mirror of
https://github.com/the-tcpdump-group/tcpdump.git
synced 2024-11-27 12:03:44 +08:00
997 lines
25 KiB
C
997 lines
25 KiB
C
/*
|
|
* Copyright (c) 1990, 1991, 1993, 1994, 1995, 1996, 1997
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that: (1) source code distributions
|
|
* retain the above copyright notice and this paragraph in its entirety, (2)
|
|
* distributions including binary code include the above copyright notice and
|
|
* this paragraph in its entirety in the documentation or other materials
|
|
* provided with the distribution, and (3) all advertising materials mentioning
|
|
* features or use of this software display the following acknowledgement:
|
|
* ``This product includes software developed by the University of California,
|
|
* Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
|
|
* the University nor the names of its contributors may be used to endorse
|
|
* or promote products derived from this software without specific prior
|
|
* written permission.
|
|
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
|
|
* WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
*/
|
|
|
|
/*
|
|
* txtproto_print() derived from original code by Hannes Gredler
|
|
* (hannes@gredler.at):
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that: (1) source code
|
|
* distributions retain the above copyright notice and this paragraph
|
|
* in its entirety, and (2) distributions including binary code include
|
|
* the above copyright notice and this paragraph in its entirety in
|
|
* the documentation or other materials provided with the distribution.
|
|
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND
|
|
* WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT
|
|
* LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE.
|
|
*/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include <netdissect-stdinc.h>
|
|
|
|
#include <sys/stat.h>
|
|
|
|
#ifdef HAVE_FCNTL_H
|
|
#include <fcntl.h>
|
|
#endif
|
|
#include <ctype.h>
|
|
#include <stdio.h>
|
|
#include <stdarg.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "netdissect.h"
|
|
#include "extract.h"
|
|
#include "ascii_strcasecmp.h"
|
|
#include "timeval-operations.h"
|
|
|
|
int32_t thiszone; /* seconds offset from gmt to local time */
|
|
/* invalid string to print '(invalid)' for malformed or corrupted packets */
|
|
const char istr[] = " (invalid)";
|
|
|
|
/*
|
|
* timestamp display buffer size, the biggest size of both formats is needed
|
|
* sizeof("0000000000.000000000") > sizeof("00:00:00.000000000")
|
|
*/
|
|
#define TS_BUF_SIZE sizeof("0000000000.000000000")
|
|
|
|
#define TOKBUFSIZE 128
|
|
|
|
/*
|
|
* Print out a character, filtering out the non-printable ones
|
|
*/
|
|
void
|
|
fn_print_char(netdissect_options *ndo, u_char c)
|
|
{
|
|
if (!ND_ISASCII(c)) {
|
|
c = ND_TOASCII(c);
|
|
ND_PRINT("M-");
|
|
}
|
|
if (!ND_ISPRINT(c)) {
|
|
c ^= 0x40; /* DEL to ?, others to alpha */
|
|
ND_PRINT("^");
|
|
}
|
|
ND_PRINT("%c", c);
|
|
}
|
|
|
|
/*
|
|
* Print out a null-terminated filename (or other ASCII string).
|
|
* If ep is NULL, assume no truncation check is needed.
|
|
* Return true if truncated.
|
|
* Stop at ep (if given) or before the null char, whichever is first.
|
|
*/
|
|
int
|
|
fn_print(netdissect_options *ndo,
|
|
const u_char *s, const u_char *ep)
|
|
{
|
|
int ret;
|
|
u_char c;
|
|
|
|
ret = 1; /* assume truncated */
|
|
while (ep == NULL || s < ep) {
|
|
c = *s++;
|
|
if (c == '\0') {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
if (!ND_ISASCII(c)) {
|
|
c = ND_TOASCII(c);
|
|
ND_PRINT("M-");
|
|
}
|
|
if (!ND_ISPRINT(c)) {
|
|
c ^= 0x40; /* DEL to ?, others to alpha */
|
|
ND_PRINT("^");
|
|
}
|
|
ND_PRINT("%c", c);
|
|
}
|
|
return(ret);
|
|
}
|
|
|
|
/*
|
|
* Print out a null-terminated filename (or other ASCII string) from
|
|
* a fixed-length buffer.
|
|
* If ep is NULL, assume no truncation check is needed.
|
|
* Return the number of bytes of string processed, including the
|
|
* terminating null, if not truncated. Return 0 if truncated.
