u-boot/tools/ifdtool.c

1328 lines
33 KiB
C
Raw Normal View History

/*
* ifdtool - Manage Intel Firmware Descriptor information
*
* Copyright 2014 Google, Inc
*
* SPDX-License-Identifier: GPL-2.0
*
* From Coreboot project, but it got a serious code clean-up
* and a few new features
*/
#include <assert.h>
#include <fcntl.h>
#include <getopt.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <libfdt.h>
#include "ifdtool.h"
#undef DEBUG
#ifdef DEBUG
#define debug(fmt, args...) printf(fmt, ##args)
#else
#define debug(fmt, args...)
#endif
#define FD_SIGNATURE 0x0FF0A55A
#define FLREG_BASE(reg) ((reg & 0x00000fff) << 12);
#define FLREG_LIMIT(reg) (((reg & 0x0fff0000) >> 4) | 0xfff);
enum input_file_type_t {
IF_normal,
IF_fdt,
IF_uboot,
};
struct input_file {
char *fname;
unsigned int addr;
enum input_file_type_t type;
};
/**
* find_fd() - Find the flash description in the ROM image
*
* @image: Pointer to image
* @size: Size of image in bytes
* @return pointer to structure, or NULL if not found
*/
static struct fdbar_t *find_fd(char *image, int size)
{
uint32_t *ptr, *end;
/* Scan for FD signature */
for (ptr = (uint32_t *)image, end = ptr + size / 4; ptr < end; ptr++) {
if (*ptr == FD_SIGNATURE)
break;
}
if (ptr == end) {
printf("No Flash Descriptor found in this image\n");
return NULL;
}
debug("Found Flash Descriptor signature at 0x%08lx\n",
(char *)ptr - image);
return (struct fdbar_t *)ptr;
}
/**
* get_region() - Get information about the selected region
*
* @frba: Flash region list
* @region_type: Type of region (0..MAX_REGIONS-1)
* @region: Region information is written here
* @return 0 if OK, else -ve
*/
static int get_region(struct frba_t *frba, int region_type,
struct region_t *region)
{
if (region_type >= MAX_REGIONS) {
fprintf(stderr, "Invalid region type.\n");
return -1;
}
region->base = FLREG_BASE(frba->flreg[region_type]);
region->limit = FLREG_LIMIT(frba->flreg[region_type]);
region->size = region->limit - region->base + 1;
return 0;
}
static const char *region_name(int region_type)
{
static const char *const regions[] = {
"Flash Descriptor",
"BIOS",
"Intel ME",
"GbE",
"Platform Data"
};
assert(region_type < MAX_REGIONS);
return regions[region_type];
}
static const char *region_filename(int region_type)
{
static const char *const region_filenames[] = {
"flashregion_0_flashdescriptor.bin",
"flashregion_1_bios.bin",
"flashregion_2_intel_me.bin",
"flashregion_3_gbe.bin",
"flashregion_4_platform_data.bin"
};
assert(region_type < MAX_REGIONS);
return region_filenames[region_type];
}
static int dump_region(int num, struct frba_t *frba)
{
struct region_t region;
int ret;
ret = get_region(frba, num, &region);
if (ret)
return ret;
printf(" Flash Region %d (%s): %08x - %08x %s\n",
num, region_name(num), region.base, region.limit,
region.size < 1 ? "(unused)" : "");
return ret;
}
static void dump_frba(struct frba_t *frba)
{
int i;
printf("Found Region Section\n");
for (i = 0; i < MAX_REGIONS; i++) {
printf("FLREG%d: 0x%08x\n", i, frba->flreg[i]);
dump_region(i, frba);
}
}
static void decode_spi_frequency(unsigned int freq)
{
switch (freq) {
case SPI_FREQUENCY_20MHZ:
printf("20MHz");
break;
case SPI_FREQUENCY_33MHZ:
printf("33MHz");
break;
case SPI_FREQUENCY_50MHZ:
printf("50MHz");
break;
default:
printf("unknown<%x>MHz", freq);
}
}
static void decode_component_density(unsigned int density)
{
switch (density) {
case COMPONENT_DENSITY_512KB:
printf("512KiB");
break;
case COMPONENT_DENSITY_1MB:
printf("1MiB");
break;
case COMPONENT_DENSITY_2MB:
printf("2MiB");
break;
case COMPONENT_DENSITY_4MB:
printf("4MiB");
break;
case COMPONENT_DENSITY_8MB:
printf("8MiB");
break;
case COMPONENT_DENSITY_16MB:
printf("16MiB");
break;
default:
printf("unknown<%x>MiB", density);
}
}
static void dump_fcba(struct fcba_t *fcba)
{
printf("\nFound Component Section\n");
printf("FLCOMP 0x%08x\n", fcba->flcomp);
printf(" Dual Output Fast Read Support: %ssupported\n",
(fcba->flcomp & (1 << 30)) ? "" : "not ");
printf(" Read ID/Read Status Clock Frequency: ");
