tcpdump/print-802_11.c

1202 lines
29 KiB
C

/*
* Copyright (c) 2001
* Fortress Technologies, Inc. All rights reserved.
* Charlie Lenahan (clenahan@fortresstech.com)
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that: (1) source code distributions
* retain the above copyright notice and this paragraph in its entirety, (2)
* distributions including binary code include the above copyright notice and
* this paragraph in its entirety in the documentation or other materials
* provided with the distribution, and (3) all advertising materials mentioning
* features or use of this software display the following acknowledgement:
* ``This product includes software developed by the University of California,
* Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
* the University nor the names of its contributors may be used to endorse
* or promote products derived from this software without specific prior
* written permission.
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
#ifndef lint
static const char rcsid[] _U_ =
"@(#) $Header: /tcpdump/master/tcpdump/print-802_11.c,v 1.32 2005-04-20 19:32:16 guy Exp $ (LBL)";
#endif
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <tcpdump-stdinc.h>
#include <stdio.h>
#include <pcap.h>
#include <string.h>
#include "interface.h"
#include "addrtoname.h"
#include "ethertype.h"
#include "extract.h"
#include "cpack.h"
#include "ieee802_11.h"
#include "ieee802_11_radio.h"
#define PRINT_RATE(_sep, _r, _suf) \
printf("%s%2.1f%s", _sep, (.5 * ((_r) & 0x7f)), _suf)
#define PRINT_RATES(p) \
do { \
int z; \
const char *sep = " ["; \
for (z = 0; z < p.rates.length ; z++) { \
PRINT_RATE(sep, p.rates.rate[z], \
(p.rates.rate[z] & 0x80 ? "*" : "")); \
sep = " "; \
} \
if (p.rates.length != 0) \
printf(" Mbit]"); \
} while (0)
static const char *auth_alg_text[]={"Open System","Shared Key","EAP"};
static const char *subtype_text[]={
"Assoc Request",
"Assoc Response",
"ReAssoc Request",
"ReAssoc Response",
"Probe Request",
"Probe Response",
"",
"",
"Beacon",
"ATIM",
"Disassociation",
"Authentication",
"DeAuthentication",
"",
""
};
static const char *status_text[] = {
"Succesful", /* 0 */
"Unspecified failure", /* 1 */
"Reserved", /* 2 */
"Reserved", /* 3 */
"Reserved", /* 4 */
"Reserved", /* 5 */
"Reserved", /* 6 */
"Reserved", /* 7 */
"Reserved", /* 8 */
"Reserved", /* 9 */
"Cannot Support all requested capabilities in the Capability Information field", /* 10 */
"Reassociation denied due to inability to confirm that association exists", /* 11 */
"Association denied due to reason outside the scope of the standard", /* 12 */
"Responding station does not support the specified authentication algorithm ", /* 13 */
"Received an Authentication frame with authentication transaction " \
"sequence number out of expected sequence", /* 14 */
"Authentication rejected because of challenge failure", /* 15 */
"Authentication rejected due to timeout waiting for next frame in sequence", /* 16 */
"Association denied because AP is unable to handle additional associated stations", /* 17 */
"Association denied due to requesting station not supporting all of the " \
"data rates in BSSBasicRateSet parameter", /* 18 */
NULL
};
static const char *reason_text[] = {
"Reserved", /* 0 */
"Unspecified reason", /* 1 */
"Previous authentication no longer valid", /* 2 */
"Deauthenticated because sending station is leaving (or has left) IBSS or ESS", /* 3 */
"Disassociated due to inactivity", /* 4 */
"Disassociated because AP is unable to handle all currently associated stations", /* 5 */