|
|
*/
|
|
u_int
|
|
fn_printztn(netdissect_options *ndo,
|
|
const u_char *s, u_int n, const u_char *ep)
|
|
{
|
|
u_int bytes;
|
|
u_char c;
|
|
|
|
bytes = 0;
|
|
for (;;) {
|
|
if (n == 0 || (ep != NULL && s >= ep)) {
|
|
/*
|
|
* Truncated. This includes "no null before we
|
|
* got to the end of the fixed-length buffer".
|
|
*
|
|
* XXX - BOOTP says "null-terminated", which
|
|
* means the maximum length of the string, in
|
|
* bytes, is 1 less than the size of the buffer,
|
|
* as there must always be a terminating null.
|
|
*/
|
|
bytes = 0;
|
|
break;
|
|
}
|
|
|
|
c = *s++;
|
|
bytes++;
|
|
n--;
|
|
if (c == '\0') {
|
|
/* End of string */
|
|
break;
|
|
}
|
|
if (!ND_ISASCII(c)) {
|
|
c = ND_TOASCII(c);
|
|
ND_PRINT("M-");
|
|
}
|
|
if (!ND_ISPRINT(c)) {
|
|
c ^= 0x40; /* DEL to ?, others to alpha */
|
|
ND_PRINT("^");
|
|
}
|
|
ND_PRINT("%c", c);
|
|
}
|
|
return(bytes);
|
|
}
|
|
|
|
/*
|
|
* Print out a counted filename (or other ASCII string).
|
|
* If ep is NULL, assume no truncation check is needed.
|
|
* Return true if truncated.
|
|
* Stop at ep (if given) or after n bytes, whichever is first.
|
|
*/
|
|
int
|
|
fn_printn(netdissect_options *ndo,
|
|
const u_char *s, u_int n, const u_char *ep)
|
|
{
|
|
u_char c;
|
|
|
|
while (n > 0 && (ep == NULL || s < ep)) {
|
|
n--;
|
|
c = *s++;
|
|
if (!ND_ISASCII(c)) {
|
|
c = ND_TOASCII(c);
|
|
ND_PRINT("M-");
|
|
}
|
|
if (!ND_ISPRINT(c)) {
|
|
c ^= 0x40; /* DEL to ?, others to alpha */
|
|
ND_PRINT("^");
|
|
}
|
|
ND_PRINT("%c", c);
|
|
}
|
|
return (n == 0) ? 0 : 1;
|
|
}
|
|
|
|
/*
|
|
* Print out a null-padded filename (or other ASCII string).
|
|
* If ep is NULL, assume no truncation check is needed.
|
|
* Return true if truncated.
|
|
* Stop at ep (if given) or after n bytes or before the null char,
|
|
* whichever is first.
|
|
*/
|
|
int
|
|
fn_printzp(netdissect_options *ndo,
|
|
const u_char *s, u_int n,
|
|
const u_char *ep)
|
|
{
|
|
int ret;
|
|
u_char c;
|
|
|
|
ret = 1; /* assume truncated */
|
|
while (n > 0 && (ep == NULL || s < ep)) {
|
|
n--;
|
|
c = *s++;
|
|
if (c == '\0') {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
if (!ND_ISASCII(c)) {
|
|
c = ND_TOASCII(c);
|
|
ND_PRINT("M-");
|
|
}
|
|
if (!ND_ISPRINT(c)) {
|
|
c ^= 0x40; /* DEL to ?, others to alpha */
|
|
ND_PRINT("^");
|
|
}
|
|
ND_PRINT("%c", c);
|
|
}
|
|
return (n == 0) ? 0 : ret;
|
|
}
|
|
|
|
/*
|
|
* Format the timestamp
|
|
*/
|
|
static char *
|
|
ts_format(netdissect_options *ndo
|
|
#ifndef HAVE_PCAP_SET_TSTAMP_PRECISION
|
|
_U_
|
|
#endif
|
|
, int sec, int usec, char *buf)
|
|
{
|
|
const char *format;
|
|
|
|
#ifdef HAVE_PCAP_SET_TSTAMP_PRECISION
|
|
switch (ndo->ndo_tstamp_precision) {
|
|
|
|
case PCAP_TSTAMP_PRECISION_MICRO:
|
|
format = "%02d:%02d:%02d.%06u";
|
|
break;
|
|
|
|
case PCAP_TSTAMP_PRECISION_NANO:
|
|
format = "%02d:%02d:%02d.%09u";
|
|
break;
|
|
|
|
default:
|
|
format = "%02d:%02d:%02d.{unknown}";
|
|
break;
|
|
}
|
|
#else
|
|
format = "%02d:%02d:%02d.%06u";
|
|
#endif
|
|
|
|