decode_spi_frequency((fcba->flcomp >> 27) & 7);
printf("\n Write/Erase Clock Frequency: ");
decode_spi_frequency((fcba->flcomp >> 24) & 7);
printf("\n Fast Read Clock Frequency: ");
decode_spi_frequency((fcba->flcomp >> 21) & 7);
printf("\n Fast Read Support: %ssupported",
(fcba->flcomp & (1 << 20)) ? "" : "not ");
printf("\n Read Clock Frequency: ");
decode_spi_frequency((fcba->flcomp >> 17) & 7);
printf("\n Component 2 Density: ");
decode_component_density((fcba->flcomp >> 3) & 7);
printf("\n Component 1 Density: ");
decode_component_density(fcba->flcomp & 7);
printf("\n");
printf("FLILL 0x%08x\n", fcba->flill);
printf(" Invalid Instruction 3: 0x%02x\n",
(fcba->flill >> 24) & 0xff);
printf(" Invalid Instruction 2: 0x%02x\n",
(fcba->flill >> 16) & 0xff);
printf(" Invalid Instruction 1: 0x%02x\n",
(fcba->flill >> 8) & 0xff);
printf(" Invalid Instruction 0: 0x%02x\n",
fcba->flill & 0xff);
printf("FLPB 0x%08x\n", fcba->flpb);
printf(" Flash Partition Boundary Address: 0x%06x\n\n",
(fcba->flpb & 0xfff) << 12);
}
static void dump_fpsba(struct fpsba_t *fpsba)
{
int i;
printf("Found PCH Strap Section\n");
for (i = 0; i < MAX_STRAPS; i++)
printf("PCHSTRP%-2d: 0x%08x\n", i, fpsba->pchstrp[i]);
}
static const char *get_enabled(int flag)
{
return flag ? "enabled" : "disabled";
}
static void decode_flmstr(uint32_t flmstr)
{
printf(" Platform Data Region Write Access: %s\n",
get_enabled(flmstr & (1 << 28)));
printf(" GbE Region Write Access: %s\n",
get_enabled(flmstr & (1 << 27)));
printf(" Intel ME Region Write Access: %s\n",
get_enabled(flmstr & (1 << 26)));
printf(" Host CPU/BIOS Region Write Access: %s\n",
get_enabled(flmstr & (1 << 25)));
printf(" Flash Descriptor Write Access: %s\n",
get_enabled(flmstr & (1 << 24)));
printf(" Platform Data Region Read Access: %s\n",
get_enabled(flmstr & (1 << 20)));
printf(" GbE Region Read Access: %s\n",
get_enabled(flmstr & (1 << 19)));
printf(" Intel ME Region Read Access: %s\n",
get_enabled(flmstr & (1 << 18)));
printf(" Host CPU/BIOS Region Read Access: %s\n",
get_enabled(flmstr & (1 << 17)));
printf(" Flash Descriptor Read Access: %s\n",
get_enabled(flmstr & (1 << 16)));
printf(" Requester ID: 0x%04x\n\n",
flmstr & 0xffff);
}
static void dump_fmba(struct fmba_t *fmba)
{
printf("Found Master Section\n");
printf("FLMSTR1: 0x%08x (Host CPU/BIOS)\n", fmba->flmstr1);
decode_flmstr(fmba->flmstr1);
printf("FLMSTR2: 0x%08x (Intel ME)\n", fmba->flmstr2);
decode_flmstr(fmba->flmstr2);
printf("FLMSTR3: 0x%08x (GbE)\n", fmba->flmstr3);
decode_flmstr(fmba->flmstr3);
}
static void dump_fmsba(struct fmsba_t *fmsba)
{
int i;
printf("Found Processor Strap Section\n");
for (i = 0; i < 4; i++)
printf("????: 0x%08x\n", fmsba->data[0]);
}
static void dump_jid(uint32_t jid)
{
printf(" SPI Component Device ID 1: 0x%02x\n",
(jid >> 16) & 0xff);
printf(" SPI Component Device ID 0: 0x%02x\n",
(jid >> 8) & 0xff);
printf(" SPI Component Vendor ID: 0x%02x\n",
jid & 0xff);
}
static void dump_vscc(uint32_t vscc)
{
printf(" Lower Erase Opcode: 0x%02x\n",
vscc >> 24);
printf(" Lower Write Enable on Write Status: 0x%02x\n",
vscc & (1 << 20) ? 0x06 : 0x50);
printf(" Lower Write Status Required: %s\n",
vscc & (1 << 19) ? "Yes" : "No");
printf(" Lower Write Granularity: %d bytes\n",
vscc & (1 << 18) ? 64 : 1);
printf(" Lower Block / Sector Erase Size: ");
switch ((vscc >> 16) & 0x3) {
case 0:
printf("256 Byte\n");
break;
case 1:
printf("4KB\n");
break;
case 2:
printf("8KB\n");
break;
case 3:
printf("64KB\n");
break;
}
printf(" Upper Erase Opcode: 0x%02x\n",
(vscc >> 8) & 0xff);
printf(" Upper Write Enable on Write Status: 0x%02x\n",
vscc & (1 << 4) ? 0x06 : 0x50);
printf(" Upper Write Status Required: %s\n",
vscc & (1 << 3) ? "Yes" : "No");
printf(" Upper Write Granularity: %d bytes\n",
vscc & (1 << 2) ? 64 : 1);
printf(" Upper Block / Sector Erase Size: ");
switch (vscc & 0x3) {
case 0:
printf("256 Byte\n");
break;
case 1:
printf("4KB\n");
break;
case 2:
printf("8KB\n");
break;
case 3:
printf("64KB\n");
break;
}
}
