE_OFFSET_NAND0 13
#define AHB_GATE_OFFSET_MMC(x) 8
@ -126,6 +203,8 @@ struct sunxi_ccm_reg {
#define APB1_GATE_TWI_MASK (0xf << APB1_GATE_TWI_SHIFT)
/* ahb_reset0_cfg fields */
#define AHB_RESET_OFFSET_MCTL 14
/* On sun9i all sdc-s share their ahb reset, so ignore (x) */
#define AHB_RESET_OFFSET_MMC(x) 8
@ -137,6 +216,11 @@ struct sunxi_ccm_reg {
#ifndef __ASSEMBLY__
void clock_set_pll1(unsigned int clk);
void clock_set_pll2(unsigned int clk);
void clock_set_pll4(unsigned int clk);
void clock_set_pll6(unsigned int clk);
void clock_set_pll12(unsigned int clk);
unsigned int clock_get_pll4_periph0(void);
#endif

View File

@ -23,6 +23,10 @@
#define SUNXI_NFC_BASE (REGS_AHB0_BASE + 0x3000)
#define SUNXI_TSC_BASE (REGS_AHB0_BASE + 0x4000)
#define SUNXI_GTBUS_BASE (REGS_AHB0_BASE + 0x9000)
/* SID address space starts at 0x01ce000, but e-fuse is at offset 0x200 */
#define SUNXI_SID_BASE (REGS_AHB0_BASE + 0xe200)
#define SUNXI_MMC0_BASE (REGS_AHB0_BASE + 0x0f000)
#define SUNXI_MMC1_BASE (REGS_AHB0_BASE + 0x10000)
#define SUNXI_MMC2_BASE (REGS_AHB0_BASE + 0x11000)
@ -38,6 +42,12 @@
#define SUNXI_ARMA9_GIC_BASE (REGS_AHB0_BASE + 0x41000)
#define SUNXI_ARMA9_CPUIF_BASE (REGS_AHB0_BASE + 0x42000)
#define SUNXI_DRAM_COM_BASE (REGS_AHB0_BASE + 0x62000)
#define SUNXI_DRAM_CTL0_BASE (REGS_AHB0_BASE + 0x63000)
#define SUNXI_DRAM_CTL1_BASE (REGS_AHB0_BASE + 0x64000)
#define SUNXI_DRAM_PHY0_BASE (REGS_AHB0_BASE + 0x65000)
#define SUNXI_DRAM_PHY1_BASE (REGS_AHB0_BASE + 0x66000)
/* AHB1 Module */
#define SUNXI_DMA_BASE (REGS_AHB1_BASE + 0x002000)
#define SUNXI_USBOTG_BASE (REGS_AHB1_BASE + 0x100000)

View File

@ -26,6 +26,8 @@
#include <asm/arch/dram_sun8i_a83t.h>
#elif defined(CONFIG_MACH_SUN8I_H3)
#include <asm/arch/dram_sun8i_h3.h>
#elif defined(CONFIG_MACH_SUN9I)
#include <asm/arch/dram_sun9i.h>
#else
#include <asm/arch/dram_sun4i.h>
#endif