snprintf(buf, TS_BUF_SIZE, format,
|
|
sec / 3600, (sec % 3600) / 60, sec % 60, usec);
|
|
|
|
return buf;
|
|
}
|
|
|
|
/*
|
|
* Format the timestamp - Unix timeval style
|
|
*/
|
|
static char *
|
|
ts_unix_format(netdissect_options *ndo
|
|
#ifndef HAVE_PCAP_SET_TSTAMP_PRECISION
|
|
_U_
|
|
#endif
|
|
, int sec, int usec, char *buf)
|
|
{
|
|
const char *format;
|
|
|
|
#ifdef HAVE_PCAP_SET_TSTAMP_PRECISION
|
|
switch (ndo->ndo_tstamp_precision) {
|
|
|
|
case PCAP_TSTAMP_PRECISION_MICRO:
|
|
format = "%u.%06u";
|
|
break;
|
|
|
|
case PCAP_TSTAMP_PRECISION_NANO:
|
|
format = "%u.%09u";
|
|
break;
|
|
|
|
default:
|
|
format = "%u.{unknown}";
|
|
break;
|
|
}
|
|
#else
|
|
format = "%u.%06u";
|
|
#endif
|
|
|
|
snprintf(buf, TS_BUF_SIZE, format,
|
|
(unsigned)sec, (unsigned)usec);
|
|
|
|
return buf;
|
|
}
|
|
|
|
/*
|
|
* Print the timestamp
|
|
*/
|
|
void
|
|
ts_print(netdissect_options *ndo,
|
|
const struct timeval *tvp)
|
|
{
|
|
int s;
|
|
struct tm *tm;
|
|
time_t Time;
|
|
char buf[TS_BUF_SIZE];
|
|
static struct timeval tv_ref;
|
|
struct timeval tv_result;
|
|
int negative_offset;
|
|
int nano_prec;
|
|
|
|
switch (ndo->ndo_tflag) {
|
|
|
|
case 0: /* Default */
|
|
s = (tvp->tv_sec + thiszone) % 86400;
|
|
ND_PRINT("%s ", ts_format(ndo, s, tvp->tv_usec, buf));
|
|
break;
|
|
|
|
case 1: /* No time stamp */
|
|
break;
|
|
|
|
case 2: /* Unix timeval style */
|
|
ND_PRINT("%s ", ts_unix_format(ndo,
|
|
tvp->tv_sec, tvp->tv_usec, buf));
|
|
break;
|
|
|
|
case 3: /* Microseconds/nanoseconds since previous packet */
|
|
case 5: /* Microseconds/nanoseconds since first packet */
|
|
#ifdef HAVE_PCAP_SET_TSTAMP_PRECISION
|
|
switch (ndo->ndo_tstamp_precision) {
|
|
case PCAP_TSTAMP_PRECISION_MICRO:
|
|
nano_prec = 0;
|
|
break;
|
|
case PCAP_TSTAMP_PRECISION_NANO:
|
|
nano_prec = 1;
|
|
break;
|
|
default:
|
|
nano_prec = 0;
|
|
break;
|
|
}
|
|
#else
|
|
nano_prec = 0;
|
|
#endif
|
|
if (!(netdissect_timevalisset(&tv_ref)))
|
|
tv_ref = *tvp; /* set timestamp for first packet */
|
|
|
|
negative_offset = netdissect_timevalcmp(tvp, &tv_ref, <);
|
|
if (negative_offset)
|
|
netdissect_timevalsub(&tv_ref, tvp, &tv_result, nano_prec);
|
|
else
|
|
netdissect_timevalsub(tvp, &tv_ref, &tv_result, nano_prec);
|
|
|
|
ND_PRINT((negative_offset ? "-" : " "));
|
|
|
|
ND_PRINT("%s ", ts_format(ndo,
|
|
tv_result.tv_sec, tv_result.tv_usec, buf));
|
|
|
|
if (ndo->ndo_tflag == 3)
|
|
tv_ref = *tvp; /* set timestamp for previous packet */
|
|
break;
|
|
|
|
case 4: /* Default + Date */
|
|
s = (tvp->tv_sec + thiszone) % 86400;
|
|
Time = (tvp->tv_sec + thiszone) - s;
|
|
tm = gmtime (&Time);
|
|
if (!tm)
|
|
ND_PRINT("Date fail ");
|
|
else
|
|
ND_PRINT("%04d-%02d-%02d %s ",
|
|
tm->tm_year+1900, tm->tm_mon+1, tm->tm_mday,
|
|
ts_format(ndo, s, tvp->tv_usec, buf));
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Print an unsigned relative number of seconds (e.g. hold time, prune timer)
|
|
* in the form 5m1s. This does no truncation, so 32230861 seconds
|
|
* is represented as 1y1w1d1h1m1s.
