u-boot/drivers/net/altera_tse.c

943 lines
25 KiB
C
Raw Normal View History

/*
* Altera 10/100/1000 triple speed ethernet mac driver
*
* Copyright (C) 2008 Altera Corporation.
* Copyright (C) 2010 Thomas Chou <thomas@wytron.com.tw>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <config.h>
#include <common.h>
#include <malloc.h>
#include <net.h>
#include <command.h>
#include <asm/cache.h>
#include <asm/dma-mapping.h>
#include <miiphy.h>
#include "altera_tse.h"
/* sgdma debug - print descriptor */
static void alt_sgdma_print_desc(volatile struct alt_sgdma_descriptor *desc)
{
debug("SGDMA DEBUG :\n");
debug("desc->source : 0x%x \n", (unsigned int)desc->source);
debug("desc->destination : 0x%x \n", (unsigned int)desc->destination);
debug("desc->next : 0x%x \n", (unsigned int)desc->next);
debug("desc->source_pad : 0x%x \n", (unsigned int)desc->source_pad);
debug("desc->destination_pad : 0x%x \n",
(unsigned int)desc->destination_pad);
debug("desc->next_pad : 0x%x \n", (unsigned int)desc->next_pad);
debug("desc->bytes_to_transfer : 0x%x \n",
(unsigned int)desc->bytes_to_transfer);
debug("desc->actual_bytes_transferred : 0x%x \n",
(unsigned int)desc->actual_bytes_transferred);
debug("desc->descriptor_status : 0x%x \n",
(unsigned int)desc->descriptor_status);
debug("desc->descriptor_control : 0x%x \n",
(unsigned int)desc->descriptor_control);
}
/* This is a generic routine that the SGDMA mode-specific routines
* call to populate a descriptor.
* arg1 :pointer to first SGDMA descriptor.
* arg2 :pointer to next SGDMA descriptor.
* arg3 :Address to where data to be written.
* arg4 :Address from where data to be read.
* arg5 :no of byte to transaction.
* arg6 :variable indicating to generate start of packet or not
* arg7 :read fixed
* arg8 :write fixed
* arg9 :read burst
* arg10 :write burst
* arg11 :atlantic_channel number
*/
static void alt_sgdma_construct_descriptor_burst(
volatile struct alt_sgdma_descriptor *desc,
volatile struct alt_sgdma_descriptor *next,
unsigned int *read_addr,
unsigned int *write_addr,
unsigned short length_or_eop,
int generate_eop,
int read_fixed,
int write_fixed_or_sop,
int read_burst,
int write_burst,
unsigned char atlantic_channel)
{
/*
* Mark the "next" descriptor as "not" owned by hardware. This prevents
* The SGDMA controller from continuing to process the chain. This is
* done as a single IO write to bypass cache, without flushing
* the entire descriptor, since only the 8-bit descriptor status must
* be flushed.
*/
if (!next)
debug("Next descriptor not defined!!\n");
next->descriptor_control = (next->descriptor_control &
~ALT_SGDMA_DESCRIPTOR_CONTROL_OWNED_BY_HW_MSK);
desc->source = (unsigned int *)((unsigned int)read_addr & 0x1FFFFFFF);
desc->destination =
(unsigned int *)((unsigned int)write_addr & 0x1FFFFFFF);
desc->next = (unsigned int *)((unsigned int)next & 0x1FFFFFFF);
desc->source_pad = 0x0;
desc->destination_pad = 0x0;
desc->next_pad = 0x0;
desc->bytes_to_transfer = length_or_eop;
desc->actual_bytes_transferred = 0;
desc->descriptor_status = 0x0;
/* SGDMA burst not currently supported */
desc->read_burst = 0;
desc->write_burst = 0;
/*
* Set the descriptor control block as follows:
* - Set "owned by hardware" bit
* - Optionally set "generate EOP" bit
* - Optionally set the "read from fixed address" bit
* - Optionally set the "write to fixed address bit (which serves
* serves as a "generate SOP" control bit in memory-to-stream mode).