View File

@ -0,0 +1,278 @@
/*
* Sun8i platform dram controller register and constant defines
*
* (C) Copyright 2007-2015 Allwinner Technology Co.
* Jerry Wang <wangflord@allwinnertech.com>
* (C) Copyright 2016 Theobroma Systems Design und Consulting GmbH
* Philipp Tomsich <philipp.tomsich@theobroma-systems.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#ifndef _SUNXI_DRAM_SUN9I_H
#define _SUNXI_DRAM_SUN9I_H
struct sunxi_mctl_com_reg {
u32 cr; /* 0x00 */
u32 ccr; /* 0x04 controller configuration register */
u32 dbgcr; /* 0x08 */
u32 dbgcr1; /* 0x0c */
u32 rmcr; /* 0x10 */
u8 res1[0x1c]; /* 0x14 */
u32 mmcr; /* 0x30 */
u8 res2[0x3c]; /* 0x34 */
u32 mbagcr; /* 0x70 */
u32 mbacr; /* 0x74 */
u8 res3[0x10]; /* 0x78 */
u32 maer; /* 0x88 */
u8 res4[0x74]; /* 0x8c */
u32 mdfscr; /* 0x100 */
u32 mdfsmer; /* 0x104 */
u32 mdfsmrmr; /* 0x108 */
u32 mdfstr[4]; /* 0x10c */
u32 mdfsgcr; /* 0x11c */
u8 res5[0x1c]; /* 0x120 */
u32 mdfsivr; /* 0x13c */
u8 res6[0xc]; /* 0x140 */
u32 mdfstcr; /* 0x14c */
};
struct sunxi_mctl_ctl_reg {
u32 mstr; /* 0x00 master register */
u32 stat; /* 0x04 operating mode status register */
u8 res1[0x8]; /* 0x08 */
u32 mrctrl[2]; /* 0x10 mode register read/write control reg */
u32 mstat; /* 0x18 mode register read/write status reg */
u8 res2[0x4]; /* 0x1c */
u32 derateen; /* 0x20 temperature derate enable register */
u32 derateint; /* 0x24 temperature derate interval register */
u8 res3[0x8]; /* 0x28 */
u32 pwrctl; /* 0x30 low power control register */
u32 pwrtmg; /* 0x34 low power timing register */
u8 res4[0x18]; /* 0x38 */
u32 rfshctl0; /* 0x50 refresh control register 0 */
u32 rfshctl1; /* 0x54 refresh control register 1 */
u8 res5[0x8]; /* 0x58 */
u32 rfshctl3; /* 0x60 refresh control register 3 */
u32 rfshtmg; /* 0x64 refresh timing register */
u8 res6[0x68]; /* 0x68 */
u32 init[6]; /* 0xd0 SDRAM initialisation register */
u8 res7[0xc]; /* 0xe8 */
u32 rankctl; /* 0xf4 rank control register */
u8 res8[0x8]; /* 0xf8 */
u32 dramtmg[9]; /* 0x100 DRAM timing register */
u8 res9[0x5c]; /* 0x124 */
u32 zqctrl[3]; /* 0x180 ZQ control register */
u32 zqstat; /* 0x18c ZQ status register */
u32 dfitmg[2]; /* 0x190 DFI timing register */
u32 dfilpcfg; /* 0x198 DFI low power configuration register */
u8 res10[0x4]; /* 0x19c */
u32 dfiupd[4]; /* 0x1a0 DFI update register */
u32 dfimisc; /* 0x1b0 DFI miscellaneous control register */
u8 res11[0x1c]; /* 0x1b4 */
u32 trainctl[3]; /* 0x1d0 */
u32 trainstat; /* 0x1dc */
u8 res12[0x20]; /* 0x1e0 */
u32 addrmap[7]; /* 0x200 address map register */
u8 res13[0x24]; /* 0x21c */
u32 odtcfg; /* 0x240 ODT configuration register */
u32 odtmap; /* 0x244 ODT/rank map register */
u8 res14[0x8]; /* 0x248 */
u32 sched; /* 0x250 scheduler control register */
u8 res15[0x4]; /* 0x254 */
u32 perfhpr0; /* 0x258 high priority read CAM register 0 */
u32 perfhpr1; /* 0x25c high priority read CAM register 1 */
u32 perflpr0; /* 0x260 low priority read CAM register 0 */
u32 perflpr1; /* 0x264 low priority read CAM register 1 */
u32 perfwr0; /* 0x268 write CAM register 0 */
u32 perfwr1; /* 0x26c write CAM register 1 */
};
struct sunxi_mctl_phy_reg {
u8 res0[0x04]; /* 0x00 revision id ??? */
u32 pir; /* 0x04 PHY initialisation register */
u32 pgcr[4]; /* 0x08 PHY general configuration register */
u32 pgsr[2]; /* 0x18 PHY general status register */
u32 pllcr; /* 0x20 PLL control register */
u32 ptr[5]; /* 0x24 PHY timing register */
u32 acmdlr; /* 0x38 AC master delay line register */
u32 aclcdlr; /* 0x3c AC local calibrated delay line reg */
u32 acbdlr[10]; /* 0x40 AC bit delay line register */
u32 aciocr[6]; /* 0x68 AC IO configuration register */
u32 dxccr; /* 0x80 DATX8 common configuration register */
u32 dsgcr; /* 0x84 DRAM system general config register */
u32 dcr; /* 0x88 DRAM configuration register */
u32 dtpr[4]; /* 0x8c DRAM timing parameters register */
u32 mr0; /* 0x9c mode register 0 */
u32 mr1; /* 0xa0 mode register 1 */
u32 mr2; /* 0xa4 mode register 2 */
u32 mr3; /* 0xa8 mode register 3 */
u32 odtcr; /* 0xac ODT configuration register */
u32 dtcr; /* 0xb0 data training configuration register */
u32 dtar[4]; /* 0xb4 data training address register */
u32 dtdr[2]; /* 0xc4 data training data register */
u32 dtedr[2]; /* 0xcc data training eye data register */
u32 rdimmgcr[2]; /* 0xd4 RDIMM general configuration register */
u32 rdimmcr[2]; /* 0xdc RDIMM control register */
u32 gpr[2]; /* 0xe4 general purpose register */
u32 catr[2]; /* 0xec CA training register */
u32 dqdsr; /* 0xf4 DQS drift register */
u8 res1[0xc8]; /* 0xf8 */
u32 bistrr; /* 0x1c0 BIST run register */
u32 bistwcr; /* 0x1c4 BIST word count register */
u32 bistmskr[3]; /* 0x1c8 BIST mask register */
u32 bistlsr; /* 0x1d4 BIST LFSR seed register */
u32 bistar[3]; /* 0x1d8 BIST address register */
u32 bistupdr; /* 0x1e4 BIST user pattern data register */
u32 bistgsr; /* 0x1e8 BIST general status register */
u32 bistwer; /* 0x1dc BIST word error register */
u32 bistber[4]; /* 0x1f0 BIST bit error register */
u32 bistwcsr; /* 0x200 BIST word count status register */
u32 bistfwr[3]; /* 0x204 BIST fail word register */
u8 res2[0x28]; /* 0x210 */
u32 iovcr[2]; /* 0x238 IO VREF control register */
struct ddrphy_zq {
u32 cr; /* impedance control register */
u32 pr; /* impedance control data register */
u32 dr; /* impedance control data register */
u32 sr; /* impedance control status register */
} zq[4]; /* 0x240, 0x250, 0x260, 0x270 */
struct ddrphy_dx {
u32 gcr[4]; /* DATX8 general configuration register */
u32 gsr[3]; /* DATX8 general status register */
u32 bdlr[7]; /* DATX8 bit delay line register */
u32 lcdlr[3]; /* DATX8 local calibrated delay line reg */
u32 mdlr; /* DATX8 master delay line register */
u32 gtr; /* DATX8 general timing register */
u8 res[0x34];
} dx[4]; /* 0x280, 0x300, 0x380, 0x400 */
};
/*
* DRAM common (sunxi_mctl_com_reg) register constants.
*/
#define MCTL_CR_RANK_MASK (3 << 0)
#define MCTL_CR_RANK(x) (((x) - 1) << 0)
#define MCTL_CR_BANK_MASK (3 << 2)
#define MCTL_CR_BANK(x) ((x) << 2)
#define MCTL_CR_ROW_MASK (0xf << 4)
#define MCTL_CR_ROW(x) (((x) - 1) << 4)
#define MCTL_CR_PAGE_SIZE_MASK (0xf << 8)
#define MCTL_CR_PAGE_SIZE(x) ((fls(x) - 4) << 8)
#define MCTL_CR_BUSW_MASK (3 << 12)
#define MCTL_CR_BUSW16 (1 << 12)
#define MCTL_CR_BUSW32 (3 << 12)
#define MCTL_CR_DRAMTYPE_MASK (7 << 16)
#define MCTL_CR_DRAMTYPE_DDR2 (2 << 16)
#define MCTL_CR_DRAMTYPE_DDR3 (3 << 16)
#define MCTL_CR_DRAMTYPE_LPDDR2 (6 << 16)
#define MCTL_CR_CHANNEL_MASK ((1 << 22) | (1 << 20) | (1 << 19))
#define MCTL_CR_CHANNEL_SINGLE (1 << 22)
#define MCTL_CR_CHANNEL_DUAL ((1 << 22) | (1 << 20) | (1 << 19))
#define MCTL_CCR_CH0_CLK_EN (1 << 15)
#define MCTL_CCR_CH1_CLK_EN (1 << 31)
/*
* post_cke_x1024 [bits 16..25]: Cycles to wait after driving CKE high
* to start the SDRAM initialization sequence (in 1024s of cycles).
*/
#define MCTL_INIT0_POST_CKE_x1024(n) ((n & 0x0fff) << 16)
/*
* pre_cke_x1024 [bits 0..11] Cycles to wait after reset before driving
* CKE high to start the SDRAM initialization (in 1024s of cycles)
*/
#define MCTL_INIT0_PRE_CKE_x1024(n) ((n & 0x0fff) << 0)
#define MCTL_INIT1_DRAM_RSTN_x1024(n) ((n & 0xff) << 16)
#define MCTL_INIT1_FINAL_WAIT_x32(n) ((n & 0x3f) << 8)
#define MCTL_INIT1_PRE_OCD_x32(n) ((n & 0x0f) << 0)
#define MCTL_INIT2_IDLE_AFTER_RESET_x32(n) ((n & 0xff) << 8)
#define MCTL_INIT2_MIN_STABLE_CLOCK_x1(n) ((n & 0x0f) << 0)
#define MCTL_INIT3_MR(n) ((n & 0xffff) << 16)
#define MCTL_INIT3_EMR(n) ((n & 0xffff) << 0)
#define MCTL_INIT4_EMR2(n) ((n & 0xffff) << 16)
#define MCTL_INIT4_EMR3(n) ((n & 0xffff) << 0)
#define MCTL_INIT5_DEV_ZQINIT_x32(n) ((n & 0x00ff) << 16)
#define MCTL_INIT5_MAX_AUTO_INIT_x1024(n) ((n & 0x03ff) << 0);
#define MCTL_DFIMISC_DFI_INIT_COMPLETE_EN (1 << 0)
#define MCTL_DFIUPD0_DIS_AUTO_CTRLUPD (1 << 31)
#define MCTL_MSTR_DEVICETYPE_DDR3 1
#define MCTL_MSTR_DEVICETYPE_LPDDR2 4
#define MCTL_MSTR_DEVICETYPE_LPDDR3 8
#define MCTL_MSTR_DEVICETYPE(type) \
((type == DRAM_TYPE_DDR3) ? MCTL_MSTR_DEVICETYPE_DDR3 : \
((type == DRAM_TYPE_LPDDR2) ? MCTL_MSTR_DEVICETYPE_LPDDR2 : \
MCTL_MSTR_DEVICETYPE_LPDDR3))
#define MCTL_MSTR_BURSTLENGTH4 (2 << 16)
#define MCTL_MSTR_BURSTLENGTH8 (4 << 16)
#define MCTL_MSTR_BURSTLENGTH16 (8 << 16)
#define MCTL_MSTR_BURSTLENGTH(type) \
((type == DRAM_TYPE_DDR3) ? MCTL_MSTR_BURSTLENGTH8 : \
((type == DRAM_TYPE_LPDDR2) ? MCTL_MSTR_BURSTLENGTH4 : \
MCTL_MSTR_BURSTLENGTH8))
#define MCTL_MSTR_ACTIVERANKS(x) (((x == 2) ? 3 : 1) << 24)
#define MCTL_MSTR_BUSWIDTH8 (2 << 12)
#define MCTL_MSTR_BUSWIDTH16 (1 << 12)
#define MCTL_MSTR_BUSWIDTH32 (0 << 12)
#define MCTL_MSTR_2TMODE (1 << 10)
#define MCTL_RFSHCTL3_DIS_AUTO_REFRESH (1 << 0)
#define MCTL_ZQCTRL0_TZQCS(x) (x << 0)
#define MCTL_ZQCTRL0_TZQCL(x) (x << 16)
#define MCTL_ZQCTRL0_ZQCL_DIS (1 << 30)
#define MCTL_ZQCTRL0_ZQCS_DIS (1 << 31)
#define MCTL_ZQCTRL1_TZQRESET(x) (x << 20)
#define MCTL_ZQCTRL1_TZQSI_x1024(x) (x << 0)
#define MCTL_ZQCTRL2_TZRESET_TRIGGER (1 << 0)
#define MCTL_PHY_DCR_BYTEMASK (1 << 10)
#define MCTL_PHY_DCR_2TMODE (1 << 28)
#define MCTL_PHY_DCR_DDR8BNK (1 << 3)
#define MCTL_PHY_DRAMMODE_DDR3 3
#define MCTL_PHY_DRAMMODE_LPDDR2 0
#define MCTL_PHY_DRAMMODE_LPDDR3 1
#define MCTL_DTCR_DEFAULT 0x00003007
#define MCTL_DTCR_RANKEN(n) (((n == 2) ? 3 : 1) << 24)
#define MCTL_PGCR1_ZCKSEL_MASK (3 << 23)
#define MCTL_PGCR1_IODDRM_MASK (3 << 7)
#define MCTL_PGCR1_IODDRM_DDR3 (1 << 7)
#define MCTL_PGCR1_IODDRM_DDR3L (2 << 7)
#define MCTL_PGCR1_INHVT_EN (1 << 26)
#define MCTL_PLLGCR_PLL_BYPASS (1 << 31)
#define MCTL_PLLGCR_PLL_POWERDOWN (1 << 29)
#define MCTL_PIR_PLL_BYPASS (1 << 17)
#define MCTL_PIR_MASK (~(1 << 17))
#define MCTL_PIR_INIT (1 << 0)
#define MCTL_PGSR0_ERRORS (0x1ff << 20)
/* Constants for assembling MR0 */
#define DDR3_MR0_PPD_FAST_EXIT (1 << 12)
#define DDR3_MR0_WR(n) \
((n <= 8) ? ((n - 4) << 9) : (((n >> 1) & 0x7) << 9))
#define DDR3_MR0_CL(n) \
((((n - 4) & 0x7) << 4) | (((n - 4) & 0x8) >> 2))
#define DDR3_MR0_BL8 (0 << 0)
#define DDR3_MR1_RTT120OHM ((0 << 9) | (1 << 6) | (0 << 2))
#define DDR3_MR2_TWL(n) \
(((n - 5) & 0x7) << 3)
#define MCTL_NS2CYCLES_CEIL(ns) ((ns * (CONFIG_DRAM_CLK / 2) + 999) / 1000)
#define DRAM_TYPE_DDR3 3
#define DRAM_TYPE_LPDDR2 6
#define DRAM_TYPE_LPDDR3 7
#endif

View File

@ -0,0 +1,21 @@
/*
* GTBUS initialisation
*
* (C) Copyright 2016 Theobroma Systems Design und Consulting GmbH
* Philipp Tomsich <philipp.tomsich@theobroma-systems.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#ifndef _SUNXI_GTBUS_H
#define _SUNXI_GTBUS_H
#if defined(CONFIG_MACH_SUN9I)
#include <asm/arch/gtbus_sun9i.h>
#endif
#ifndef __ASSEMBLY__
void gtbus_init(void);
#endif
#endif