|
|
*/
|
|
void
|
|
unsigned_relts_print(netdissect_options *ndo,
|
|
uint32_t secs)
|
|
{
|
|
static const char *lengths[] = {"y", "w", "d", "h", "m", "s"};
|
|
static const u_int seconds[] = {31536000, 604800, 86400, 3600, 60, 1};
|
|
const char **l = lengths;
|
|
const u_int *s = seconds;
|
|
|
|
if (secs == 0) {
|
|
ND_PRINT("0s");
|
|
return;
|
|
}
|
|
while (secs > 0) {
|
|
if (secs >= *s) {
|
|
ND_PRINT("%d%s", secs / *s, *l);
|
|
secs -= (secs / *s) * *s;
|
|
}
|
|
s++;
|
|
l++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Print a signed relative number of seconds (e.g. hold time, prune timer)
|
|
* in the form 5m1s. This does no truncation, so 32230861 seconds
|
|
* is represented as 1y1w1d1h1m1s.
|
|
*/
|
|
void
|
|
signed_relts_print(netdissect_options *ndo,
|
|
int32_t secs)
|
|
{
|
|
if (secs < 0) {
|
|
ND_PRINT("-");
|
|
if (secs == INT32_MIN) {
|
|
/*
|
|
* -2^31; you can't fit its absolute value into
|
|
* a 32-bit signed integer.
|
|
*
|
|
* Just directly pass said absolute value to
|
|
* unsigned_relts_print() directly.
|
|
*
|
|
* (XXX - does ISO C guarantee that -(-2^n),
|
|
* when calculated and cast to an n-bit unsigned
|
|
* integer type, will have the value 2^n?)
|
|
*/
|
|
unsigned_relts_print(ndo, 2147483648U);
|
|
} else {
|
|
/*
|
|
* We now know -secs will fit into an int32_t;
|
|
* negate it and pass that to unsigned_relts_print().
|
|
*/
|
|
unsigned_relts_print(ndo, -secs);
|
|
}
|
|
return;
|
|
}
|
|
unsigned_relts_print(ndo, secs);
|
|
}
|
|
|
|
/*
|
|
* this is a generic routine for printing unknown data;
|
|
* we pass on the linefeed plus indentation string to
|
|
* get a proper output - returns 0 on error
|
|
*/
|
|
|
|
int
|
|
print_unknown_data(netdissect_options *ndo, const u_char *cp,const char *ident,int len)
|
|
{
|
|
if (len < 0) {
|
|
ND_PRINT("%sDissector error: print_unknown_data called with negative length",
|
|
ident);
|
|
return(0);
|
|
}
|
|
if (ndo->ndo_snapend - cp < len)
|
|
len = ndo->ndo_snapend - cp;
|
|
if (len < 0) {
|
|
ND_PRINT("%sDissector error: print_unknown_data called with pointer past end of packet",
|
|
ident);
|
|
return(0);
|
|
}
|
|
hex_print(ndo, ident,cp,len);
|
|
return(1); /* everything is ok */
|
|
}
|
|
|
|
/*
|
|
* Convert a token value to a string; use "fmt" if not found.
|
|
*/
|
|
const char *
|
|
tok2strbuf(const struct tok *lp, const char *fmt,
|
|
u_int v, char *buf, size_t bufsize)
|
|
{
|
|
if (lp != NULL) {
|
|
while (lp->s != NULL) {
|
|
if (lp->v == v)
|
|
return (lp->s);
|
|
++lp;
|
|
}
|
|
}
|
|
if (fmt == NULL)
|
|
fmt = "#%d";
|
|
|
|
(void)snprintf(buf, bufsize, fmt, v);
|
|
return (const char *)buf;
|
|
}
|
|
|
|
/*
|
|
* Convert a token value to a string; use "fmt" if not found.
|
|
* Uses tok2strbuf() on one of four local static buffers of size TOKBUFSIZE
|
|
* in round-robin fashion.
|
|
*/
|
|
const char *
|
|
tok2str(const struct tok *lp, const char *fmt,
|
|
u_int v)
|
|
{
|
|
static char buf[4][TOKBUFSIZE];
|
|
static int idx = 0;
|
|
char *ret;
|
|
|
|
ret = buf[idx];
|
|
idx = (idx+1) & 3;
|
|
return tok2strbuf(lp, fmt, v, ret, sizeof(buf[0]));
|
|
}
|
|
|
|
/*
|
|
* Convert a bit token value to a string; use "fmt" if not found.