static void dump_vtba(struct vtba_t *vtba, int vtl)
{
int i;
int num = (vtl >> 1) < 8 ? (vtl >> 1) : 8;
printf("ME VSCC table:\n");
for (i = 0; i < num; i++) {
printf(" JID%d: 0x%08x\n", i, vtba->entry[i].jid);
dump_jid(vtba->entry[i].jid);
printf(" VSCC%d: 0x%08x\n", i, vtba->entry[i].vscc);
dump_vscc(vtba->entry[i].vscc);
}
printf("\n");
}
static void dump_oem(uint8_t *oem)
{
int i, j;
printf("OEM Section:\n");
for (i = 0; i < 4; i++) {
printf("%02x:", i << 4);
for (j = 0; j < 16; j++)
printf(" %02x", oem[(i<<4)+j]);
printf("\n");
}
printf("\n");
}
/**
* dump_fd() - Display a dump of the full flash description
*
* @image: Pointer to image
* @size: Size of image in bytes
* @return 0 if OK, -1 on error
*/
static int dump_fd(char *image, int size)
{
struct fdbar_t *fdb = find_fd(image, size);
if (!fdb)
return -1;
printf("FLMAP0: 0x%08x\n", fdb->flmap0);
printf(" NR: %d\n", (fdb->flmap0 >> 24) & 7);
printf(" FRBA: 0x%x\n", ((fdb->flmap0 >> 16) & 0xff) << 4);
printf(" NC: %d\n", ((fdb->flmap0 >> 8) & 3) + 1);
printf(" FCBA: 0x%x\n", ((fdb->flmap0) & 0xff) << 4);
printf("FLMAP1: 0x%08x\n", fdb->flmap1);
printf(" ISL: 0x%02x\n", (fdb->flmap1 >> 24) & 0xff);
printf(" FPSBA: 0x%x\n", ((fdb->flmap1 >> 16) & 0xff) << 4);
printf(" NM: %d\n", (fdb->flmap1 >> 8) & 3);
printf(" FMBA: 0x%x\n", ((fdb->flmap1) & 0xff) << 4);
printf("FLMAP2: 0x%08x\n", fdb->flmap2);
printf(" PSL: 0x%04x\n", (fdb->flmap2 >> 8) & 0xffff);
printf(" FMSBA: 0x%x\n", ((fdb->flmap2) & 0xff) << 4);
printf("FLUMAP1: 0x%08x\n", fdb->flumap1);
printf(" Intel ME VSCC Table Length (VTL): %d\n",
(fdb->flumap1 >> 8) & 0xff);
printf(" Intel ME VSCC Table Base Address (VTBA): 0x%06x\n\n",
(fdb->flumap1 & 0xff) << 4);
dump_vtba((struct vtba_t *)
(image + ((fdb->flumap1 & 0xff) << 4)),
(fdb->flumap1 >> 8) & 0xff);
dump_oem((uint8_t *)image + 0xf00);
dump_frba((struct frba_t *)(image + (((fdb->flmap0 >> 16) & 0xff)
<< 4)));
dump_fcba((struct fcba_t *)(image + (((fdb->flmap0) & 0xff) << 4)));
dump_fpsba((struct fpsba_t *)
(image + (((fdb->flmap1 >> 16) & 0xff) << 4)));
dump_fmba((struct fmba_t *)(image + (((fdb->flmap1) & 0xff) << 4)));
dump_fmsba((struct fmsba_t *)(image + (((fdb->flmap2) & 0xff) << 4)));
return 0;
}
/**
* write_regions() - Write each region from an image to its own file
*
* The filename to use in each case is fixed - see region_filename()
*
* @image: Pointer to image
* @size: Size of image in bytes
* @return 0 if OK, -ve on error
*/
static int write_regions(char *image, int size)
{
struct fdbar_t *fdb;
struct frba_t *frba;
int ret = 0;
int i;
fdb = find_fd(image, size);
if (!fdb)
return -1;
frba = (struct frba_t *)(image + (((fdb->flmap0 >> 16) & 0xff) << 4));
for (i = 0; i < MAX_REGIONS; i++) {
struct region_t region;
int region_fd;
ret = get_region(frba, i, &region);
if (ret)
return ret;
dump_region(i, frba);
if (region.size <= 0)
continue;
region_fd = open(region_filename(i),
O_WRONLY | O_CREAT | O_TRUNC, S_IRUSR |
S_IWUSR | S_IRGRP | S_IROTH);
if (write(region_fd, image + region.base, region.size) !=
region.size) {
perror("Error while writing");
ret = -1;
}
close(region_fd);
}
return ret;
}
static int perror_fname(const char *fmt, const char *fname)
{
char msg[strlen(fmt) + strlen(fname) + 1];
sprintf(msg, fmt, fname);
perror(msg);
return -1;
}
/**
* write_image() - Write the image to a file
*
* @filename: Filename to use for the image
* @image: Pointer to image
* @size: Size of image in bytes
* @return 0 if OK, -ve on error
*/
static int write_image(char *filename, char *image, int size)
{
int new_fd;
debug("Writing new image to %s\n", filename);
new_fd = open(filename, O_WRONLY | O_CREAT | O_TRUNC, S_IRUSR |
S_IWUSR | S_IRGRP | S_IROTH);
if (new_fd < 0)
return perror_fname("Could not open file '%s'", filename);
if (write(new_fd, image, size) != size)
return perror_fname("Could not write file '%s'", filename);
close(new_fd);
return 0;
}
/**
* set_spi_frequency() - Set the SPI frequency to use when booting
*
* Several frequencies are supported, some of which work with fast devices.