"Class 2 frame receivedfrom nonauthenticated station", /* 6 */
"Class 3 frame received from nonassociated station", /* 7 */
"Disassociated because sending station is leaving (or has left) BSS", /* 8 */
"Station requesting (re)association is not authenticated with responding station", /* 9 */
NULL
};
static int
wep_print(const u_char *p)
{
u_int32_t iv;
if (!TTEST2(*p, IEEE802_11_IV_LEN + IEEE802_11_KID_LEN))
return 0;
iv = EXTRACT_LE_32BITS(p);
printf("Data IV:%3x Pad %x KeyID %x", IV_IV(iv), IV_PAD(iv),
IV_KEYID(iv));
return 1;
}
static int
parse_elements(struct mgmt_body_t *pbody, const u_char *p, int offset)
{
for (;;) {
if (!TTEST2(*(p + offset), 1))
return 1;
switch (*(p + offset)) {
case E_SSID:
if (!TTEST2(*(p + offset), 2))
return 0;
memcpy(&pbody->ssid, p + offset, 2);
offset += 2;
if (pbody->ssid.length <= 0)
break;
if (!TTEST2(*(p + offset), pbody->ssid.length))
return 0;
memcpy(&pbody->ssid.ssid, p + offset,
pbody->ssid.length);
offset += pbody->ssid.length;
pbody->ssid.ssid[pbody->ssid.length] = '\0';
break;
case E_CHALLENGE:
if (!TTEST2(*(p + offset), 2))
return 0;
memcpy(&pbody->challenge, p + offset, 2);
offset += 2;
if (pbody->challenge.length <= 0)
break;
if (!TTEST2(*(p + offset), pbody->challenge.length))
return 0;
memcpy(&pbody->challenge.text, p + offset,
pbody->challenge.length);
offset += pbody->challenge.length;
pbody->challenge.text[pbody->challenge.length] = '\0';
break;
case E_RATES:
if (!TTEST2(*(p + offset), 2))
return 0;
memcpy(&(pbody->rates), p + offset, 2);
offset += 2;
if (pbody->rates.length <= 0)
break;
if (!TTEST2(*(p + offset), pbody->rates.length))
return 0;
memcpy(&pbody->rates.rate, p + offset,
pbody->rates.length);
offset += pbody->rates.length;
break;
case E_DS:
if (!TTEST2(*(p + offset), 3))
return 0;
memcpy(&pbody->ds, p + offset, 3);
offset += 3;
break;
case E_CF:
if (!TTEST2(*(p + offset), 8))
return 0;
memcpy(&pbody->cf, p + offset, 8);
offset += 8;
break;
case E_TIM:
if (!TTEST2(*(p + offset), 2))
return 0;
memcpy(&pbody->tim, p + offset, 2);
offset += 2;
if (!TTEST2(*(p + offset), 3))
return 0;
memcpy(&pbody->tim.count, p + offset, 3);
offset += 3;
if (pbody->tim.length <= 3)
break;
if (!TTEST2(*(p + offset), pbody->tim.length - 3))
return 0;
memcpy(pbody->tim.bitmap, p + (pbody->tim.length - 3),
(pbody->tim.length - 3));
offset += pbody->tim.length - 3;
break;
default:
#if 0
printf("(1) unhandled element_id (%d) ",
*(p + offset) );
#endif
offset += *(p + offset + 1) + 2;
break;
}
}
return 1;
}
/*********************************************************************************
* Print Handle functions for the management frame types
*********************************************************************************/
static int
handle_beacon(const u_char *p)
{
struct mgmt_body_t pbody;
int offset = 0;
memset(&pbody, 0, sizeof(pbody));
if (!TTEST2(*p, IEEE802_11_TSTAMP_LEN + IEEE802_11_BCNINT_LEN +
IEEE802_11_CAPINFO_LEN))
return 0;
memcpy(&pbody.timestamp, p, 8);
offset += IEEE802_11_TSTAMP_LEN;
pbody.beacon_interval = EXTRACT_LE_16BITS(p+offset);
offset += IEEE802_11_BCNINT_LEN;
pbody.capability_info = EXTRACT_LE_16BITS(p+offset);
offset += IEEE802_11_CAPINFO_LEN;
if (!parse_elements(&pbody, p, offset))
return 0;
printf(" (");
fn_print(pbody.ssid.ssid, NULL);
printf(")");
PRINT_RATES(pbody);
printf(" %s CH: %u%s",
CAPABILITY_ESS(pbody.capability_info) ? "ESS" : "IBSS",
pbody.ds.channel,
CAPABILITY_PRIVACY(pbody.capability_info) ? ", PRIVACY" : "" );
return 1;
}
static int