|
|
* this is useful for parsing bitfields, the output strings are seperated
|
|
* if the s field is positive.
|
|
*/
|
|
static char *
|
|
bittok2str_internal(const struct tok *lp, const char *fmt,
|
|
u_int v, const char *sep)
|
|
{
|
|
static char buf[1024+1]; /* our string buffer */
|
|
char *bufp = buf;
|
|
size_t space_left = sizeof(buf), string_size;
|
|
u_int rotbit; /* this is the bit we rotate through all bitpositions */
|
|
u_int tokval;
|
|
const char * sepstr = "";
|
|
|
|
while (lp != NULL && lp->s != NULL) {
|
|
tokval=lp->v; /* load our first value */
|
|
rotbit=1;
|
|
while (rotbit != 0) {
|
|
/*
|
|
* lets AND the rotating bit with our token value
|
|
* and see if we have got a match
|
|
*/
|
|
if (tokval == (v&rotbit)) {
|
|
/* ok we have found something */
|
|
if (space_left <= 1)
|
|
return (buf); /* only enough room left for NUL, if that */
|
|
string_size = strlcpy(bufp, sepstr, space_left);
|
|
if (string_size >= space_left)
|
|
return (buf); /* we ran out of room */
|
|
bufp += string_size;
|
|
space_left -= string_size;
|
|
if (space_left <= 1)
|
|
return (buf); /* only enough room left for NUL, if that */
|
|
string_size = strlcpy(bufp, lp->s, space_left);
|
|
if (string_size >= space_left)
|
|
return (buf); /* we ran out of room */
|
|
bufp += string_size;
|
|
space_left -= string_size;
|
|
sepstr = sep;
|
|
break;
|
|
}
|
|
rotbit=rotbit<<1; /* no match - lets shift and try again */
|
|
}
|
|
lp++;
|
|
}
|
|
|
|
if (bufp == buf)
|
|
/* bummer - lets print the "unknown" message as advised in the fmt string if we got one */
|
|
(void)snprintf(buf, sizeof(buf), fmt == NULL ? "#%08x" : fmt, v);
|
|
return (buf);
|
|
}
|
|
|
|
/*
|
|
* Convert a bit token value to a string; use "fmt" if not found.
|
|
* this is useful for parsing bitfields, the output strings are not seperated.
|
|
*/
|
|
char *
|
|
bittok2str_nosep(const struct tok *lp, const char *fmt,
|
|
u_int v)
|
|
{
|
|
return (bittok2str_internal(lp, fmt, v, ""));
|
|
}
|
|
|
|
/*
|
|
* Convert a bit token value to a string; use "fmt" if not found.
|
|
* this is useful for parsing bitfields, the output strings are comma seperated.
|
|
*/
|
|
char *
|
|
bittok2str(const struct tok *lp, const char *fmt,
|
|
u_int v)
|
|
{
|
|
return (bittok2str_internal(lp, fmt, v, ", "));
|
|
}
|
|
|
|
/*
|
|
* Convert a value to a string using an array; the macro
|
|
* tok2strary() in <netdissect.h> is the public interface to
|
|
* this function and ensures that the second argument is
|
|
* correct for bounds-checking.