View File

@ -0,0 +1,92 @@
/*
* GTBUS initialisation for sun9i
*
* (C) Copyright 2016 Theobroma Systems Design und Consulting GmbH
* Philipp Tomsich <philipp.tomsich@theobroma-systems.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#ifndef _SUNXI_GTBUS_SUN9I_H
#define _SUNXI_GTBUS_SUN9I_H
#include <linux/types.h>
struct sunxi_gtbus_reg {
u32 mst_cfg[36]; /* 0x000 */
u8 reserved1[0x70]; /* 0x090 */
u32 bw_wdw_cfg; /* 0x100 */
u32 mst_read_prio_cfg[2]; /* 0x104 */
u32 lvl2_mst_cfg; /* 0x10c */
u32 sw_clk_on; /* 0x110 */
u32 sw_clk_off; /* 0x114 */
u32 pmu_mst_en; /* 0x118 */
u32 pmu_cfg; /* 0x11c */
u32 pmu_cnt[19]; /* 0x120 */
u32 reserved2[0x94]; /* 0x16c */
u32 cci400_config[3]; /* 0x200 */
u32 cci400_status[2]; /* 0x20c */
};
/* for register GT_MST_CFG_REG(n) */
#define GT_ENABLE_REQ (1<<31) /* clock on */
#define GT_DISABLE_REQ (1<<30) /* clock off */
#define GT_QOS_SHIFT 28
#define GT_THD1_SHIFT 16
#define GT_REQN_MAX 0xf /* max no master requests in one cycle */
#define GT_REQN_SHIFT 12
#define GT_THD0_SHIFT 0
#define GT_QOS_MAX 0x3
#define GT_THD_MAX 0xfff
#define GT_BW_WDW_MAX 0xffff
/* mst_read_prio_cfg */
#define GT_PRIO_LOW 0
#define GT_PRIO_HIGH 1
/* GTBUS port ids */
#define GT_PORT_CPUM1 0
#define GT_PORT_CPUM2 1
#define GT_PORT_SATA 2
#define GT_PORT_USB3 3
#define GT_PORT_FE0 4
#define GT_PORT_BE1 5
#define GT_PORT_BE2 6
#define GT_PORT_IEP0 7
#define GT_PORT_FE1 8
#define GT_PORT_BE0 9
#define GT_PORT_FE2 10
#define GT_PORT_IEP1 11
#define GT_PORT_VED 12
#define GT_PORT_VEE 13
#define GT_PORT_FD 14
#define GT_PORT_CSI 15
#define GT_PORT_MP 16
#define GT_PORT_HSI 17
#define GT_PORT_SS 18
#define GT_PORT_TS 19
#define GT_PORT_DMA 20
#define GT_PORT_NDFC0 21
#define GT_PORT_NDFC1 22
#define GT_PORT_CPUS 23
#define GT_PORT_TH 24
#define GT_PORT_GMAC 25
#define GT_PORT_USB0 26
#define GT_PORT_MSTG0 27
#define GT_PORT_MSTG1 28
#define GT_PORT_MSTG2 29
#define GT_PORT_MSTG3 30
#define GT_PORT_USB1 31
#define GT_PORT_GPU0 32
#define GT_PORT_GPU1 33
#define GT_PORT_USB2 34
#define GT_PORT_CPUM0 35
#define GP_MST_CFG_DEFAULT \
((GT_QOS_MAX << GT_QOS_SHIFT) | \
(GT_THD_MAX << GT_THD1_SHIFT) | \
(GT_REQN_MAX << GT_REQN_SHIFT) | \
(GT_THD_MAX << GT_THD0_SHIFT))
#endif

View File

@ -32,7 +32,7 @@ obj-y += clock_sun8i_a83t.o
else
obj-$(CONFIG_MACH_SUN8I) += clock_sun6i.o
endif
obj-$(CONFIG_MACH_SUN9I) += clock_sun9i.o
obj-$(CONFIG_MACH_SUN9I) += clock_sun9i.o gtbus_sun9i.o
obj-$(CONFIG_AXP152_POWER) += pmic_bus.o
obj-$(CONFIG_AXP209_POWER) += pmic_bus.o
@ -49,4 +49,5 @@ obj-$(CONFIG_MACH_SUN8I_A23) += dram_sun8i_a23.o
obj-$(CONFIG_MACH_SUN8I_A33) += dram_sun8i_a33.o
obj-$(CONFIG_MACH_SUN8I_A83T) += dram_sun8i_a83t.o
obj-$(CONFIG_MACH_SUN8I_H3) += dram_sun8i_h3.o
obj-$(CONFIG_MACH_SUN9I) += dram_sun9i.o
endif

View File

@ -182,7 +182,8 @@ void s_init(void)
#if defined CONFIG_MACH_SUN6I || \
defined CONFIG_MACH_SUN7I || \
defined CONFIG_MACH_SUN8I
defined CONFIG_MACH_SUN8I || \
defined CONFIG_MACH_SUN9I
/* Enable SMP mode for CPU0, by setting bit 6 of Auxiliary Ctl reg */
asm volatile(
"mrc p15, 0, r0, c1, c0, 1\n"

View File

@ -13,16 +13,22 @@
#include <asm/arch/clock.h>
#include <asm/arch/gpio.h>
#include <asm/arch/prcm.h>
#include <asm/arch/gtbus.h>
#include <asm/arch/sys_proto.h>
__weak void clock_init_sec(void)
{
}
__weak void gtbus_init(void)
{
}
int clock_init(void)
{
#ifdef CONFIG_SPL_BUILD
clock_init_safe();
gtbus_init();
#endif
clock_init_uart();
clock_init_sec();

View File

@ -1,8 +1,12 @@
/*
* sun9i specific clock code
*
* (C) Copyright 2015 Hans de Goede <hdegoede@redhat.com>
*
* (C) Copyright 2016 Theobroma Systems Design und Consulting GmbH
* Philipp Tomsich <philipp.tomsich@theobroma-systems.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
@ -12,6 +16,57 @@
#include <asm/arch/prcm.h>
#include <asm/arch/sys_proto.h>
#ifdef CONFIG_SPL_BUILD
void clock_init_safe(void)
{
struct sunxi_ccm_reg * const ccm =
(struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
/* Set up PLL12 (peripheral 1) */
clock_set_pll12(1200000000);
/* Set up PLL1 (cluster 0) and PLL2 (cluster 1) */
clock_set_pll1(408000000);
clock_set_pll2(408000000);
/* Set up PLL4 (peripheral 0) */
clock_set_pll4(960000000);
/* Set up dividers for AXI0 and APB0 on cluster 0: PLL1 / 2 = 204MHz */
writel(C0_CFG_AXI0_CLK_DIV_RATIO(2) |
C0_CFG_APB0_CLK_DIV_RATIO(2), &ccm->c0_cfg);
/* AHB0: 120 MHz (PLL_PERIPH0 / 8) */
writel(AHBx_SRC_PLL_PERIPH0 | AHBx_CLK_DIV_RATIO(8),
&ccm->ahb0_cfg);
/* AHB1: 240 MHz (PLL_PERIPH0 / 4) */
writel(AHBx_SRC_PLL_PERIPH0 | AHBx_CLK_DIV_RATIO(4),
&ccm->ahb1_cfg);
/* AHB2: 120 MHz (PLL_PERIPH0 / 8) */
writel(AHBx_SRC_PLL_PERIPH0 | AHBx_CLK_DIV_RATIO(8),
&ccm->ahb2_cfg);
/* APB0: 120 MHz (PLL_PERIPH0 / 8) */
writel(APB0_SRC_PLL_PERIPH0 | APB0_CLK_DIV_RATIO(8),
&ccm->apb0_cfg);
/* GTBUS: 400MHz (PERIPH0 div 3) */
writel(GTBUS_SRC_PLL_PERIPH1 | GTBUS_CLK_DIV_RATIO(3),
&ccm->gtbus_cfg);
/* CCI400: 480MHz (PERIPH1 div 2) */
writel(CCI400_SRC_PLL_PERIPH0 | CCI400_CLK_DIV_RATIO(2),
&ccm->cci400_cfg);
/* Deassert DMA reset and open clock gating for DMA */
setbits_le32(&ccm->ahb_reset1_cfg, (1 << 24));
setbits_le32(&ccm->apb1_gate, (1 << 24));
/* set enable-bit in TSTAMP_CTRL_REG */
writel(1, 0x01720000);
}
#endif
void clock_init_uart(void)
{
struct sunxi_ccm_reg *const ccm =
@ -25,11 +80,98 @@ void clock_init_uart(void)
setbits_le32(&ccm->apb1_reset_cfg,
1 << (APB1_RESET_UART_SHIFT +
CONFIG_CONS_INDEX - 1));
/* Dup with clock_init_safe(), drop once sun9i SPL support lands */
writel(PLL4_CFG_DEFAULT, &ccm->pll4_periph0_cfg);
}
#ifdef CONFIG_SPL_BUILD
void clock_set_pll1(unsigned int clk)
{
struct sunxi_ccm_reg * const ccm =
(struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
const int p = 0;
/* Switch cluster 0 to 24MHz clock while changing PLL1 */
clrsetbits_le32(&ccm->cpu_clk_source, C0_CPUX_CLK_SRC_MASK,
C0_CPUX_CLK_SRC_OSC24M);
writel(CCM_PLL1_CTRL_EN | CCM_PLL1_CTRL_P(p) |
CCM_PLL1_CLOCK_TIME_2 |
CCM_PLL1_CTRL_N(clk / 24000000),
&ccm->pll1_c0_cfg);
/*
* Don't bother with the stable-time registers, as it doesn't
* wait until the PLL is stable. Note, that even Allwinner
* just uses a delay loop (or rather the AVS timer) for this
* instead of the PLL_STABLE_STATUS register.
*/
sdelay(2000);
/* Switch cluster 0 back to PLL1 */
clrsetbits_le32(&ccm->cpu_clk_source, C0_CPUX_CLK_SRC_MASK,
C0_CPUX_CLK_SRC_PLL1);
}
void clock_set_pll2(unsigned int clk)
{
struct sunxi_ccm_reg * const ccm =
(struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
const int p = 0;
/* Switch cluster 1 to 24MHz clock while changing PLL2 */
clrsetbits_le32(&ccm->cpu_clk_source, C1_CPUX_CLK_SRC_MASK,
C1_CPUX_CLK_SRC_OSC24M);
writel(CCM_PLL2_CTRL_EN | CCM_PLL2_CTRL_P(p) |
CCM_PLL2_CLOCK_TIME_2 | CCM_PLL2_CTRL_N(clk / 24000000),
&ccm->pll2_c1_cfg);
sdelay(2000);
/* Switch cluster 1 back to PLL2 */
clrsetbits_le32(&ccm->cpu_clk_source, C1_CPUX_CLK_SRC_MASK,
C1_CPUX_CLK_SRC_PLL2);
}
void clock_set_pll6(unsigned int clk)
{
struct sunxi_ccm_reg * const ccm =
(struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
const int p = 0;
writel(CCM_PLL6_CTRL_EN | CCM_PLL6_CFG_UPDATE | CCM_PLL6_CTRL_P(p)
| CCM_PLL6_CTRL_N(clk / 24000000),
&ccm->pll6_ddr_cfg);
do { } while (!(readl(&ccm->pll_stable_status) & PLL_DDR_STATUS));
sdelay(2000);
}
void clock_set_pll12(unsigned int clk)
{
struct sunxi_ccm_reg * const ccm =
(struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
if (readl(&ccm->pll12_periph1_cfg) & CCM_PLL12_CTRL_EN)
return;
writel(CCM_PLL12_CTRL_EN | CCM_PLL12_CTRL_N(clk / 24000000),
&ccm->pll12_periph1_cfg);
sdelay(2000);
}
void clock_set_pll4(unsigned int clk)
{
struct sunxi_ccm_reg * const ccm =
(struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
writel(CCM_PLL4_CTRL_EN | CCM_PLL4_CTRL_N(clk / 24000000),
&ccm->pll4_periph0_cfg);
sdelay(2000);
}
#endif
int clock_twi_onoff(int port, int state)
{
struct sunxi_ccm_reg *const ccm =