* For SPI emulators, the slowest (SPI_FREQUENCY_20MHZ) is often used. The
* Intel boot system uses this information somehow on boot.
*
* The image is updated with the supplied value
*
* @image: Pointer to image
* @size: Size of image in bytes
* @freq: SPI frequency to use
*/
static void set_spi_frequency(char *image, int size, enum spi_frequency freq)
{
struct fdbar_t *fdb = find_fd(image, size);
struct fcba_t *fcba;
fcba = (struct fcba_t *)(image + (((fdb->flmap0) & 0xff) << 4));
/* clear bits 21-29 */
fcba->flcomp &= ~0x3fe00000;
/* Read ID and Read Status Clock Frequency */
fcba->flcomp |= freq << 27;
/* Write and Erase Clock Frequency */
fcba->flcomp |= freq << 24;
/* Fast Read Clock Frequency */
fcba->flcomp |= freq << 21;
}
/**
* set_em100_mode() - Set a SPI frequency that will work with Dediprog EM100
*
* @image: Pointer to image
* @size: Size of image in bytes
*/
static void set_em100_mode(char *image, int size)
{
struct fdbar_t *fdb = find_fd(image, size);
struct fcba_t *fcba;
fcba = (struct fcba_t *)(image + (((fdb->flmap0) & 0xff) << 4));
fcba->flcomp &= ~(1 << 30);
set_spi_frequency(image, size, SPI_FREQUENCY_20MHZ);
}
/**
* lock_descriptor() - Lock the NE descriptor so it cannot be updated
*
* @image: Pointer to image
* @size: Size of image in bytes
*/
static void lock_descriptor(char *image, int size)
{
struct fdbar_t *fdb = find_fd(image, size);
struct fmba_t *fmba;
/*
* TODO: Dynamically take Platform Data Region and GbE Region into
* account.
*/
fmba = (struct fmba_t *)(image + (((fdb->flmap1) & 0xff) << 4));
fmba->flmstr1 = 0x0a0b0000;
fmba->flmstr2 = 0x0c0d0000;
fmba->flmstr3 = 0x08080118;
}
/**
* unlock_descriptor() - Lock the NE descriptor so it can be updated
*
* @image: Pointer to image
* @size: Size of image in bytes
*/
static void unlock_descriptor(char *image, int size)
{
struct fdbar_t *fdb = find_fd(image, size);
struct fmba_t *fmba;
fmba = (struct fmba_t *)(image + (((fdb->flmap1) & 0xff) << 4));
fmba->flmstr1 = 0xffff0000;
fmba->flmstr2 = 0xffff0000;
fmba->flmstr3 = 0x08080118;
}
/**
* open_for_read() - Open a file for reading
*
* @fname: Filename to open
* @sizep: Returns file size in bytes
* @return 0 if OK, -1 on error
*/
int open_for_read(const char *fname, int *sizep)
{
int fd = open(fname, O_RDONLY);
struct stat buf;
if (fd == -1)
return perror_fname("Could not open file '%s'", fname);
if (fstat(fd, &buf) == -1)
return perror_fname("Could not stat file '%s'", fname);
*sizep = buf.st_size;
debug("File %s is %d bytes\n", fname, *sizep);
return fd;
}
/**
* inject_region() - Add a file to an image region
*
* This puts a file into a particular region of the flash. Several pre-defined
* regions are used.