|
|
*/
|
|
const char *
|
|
tok2strary_internal(const char **lp, int n, const char *fmt,
|
|
int v)
|
|
{
|
|
static char buf[TOKBUFSIZE];
|
|
|
|
if (v >= 0 && v < n && lp[v] != NULL)
|
|
return lp[v];
|
|
if (fmt == NULL)
|
|
fmt = "#%d";
|
|
(void)snprintf(buf, sizeof(buf), fmt, v);
|
|
return (buf);
|
|
}
|
|
|
|
/*
|
|
* Convert a 32-bit netmask to prefixlen if possible
|
|
* the function returns the prefix-len; if plen == -1
|
|
* then conversion was not possible;
|
|
*/
|
|
|
|
int
|
|
mask2plen(uint32_t mask)
|
|
{
|
|
uint32_t bitmasks[33] = {
|
|
0x00000000,
|
|
0x80000000, 0xc0000000, 0xe0000000, 0xf0000000,
|
|
0xf8000000, 0xfc000000, 0xfe000000, 0xff000000,
|
|
0xff800000, 0xffc00000, 0xffe00000, 0xfff00000,
|
|
0xfff80000, 0xfffc0000, 0xfffe0000, 0xffff0000,
|
|
0xffff8000, 0xffffc000, 0xffffe000, 0xfffff000,
|
|
0xfffff800, 0xfffffc00, 0xfffffe00, 0xffffff00,
|
|
0xffffff80, 0xffffffc0, 0xffffffe0, 0xfffffff0,
|
|
0xfffffff8, 0xfffffffc, 0xfffffffe, 0xffffffff
|
|
};
|
|
int prefix_len = 32;
|
|
|
|
/* let's see if we can transform the mask into a prefixlen */
|
|
while (prefix_len >= 0) {
|
|
if (bitmasks[prefix_len] == mask)
|
|
break;
|
|
prefix_len--;
|
|
}
|
|
return (prefix_len);
|
|
}
|
|
|
|
int
|
|
mask62plen(const u_char *mask)
|
|
{
|
|
u_char bitmasks[9] = {
|
|
0x00,
|
|
0x80, 0xc0, 0xe0, 0xf0,
|
|
0xf8, 0xfc, 0xfe, 0xff
|
|
};
|
|
int byte;
|
|
int cidr_len = 0;
|
|
|
|
for (byte = 0; byte < 16; byte++) {
|
|
u_int bits;
|
|
|
|
for (bits = 0; bits < (sizeof (bitmasks) / sizeof (bitmasks[0])); bits++) {
|
|
if (mask[byte] == bitmasks[bits]) {
|
|
cidr_len += bits;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (mask[byte] != 0xff)
|
|
break;
|
|
}
|
|
return (cidr_len);
|
|
}
|
|
|
|
/*
|
|
* Routine to print out information for text-based protocols such as FTP,
|
|
* HTTP, SMTP, RTSP, SIP, ....
|
|
*/
|
|
#define MAX_TOKEN 128
|
|
|
|
/*
|
|
* Fetch a token from a packet, starting at the specified index,
|
|
* and return the length of the token.
|
|
*
|
|
* Returns 0 on error; yes, this is indistinguishable from an empty
|
|
* token, but an "empty token" isn't a valid token - it just means
|
|
* either a space character at the beginning of the line (this
|
|
* includes a blank line) or no more tokens remaining on the line.
|
|
*/
|
|
static int
|
|
fetch_token(netdissect_options *ndo, const u_char *pptr, u_int idx, u_int len,
|
|
u_char *tbuf, size_t tbuflen)
|
|
{
|
|
size_t toklen = 0;
|
|
|
|
for (; idx < len; idx++) {
|
|
if (!ND_TTEST_1(pptr + idx)) {
|
|
/* ran past end of captured data */
|
|
return (0);
|
|
}
|
|
if (!isascii(*(pptr + idx))) {
|
|
/* not an ASCII character */
|
|
return (0);
|
|
}
|
|
if (isspace(*(pptr + idx))) {
|
|
/* end of token */
|
|
break;
|
|
}
|
|
if (!isprint(*(pptr + idx))) {
|
|
/* not part of a command token or response code */
|
|
return (0);
|
|
}
|
|
if (toklen + 2 > tbuflen) {
|
|
/* no room for this character and terminating '\0' */
|
|
return (0);
|
|
}
|
|
tbuf[toklen] = *(pptr + idx);
|
|
toklen++;
|
|
}
|
|
if (toklen == 0) {
|
|
/* no token */
|
|
return (0);
|
|
}
|
|
tbuf[toklen] = '\0';
|
|
|
|
/*
|
|
* Skip past any white space after the token, until we see
|
|
* an end-of-line (CR or LF).
|
|
*/
|
|
for (; idx < len; idx++) {
|
|
if (!ND_TTEST_1(pptr + idx)) {
|
|
/* ran past end of captured data */
|
|
break;
|
|
}
|
|
if (*(pptr + idx) == '\r' || *(pptr + idx) == '\n') {
|
|
/* end of line */
|
|
break;
|
|
}
|
|
if (!isascii(*(pptr + idx)) || !isprint(*(pptr + idx))) {
|
|
/* not a printable ASCII character */
|
|
break;
|
|
}
|
|
if (!isspace(*(pptr + idx))) {
|
|
/* beginning of next token */
|
|
break;
|
|
}
|
|
}
|
|
return (idx);
|
|
}
|
|
|
|
/*
|
|
* Scan a buffer looking for a line ending - LF or CR-LF.