View File

@ -0,0 +1,961 @@
/*
* sun9i dram controller initialisation
*
* (C) Copyright 2007-2015
* Allwinner Technology Co., Ltd. <www.allwinnertech.com>
* Jerry Wang <wangflord@allwinnertech.com>
*
* (C) Copyright 2016 Theobroma Systems Design und Consulting GmbH
* Philipp Tomsich <philipp.tomsich@theobroma-systems.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <dm.h>
#include <errno.h>
#include <ram.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/dram.h>
#include <asm/arch/sys_proto.h>
DECLARE_GLOBAL_DATA_PTR;
#define DRAM_CLK (CONFIG_DRAM_CLK * 1000000)
/*
* The following amounts to an extensive rewrite of the code received from
* Allwinner as part of the open-source bootloader release (refer to
* https://github.com/allwinner-zh/bootloader.git) and augments the upstream
* sources (which act as the primary reference point for the inner workings
* of the 'underdocumented' DRAM controller in the A80) using the following
* documentation for other memory controllers based on the (Synopsys)
* Designware IP (DDR memory protocol controller and DDR PHY)
* * TI Keystone II Architecture: DDR3 Memory Controller, User's Guide
* Document 'SPRUHN7C', Oct 2013 (revised March 2015)
* * Xilinx Zynq UltraScale+ MPSoC Register Reference
* document ug1087 (v1.0)
* Note that the Zynq-documentation provides a very close match for the DDR
* memory protocol controller (and provides a very good guide to the rounding
* rules for various timings), whereas the TI Keystone II document should be
* referred to for DDR PHY specifics only.
*
* The DRAM controller in the A80 runs at half the frequency of the DDR PHY
* (i.e. the rules for MEMC_FREQ_RATIO=2 from the Zynq-documentation apply).
*
* Known limitations
* =================
* In the current state, the following features are not fully supported and
* a number of simplifying assumptions have been made:
* 1) Only DDR3 support is implemented, as our test platform (the A80-Q7
* module) is designed to accomodate DDR3/DDR3L.
* 2) Only 2T-mode has been implemented and tested.
* 3) The controller supports two different clocking strategies (PLL6 can
* either be 2*CK or CK/2)... we only support the 2*CK clock at this
* time and haven't verified whether the alternative clocking strategy
* works. If you are interested in porting this over/testing this,
* please refer to cases where bit 0 of 'dram_tpr8' is tested in the
* original code from Allwinner.
* 4) Support for 2 ranks per controller is not implemented (as we don't
* the hardware to test it).
*
* Future directions
* =================
* The driver should be driven from a device-tree based configuration that
* can dynamically provide the necessary timing parameters (i.e. target
* frequency and speed-bin information)---the data structures used in the
* calculation of the timing parameters are already designed to capture
* similar information as the device tree would provide.
*
* To enable a device-tree based configuration of the sun9i platform, we
* will need to enable CONFIG_TPL and bootstrap in 3 stages: initially
* into SRAM A1 (40KB) and next into SRAM A2 (160KB)---which would be the
* stage to initialise the platform via the device-tree---before having
* the full U-Boot run from DDR.
*/
/*
* A number of DDR3 timings are given as "the greater of a fixed number of
* clock cycles (CK) or nanoseconds. We express these using a structure
* that holds a cycle count and a duration in picoseconds (so we can model
* sub-ns timings, such as 7.5ns without losing precision or resorting to
* rounding up early.
*/
struct dram_sun9i_timing {
u32 ck;
u32 ps;
};
/* */
struct dram_sun9i_cl_cwl_timing {
u32 CL;
u32 CWL;
u32 tCKmin; /* in ps */
u32 tCKmax; /* in ps */
};
struct dram_sun9i_para {
u32 dram_type;
u8 bus_width;
u8 chan;
u8 rank;
u8 rows;
u16 page_size;
/* Timing information for each speed-bin */
struct dram_sun9i_cl_cwl_timing *cl_cwl_table;
u32 cl_cwl_numentries;
/*
* For the timings, we try to keep the order and grouping used in
* JEDEC Standard No. 79-3F
*/
/* timings */
u32 tREFI; /* in ns */
u32 tRFC; /* in ns */
u32 tRAS; /* in ps */
/* command and address timing */
u32 tDLLK; /* in nCK */
struct dram_sun9i_timing tRTP;
struct dram_sun9i_timing tWTR;
u32 tWR; /* in nCK */
u32 tMRD; /* in nCK */
struct dram_sun9i_timing tMOD;
u32 tRCD; /* in ps */
u32 tRP; /* in ps */
u32 tRC; /* in ps */
u32 tCCD; /* in nCK */
struct dram_sun9i_timing tRRD;
u32 tFAW; /* in ps */
/* calibration timing */
/* struct dram_sun9i_timing tZQinit; */
struct dram_sun9i_timing tZQoper;
struct dram_sun9i_timing tZQCS;
/* reset timing */
/* struct dram_sun9i_timing tXPR; */
/* self-refresh timings */
struct dram_sun9i_timing tXS;
u32 tXSDLL; /* in nCK */
/* struct dram_sun9i_timing tCKESR; */
struct dram_sun9i_timing tCKSRE;
struct dram_sun9i_timing tCKSRX;
/* power-down timings */
struct dram_sun9i_timing tXP;
struct dram_sun9i_timing tXPDLL;
struct dram_sun9i_timing tCKE;
/* write leveling timings */
u32 tWLMRD; /* min, in nCK */
/* u32 tWLDQSEN; min, in nCK */
u32 tWLO; /* max, in ns */
/* u32 tWLOE; max, in ns */
/* u32 tCKDPX; in nCK */
/* u32 tCKCSX; in nCK */
};
static void mctl_sys_init(void);
#define SCHED_RDWR_IDLE_GAP(n) ((n & 0xff) << 24)
#define SCHED_GO2CRITICAL_HYSTERESIS(n) ((n & 0xff) << 16)
#define SCHED_LPR_NUM_ENTRIES(n) ((n & 0xff) << 8)
#define SCHED_PAGECLOSE (1 << 2)
#define SCHED_PREFER_WRITE (1 << 1)
#define SCHED_FORCE_LOW_PRI_N (1 << 0)
#define SCHED_CONFIG (SCHED_RDWR_IDLE_GAP(0xf) | \
SCHED_GO2CRITICAL_HYSTERESIS(0x80) | \
SCHED_LPR_NUM_ENTRIES(0x20) | \
SCHED_FORCE_LOW_PRI_N)
#define PERFHPR0_CONFIG 0x0000001f
#define PERFHPR1_CONFIG 0x1f00001f
#define PERFLPR0_CONFIG 0x000000ff
#define PERFLPR1_CONFIG 0x0f0000ff
#define PERFWR0_CONFIG 0x000000ff
#define PERFWR1_CONFIG 0x0f0001ff
static void mctl_ctl_sched_init(unsigned long base)
{
struct sunxi_mctl_ctl_reg *mctl_ctl =
(struct sunxi_mctl_ctl_reg *)base;
/* Needs to be done before the global clk enable... */
writel(SCHED_CONFIG, &mctl_ctl->sched);
writel(PERFHPR0_CONFIG, &mctl_ctl->perfhpr0);
writel(PERFHPR1_CONFIG, &mctl_ctl->perfhpr1);
writel(PERFLPR0_CONFIG, &mctl_ctl->perflpr0);
writel(PERFLPR1_CONFIG, &mctl_ctl->perflpr1);
writel(PERFWR0_CONFIG, &mctl_ctl->perfwr0);
writel(PERFWR1_CONFIG, &mctl_ctl->perfwr1);
}
static void mctl_sys_init(void)
{
struct sunxi_ccm_reg * const ccm =
(struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
struct sunxi_mctl_com_reg * const mctl_com =
(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
debug("Setting PLL6 to %d\n", DRAM_CLK * 2);
clock_set_pll6(DRAM_CLK * 2);
/* Original dram init code which may come in handy later
********************************************************
clock_set_pll6(use_2channelPLL ? (DRAM_CLK * 2) :
(DRAM_CLK / 2), false);
if ((para->dram_clk <= 400)|((para->dram_tpr8 & 0x1)==0)) {
* PLL6 should be 2*CK *
* ccm_setup_pll6_ddr_clk(PLL6_DDR_CLK); *
ccm_setup_pll6_ddr_clk((1000000 * (para->dram_clk) * 2), 0);
} else {
* PLL6 should be CK/2 *
ccm_setup_pll6_ddr_clk((1000000 * (para->dram_clk) / 2), 1);
}
if (para->dram_tpr13 & (0xf<<18)) {
*
* bit21:bit18=0001:pll swing 0.4
* bit21:bit18=0010:pll swing 0.3
* bit21:bit18=0100:pll swing 0.2
* bit21:bit18=1000:pll swing 0.1
*
dram_dbg("DRAM fre extend open !\n");