* - Set the 4-bit atlantic channel, if specified
*
* Note this step is performed after all other descriptor information
* has been filled out so that, if the controller already happens to be
* pointing at this descriptor, it will not run (via the "owned by
* hardware" bit) until all other descriptor has been set up.
*/
desc->descriptor_control =
((ALT_SGDMA_DESCRIPTOR_CONTROL_OWNED_BY_HW_MSK) |
(generate_eop ?
ALT_SGDMA_DESCRIPTOR_CONTROL_GENERATE_EOP_MSK : 0x0) |
(read_fixed ?
ALT_SGDMA_DESCRIPTOR_CONTROL_READ_FIXED_ADDRESS_MSK : 0x0) |
(write_fixed_or_sop ?
ALT_SGDMA_DESCRIPTOR_CONTROL_WRITE_FIXED_ADDRESS_MSK : 0x0) |
(atlantic_channel ? ((atlantic_channel & 0x0F) << 3) : 0)
);
}
static int alt_sgdma_do_sync_transfer(volatile struct alt_sgdma_registers *dev,
volatile struct alt_sgdma_descriptor *desc)
{
unsigned int status;
int counter = 0;
/* Wait for any pending transfers to complete */
alt_sgdma_print_desc(desc);
status = dev->status;
counter = 0;
while (dev->status & ALT_SGDMA_STATUS_BUSY_MSK) {
if (counter++ > ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR)
break;
}
if (counter >= ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR)
debug("Timeout waiting sgdma in do sync!\n");
/*
* Clear any (previous) status register information
* that might occlude our error checking later.
*/
dev->status = 0xFF;
/* Point the controller at the descriptor */
dev->next_descriptor_pointer = (unsigned int)desc & 0x1FFFFFFF;
debug("next desc in sgdma 0x%x\n",
(unsigned int)dev->next_descriptor_pointer);
/*
* Set up SGDMA controller to:
* - Disable interrupt generation
* - Run once a valid descriptor is written to controller
* - Stop on an error with any particular descriptor
*/
dev->control = (ALT_SGDMA_CONTROL_RUN_MSK |
ALT_SGDMA_CONTROL_STOP_DMA_ER_MSK);
/* Wait for the descriptor (chain) to complete */
status = dev->status;
debug("wait for sgdma....");
while (dev->status & ALT_SGDMA_STATUS_BUSY_MSK)
;
debug("done\n");
/* Clear Run */
dev->control = (dev->control & (~ALT_SGDMA_CONTROL_RUN_MSK));
/* Get & clear status register contents */
status = dev->status;
dev->status = 0xFF;
/* we really should check if the transfer completes properly */
debug("tx sgdma status = 0x%x", status);
return 0;
}
static int alt_sgdma_do_async_transfer(volatile struct alt_sgdma_registers *dev,
volatile struct alt_sgdma_descriptor *desc)
{
unsigned int status;
int counter = 0;
/* Wait for any pending transfers to complete */
alt_sgdma_print_desc(desc);
status = dev->status;
counter = 0;
while (dev->status & ALT_SGDMA_STATUS_BUSY_MSK) {
if (counter++ > ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR)
break;
}
if (counter >= ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR)
debug("Timeout waiting sgdma in do async!\n");
/*
* Clear any (previous) status register information
* that might occlude our error checking later.