|
|
* Return the index of the character after the line ending or 0 if
|
|
* we encounter a non-ASCII or non-printable character or don't find
|
|
* the line ending.
|
|
*/
|
|
static u_int
|
|
print_txt_line(netdissect_options *ndo, const char *protoname,
|
|
const char *prefix, const u_char *pptr, u_int idx, u_int len)
|
|
{
|
|
u_int startidx;
|
|
u_int linelen;
|
|
|
|
startidx = idx;
|
|
while (idx < len) {
|
|
ND_TCHECK_1(pptr + idx);
|
|
if (*(pptr+idx) == '\n') {
|
|
/*
|
|
* LF without CR; end of line.
|
|
* Skip the LF and print the line, with the
|
|
* exception of the LF.
|
|
*/
|
|
linelen = idx - startidx;
|
|
idx++;
|
|
goto print;
|
|
} else if (*(pptr+idx) == '\r') {
|
|
/* CR - any LF? */
|
|
if ((idx+1) >= len) {
|
|
/* not in this packet */
|
|
return (0);
|
|
}
|
|
ND_TCHECK_1(pptr + idx + 1);
|
|
if (*(pptr+idx+1) == '\n') {
|
|
/*
|
|
* CR-LF; end of line.
|
|
* Skip the CR-LF and print the line, with
|
|
* the exception of the CR-LF.
|
|
*/
|
|
linelen = idx - startidx;
|
|
idx += 2;
|
|
goto print;
|
|
}
|
|
|
|
/*
|
|
* CR followed by something else; treat this
|
|
* as if it were binary data, and don't print
|
|
* it.
|
|
*/
|
|
return (0);
|
|
} else if (!isascii(*(pptr+idx)) ||
|
|
(!isprint(*(pptr+idx)) && *(pptr+idx) != '\t')) {
|
|
/*
|
|
* Not a printable ASCII character and not a tab;
|
|
* treat this as if it were binary data, and
|
|
* don't print it.
|
|
*/
|
|
return (0);
|
|
}
|
|
idx++;
|
|
}
|
|
|
|
/*
|
|
* All printable ASCII, but no line ending after that point
|
|
* in the buffer; treat this as if it were truncated.
|
|
*/
|
|
trunc:
|
|
linelen = idx - startidx;
|
|
ND_PRINT("%s%.*s[!%s]", prefix, (int)linelen, pptr + startidx,
|
|
protoname);
|
|
return (0);
|
|
|
|
print:
|
|
ND_PRINT("%s%.*s", prefix, (int)linelen, pptr + startidx);
|
|
return (idx);
|
|
}
|
|
|
|
void
|
|
txtproto_print(netdissect_options *ndo, const u_char *pptr, u_int len,
|
|
const char *protoname, const char **cmds, u_int flags)
|
|
{
|
|
u_int idx, eol;
|
|
u_char token[MAX_TOKEN+1];
|
|
const char *cmd;
|
|
int print_this = 0;
|
|
const char *pnp;
|
|
|
|
if (cmds != NULL) {
|
|
/*
|
|
* This protocol has more than just request and
|
|
* response lines; see whether this looks like a
|
|
* request or response and, if so, print it and,
|
|
* in verbose mode, print everything after it.
|
|
*
|
|
* This is for HTTP-like protocols, where we
|
|
* want to print requests and responses, but
|
|
* don't want to print continuations of request
|
|
* or response bodies in packets that don't
|
|
* contain the request or response line.
|
|
*/
|
|
idx = fetch_token(ndo, pptr, 0, len, token, sizeof(token));
|
|
if (idx != 0) {
|
|
/* Is this a valid request name? */
|
|
while ((cmd = *cmds++) != NULL) {
|
|
if (ascii_strcasecmp((const char *)token, cmd) == 0) {
|
|
/* Yes. */
|
|
print_this = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* No - is this a valid response code (3 digits)?
|
|
*
|
|
* Is this token the response code, or is the next
|
|
* token the response code?
|
|
*/
|
|
if (flags & RESP_CODE_SECOND_TOKEN) {
|
|
/*
|
|
* Next token - get it.
|
|
*/
|
|
idx = fetch_token(ndo, pptr, idx, len, token,
|
|
sizeof(token));
|
|
}
|
|
if (idx != 0) {
|
|
if (isdigit(token[0]) && isdigit(token[1]) &&
|
|
isdigit(token[2]) && token[3] == '\0') {
|
|
/* Yes. */
|
|
print_this = 1;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
/*
|
|
* Either:
|
|
*
|
|
* 1) This protocol has only request and response lines
|
|
* (e.g., FTP, where all the data goes over a different
|
|
* connection); assume the payload is a request or
|
|
* response.