handle_assoc_request(const u_char *p)
{
struct mgmt_body_t pbody;
int offset = 0;
memset(&pbody, 0, sizeof(pbody));
if (!TTEST2(*p, IEEE802_11_CAPINFO_LEN + IEEE802_11_LISTENINT_LEN))
return 0;
pbody.capability_info = EXTRACT_LE_16BITS(p);
offset += IEEE802_11_CAPINFO_LEN;
pbody.listen_interval = EXTRACT_LE_16BITS(p+offset);
offset += IEEE802_11_LISTENINT_LEN;
if (!parse_elements(&pbody, p, offset))
return 0;
printf(" (");
fn_print(pbody.ssid.ssid, NULL);
printf(")");
PRINT_RATES(pbody);
return 1;
}
static int
handle_assoc_response(const u_char *p)
{
struct mgmt_body_t pbody;
int offset = 0;
memset(&pbody, 0, sizeof(pbody));
if (!TTEST2(*p, IEEE802_11_CAPINFO_LEN + IEEE802_11_STATUS_LEN +
IEEE802_11_AID_LEN))
return 0;
pbody.capability_info = EXTRACT_LE_16BITS(p);
offset += IEEE802_11_CAPINFO_LEN;
pbody.status_code = EXTRACT_LE_16BITS(p+offset);
offset += IEEE802_11_STATUS_LEN;
pbody.aid = EXTRACT_LE_16BITS(p+offset);
offset += IEEE802_11_AID_LEN;
if (!parse_elements(&pbody, p, offset))
return 0;
printf(" AID(%x) :%s: %s", ((u_int16_t)(pbody.aid << 2 )) >> 2 ,
CAPABILITY_PRIVACY(pbody.capability_info) ? " PRIVACY " : "",
(pbody.status_code < 19 ? status_text[pbody.status_code] : "n/a"));
return 1;
}
static int
handle_reassoc_request(const u_char *p)
{
struct mgmt_body_t pbody;
int offset = 0;
memset(&pbody, 0, sizeof(pbody));
if (!TTEST2(*p, IEEE802_11_CAPINFO_LEN + IEEE802_11_LISTENINT_LEN +
IEEE802_11_AP_LEN))
return 0;
pbody.capability_info = EXTRACT_LE_16BITS(p);
offset += IEEE802_11_CAPINFO_LEN;
pbody.listen_interval = EXTRACT_LE_16BITS(p+offset);
offset += IEEE802_11_LISTENINT_LEN;
memcpy(&pbody.ap, p+offset, IEEE802_11_AP_LEN);
offset += IEEE802_11_AP_LEN;
if (!parse_elements(&pbody, p, offset))
return 0;
printf(" (");
fn_print(pbody.ssid.ssid, NULL);
printf(") AP : %s", etheraddr_string( pbody.ap ));
return 1;
}
static int
handle_reassoc_response(const u_char *p)
{
/* Same as a Association Reponse */
return handle_assoc_response(p);
}
static int
handle_probe_request(const u_char *p)
{
struct mgmt_body_t pbody;
int offset = 0;
memset(&pbody, 0, sizeof(pbody));
if (!parse_elements(&pbody, p, offset))
return 0;
printf(" (");
fn_print(pbody.ssid.ssid, NULL);
printf(")");
PRINT_RATES(pbody);
return 1;
}
static int
handle_probe_response(const u_char *p)
{
struct mgmt_body_t pbody;
int offset = 0;
memset(&pbody, 0, sizeof(pbody));
if (!TTEST2(*p, IEEE802_11_TSTAMP_LEN + IEEE802_11_BCNINT_LEN +
IEEE802_11_CAPINFO_LEN))
return 0;
memcpy(&pbody.timestamp, p, IEEE802_11_TSTAMP_LEN);
offset += IEEE802_11_TSTAMP_LEN;
pbody.beacon_interval = EXTRACT_LE_16BITS(p+offset);
offset += IEEE802_11_BCNINT_LEN;
pbody.capability_info = EXTRACT_LE_16BITS(p+offset);
offset += IEEE802_11_CAPINFO_LEN;
if (!parse_elements(&pbody, p, offset))
return 0;
printf(" (");
fn_print(pbody.ssid.ssid, NULL);
printf(") ");
PRINT_RATES(pbody);
printf(" CH: %u%s", pbody.ds.channel,
CAPABILITY_PRIVACY(pbody.capability_info) ? ", PRIVACY" : "" );
return 1;
}
static int
handle_atim(void)
{
/* the frame body for ATIM is null. */
return 1;
}
static int
handle_disassoc(const u_char *p)
{
struct mgmt_body_t pbody;
memset(&pbody, 0, sizeof(pbody));
if (!TTEST2(*p, IEEE802_11_REASON_LEN))
return 0;
pbody.reason_code = EXTRACT_LE_16BITS(p);
printf(": %s",
(pbody.reason_code < 10) ? reason_text[pbody.reason_code]
: "Reserved" );
return 1;
}
static int
handle_auth(const u_char *p)
{
struct mgmt_body_t pbody;
int offset = 0;
memset(&pbody, 0, sizeof(pbody));
if (!TTEST2(*p, 6))
return 0;
pbody.auth_alg = EXTRACT_LE_16BITS(p);