*
* @image: Pointer to image
* @size: Size of image in bytes
* @region_type: Region where the file should be added
* @region_fname: Filename to add to the image
* @return 0 if OK, -ve on error
*/
int inject_region(char *image, int size, int region_type, char *region_fname)
{
struct fdbar_t *fdb = find_fd(image, size);
struct region_t region;
struct frba_t *frba;
int region_size;
int offset = 0;
int region_fd;
int ret;
if (!fdb)
exit(EXIT_FAILURE);
frba = (struct frba_t *)(image + (((fdb->flmap0 >> 16) & 0xff) << 4));
ret = get_region(frba, region_type, &region);
if (ret)
return -1;
if (region.size <= 0xfff) {
fprintf(stderr, "Region %s is disabled in target. Not injecting.\n",
region_name(region_type));
return -1;
}
region_fd = open_for_read(region_fname, &region_size);
if (region_fd < 0)
return region_fd;
if ((region_size > region.size) ||
((region_type != 1) && (region_size > region.size))) {
fprintf(stderr, "Region %s is %d(0x%x) bytes. File is %d(0x%x) bytes. Not injecting.\n",
region_name(region_type), region.size,
region.size, region_size, region_size);
return -1;
}
if ((region_type == 1) && (region_size < region.size)) {
fprintf(stderr, "Region %s is %d(0x%x) bytes. File is %d(0x%x) bytes. Padding before injecting.\n",
region_name(region_type), region.size,
region.size, region_size, region_size);
offset = region.size - region_size;
memset(image + region.base, 0xff, offset);
}
if (size < region.base + offset + region_size) {
fprintf(stderr, "Output file is too small. (%d < %d)\n",
size, region.base + offset + region_size);
return -1;
}
if (read(region_fd, image + region.base + offset, region_size)
!= region_size) {
perror("Could not read file");
return -1;
}
close(region_fd);
debug("Adding %s as the %s section\n", region_fname,
region_name(region_type));
return 0;
}
/**
* write_data() - Write some raw data into a region
*
* This puts a file into a particular place in the flash, ignoring the
* regions. Be careful not to overwrite something important.
*
* @image: Pointer to image
* @size: Size of image in bytes
* @addr: x86 ROM address to put file. The ROM ends at
* 0xffffffff so use an address relative to that. For an
* 8MB ROM the start address is 0xfff80000.
* @write_fname: Filename to add to the image
* @offset_uboot_top: Offset of the top of U-Boot
* @return number of bytes written if OK, -ve on error
*/
static int write_data(char *image, int size, unsigned int addr,
const char *write_fname, int offset_uboot_top)
{
int write_fd, write_size;
int offset;
write_fd = open_for_read(write_fname, &write_size);
if (write_fd < 0)
return write_fd;
offset = (uint32_t)(addr + size);
if (offset_uboot_top && offset_uboot_top >= offset) {
fprintf(stderr, "U-Boot image overlaps with region '%s'\n",
write_fname);
fprintf(stderr,
"U-Boot finishes at offset %x, file starts at %x\n",
offset_uboot_top, offset);
return -EXDEV;
}
debug("Writing %s to offset %#x\n", write_fname, offset);
if (offset < 0 || offset + write_size > size) {
fprintf(stderr, "Output file is too small. (%d < %d)\n",
size, offset + write_size);
return -1;
}
if (read(write_fd, image + offset, write_size) != write_size) {
perror("Could not read file");
return -1;
}
close(write_fd);
return write_size;
}
static int scan_ucode(const void *blob, char *ucode_base, int *countp,
const char **datap, int *data_sizep)
{
const char *data = NULL;
int node, count;
int data_size;
char *ucode;
for (node = 0, count = 0, ucode = ucode_base; node >= 0; count++) {
node = fdt_node_offset_by_compatible(blob, node,
"intel,microcode");
if (node < 0)
break;
data = fdt_getprop(blob, node, "data", &data_size);
if (!data) {
debug("Missing microcode data in FDT '%s': %s\n",
fdt_get_name(blob, node, NULL),
fdt_strerror(data_size));
return -ENOENT;
}
if (ucode_base)
memcpy(ucode, data, data_size);
ucode += data_size;
}
if (countp)
*countp = count;
if (datap)
*datap = data;
if (data_sizep)
*data_sizep = data_size;
return ucode - ucode_base;
}
static int remove_ucode(char *blob)
{
int node, count;
int ret;
/* Keep going until we find no more microcode to remove */
do {
for (node = 0, count = 0; node >= 0;) {
int ret;
node = fdt_node_offset_by_compatible(blob, node,
"intel,microcode");
if (node < 0)
break;
ret = fdt_delprop(blob, node, "data");
/*
* -FDT_ERR_NOTFOUND means we already removed the
* data for this one, so we just continue.
* 0 means we did remove it, so offsets may have
* changed and we need to restart our scan.
* Anything else indicates an error we should report.