*/
dev->status = 0xFF;
/* Point the controller at the descriptor */
dev->next_descriptor_pointer = (unsigned int)desc & 0x1FFFFFFF;
/*
* Set up SGDMA controller to:
* - Disable interrupt generation
* - Run once a valid descriptor is written to controller
* - Stop on an error with any particular descriptor
*/
dev->control = (ALT_SGDMA_CONTROL_RUN_MSK |
ALT_SGDMA_CONTROL_STOP_DMA_ER_MSK);
/* we really should check if the transfer completes properly */
return 0;
}
/* u-boot interface */
static int tse_adjust_link(struct altera_tse_priv *priv)
{
unsigned int refvar;
refvar = priv->mac_dev->command_config.image;
if (!(priv->duplexity))
refvar |= ALTERA_TSE_CMD_HD_ENA_MSK;
else
refvar &= ~ALTERA_TSE_CMD_HD_ENA_MSK;
switch (priv->speed) {
case 1000:
refvar |= ALTERA_TSE_CMD_ETH_SPEED_MSK;
refvar &= ~ALTERA_TSE_CMD_ENA_10_MSK;
break;
case 100:
refvar &= ~ALTERA_TSE_CMD_ETH_SPEED_MSK;
refvar &= ~ALTERA_TSE_CMD_ENA_10_MSK;
break;
case 10:
refvar &= ~ALTERA_TSE_CMD_ETH_SPEED_MSK;
refvar |= ALTERA_TSE_CMD_ENA_10_MSK;
break;
}
priv->mac_dev->command_config.image = refvar;
return 0;
}
static int tse_eth_send(struct eth_device *dev,
volatile void *packet, int length)
{
struct altera_tse_priv *priv = dev->priv;
volatile struct alt_sgdma_registers *tx_sgdma = priv->sgdma_tx;
volatile struct alt_sgdma_descriptor *tx_desc =
(volatile struct alt_sgdma_descriptor *)priv->tx_desc;
volatile struct alt_sgdma_descriptor *tx_desc_cur =
(volatile struct alt_sgdma_descriptor *)&tx_desc[0];
flush_dcache((unsigned long)packet, length);
alt_sgdma_construct_descriptor_burst(
(volatile struct alt_sgdma_descriptor *)&tx_desc[0],
(volatile struct alt_sgdma_descriptor *)&tx_desc[1],
(unsigned int *)packet, /* read addr */
(unsigned int *)0,
length, /* length or EOP ,will change for each tx */
0x1, /* gen eop */
0x0, /* read fixed */
0x1, /* write fixed or sop */
0x0, /* read burst */
0x0, /* write burst */
0x0 /* channel */
);
debug("TX Packet @ 0x%x,0x%x bytes", (unsigned int)packet, length);
/* send the packet */
debug("sending packet\n");
alt_sgdma_do_sync_transfer(tx_sgdma, tx_desc_cur);
debug("sent %d bytes\n", tx_desc_cur->actual_bytes_transferred);
return tx_desc_cur->actual_bytes_transferred;
}
static int tse_eth_rx(struct eth_device *dev)
{
int packet_length = 0;
struct altera_tse_priv *priv = dev->priv;
volatile struct alt_sgdma_descriptor *rx_desc =
(volatile struct alt_sgdma_descriptor *)priv->rx_desc;
volatile struct alt_sgdma_descriptor *rx_desc_cur = &rx_desc[0];
if (rx_desc_cur->descriptor_status &
ALT_SGDMA_DESCRIPTOR_STATUS_TERMINATED_BY_EOP_MSK) {
debug("got packet\n");
packet_length = rx_desc->actual_bytes_transferred;
NetReceive(NetRxPackets[0], packet_length);
/* start descriptor again */
flush_dcache((unsigned long)(NetRxPackets[0]), PKTSIZE_ALIGN);
alt_sgdma_construct_descriptor_burst(
(volatile struct alt_sgdma_descriptor *)&rx_desc[0],
(volatile struct alt_sgdma_descriptor *)&rx_desc[1],
(unsigned int)0x0, /* read addr */
(unsigned int *)NetRxPackets[0],
0x0, /* length or EOP */
0x0, /* gen eop */
0x0, /* read fixed */
0x0, /* write fixed or sop */
0x0, /* read burst */
0x0, /* write burst */
0x0 /* channel */
);
/* setup the sgdma */
alt_sgdma_do_async_transfer(priv->sgdma_rx, &rx_desc[0]);
}
return -1;
}
static void tse_eth_halt(struct eth_device *dev)
{
/* don't do anything! */
/* this gets called after each uboot */
/* network command. don't need to reset the thing all of the time */
}
static void tse_eth_reset(struct eth_device *dev)
{
/* stop sgdmas, disable tse receive */
struct altera_tse_priv *priv = dev->priv;
volatile struct alt_tse_mac *mac_dev = priv->mac_dev;
volatile struct alt_sgdma_registers *rx_sgdma = priv->sgdma_rx;