reg_val=mctl_read_w(CCM_PLL6_DDR_REG);
reg_val&=(0x1<<16);
reg_val=reg_val>>16;
if(para->dram_tpr13 & (0x1<<18))
{
mctl_write_w(CCM_PLL_BASE + 0x114,
(0x3333U|(0x3<<17)|(reg_val<<19)|(0x120U<<20)|
(0x2U<<29)|(0x1U<<31)));
}
else if(para->dram_tpr13 & (0x1<<19))
{
mctl_write_w(CCM_PLL_BASE + 0x114,
(0x6666U|(0x3U<<17)|(reg_val<<19)|(0xD8U<<20)|
(0x2U<<29)|(0x1U<<31)));
}
else if(para->dram_tpr13 & (0x1<<20))
{
mctl_write_w(CCM_PLL_BASE + 0x114,
(0x9999U|(0x3U<<17)|(reg_val<<19)|(0x90U<<20)|
(0x2U<<29)|(0x1U<<31)));
}
else if(para->dram_tpr13 & (0x1<<21))
{
mctl_write_w(CCM_PLL_BASE + 0x114,
(0xccccU|(0x3U<<17)|(reg_val<<19)|(0x48U<<20)|
(0x2U<<29)|(0x1U<<31)));
}
//frequency extend open
reg_val = mctl_read_w(CCM_PLL6_DDR_REG);
reg_val |= ((0x1<<24)|(0x1<<30));
mctl_write_w(CCM_PLL6_DDR_REG, reg_val);
while(mctl_read_w(CCM_PLL6_DDR_REG) & (0x1<<30));
}
aw_delay(0x20000); //make some delay
********************************************************
*/
/* assert mctl reset */
clrbits_le32(&ccm->ahb_reset0_cfg, 1 << AHB_RESET_OFFSET_MCTL);
/* stop mctl clock */
clrbits_le32(&ccm->ahb_gate0, 1 << AHB_GATE_OFFSET_MCTL);
sdelay(2000);
/* deassert mctl reset */
setbits_le32(&ccm->ahb_reset0_cfg, 1 << AHB_RESET_OFFSET_MCTL);
/* enable mctl clock */
setbits_le32(&ccm->ahb_gate0, 1 << AHB_GATE_OFFSET_MCTL);
/* set up the transactions scheduling before enabling the global clk */
mctl_ctl_sched_init(SUNXI_DRAM_CTL0_BASE);
mctl_ctl_sched_init(SUNXI_DRAM_CTL1_BASE);
sdelay(1000);
debug("2\n");
/* (3 << 12): PLL_DDR */
writel((3 << 12) | (1 << 16), &ccm->dram_clk_cfg);
do {
debug("Waiting for DRAM_CLK_CFG\n");
sdelay(10000);
} while (readl(&ccm->dram_clk_cfg) & (1 << 16));
setbits_le32(&ccm->dram_clk_cfg, (1 << 31));
/* TODO: we only support the common case ... i.e. 2*CK */
setbits_le32(&mctl_com->ccr, (1 << 14) | (1 << 30));
writel(2, &mctl_com->rmcr); /* controller clock is PLL6/4 */
sdelay(2000);
/* Original dram init code which may come in handy later
********************************************************
if ((para->dram_clk <= 400) | ((para->dram_tpr8 & 0x1) == 0)) {
* PLL6 should be 2*CK *
* gating 2 channel pll *
reg_val = mctl_read_w(MC_CCR);
reg_val |= ((0x1 << 14) | (0x1U << 30));
mctl_write_w(MC_CCR, reg_val);
mctl_write_w(MC_RMCR, 0x2); * controller clock use pll6/4 *
} else {
* enable 2 channel pll *
reg_val = mctl_read_w(MC_CCR);
reg_val &= ~((0x1 << 14) | (0x1U << 30));
mctl_write_w(MC_CCR, reg_val);
mctl_write_w(MC_RMCR, 0x0); * controller clock use pll6 *
}
reg_val = mctl_read_w(MC_CCR);
reg_val &= ~((0x1<<15)|(0x1U<<31));
mctl_write_w(MC_CCR, reg_val);
aw_delay(20);
//aw_delay(0x10);
********************************************************
*/
clrbits_le32(&mctl_com->ccr, MCTL_CCR_CH0_CLK_EN | MCTL_CCR_CH1_CLK_EN);
sdelay(1000);
setbits_le32(&mctl_com->ccr, MCTL_CCR_CH0_CLK_EN);
/* TODO if (para->chan == 2) */
setbits_le32(&mctl_com->ccr, MCTL_CCR_CH1_CLK_EN);
}
static void mctl_com_init(struct dram_sun9i_para *para)
{
struct sunxi_mctl_com_reg * const mctl_com =
(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
/* TODO: hard-wired for DDR3 now */
writel(((para->chan == 2) ? MCTL_CR_CHANNEL_DUAL :
MCTL_CR_CHANNEL_SINGLE)
| MCTL_CR_DRAMTYPE_DDR3 | MCTL_CR_BANK(1)
| MCTL_CR_ROW(para->rows)
| ((para->bus_width == 32) ? MCTL_CR_BUSW32 : MCTL_CR_BUSW16)
| MCTL_CR_PAGE_SIZE(para->page_size) | MCTL_CR_RANK(para->rank),
&mctl_com->cr);
debug("CR: %d\n", readl(&mctl_com->cr));
}
static u32 mctl_channel_init(u32 ch_index, struct dram_sun9i_para *para)
{
struct sunxi_mctl_ctl_reg *mctl_ctl;
struct sunxi_mctl_phy_reg *mctl_phy;
u32 CL = 0;
u32 CWL = 0;
u16 mr[4] = { 0, };
#define PS2CYCLES_FLOOR(n) ((n * CONFIG_DRAM_CLK) / 1000000)
#define PS2CYCLES_ROUNDUP(n) ((n * CONFIG_DRAM_CLK + 999999) / 1000000)
#define NS2CYCLES_FLOOR(n) ((n * CONFIG_DRAM_CLK) / 1000)
#define NS2CYCLES_ROUNDUP(n) ((n * CONFIG_DRAM_CLK + 999) / 1000)
#define MAX(a, b) ((a) > (b) ? (a) : (b))
/*
* Convert the values to cycle counts (nCK) from what is provided
* by the definition of each speed bin.
*/
/* const u32 tREFI = NS2CYCLES_FLOOR(para->tREFI); */
const u32 tREFI = NS2CYCLES_FLOOR(para->tREFI);
const u32 tRFC = NS2CYCLES_ROUNDUP(para->tRFC);
const u32 tRCD = PS2CYCLES_ROUNDUP(para->tRCD);
const u32 tRP = PS2CYCLES_ROUNDUP(para->tRP);
const u32 tRC = PS2CYCLES_ROUNDUP(para->tRC);
const u32 tRAS = PS2CYCLES_ROUNDUP(para->tRAS);
/* command and address timing */
const u32 tDLLK = para->tDLLK;
const u32 tRTP = MAX(para->tRTP.ck, PS2CYCLES_ROUNDUP(para->tRTP.ps));
const u32 tWTR = MAX(para->tWTR.ck, PS2CYCLES_ROUNDUP(para->tWTR.ps));
const u32 tWR = NS2CYCLES_FLOOR(para->tWR);
const u32 tMRD = para->tMRD;
const u32 tMOD = MAX(para->tMOD.ck, PS2CYCLES_ROUNDUP(para->tMOD.ps));
const u32 tCCD = para->tCCD;
const u32 tRRD = MAX(para->tRRD.ck, PS2CYCLES_ROUNDUP(para->tRRD.ps));
const u32 tFAW = PS2CYCLES_ROUNDUP(para->tFAW);
/* calibration timings */
/* const u32 tZQinit = MAX(para->tZQinit.ck,
PS2CYCLES_ROUNDUP(para->tZQinit.ps)); */
const u32 tZQoper = MAX(para->tZQoper.ck,
PS2CYCLES_ROUNDUP(para->tZQoper.ps));
const u32 tZQCS = MAX(para->tZQCS.ck,
PS2CYCLES_ROUNDUP(para->tZQCS.ps));
/* reset timing */
/* const u32 tXPR = MAX(para->tXPR.ck,
PS2CYCLES_ROUNDUP(para->tXPR.ps)); */
/* power-down timings */
const u32 tXP = MAX(para->tXP.ck, PS2CYCLES_ROUNDUP(para->tXP.ps));
const u32 tXPDLL = MAX(para->tXPDLL.ck,
PS2CYCLES_ROUNDUP(para->tXPDLL.ps));
const u32 tCKE = MAX(para->tCKE.ck, PS2CYCLES_ROUNDUP(para->tCKE.ps));
/*
* self-refresh timings (keep below power-down timings, as tCKESR
* needs to be calculated based on the nCK value of tCKE)
*/
const u32 tXS = MAX(para->tXS.ck, PS2CYCLES_ROUNDUP(para->tXS.ps));
const u32 tXSDLL = para->tXSDLL;
const u32 tCKSRE = MAX(para->tCKSRE.ck,
PS2CYCLES_ROUNDUP(para->tCKSRE.ps));
const u32 tCKESR = tCKE + 1;
const u32 tCKSRX = MAX(para->tCKSRX.ck,
PS2CYCLES_ROUNDUP(para->tCKSRX.ps));
/* write leveling timings */
const u32 tWLMRD = para->tWLMRD;
/* const u32 tWLDQSEN = para->tWLDQSEN; */
const u32 tWLO = PS2CYCLES_FLOOR(para->tWLO);
/* const u32 tWLOE = PS2CYCLES_FLOOR(para->tWLOE); */
const u32 tRASmax = tREFI * 9;
int i;
for (i = 0; i < para->cl_cwl_numentries; ++i) {
const u32 tCK = 1000000 / CONFIG_DRAM_CLK;
if ((para->cl_cwl_table[i].tCKmin <= tCK) &&
(tCK < para->cl_cwl_table[i].tCKmax)) {
CL = para->cl_cwl_table[i].CL;
CWL = para->cl_cwl_table[i].CWL;
debug("found CL/CWL: CL = %d, CWL = %d\n", CL, CWL);
break;
}
}
if ((CL == 0) && (CWL == 0)) {
printf("failed to find valid CL/CWL for operating point %d MHz\n",
CONFIG_DRAM_CLK);
return 0;
}
if (ch_index == 0) {
mctl_ctl = (struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL0_BASE;
mctl_phy = (struct sunxi_mctl_phy_reg *)SUNXI_DRAM_PHY0_BASE;
} else {
mctl_ctl = (struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL1_BASE;
mctl_phy = (struct sunxi_mctl_phy_reg *)SUNXI_DRAM_PHY1_BASE;
}
if (para->dram_type == DRAM_TYPE_DDR3) {
mr[0] = DDR3_MR0_PPD_FAST_EXIT | DDR3_MR0_WR(tWR) |
DDR3_MR0_CL(CL);
mr[1] = DDR3_MR1_RTT120OHM;
mr[2] = DDR3_MR2_TWL(CWL);
mr[3] = 0;
/*
* DRAM3 initialisation requires holding CKE LOW for
* at least 500us prior to starting the initialisation
* sequence and at least 10ns after driving CKE HIGH
* before the initialisation sequence may be started).
*