*/
if (ret == -FDT_ERR_NOTFOUND)
continue;
else if (!ret)
node = 0;
else
return ret;
}
} while (count);
/* Pack down to remove excees space */
ret = fdt_pack(blob);
if (ret)
return ret;
return fdt_totalsize(blob);
}
static int write_ucode(char *image, int size, struct input_file *fdt,
int fdt_size, unsigned int ucode_ptr,
int collate_ucode)
{
const char *data = NULL;
char *ucode_buf;
const void *blob;
char *ucode_base;
uint32_t *ptr;
int ucode_size;
int data_size;
int offset;
int count;
int ret;
blob = (void *)image + (uint32_t)(fdt->addr + size);
debug("DTB at %lx\n", (char *)blob - image);
/* Find out about the micrcode we have */
ucode_size = scan_ucode(blob, NULL, &count, &data, &data_size);
if (ucode_size < 0)
return ucode_size;
if (!count) {
debug("No microcode found in FDT\n");
return -ENOENT;
}
if (count > 1 && !collate_ucode) {
fprintf(stderr,
"Cannot handle multiple microcode blocks - please use -C flag to collate them\n");
return -EMLINK;
}
/*
* Collect the microcode into a buffer, remove it from the device
* tree and place it immediately above the (now smaller) device tree.
*/
if (collate_ucode && count > 1) {
ucode_buf = malloc(ucode_size);
if (!ucode_buf) {
fprintf(stderr,
"Out of memory for microcode (%d bytes)\n",
ucode_size);
return -ENOMEM;
}
ret = scan_ucode(blob, ucode_buf, NULL, NULL, NULL);
if (ret < 0)
return ret;
/* Remove the microcode from the device tree */
ret = remove_ucode((char *)blob);
if (ret < 0) {
debug("Could not remove FDT microcode: %s\n",
fdt_strerror(ret));
return -EINVAL;
}
debug("Collated %d microcode block(s)\n", count);
debug("Device tree reduced from %x to %x bytes\n",
fdt_size, ret);
fdt_size = ret;
/*
* Place microcode area immediately above the FDT, aligned
* to a 16-byte boundary.
*/
ucode_base = (char *)(((unsigned long)blob + fdt_size + 15) &
~15);
data = ucode_base;
data_size = ucode_size;
memcpy(ucode_base, ucode_buf, ucode_size);
free(ucode_buf);
}
offset = (uint32_t)(ucode_ptr + size);
ptr = (void *)image + offset;
ptr[0] = (data - image) - size;
ptr[1] = data_size;
debug("Wrote microcode pointer at %x: addr=%x, size=%x\n", ucode_ptr,
ptr[0], ptr[1]);
return (collate_ucode ? data + data_size : (char *)blob + fdt_size) -
image;
}
/**
* write_uboot() - Write U-Boot, device tree and microcode pointer
*
* This writes U-Boot into a place in the flash, followed by its device tree.
* The microcode pointer is written so that U-Boot can find the microcode in
* the device tree very early in boot.
*
* @image: Pointer to image
* @size: Size of image in bytes
* @uboot: Input file information for u-boot.bin
* @fdt: Input file information for u-boot.dtb
* @ucode_ptr: Address in U-Boot where the microcode pointer should be placed
* @return 0 if OK, -ve on error
*/
static int write_uboot(char *image, int size, struct input_file *uboot,
struct input_file *fdt, unsigned int ucode_ptr,
int collate_ucode)
{
const void *blob;
int uboot_size, fdt_size;
uboot_size = write_data(image, size, uboot->addr, uboot->fname, 0);
if (uboot_size < 0)
return uboot_size;
fdt->addr = uboot->addr + uboot_size;
debug("U-Boot size %#x, FDT at %#x\n", uboot_size, fdt->addr);
fdt_size = write_data(image, size, fdt->addr, fdt->fname, 0);
if (fdt_size < 0)
return fdt_size;
blob = (void *)image + (uint32_t)(fdt->addr + size);
if (ucode_ptr) {
return write_ucode(image, size, fdt, fdt_size, ucode_ptr,
collate_ucode);
}
return ((char *)blob + fdt_size) - image;
}
static void print_version(void)
{
printf("ifdtool v%s -- ", IFDTOOL_VERSION);
printf("Copyright (C) 2014 Google Inc.\n\n");
printf("SPDX-License-Identifier: GPL-2.0+\n");
}
static void print_usage(const char *name)
{
printf("usage: %s [-vhdix?] <filename> [<outfile>]\n", name);
printf("\n"
" -d | --dump: dump intel firmware descriptor\n"
" -x | --extract: extract intel fd modules\n"
" -i | --inject <region>:<module> inject file <module> into region <region>\n"
" -w | --write <addr>:<file> write file to appear at memory address <addr>\n"
" multiple files can be written simultaneously\n"
" -s | --spifreq <20|33|50> set the SPI frequency\n"
" -e | --em100 set SPI frequency to 20MHz and disable\n"
" Dual Output Fast Read Support\n"
" -l | --lock Lock firmware descriptor and ME region\n"
" -u | --unlock Unlock firmware descriptor and ME region\n"
" -r | --romsize Specify ROM size\n"
" -D | --write-descriptor <file> Write descriptor at base\n"
" -c | --create Create a new empty image\n"
" -v | --version: print the version\n"
" -h | --help: print this help\n\n"
"<region> is one of Descriptor, BIOS, ME, GbE, Platform\n"
"\n");
}
/**
* get_two_words() - Convert a string into two words separated by :
*
* The supplied string is split at ':', two substrings are allocated and
* returned.