volatile struct alt_sgdma_registers *tx_sgdma = priv->sgdma_tx;
int counter;
volatile struct alt_sgdma_descriptor *rx_desc =
(volatile struct alt_sgdma_descriptor *)&priv->rx_desc[0];
/* clear rx desc & wait for sgdma to complete */
rx_desc->descriptor_control = 0;
rx_sgdma->control = 0;
counter = 0;
while (rx_sgdma->status & ALT_SGDMA_STATUS_BUSY_MSK) {
if (counter++ > ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR)
break;
}
if (counter >= ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR) {
debug("Timeout waiting for rx sgdma!\n");
rx_sgdma->control &= ALT_SGDMA_CONTROL_SOFTWARERESET_MSK;
rx_sgdma->control &= ALT_SGDMA_CONTROL_SOFTWARERESET_MSK;
}
counter = 0;
tx_sgdma->control = 0;
while (tx_sgdma->status & ALT_SGDMA_STATUS_BUSY_MSK) {
if (counter++ > ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR)
break;
}
if (counter >= ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR) {
debug("Timeout waiting for tx sgdma!\n");
tx_sgdma->control &= ALT_SGDMA_CONTROL_SOFTWARERESET_MSK;
tx_sgdma->control &= ALT_SGDMA_CONTROL_SOFTWARERESET_MSK;
}
/* reset the mac */
mac_dev->command_config.bits.transmit_enable = 1;
mac_dev->command_config.bits.receive_enable = 1;
mac_dev->command_config.bits.software_reset = 1;
counter = 0;
while (mac_dev->command_config.bits.software_reset) {
if (counter++ > ALT_TSE_SW_RESET_WATCHDOG_CNTR)
break;
}
if (counter >= ALT_TSE_SW_RESET_WATCHDOG_CNTR)
debug("TSEMAC SW reset bit never cleared!\n");
}
static int tse_mdio_read(struct altera_tse_priv *priv, unsigned int regnum)
{
volatile struct alt_tse_mac *mac_dev;
unsigned int *mdio_regs;
unsigned int data;
u16 value;
mac_dev = priv->mac_dev;
/* set mdio address */
mac_dev->mdio_phy1_addr = priv->phyaddr;
mdio_regs = (unsigned int *)&mac_dev->mdio_phy1;
/* get the data */
data = mdio_regs[regnum];
value = data & 0xffff;
return value;
}
static int tse_mdio_write(struct altera_tse_priv *priv, unsigned int regnum,
unsigned int value)
{
volatile struct alt_tse_mac *mac_dev;
unsigned int *mdio_regs;
unsigned int data;
mac_dev = priv->mac_dev;
/* set mdio address */
mac_dev->mdio_phy1_addr = priv->phyaddr;
mdio_regs = (unsigned int *)&mac_dev->mdio_phy1;
/* get the data */
data = (unsigned int)value;
mdio_regs[regnum] = data;
return 0;
}
/* MDIO access to phy */
#if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) && !defined(BITBANGMII)
static int altera_tse_miiphy_write(char *devname, unsigned char addr,
unsigned char reg, unsigned short value)
{
struct eth_device *dev;
struct altera_tse_priv *priv;
dev = eth_get_dev_by_name(devname);
priv = dev->priv;
tse_mdio_write(priv, (uint) reg, (uint) value);
return 0;
}
static int altera_tse_miiphy_read(char *devname, unsigned char addr,
unsigned char reg, unsigned short *value)
{
struct eth_device *dev;
struct altera_tse_priv *priv;
volatile struct alt_tse_mac *mac_dev;
unsigned int *mdio_regs;
dev = eth_get_dev_by_name(devname);
priv = dev->priv;
mac_dev = priv->mac_dev;
mac_dev->mdio_phy1_addr = (int)addr;
mdio_regs = (unsigned int *)&mac_dev->mdio_phy1;
*value = 0xffff & mdio_regs[reg];
return 0;
}
#endif
/*
* Also copied from tsec.c
*/
/* Parse the status register for link, and then do
* auto-negotiation
*/
static uint mii_parse_sr(uint mii_reg, struct altera_tse_priv *priv)
{
/*
* Wait if the link is up, and autonegotiation is in progress
* (ie - we're capable and it's not done)
*/
mii_reg = tse_mdio_read(priv, MIIM_STATUS);
if (!(mii_reg & MIIM_STATUS_LINK) && (mii_reg & PHY_BMSR_AUTN_ABLE)
&& !(mii_reg & PHY_BMSR_AUTN_COMP)) {
int i = 0;
puts("Waiting for PHY auto negotiation to complete");
while (!(mii_reg & PHY_BMSR_AUTN_COMP)) {
/*
* Timeout reached ?