* Refer to Micron document "TN-41-07: DDR3 Power-Up,
* Initialization, and Reset DDR3 Initialization
* Routine" for details).
*/
writel(MCTL_INIT0_POST_CKE_x1024(1) |
MCTL_INIT0_PRE_CKE_x1024(
(500 * CONFIG_DRAM_CLK + 1023) / 1024), /* 500us */
&mctl_ctl->init[0]);
writel(MCTL_INIT1_DRAM_RSTN_x1024(1),
&mctl_ctl->init[1]);
/* INIT2 is not used for DDR3 */
writel(MCTL_INIT3_MR(mr[0]) | MCTL_INIT3_EMR(mr[1]),
&mctl_ctl->init[3]);
writel(MCTL_INIT4_EMR2(mr[2]) | MCTL_INIT4_EMR3(mr[3]),
&mctl_ctl->init[4]);
writel(MCTL_INIT5_DEV_ZQINIT_x32(512 / 32), /* 512 cycles */
&mctl_ctl->init[5]);
} else {
/* !!! UNTESTED !!! */
/*
* LPDDR2 and/or LPDDR3 require a 200us minimum delay
* after driving CKE HIGH in the initialisation sequence.
*/
writel(MCTL_INIT0_POST_CKE_x1024(
(200 * CONFIG_DRAM_CLK + 1023) / 1024),
&mctl_ctl->init[0]);
writel(MCTL_INIT1_DRAM_RSTN_x1024(1),
&mctl_ctl->init[1]);
writel(MCTL_INIT2_IDLE_AFTER_RESET_x32(
(CONFIG_DRAM_CLK + 31) / 32) /* 1us */
| MCTL_INIT2_MIN_STABLE_CLOCK_x1(5), /* 5 cycles */
&mctl_ctl->init[2]);
writel(MCTL_INIT3_MR(mr[1]) | MCTL_INIT3_EMR(mr[2]),
&mctl_ctl->init[3]);
writel(MCTL_INIT4_EMR2(mr[3]),
&mctl_ctl->init[4]);
writel(MCTL_INIT5_DEV_ZQINIT_x32(
(CONFIG_DRAM_CLK + 31) / 32) /* 1us */
| MCTL_INIT5_MAX_AUTO_INIT_x1024(
(10 * CONFIG_DRAM_CLK + 1023) / 1024),
&mctl_ctl->init[5]);
}
/* (DDR3) We always use a burst-length of 8. */
#define MCTL_BL 8
/* wr2pre: WL + BL/2 + tWR */
#define WR2PRE (MCTL_BL/2 + CWL + tWTR)
/* wr2rd = CWL + BL/2 + tWTR */
#define WR2RD (MCTL_BL/2 + CWL + tWTR)
/*
* rd2wr = RL + BL/2 + 2 - WL (for DDR3)
* rd2wr = RL + BL/2 + RU(tDQSCKmax/tCK) + 1 - WL (for LPDDR2/LPDDR3)
*/
#define RD2WR (CL + MCTL_BL/2 + 2 - CWL)
#define MCTL_PHY_TRTW 0
#define MCTL_PHY_TRTODT 0
#define MCTL_DIV2(n) ((n + 1)/2)
#define MCTL_DIV32(n) (n/32)
#define MCTL_DIV1024(n) (n/1024)
writel((MCTL_DIV2(WR2PRE) << 24) | (MCTL_DIV2(tFAW) << 16) |
(MCTL_DIV1024(tRASmax) << 8) | (MCTL_DIV2(tRAS) << 0),
&mctl_ctl->dramtmg[0]);
writel((MCTL_DIV2(tXP) << 16) | (MCTL_DIV2(tRTP) << 8) |
(MCTL_DIV2(tRC) << 0),
&mctl_ctl->dramtmg[1]);
writel((MCTL_DIV2(CWL) << 24) | (MCTL_DIV2(CL) << 16) |
(MCTL_DIV2(RD2WR) << 8) | (MCTL_DIV2(WR2RD) << 0),
&mctl_ctl->dramtmg[2]);
/*
* Note: tMRW is located at bit 16 (and up) in DRAMTMG3...
* this is only relevant for LPDDR2/LPDDR3
*/
writel((MCTL_DIV2(tMRD) << 12) | (MCTL_DIV2(tMOD) << 0),
&mctl_ctl->dramtmg[3]);
writel((MCTL_DIV2(tRCD) << 24) | (MCTL_DIV2(tCCD) << 16) |
(MCTL_DIV2(tRRD) << 8) | (MCTL_DIV2(tRP) << 0),
&mctl_ctl->dramtmg[4]);
writel((MCTL_DIV2(tCKSRX) << 24) | (MCTL_DIV2(tCKSRE) << 16) |
(MCTL_DIV2(tCKESR) << 8) | (MCTL_DIV2(tCKE) << 0),
&mctl_ctl->dramtmg[5]);
/* These timings are relevant for LPDDR2/LPDDR3 only */
/* writel((MCTL_TCKDPDE << 24) | (MCTL_TCKDPX << 16) |
(MCTL_TCKCSX << 0), &mctl_ctl->dramtmg[6]); */
/* printf("DRAMTMG7 reset value: 0x%x\n",
readl(&mctl_ctl->dramtmg[7])); */
/* DRAMTMG7 reset value: 0x202 */
/* DRAMTMG7 should contain t_ckpde and t_ckpdx: check reset values!!! */
/* printf("DRAMTMG8 reset value: 0x%x\n",
readl(&mctl_ctl->dramtmg[8])); */
/* DRAMTMG8 reset value: 0x44 */
writel((MCTL_DIV32(tXSDLL) << 0), &mctl_ctl->dramtmg[8]);
writel((MCTL_DIV32(tREFI) << 16) | (MCTL_DIV2(tRFC) << 0),
&mctl_ctl->rfshtmg);
if (para->dram_type == DRAM_TYPE_DDR3) {
writel((2 << 24) | ((MCTL_DIV2(CL) - 2) << 16) |
(1 << 8) | ((MCTL_DIV2(CWL) - 2) << 0),
&mctl_ctl->dfitmg[0]);
} else {
/* TODO */
}
/* TODO: handle the case of the write latency domain going to 0 ... */
/*
* Disable dfi_init_complete_en (the triggering of the SDRAM
* initialisation when the PHY initialisation completes).
*/
clrbits_le32(&mctl_ctl->dfimisc, MCTL_DFIMISC_DFI_INIT_COMPLETE_EN);
/* Disable the automatic generation of DLL calibration requests */
setbits_le32(&mctl_ctl->dfiupd[0], MCTL_DFIUPD0_DIS_AUTO_CTRLUPD);
/* A80-Q7: 2T, 1 rank, DDR3, full-32bit-DQ */
/* TODO: make 2T and BUSWIDTH configurable */
writel(MCTL_MSTR_DEVICETYPE(para->dram_type) |
MCTL_MSTR_BURSTLENGTH(para->dram_type) |
MCTL_MSTR_ACTIVERANKS(para->rank) |
MCTL_MSTR_2TMODE | MCTL_MSTR_BUSWIDTH32,
&mctl_ctl->mstr);
if (para->dram_type == DRAM_TYPE_DDR3) {
writel(MCTL_ZQCTRL0_TZQCL(MCTL_DIV2(tZQoper)) |
(MCTL_DIV2(tZQCS)), &mctl_ctl->zqctrl[0]);
/*
* TODO: is the following really necessary as the bottom
* half should already be 0x100 and the upper half should
* be ignored for a DDR3 device???
*/
writel(MCTL_ZQCTRL1_TZQSI_x1024(0x100),
&mctl_ctl->zqctrl[1]);
} else {
writel(MCTL_ZQCTRL0_TZQCL(0x200) | MCTL_ZQCTRL0_TZQCS(0x40),
&mctl_ctl->zqctrl[0]);
writel(MCTL_ZQCTRL1_TZQRESET(0x28) |
MCTL_ZQCTRL1_TZQSI_x1024(0x100),
&mctl_ctl->zqctrl[1]);
}
/* Assert dfi_init_complete signal */
setbits_le32(&mctl_ctl->dfimisc, MCTL_DFIMISC_DFI_INIT_COMPLETE_EN);
/* Disable auto-refresh */
setbits_le32(&mctl_ctl->rfshctl3, MCTL_RFSHCTL3_DIS_AUTO_REFRESH);
/* PHY initialisation */
/* TODO: make 2T and 8-bank mode configurable */
writel(MCTL_PHY_DCR_BYTEMASK | MCTL_PHY_DCR_2TMODE |
MCTL_PHY_DCR_DDR8BNK | MCTL_PHY_DRAMMODE_DDR3,
&mctl_phy->dcr);
/* For LPDDR2 or LPDDR3, set DQSGX to 0 before training. */
if (para->dram_type != DRAM_TYPE_DDR3)
clrbits_le32(&mctl_phy->dsgcr, (3 << 6));
writel(mr[0], &mctl_phy->mr0);
writel(mr[1], &mctl_phy->mr1);
writel(mr[2], &mctl_phy->mr2);
writel(mr[3], &mctl_phy->mr3);
/*
* The DFI PHY is running at full rate. We thus use the actual
* timings in clock cycles here.
*/
writel((tRC << 26) | (tRRD << 22) | (tRAS << 16) |
(tRCD << 12) | (tRP << 8) | (tWTR << 4) | (tRTP << 0),
&mctl_phy->dtpr[0]);
writel((tMRD << 0) | ((tMOD - 12) << 2) | (tFAW << 5) |
(tRFC << 11) | (tWLMRD << 20) | (tWLO << 26),
&mctl_phy->dtpr[1]);
writel((tXS << 0) | (MAX(tXP, tXPDLL) << 10) |
(tCKE << 15) | (tDLLK << 19) |
(MCTL_PHY_TRTODT << 29) | (MCTL_PHY_TRTW << 30) |
(((tCCD - 4) & 0x1) << 31),
&mctl_phy->dtpr[2]);
/* tDQSCK and tDQSCKmax are used LPDDR2/LPDDR3 */
/* writel((tDQSCK << 0) | (tDQSCKMAX << 3), &mctl_phy->dtpr[3]); */
/*
* We use the same values used by Allwinner's Boot0 for the PTR
* (PHY timing register) configuration that is tied to the PHY
* implementation.
*/
writel(0x42C21590, &mctl_phy->ptr[0]);
writel(0xD05612C0, &mctl_phy->ptr[1]);
if (para->dram_type == DRAM_TYPE_DDR3) {
const unsigned int tdinit0 = 500 * CONFIG_DRAM_CLK; /* 500us */
const unsigned int tdinit1 = (360 * CONFIG_DRAM_CLK + 999) /
1000; /* 360ns */
const unsigned int tdinit2 = 200 * CONFIG_DRAM_CLK; /* 200us */
const unsigned int tdinit3 = CONFIG_DRAM_CLK; /* 1us */
writel((tdinit1 << 20) | tdinit0, &mctl_phy->ptr[3]);
writel((tdinit3 << 18) | tdinit2, &mctl_phy->ptr[4]);
} else {
/* LPDDR2 or LPDDR3 */
const unsigned int tdinit0 = (100 * CONFIG_DRAM_CLK + 999) /
1000; /* 100ns */
const unsigned int tdinit1 = 200 * CONFIG_DRAM_CLK; /* 200us */
const unsigned int tdinit2 = 22 * CONFIG_DRAM_CLK; /* 11us */
const unsigned int tdinit3 = 2 * CONFIG_DRAM_CLK; /* 2us */
writel((tdinit1 << 20) | tdinit0, &mctl_phy->ptr[3]);
writel((tdinit3 << 18) | tdinit2, &mctl_phy->ptr[4]);
}
/* TEST ME */
writel(0x00203131, &mctl_phy->acmdlr);
/* TODO: can we enable this for 2 ranks, even when we don't know yet */
writel(MCTL_DTCR_DEFAULT | MCTL_DTCR_RANKEN(para->rank),
&mctl_phy->dtcr);
/* TODO: half width */
debug("DX2GCR0 reset: 0x%x\n", readl(&mctl_phy->dx[2].gcr[0]));