*
* @str: String to split
* @firstp: Returns first string
* @secondp: Returns second string
* @return 0 if OK, -ve if @str does not have a :
*/
static int get_two_words(const char *str, char **firstp, char **secondp)
{
const char *p;
p = strchr(str, ':');
if (!p)
return -1;
*firstp = strdup(str);
(*firstp)[p - str] = '\0';
*secondp = strdup(p + 1);
return 0;
}
int main(int argc, char *argv[])
{
int opt, option_index = 0;
int mode_dump = 0, mode_extract = 0, mode_inject = 0;
int mode_spifreq = 0, mode_em100 = 0, mode_locked = 0;
int mode_unlocked = 0, mode_write = 0, mode_write_descriptor = 0;
int create = 0, collate_ucode = 0;
char *region_type_string = NULL, *inject_fname = NULL;
char *desc_fname = NULL, *addr_str = NULL;
int region_type = -1, inputfreq = 0;
enum spi_frequency spifreq = SPI_FREQUENCY_20MHZ;
struct input_file input_file[WRITE_MAX], *ifile, *fdt = NULL;
unsigned char wr_idx, wr_num = 0;
int rom_size = -1;
bool write_it;
char *filename;
char *outfile = NULL;
struct stat buf;
int size = 0;
unsigned int ucode_ptr = 0;
bool have_uboot = false;
int bios_fd;
char *image;
int ret;
static struct option long_options[] = {
{"create", 0, NULL, 'c'},
{"collate-microcode", 0, NULL, 'C'},
{"dump", 0, NULL, 'd'},
{"descriptor", 1, NULL, 'D'},
{"em100", 0, NULL, 'e'},
{"extract", 0, NULL, 'x'},
{"fdt", 1, NULL, 'f'},
{"inject", 1, NULL, 'i'},
{"lock", 0, NULL, 'l'},
{"microcode", 1, NULL, 'm'},
{"romsize", 1, NULL, 'r'},
{"spifreq", 1, NULL, 's'},
{"unlock", 0, NULL, 'u'},
{"uboot", 1, NULL, 'U'},
{"write", 1, NULL, 'w'},
{"version", 0, NULL, 'v'},
{"help", 0, NULL, 'h'},
{0, 0, 0, 0}
};
while ((opt = getopt_long(argc, argv, "cCdD:ef:hi:lm:r:s:uU:vw:x?",
long_options, &option_index)) != EOF) {
switch (opt) {
case 'c':
create = 1;
break;
case 'C':
collate_ucode = 1;
break;
case 'd':
mode_dump = 1;
break;
case 'D':
mode_write_descriptor = 1;
desc_fname = optarg;
break;
case 'e':
mode_em100 = 1;
break;
case 'i':
if (get_two_words(optarg, &region_type_string,
&inject_fname)) {
print_usage(argv[0]);
exit(EXIT_FAILURE);
}
if (!strcasecmp("Descriptor", region_type_string))
region_type = 0;
else if (!strcasecmp("BIOS", region_type_string))
region_type = 1;
else if (!strcasecmp("ME", region_type_string))
region_type = 2;
else if (!strcasecmp("GbE", region_type_string))
region_type = 3;
else if (!strcasecmp("Platform", region_type_string))
region_type = 4;
if (region_type == -1) {
fprintf(stderr, "No such region type: '%s'\n\n",
region_type_string);
print_usage(argv[0]);
exit(EXIT_FAILURE);
}
mode_inject = 1;
break;
case 'l':
mode_locked = 1;
break;
case 'm':
ucode_ptr = strtoul(optarg, NULL, 0);
break;
case 'r':
rom_size = strtol(optarg, NULL, 0);
debug("ROM size %d\n", rom_size);
break;
case 's':
/* Parse the requested SPI frequency */
inputfreq = strtol(optarg, NULL, 0);
switch (inputfreq) {
case 20:
spifreq = SPI_FREQUENCY_20MHZ;
break;
case 33:
spifreq = SPI_FREQUENCY_33MHZ;
break;
case 50:
spifreq = SPI_FREQUENCY_50MHZ;
break;
default:
fprintf(stderr, "Invalid SPI Frequency: %d\n",
inputfreq);
print_usage(argv[0]);
exit(EXIT_FAILURE);
}
mode_spifreq = 1;
break;
case 'u':
mode_unlocked = 1;
break;
case 'v':
print_version();
exit(EXIT_SUCCESS);
break;
case 'w':
case 'U':
case 'f':
ifile = &input_file[wr_num];
mode_write = 1;
if (wr_num < WRITE_MAX) {
if (get_two_words(optarg, &addr_str,
&ifile->fname)) {
print_usage(argv[0]);
exit(EXIT_FAILURE);
}
ifile->addr = strtoll(optarg, NULL, 0);
ifile->type = opt == 'f' ? IF_fdt :
opt == 'U' ? IF_uboot : IF_normal;