*/
if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
puts(" TIMEOUT !\n");
priv->link = 0;
return 0;
}
if ((i++ % 1000) == 0)
putc('.');
udelay(1000); /* 1 ms */
mii_reg = tse_mdio_read(priv, MIIM_STATUS);
}
puts(" done\n");
priv->link = 1;
udelay(500000); /* another 500 ms (results in faster booting) */
} else {
if (mii_reg & MIIM_STATUS_LINK) {
debug("Link is up\n");
priv->link = 1;
} else {
debug("Link is down\n");
priv->link = 0;
}
}
return 0;
}
/* Parse the 88E1011's status register for speed and duplex
* information
*/
static uint mii_parse_88E1011_psr(uint mii_reg, struct altera_tse_priv *priv)
{
uint speed;
mii_reg = tse_mdio_read(priv, MIIM_88E1011_PHY_STATUS);
if ((mii_reg & MIIM_88E1011_PHYSTAT_LINK) &&
!(mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE)) {
int i = 0;
puts("Waiting for PHY realtime link");
while (!(mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE)) {
/* Timeout reached ? */
if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
puts(" TIMEOUT !\n");
priv->link = 0;
break;
}
if ((i++ == 1000) == 0) {
i = 0;
puts(".");
}
udelay(1000); /* 1 ms */
mii_reg = tse_mdio_read(priv, MIIM_88E1011_PHY_STATUS);
}
puts(" done\n");
udelay(500000); /* another 500 ms (results in faster booting) */
} else {
if (mii_reg & MIIM_88E1011_PHYSTAT_LINK)
priv->link = 1;
else
priv->link = 0;
}
if (mii_reg & MIIM_88E1011_PHYSTAT_DUPLEX)
priv->duplexity = 1;
else
priv->duplexity = 0;
speed = (mii_reg & MIIM_88E1011_PHYSTAT_SPEED);
switch (speed) {
case MIIM_88E1011_PHYSTAT_GBIT:
priv->speed = 1000;
debug("PHY Speed is 1000Mbit\n");
break;
case MIIM_88E1011_PHYSTAT_100:
debug("PHY Speed is 100Mbit\n");
priv->speed = 100;
break;
default:
debug("PHY Speed is 10Mbit\n");
priv->speed = 10;
}
return 0;
}
static uint mii_m88e1111s_setmode_sr(uint mii_reg, struct altera_tse_priv *priv)
{
uint mii_data = tse_mdio_read(priv, mii_reg);
mii_data &= 0xfff0;
mii_data |= 0xb;
return mii_data;
}
static uint mii_m88e1111s_setmode_cr(uint mii_reg, struct altera_tse_priv *priv)
{
uint mii_data = tse_mdio_read(priv, mii_reg);
mii_data &= ~0x82;
mii_data |= 0x82;
return mii_data;
}
/*
* Returns which value to write to the control register.