writel(0x7C000285, &mctl_phy->dx[2].gcr[0]);
writel(0x7C000285, &mctl_phy->dx[3].gcr[0]);
clrsetbits_le32(&mctl_phy->zq[0].pr, 0xff,
(CONFIG_DRAM_ZQ >> 0) & 0xff); /* CK/CA */
clrsetbits_le32(&mctl_phy->zq[1].pr, 0xff,
(CONFIG_DRAM_ZQ >> 8) & 0xff); /* DX0/DX1 */
clrsetbits_le32(&mctl_phy->zq[2].pr, 0xff,
(CONFIG_DRAM_ZQ >> 16) & 0xff); /* DX2/DX3 */
/* TODO: make configurable & implement non-ODT path */
if (1) {
int lane;
for (lane = 0; lane < 4; ++lane) {
clrbits_le32(&mctl_phy->dx[lane].gcr[2], 0xffff);
clrbits_le32(&mctl_phy->dx[lane].gcr[3],
(0x3<<12) | (0x3<<4));
}
} else {
/* TODO: check */
int lane;
for (lane = 0; lane < 4; ++lane) {
clrsetbits_le32(&mctl_phy->dx[lane].gcr[2], 0xffff,
0xaaaa);
if (para->dram_type == DRAM_TYPE_DDR3)
setbits_le32(&mctl_phy->dx[lane].gcr[3],
(0x3<<12) | (0x3<<4));
else
setbits_le32(&mctl_phy->dx[lane].gcr[3],
0x00000012);
}
}
writel(0x04058D02, &mctl_phy->zq[0].cr); /* CK/CA */
writel(0x04058D02, &mctl_phy->zq[1].cr); /* DX0/DX1 */
writel(0x04058D02, &mctl_phy->zq[2].cr); /* DX2/DX3 */
/* Disable auto-refresh prior to data training */
setbits_le32(&mctl_ctl->rfshctl3, MCTL_RFSHCTL3_DIS_AUTO_REFRESH);
setbits_le32(&mctl_phy->dsgcr, 0xf << 24); /* unclear what this is... */
/* TODO: IODDRM (IO DDR-MODE) for DDR3L */
clrsetbits_le32(&mctl_phy->pgcr[1],
MCTL_PGCR1_ZCKSEL_MASK,
MCTL_PGCR1_IODDRM_DDR3 | MCTL_PGCR1_INHVT_EN);
setbits_le32(&mctl_phy->pllcr, 0x3 << 19); /* PLL frequency select */
/* TODO: single-channel PLL mode??? missing */
setbits_le32(&mctl_phy->pllcr,
MCTL_PLLGCR_PLL_BYPASS | MCTL_PLLGCR_PLL_POWERDOWN);
/* setbits_le32(&mctl_phy->pir, MCTL_PIR_PLL_BYPASS); included below */
/* Disable VT compensation */
clrbits_le32(&mctl_phy->pgcr[0], 0x3f);
/* TODO: "other" PLL mode ... 0x20000 seems to be the PLL Bypass */
if (para->dram_type == DRAM_TYPE_DDR3)
clrsetbits_le32(&mctl_phy->pir, MCTL_PIR_MASK, 0x20df3);
else
clrsetbits_le32(&mctl_phy->pir, MCTL_PIR_MASK, 0x2c573);
sdelay(10000); /* XXX necessary? */
/* Wait for the INIT bit to clear itself... */
while ((readl(&mctl_phy->pir) & MCTL_PIR_INIT) != MCTL_PIR_INIT) {
/* not done yet -- keep spinning */
debug("MCTL_PIR_INIT not set\n");
sdelay(1000);
/* TODO: implement timeout */
}
/* TODO: not used --- there's a "2rank debug" section here */
/* Original dram init code which may come in handy later
********************************************************
* LPDDR2 and LPDDR3 *
if ((para->dram_type) == 6 || (para->dram_type) == 7) {
reg_val = mctl_read_w(P0_DSGCR + ch_offset);
reg_val &= (~(0x3<<6)); * set DQSGX to 1 *
reg_val |= (0x1<<6); * dqs gate extend *
mctl_write_w(P0_DSGCR + ch_offset, reg_val);
dram_dbg("DQS Gate Extend Enable!\n", ch_index);
}
* Disable ZCAL after initial--for nand dma debug--20140330 by YSZ *
if (para->dram_tpr13 & (0x1<<31)) {
reg_val = mctl_read_w(P0_ZQ0CR + ch_offset);
reg_val |= (0x7<<11);
mctl_write_w(P0_ZQ0CR + ch_offset, reg_val);
}
********************************************************
*/
/*
* TODO: more 2-rank support
* (setting the "dqs gate delay to average between 2 rank")
*/
/* check if any errors are set */
if (readl(&mctl_phy->pgsr[0]) & MCTL_PGSR0_ERRORS) {
debug("Channel %d unavailable!\n", ch_index);
return 0;
} else{
/* initial OK */
debug("Channel %d OK!\n", ch_index);
/* return 1; */
}
while ((readl(&mctl_ctl->stat) & 0x1) != 0x1) {
debug("Waiting for INIT to be done (controller to come up into 'normal operating' mode\n");
sdelay(100000);
/* init not done */
/* TODO: implement time-out */
}
debug("done\n");
/* "DDR is controller by contoller" */
clrbits_le32(&mctl_phy->pgcr[3], (1 << 25));
/* TODO: is the following necessary? */
debug("DFIMISC before writing 0: 0x%x\n", readl(&mctl_ctl->dfimisc));
writel(0, &mctl_ctl->dfimisc);
/* Enable auto-refresh */
clrbits_le32(&mctl_ctl->rfshctl3, MCTL_RFSHCTL3_DIS_AUTO_REFRESH);
debug("channel_init complete\n");
return 1;
}
signed int DRAMC_get_dram_size(void)
{
struct sunxi_mctl_com_reg * const mctl_com =
(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
unsigned int reg_val;
unsigned int dram_size;
unsigned int temp;
reg_val = readl(&mctl_com->cr);
temp = (reg_val >> 8) & 0xf; /* page size code */
dram_size = (temp - 6); /* (1 << dram_size) * 512Bytes */
temp = (reg_val >> 4) & 0xf; /* row width code */
dram_size += (temp + 1); /* (1 << dram_size) * 512Bytes */
temp = (reg_val >> 2) & 0x3; /* bank number code */
dram_size += (temp + 2); /* (1 << dram_size) * 512Bytes */
temp = reg_val & 0x3; /* rank number code */
dram_size += temp; /* (1 << dram_size) * 512Bytes */
temp = (reg_val >> 19) & 0x1; /* channel number code */
dram_size += temp; /* (1 << dram_size) * 512Bytes */
dram_size = dram_size - 11; /* (1 << dram_size) MBytes */
return 1 << dram_size;
}
unsigned long sunxi_dram_init(void)
{
struct sunxi_mctl_com_reg * const mctl_com =
(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
struct dram_sun9i_cl_cwl_timing cl_cwl[] = {
{ .CL = 5, .CWL = 5, .tCKmin = 3000, .tCKmax = 3300 },
{ .CL = 6, .CWL = 5, .tCKmin = 2500, .tCKmax = 3300 },
{ .CL = 8, .CWL = 6, .tCKmin = 1875, .tCKmax = 2500 },
{ .CL = 10, .CWL = 7, .tCKmin = 1500, .tCKmax = 1875 },
{ .CL = 11, .CWL = 8, .tCKmin = 1250, .tCKmax = 1500 }
};
/* Set initial parameters, these get modified by the autodetect code */
struct dram_sun9i_para para = {
.dram_type = DRAM_TYPE_DDR3,
.bus_width = 32,
.chan = 2,
.rank = 1,
/* .rank = 2, */
.page_size = 4096,
/* .rows = 16, */
.rows = 15,
/* CL/CWL table for the speed bin */
.cl_cwl_table = cl_cwl,
.cl_cwl_numentries = sizeof(cl_cwl) /
sizeof(struct dram_sun9i_cl_cwl_timing),
/* timings */
.tREFI = 7800, /* 7.8us (up to 85 degC) */
.tRFC = 260, /* 260ns for 4GBit devices */
/* 350ns @ 8GBit */
.tRCD = 13750,
.tRP = 13750,
.tRC = 48750,
.tRAS = 35000,
.tDLLK = 512,
.tRTP = { .ck = 4, .ps = 7500 },
.tWTR = { .ck = 4, .ps = 7500 },
.tWR = 15,
.tMRD = 4,
.tMOD = { .ck = 12, .ps = 15000 },
.tCCD = 4,
.tRRD = { .ck = 4, .ps = 7500 },
.tFAW = 40,
/* calibration timing */
/* .tZQinit = { .ck = 512, .ps = 640000 }, */
.tZQoper = { .ck = 256, .ps = 320000 },
.tZQCS = { .ck = 64, .ps = 80000 },
/* reset timing */
/* .tXPR = { .ck = 5, .ps = 10000 }, */
/* self-refresh timings */
.tXS = { .ck = 5, .ps = 10000 },
.tXSDLL = 512,
.tCKSRE = { .ck = 5, .ps = 10000 },
.tCKSRX = { .ck = 5, .ps = 10000 },
/* power-down timings */
.tXP = { .ck = 3, .ps = 6000 },
.tXPDLL = { .ck = 10, .ps = 24000 },
.tCKE = { .ck = 3, .ps = 5000 },
/* write leveling timings */
.tWLMRD = 40,
/* .tWLDQSEN = 25, */
.tWLO = 7500,
/* .tWLOE = 2000, */
};
/*
* Disable A80 internal 240 ohm resistor.
*
* This code sequence is adapated from Allwinner's Boot0 (see
* https://github.com/allwinner-zh/bootloader.git), as there
* is no documentation for these two registers in the R_PRCM
* block.
*/
setbits_le32(SUNXI_PRCM_BASE + 0x1e0, (0x3 << 8));
writel(0, SUNXI_PRCM_BASE + 0x1e8);
mctl_sys_init();
if (!mctl_channel_init(0, &para))
return 0;
/* dual-channel */
if (!mctl_channel_init(1, &para)) {
/* disable channel 1 */
clrsetbits_le32(&mctl_com->cr, MCTL_CR_CHANNEL_MASK,
MCTL_CR_CHANNEL_SINGLE);
/* disable channel 1 global clock */
clrbits_le32(&mctl_com->cr, MCTL_CCR_CH1_CLK_EN);
}
mctl_com_init(&para);
/* return the proper RAM size */
return DRAMC_get_dram_size() << 20;
}