if (ifile->type == IF_fdt)
fdt = ifile;
else if (ifile->type == IF_uboot)
have_uboot = true;
wr_num++;
} else {
fprintf(stderr,
"The number of files to write simultaneously exceeds the limitation (%d)\n",
WRITE_MAX);
}
break;
case 'x':
mode_extract = 1;
break;
case 'h':
case '?':
default:
print_usage(argv[0]);
exit(EXIT_SUCCESS);
break;
}
}
if (mode_locked == 1 && mode_unlocked == 1) {
fprintf(stderr, "Locking/Unlocking FD and ME are mutually exclusive\n");
exit(EXIT_FAILURE);
}
if (mode_inject == 1 && mode_write == 1) {
fprintf(stderr, "Inject/Write are mutually exclusive\n");
exit(EXIT_FAILURE);
}
if ((mode_dump + mode_extract + mode_inject +
(mode_spifreq | mode_em100 | mode_unlocked |
mode_locked)) > 1) {
fprintf(stderr, "You may not specify more than one mode.\n\n");
print_usage(argv[0]);
exit(EXIT_FAILURE);
}
if ((mode_dump + mode_extract + mode_inject + mode_spifreq +
mode_em100 + mode_locked + mode_unlocked + mode_write +
mode_write_descriptor) == 0 && !create) {
fprintf(stderr, "You need to specify a mode.\n\n");
print_usage(argv[0]);
exit(EXIT_FAILURE);
}
if (create && rom_size == -1) {
fprintf(stderr, "You need to specify a rom size when creating.\n\n");
exit(EXIT_FAILURE);
}
if (optind + 1 != argc) {
fprintf(stderr, "You need to specify a file.\n\n");
print_usage(argv[0]);
exit(EXIT_FAILURE);
}
if (have_uboot && !fdt) {
fprintf(stderr,
"You must supply a device tree file for U-Boot\n\n");
print_usage(argv[0]);
exit(EXIT_FAILURE);
}
filename = argv[optind];
if (optind + 2 != argc)
outfile = argv[optind + 1];
if (create)
bios_fd = open(filename, O_WRONLY | O_CREAT, 0666);
else
bios_fd = open(filename, outfile ? O_RDONLY : O_RDWR);
if (bios_fd == -1) {
perror("Could not open file");
exit(EXIT_FAILURE);
}
if (!create) {
if (fstat(bios_fd, &buf) == -1) {
perror("Could not stat file");
exit(EXIT_FAILURE);
}
size = buf.st_size;
}
debug("File %s is %d bytes\n", filename, size);
if (rom_size == -1)
rom_size = size;
image = malloc(rom_size);
if (!image) {
printf("Out of memory.\n");
exit(EXIT_FAILURE);
}
memset(image, '\xff', rom_size);
if (!create && read(bios_fd, image, size) != size) {
perror("Could not read file");
exit(EXIT_FAILURE);
}
if (size != rom_size) {
debug("ROM size changed to %d bytes\n", rom_size);
size = rom_size;
}
write_it = true;
ret = 0;
if (mode_dump) {
ret = dump_fd(image, size);
write_it = false;
}
if (mode_extract) {
ret = write_regions(image, size);
write_it = false;
}
if (mode_write_descriptor)
ret = write_data(image, size, -size, desc_fname, 0);
if (mode_inject)
ret = inject_region(image, size, region_type, inject_fname);
if (mode_write) {
int offset_uboot_top = 0;
for (wr_idx = 0; wr_idx < wr_num; wr_idx++) {
ifile = &input_file[wr_idx];
if (ifile->type == IF_fdt) {
continue;
} else if (ifile->type == IF_uboot) {
ret = write_uboot(image, size, ifile, fdt,
ucode_ptr, collate_ucode);
offset_uboot_top = ret;
} else {
ret = write_data(image, size, ifile->addr,
ifile->fname, offset_uboot_top);
}
if (ret < 0)
break;
}
}
if (mode_spifreq)
set_spi_frequency(image, size, spifreq);
if (mode_em100)
set_em100_mode(image, size);
if (mode_locked)
lock_descriptor(image, size);
if (mode_unlocked)
unlock_descriptor(image, size);
if (write_it) {
if (outfile) {
ret = write_image(outfile, image, size);
} else {
if (lseek(bios_fd, 0, SEEK_SET)) {
perror("Error while seeking");
ret = -1;
}
if (write(bios_fd, image, size) != size) {
perror("Error while writing");
ret = -1;
}
}
}
free(image);
close(bios_fd);
return ret < 0 ? 1 : 0;
}