* For 10/100, the value is slightly different
*/
static uint mii_cr_init(uint mii_reg, struct altera_tse_priv *priv)
{
return MIIM_CONTROL_INIT;
}
/*
* PHY & MDIO code
* Need to add SGMII stuff
*
*/
static struct phy_info phy_info_M88E1111S = {
0x01410cc,
"Marvell 88E1111S",
4,
(struct phy_cmd[]){ /* config */
/* Reset and configure the PHY */
{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
{MIIM_88E1111_PHY_EXT_SR, 0x848f,
&mii_m88e1111s_setmode_sr},
/* Delay RGMII TX and RX */
{MIIM_88E1111_PHY_EXT_CR, 0x0cd2,
&mii_m88e1111s_setmode_cr},
{MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
{MIIM_ANAR, MIIM_ANAR_INIT, NULL},
{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
{miim_end,}
},
(struct phy_cmd[]){ /* startup */
/* Status is read once to clear old link state */
{MIIM_STATUS, miim_read, NULL},
/* Auto-negotiate */
{MIIM_STATUS, miim_read, &mii_parse_sr},
/* Read the status */
{MIIM_88E1011_PHY_STATUS, miim_read,
&mii_parse_88E1011_psr},
{miim_end,}
},
(struct phy_cmd[]){ /* shutdown */
{miim_end,}
},
};
/* a generic flavor. */
static struct phy_info phy_info_generic = {
0,
"Unknown/Generic PHY",
32,
(struct phy_cmd[]){ /* config */
{PHY_BMCR, PHY_BMCR_RESET, NULL},
{PHY_BMCR, PHY_BMCR_AUTON | PHY_BMCR_RST_NEG, NULL},
{miim_end,}
},
(struct phy_cmd[]){ /* startup */
{PHY_BMSR, miim_read, NULL},
{PHY_BMSR, miim_read, &mii_parse_sr},
{miim_end,}
},
(struct phy_cmd[]){ /* shutdown */
{miim_end,}
}
};
static struct phy_info *phy_info[] = {
&phy_info_M88E1111S,
NULL
};
/* Grab the identifier of the device's PHY, and search through
* all of the known PHYs to see if one matches. If so, return
* it, if not, return NULL
*/
static struct phy_info *get_phy_info(struct eth_device *dev)
{
struct altera_tse_priv *priv = (struct altera_tse_priv *)dev->priv;
uint phy_reg, phy_ID;
int i;
struct phy_info *theInfo = NULL;
/* Grab the bits from PHYIR1, and put them in the upper half */
phy_reg = tse_mdio_read(priv, MIIM_PHYIR1);
phy_ID = (phy_reg & 0xffff) << 16;
/* Grab the bits from PHYIR2, and put them in the lower half */
phy_reg = tse_mdio_read(priv, MIIM_PHYIR2);
phy_ID |= (phy_reg & 0xffff);
/* loop through all the known PHY types, and find one that */
/* matches the ID we read from the PHY. */
for (i = 0; phy_info[i]; i++) {
if (phy_info[i]->id == (phy_ID >> phy_info[i]->shift)) {
theInfo = phy_info[i];
break;
}
}
if (theInfo == NULL) {
theInfo = &phy_info_generic;
debug("%s: No support for PHY id %x; assuming generic\n",
dev->name, phy_ID);
} else
debug("%s: PHY is %s (%x)\n", dev->name, theInfo->name, phy_ID);
return theInfo;
}
/* Execute the given series of commands on the given device's
* PHY, running functions as necessary
*/
static void phy_run_commands(struct altera_tse_priv *priv, struct phy_cmd *cmd)
{
int i;
uint result;
for (i = 0; cmd->mii_reg != miim_end; i++) {
if (cmd->mii_data == miim_read) {
result = tse_mdio_read(priv, cmd->mii_reg);
if (cmd->funct != NULL)