|
|
*
|
|
* or
|
|
*
|
|
* 2) This protocol is just text, so that we should
|
|
* always, at minimum, print the first line and,
|
|
* in verbose mode, print all lines.
|
|
*/
|
|
print_this = 1;
|
|
}
|
|
|
|
/* Capitalize the protocol name */
|
|
for (pnp = protoname; *pnp != '\0'; pnp++)
|
|
ND_PRINT("%c", toupper((u_char)*pnp));
|
|
|
|
if (print_this) {
|
|
/*
|
|
* In non-verbose mode, just print the protocol, followed
|
|
* by the first line.
|
|
*
|
|
* In verbose mode, print lines as text until we run out
|
|
* of characters or see something that's not a
|
|
* printable-ASCII line.
|
|
*/
|
|
if (ndo->ndo_vflag) {
|
|
/*
|
|
* We're going to print all the text lines in the
|
|
* request or response; just print the length
|
|
* on the first line of the output.
|
|
*/
|
|
ND_PRINT(", length: %u", len);
|
|
for (idx = 0;
|
|
idx < len && (eol = print_txt_line(ndo, protoname, "\n\t", pptr, idx, len)) != 0;
|
|
idx = eol)
|
|
;
|
|
} else {
|
|
/*
|
|
* Just print the first text line.
|
|
*/
|
|
print_txt_line(ndo, protoname, ": ", pptr, 0, len);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
safeputs(netdissect_options *ndo,
|
|
const u_char *s, const u_int maxlen)
|
|
{
|
|
u_int idx = 0;
|
|
|
|
while (idx < maxlen && *s) {
|
|
safeputchar(ndo, *s);
|
|
idx++;
|
|
s++;
|
|
}
|
|
}
|
|
|
|
void
|
|
safeputchar(netdissect_options *ndo,
|
|
const u_char c)
|
|
{
|
|
ND_PRINT((c < 0x80 && ND_ISPRINT(c)) ? "%c" : "\\0x%02x", c);
|
|
}
|
|
|
|
#if (defined(__i386__) || defined(_M_IX86) || defined(__X86__) || defined(__x86_64__) || defined(_M_X64)) || \
|
|
(defined(__arm__) || defined(_M_ARM) || defined(__aarch64__)) || \
|
|
(defined(__m68k__) && (!defined(__mc68000__) && !defined(__mc68010__))) || \
|
|
(defined(__ppc__) || defined(__ppc64__) || defined(_M_PPC) || defined(_ARCH_PPC) || defined(_ARCH_PPC64)) || \
|
|
(defined(__s390__) || defined(__s390x__) || defined(__zarch__)) || \
|
|
defined(__vax__)
|
|
/*
|
|
* The procesor natively handles unaligned loads, so just use memcpy()
|
|
* and memcmp(), to enable those optimizations.
|
|
*
|
|
* XXX - are those all the x86 tests we need?
|
|
* XXX - do we need to worry about ARMv1 through ARMv5, which didn't
|
|
* support unaligned loads, and, if so, do we need to worry about all
|
|
* of them, or just some of them, e.g. ARMv5?
|
|
* XXX - are those the only 68k tests we need not to generated
|
|
* unaligned accesses if the target is the 68000 or 68010?
|
|
* XXX - are there any tests we don't need, because some definitions are for
|
|
* compilers that also predefine the GCC symbols?
|
|
* XXX - do we need to test for both 32-bit and 64-bit versions of those
|
|
* architectures in all cases?
|
|
*/
|
|
#else
|
|
/*
|
|
* The processor doesn't natively handle unaligned loads,
|
|
* and the compiler might "helpfully" optimize memcpy()
|
|
* and memcmp(), when handed pointers that would normally
|
|
* be properly aligned, into sequences that assume proper
|
|
* alignment.
|
|
*
|
|
* Do copies and compares of possibly-unaligned data by
|
|
* calling routines that wrap memcpy() and memcmp(), to
|
|
* prevent that optimization.
|
|
*/
|
|
void
|
|
unaligned_memcpy(void *p, const void *q, size_t l)
|
|
{
|
|
memcpy(p, q, l);
|
|
}
|
|
|
|
/* As with memcpy(), so with memcmp(). */
|
|
int
|
|
unaligned_memcmp(const void *p, const void *q, size_t l)
|
|
{
|
|
return (memcmp(p, q, l));
|
|
}
|
|
#endif
|
|
|