View File

@ -0,0 +1,48 @@
/*
* GTBUS initialisation for sun9i
*
* (C) Copyright 2016 Theobroma Systems Design und Consulting GmbH
* Philipp Tomsich <philipp.tomsich@theobroma-systems.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <asm/io.h>
#include <asm/arch/gtbus_sun9i.h>
#include <asm/arch/sys_proto.h>
#ifdef CONFIG_SPL_BUILD
void gtbus_init(void)
{
struct sunxi_gtbus_reg * const gtbus =
(struct sunxi_gtbus_reg *)SUNXI_GTBUS_BASE;
/*
* We use the same setting that Allwinner used in Boot0 for now.
* It may be advantageous to adjust these for various workloads
* (e.g. headless use cases that focus on IO throughput).
*/
writel((GT_PRIO_HIGH << GT_PORT_FE0) |
(GT_PRIO_HIGH << GT_PORT_BE1) |
(GT_PRIO_HIGH << GT_PORT_BE2) |
(GT_PRIO_HIGH << GT_PORT_IEP0) |
(GT_PRIO_HIGH << GT_PORT_FE1) |
(GT_PRIO_HIGH << GT_PORT_BE0) |
(GT_PRIO_HIGH << GT_PORT_FE2) |
(GT_PRIO_HIGH << GT_PORT_IEP1),
&gtbus->mst_read_prio_cfg[0]);
writel(GP_MST_CFG_DEFAULT, &gtbus->mst_cfg[GT_PORT_FE0]);
writel(GP_MST_CFG_DEFAULT, &gtbus->mst_cfg[GT_PORT_FE0]);
writel(GP_MST_CFG_DEFAULT, &gtbus->mst_cfg[GT_PORT_BE1]);
writel(GP_MST_CFG_DEFAULT, &gtbus->mst_cfg[GT_PORT_BE2]);
writel(GP_MST_CFG_DEFAULT, &gtbus->mst_cfg[GT_PORT_IEP0]);
writel(GP_MST_CFG_DEFAULT, &gtbus->mst_cfg[GT_PORT_FE1]);
writel(GP_MST_CFG_DEFAULT, &gtbus->mst_cfg[GT_PORT_BE0]);
writel(GP_MST_CFG_DEFAULT, &gtbus->mst_cfg[GT_PORT_FE2]);
writel(GP_MST_CFG_DEFAULT, &gtbus->mst_cfg[GT_PORT_IEP1]);
}
#endif

View File

@ -119,6 +119,7 @@ config MACH_SUN9I
bool "sun9i (Allwinner A80)"
select CPU_V7
select SUNXI_GEN_SUN6I
select SUPPORT_SPL
config MACH_SUN50I
bool "sun50i (Allwinner A64)"
@ -141,11 +142,13 @@ config DRAM_TYPE
config DRAM_CLK
int "sunxi dram clock speed"
default 792 if MACH_SUN9I
default 312 if MACH_SUN6I || MACH_SUN8I
default 360 if MACH_SUN4I || MACH_SUN5I || MACH_SUN7I
---help---
Set the dram clock speed, valid range 240 - 480, must be a multiple
of 24.
Set the dram clock speed, valid range 240 - 480 (prior to sun9i),
must be a multiple of 24. For the sun9i (A80), the tested values
(for DDR3-1600) are 312 to 792.
if MACH_SUN5I || MACH_SUN7I
config DRAM_MBUS_CLK
@ -160,6 +163,7 @@ config DRAM_ZQ
int "sunxi dram zq value"
default 123 if MACH_SUN4I || MACH_SUN5I || MACH_SUN6I || MACH_SUN8I
default 127 if MACH_SUN7I
default 4145117 if MACH_SUN9I
---help---
Set the dram zq value.
@ -252,7 +256,7 @@ endif
config SYS_CLK_FREQ
default 816000000 if MACH_SUN50I
default 912000000 if MACH_SUN7I
default 1008000000 if MACH_SUN4I || MACH_SUN5I || MACH_SUN6I || MACH_SUN8I
default 1008000000 if MACH_SUN4I || MACH_SUN5I || MACH_SUN6I || MACH_SUN8I || MACH_SUN9I
config SYS_CONFIG_NAME
default "sun4i" if MACH_SUN4I

View File

@ -94,6 +94,11 @@ M: Stefan Mavrodiev <stefan.mavrodiev@gmail.com>
S: Maintained
F: configs/A33-OLinuXino_defconfig
A80 OPTIMUS BOARD
M: Chen-Yu Tsai <wens@csie.org>
S: Maintained
F: configs/Merrii_A80_Optimus_defconfig
AINOL AW1 BOARD
M: Paul Kocialkowski <contact@paulk.fr>
S: Maintained
@ -117,6 +122,11 @@ F: include/configs/sun7i.h
F: configs/Cubieboard2_defconfig
F: configs/Cubietruck_defconfig
CUBIEBOARD4 BOARD
M: Chen-Yu Tsai <wens@csie.org>
S: Maintained
F: configs/Cubieboard4_defconfig
CUBIETRUCK-PLUS BOARD
M: Chen-Yu Tsai <wens@csie.org>
S: Maintained

View File

@ -307,6 +307,13 @@ static void mmc_pinmux_setup(int sdc)
sunxi_gpio_set_pull(pin, SUNXI_GPIO_PULL_UP);
sunxi_gpio_set_drv(pin, 2);
}
#elif defined(CONFIG_MACH_SUN9I)
/* SDC2: PC6-PC16 */
for (pin = SUNXI_GPC(6); pin <= SUNXI_GPC(16); pin++) {
sunxi_gpio_set_cfgpin(pin, SUNXI_GPC_SDC2);
sunxi_gpio_set_pull(pin, SUNXI_GPIO_PULL_UP);
sunxi_gpio_set_drv(pin, 2);
}
#endif
break;

View File

@ -0,0 +1,18 @@
CONFIG_ARM=y
CONFIG_ARCH_SUNXI=y
CONFIG_MACH_SUN9I=y
CONFIG_DRAM_CLK=672
CONFIG_MMC0_CD_PIN="PH18"
CONFIG_MMC_SUNXI_SLOT_EXTRA=2
CONFIG_USB0_VBUS_PIN="AXP0-VBUS-ENABLE"
CONFIG_USB0_VBUS_DET="AXP0-VBUS-DETECT"
CONFIG_USB0_ID_DET="PH16"
CONFIG_USB1_VBUS_PIN="PH14"
CONFIG_USB3_VBUS_PIN="PH15"
CONFIG_AXP_GPIO=y
CONFIG_DEFAULT_DEVICE_TREE="sun9i-a80-cubieboard4"
CONFIG_SPL=y
# CONFIG_CMD_IMLS is not set
# CONFIG_CMD_FLASH is not set
# CONFIG_CMD_FPGA is not set
CONFIG_AXP809_POWER=y

View File

@ -1,13 +1,18 @@
CONFIG_ARM=y
CONFIG_ARCH_SUNXI=y
CONFIG_MACH_SUN9I=y
CONFIG_DRAM_CLK=360
CONFIG_DRAM_ZQ=123
CONFIG_SYS_CLK_FREQ=1008000000
CONFIG_DRAM_CLK=672
CONFIG_MMC0_CD_PIN="PH18"
CONFIG_MMC_SUNXI_SLOT_EXTRA=2
CONFIG_USB0_VBUS_PIN="AXP0-VBUS-ENABLE"
CONFIG_USB0_VBUS_DET="AXP0-VBUS-DETECT"
CONFIG_USB0_ID_DET="PH3"
CONFIG_USB1_VBUS_PIN="PH4"
CONFIG_USB3_VBUS_PIN="PH5"
CONFIG_AXP_GPIO=y
CONFIG_DEFAULT_DEVICE_TREE="sun9i-a80-optimus"
# CONFIG_SYS_MALLOC_CLEAR_ON_INIT is not set
CONFIG_CONSOLE_MUX=y
CONFIG_SPL=y
# CONFIG_CMD_IMLS is not set
# CONFIG_CMD_FLASH is not set
# CONFIG_CMD_FPGA is not set
CONFIG_AXP809_POWER=y