(*(cmd->funct)) (result, priv);
} else {
if (cmd->funct != NULL)
result = (*(cmd->funct)) (cmd->mii_reg, priv);
else
result = cmd->mii_data;
tse_mdio_write(priv, cmd->mii_reg, result);
}
cmd++;
}
}
/* Phy init code */
static int init_phy(struct eth_device *dev)
{
struct altera_tse_priv *priv = (struct altera_tse_priv *)dev->priv;
struct phy_info *curphy;
/* Get the cmd structure corresponding to the attached
* PHY */
curphy = get_phy_info(dev);
if (curphy == NULL) {
priv->phyinfo = NULL;
debug("%s: No PHY found\n", dev->name);
return 0;
} else
debug("%s found\n", curphy->name);
priv->phyinfo = curphy;
phy_run_commands(priv, priv->phyinfo->config);
return 1;
}
static int tse_set_mac_address(struct eth_device *dev)
{
struct altera_tse_priv *priv = dev->priv;
volatile struct alt_tse_mac *mac_dev = priv->mac_dev;
debug("Setting MAC address to 0x%02x%02x%02x%02x%02x%02x\n",
dev->enetaddr[5], dev->enetaddr[4],
dev->enetaddr[3], dev->enetaddr[2],
dev->enetaddr[1], dev->enetaddr[0]);
mac_dev->mac_addr_0 = ((dev->enetaddr[3]) << 24 |
(dev->enetaddr[2]) << 16 |
(dev->enetaddr[1]) << 8 | (dev->enetaddr[0]));
mac_dev->mac_addr_1 = ((dev->enetaddr[5] << 8 |
(dev->enetaddr[4])) & 0xFFFF);
/* Set the MAC address */
mac_dev->supp_mac_addr_0_0 = mac_dev->mac_addr_0;
mac_dev->supp_mac_addr_0_1 = mac_dev->mac_addr_1;
/* Set the MAC address */
mac_dev->supp_mac_addr_1_0 = mac_dev->mac_addr_0;
mac_dev->supp_mac_addr_1_1 = mac_dev->mac_addr_1;
/* Set the MAC address */
mac_dev->supp_mac_addr_2_0 = mac_dev->mac_addr_0;
mac_dev->supp_mac_addr_2_1 = mac_dev->mac_addr_1;
/* Set the MAC address */
mac_dev->supp_mac_addr_3_0 = mac_dev->mac_addr_0;
mac_dev->supp_mac_addr_3_1 = mac_dev->mac_addr_1;
return 0;
}
static int tse_eth_init(struct eth_device *dev, bd_t * bd)
{
int dat;
struct altera_tse_priv *priv = dev->priv;
volatile struct alt_tse_mac *mac_dev = priv->mac_dev;
volatile struct alt_sgdma_descriptor *tx_desc = priv->tx_desc;
volatile struct alt_sgdma_descriptor *rx_desc = priv->rx_desc;
volatile struct alt_sgdma_descriptor *rx_desc_cur =
(volatile struct alt_sgdma_descriptor *)&rx_desc[0];
/* stop controller */
debug("Reseting TSE & SGDMAs\n");
tse_eth_reset(dev);
/* start the phy */
debug("Configuring PHY\n");
phy_run_commands(priv, priv->phyinfo->startup);
/* need to create sgdma */
debug("Configuring tx desc\n");
alt_sgdma_construct_descriptor_burst(
(volatile struct alt_sgdma_descriptor *)&tx_desc[0],
(volatile struct alt_sgdma_descriptor *)&tx_desc[1],
(unsigned int *)NULL, /* read addr */
(unsigned int *)0,
0, /* length or EOP ,will change for each tx */
0x1, /* gen eop */
0x0, /* read fixed */
0x1, /* write fixed or sop */
0x0, /* read burst */
0x0, /* write burst */
0x0 /* channel */
);
debug("Configuring rx desc\n");
flush_dcache((unsigned long)(NetRxPackets[0]), PKTSIZE_ALIGN);
alt_sgdma_construct_descriptor_burst(
(volatile struct alt_sgdma_descriptor *)&rx_desc[0],
(volatile struct alt_sgdma_descriptor *)&rx_desc[1],
(unsigned int)0x0, /* read addr */
(unsigned int *)NetRxPackets[0],
0x0, /* length or EOP */
0x0, /* gen eop */
0x0, /* read fixed */
0x0, /* write fixed or sop */
0x0, /* read burst */
0x0, /* write burst */
0x0 /* channel */
);
/* start rx async transfer */
debug("Starting rx sgdma\n");
alt_sgdma_do_async_transfer(priv->sgdma_rx, rx_desc_cur);
/* start TSE */
debug("Configuring TSE Mac\n");
/* Initialize MAC registers */
mac_dev->max_frame_length = PKTSIZE_ALIGN;
mac_dev->rx_almost_empty_threshold = 8;
mac_dev->rx_almost_full_threshold = 8;
mac_dev->tx_almost_empty_threshold = 8;
mac_dev->tx_almost_full_threshold = 3;
mac_dev->tx_sel_empty_threshold =
CONFIG_SYS_ALTERA_TSE_TX_FIFO - 16;
mac_dev->tx_sel_full_threshold = 0;
mac_dev->rx_sel_empty_threshold =
CONFIG_SYS_ALTERA_TSE_TX_FIFO - 16;
mac_dev->rx_sel_full_threshold = 0;
/* NO Shift */
mac_dev->rx_cmd_stat.bits.rx_shift16 = 0;
mac_dev->tx_cmd_stat.bits.tx_shift16 = 0;
/* enable MAC */
dat = 0;
dat = ALTERA_TSE_CMD_TX_ENA_MSK | ALTERA_TSE_CMD_RX_ENA_MSK;
mac_dev->command_config.image = dat;
/* configure the TSE core */
/* -- output clocks, */
/* -- and later config stuff for SGMII */
if (priv->link) {
debug("Adjusting TSE to link speed\n");
tse_adjust_link(priv);
}
return priv->link ? 0 : -1;
}
/* TSE init code */
int altera_tse_initialize(u8 dev_num, int mac_base,
int sgdma_rx_base, int sgdma_tx_base)
{
struct altera_tse_priv *priv;
struct eth_device *dev;
struct alt_sgdma_descriptor *rx_desc;
struct alt_sgdma_descriptor *tx_desc;
unsigned long dma_handle;
dev = (struct eth_device *)malloc(sizeof *dev);
if (NULL == dev)
return 0;
memset(dev, 0, sizeof *dev);
priv = malloc(sizeof(*priv));
if (!priv) {
free(dev);
return 0;
}
tx_desc = dma_alloc_coherent(sizeof(*tx_desc) * (3 + PKTBUFSRX),
&dma_handle);
rx_desc = tx_desc + 2;
debug("tx desc: address = 0x%x\n", (unsigned int)tx_desc);
debug("rx desc: address = 0x%x\n", (unsigned int)rx_desc);
if (!tx_desc) {
free(priv);
free(dev);
return 0;
}
memset(rx_desc, 0, (sizeof *rx_desc) * (PKTBUFSRX + 1));
memset(tx_desc, 0, (sizeof *tx_desc) * 2);
/* initialize tse priv */
priv->mac_dev = (volatile struct alt_tse_mac *)mac_base;
priv->sgdma_rx = (volatile struct alt_sgdma_registers *)sgdma_rx_base;
priv->sgdma_tx = (volatile struct alt_sgdma_registers *)sgdma_tx_base;
priv->phyaddr = CONFIG_SYS_ALTERA_TSE_PHY_ADDR;
priv->flags = CONFIG_SYS_ALTERA_TSE_FLAGS;
priv->rx_desc = rx_desc;
priv->tx_desc = tx_desc;
/* init eth structure */
dev->priv = priv;
dev->init = tse_eth_init;
dev->halt = tse_eth_halt;
dev->send = tse_eth_send;
dev->recv = tse_eth_rx;
dev->write_hwaddr = tse_set_mac_address;
sprintf(dev->name, "%s-%hu", "ALTERA_TSE", dev_num);
eth_register(dev);
#if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) && !defined(BITBANGMII)
miiphy_register(dev->name, altera_tse_miiphy_read,
altera_tse_miiphy_write);
#endif
init_phy(dev);
return 1;
}