offset += 2;
pbody.auth_trans_seq_num = EXTRACT_LE_16BITS(p + offset);
offset += 2;
pbody.status_code = EXTRACT_LE_16BITS(p + offset);
offset += 2;
if (!parse_elements(&pbody, p, offset))
return 0;
if ((pbody.auth_alg == 1) &&
((pbody.auth_trans_seq_num == 2) ||
(pbody.auth_trans_seq_num == 3))) {
printf(" (%s)-%x [Challenge Text] %s",
(pbody.auth_alg < 4) ? auth_alg_text[pbody.auth_alg]
: "Reserved",
pbody.auth_trans_seq_num,
((pbody.auth_trans_seq_num % 2)
? ((pbody.status_code < 19)
? status_text[pbody.status_code]
: "n/a") : ""));
return 1;
}
printf(" (%s)-%x: %s",
(pbody.auth_alg < 4) ? auth_alg_text[pbody.auth_alg] : "Reserved",
pbody.auth_trans_seq_num,
(pbody.auth_trans_seq_num % 2)
? ((pbody.status_code < 19) ? status_text[pbody.status_code]
: "n/a")
: "");
return 1;
}
static int
handle_deauth(const struct mgmt_header_t *pmh, const u_char *p)
{
struct mgmt_body_t pbody;
int offset = 0;
const char *reason = NULL;
memset(&pbody, 0, sizeof(pbody));
if (!TTEST2(*p, IEEE802_11_REASON_LEN))
return 0;
pbody.reason_code = EXTRACT_LE_16BITS(p);
offset += IEEE802_11_REASON_LEN;
reason = (pbody.reason_code < 10) ? reason_text[pbody.reason_code]
: "Reserved";
if (eflag) {
printf(": %s", reason);
} else {
printf(" (%s): %s", etheraddr_string(pmh->sa), reason);
}
return 1;
}
/*********************************************************************************
* Print Body funcs
*********************************************************************************/
static int
mgmt_body_print(u_int16_t fc, const struct mgmt_header_t *pmh,
const u_char *p)
{
printf("%s", subtype_text[FC_SUBTYPE(fc)]);
switch (FC_SUBTYPE(fc)) {
case ST_ASSOC_REQUEST:
return handle_assoc_request(p);
case ST_ASSOC_RESPONSE:
return handle_assoc_response(p);
case ST_REASSOC_REQUEST:
return handle_reassoc_request(p);
case ST_REASSOC_RESPONSE:
return handle_reassoc_response(p);
case ST_PROBE_REQUEST:
return handle_probe_request(p);
case ST_PROBE_RESPONSE:
return handle_probe_response(p);
case ST_BEACON:
return handle_beacon(p);
case ST_ATIM:
return handle_atim();
case ST_DISASSOC:
return handle_disassoc(p);
case ST_AUTH:
if (!TTEST2(*p, 3))
return 0;
if ((p[0] == 0 ) && (p[1] == 0) && (p[2] == 0)) {
printf("Authentication (Shared-Key)-3 ");
return wep_print(p);
}
return handle_auth(p);
case ST_DEAUTH:
return handle_deauth(pmh, p);
break;
default:
printf("Unhandled Management subtype(%x)",
FC_SUBTYPE(fc));
return 1;
}
}
/*********************************************************************************
* Handles printing all the control frame types
*********************************************************************************/
static int
ctrl_body_print(u_int16_t fc, const u_char *p)
{
switch (FC_SUBTYPE(fc)) {
case CTRL_PS_POLL:
printf("Power Save-Poll");
if (!TTEST2(*p, CTRL_PS_POLL_HDRLEN))
return 0;
printf(" AID(%x)",
EXTRACT_LE_16BITS(&(((const struct ctrl_ps_poll_t *)p)->aid)));
break;
case CTRL_RTS:
printf("Request-To-Send");
if (!TTEST2(*p, CTRL_RTS_HDRLEN))
return 0;
if (!eflag)
printf(" TA:%s ",
etheraddr_string(((const struct ctrl_rts_t *)p)->ta));
break;
case CTRL_CTS:
printf("Clear-To-Send");
if (!TTEST2(*p, CTRL_CTS_HDRLEN))
return 0;
if (!eflag)
printf(" RA:%s ",
etheraddr_string(((const struct ctrl_cts_t *)p)->ra));
break;
case CTRL_ACK:
printf("Acknowledgment");
if (!TTEST2(*p, CTRL_ACK_HDRLEN))
return 0;
if (!eflag)
printf(" RA:%s ",
etheraddr_string(((const struct ctrl_ack_t *)p)->ra));
break;
case CTRL_CF_END:
printf("CF-End");
if (!TTEST2(*p, CTRL_END_HDRLEN))
return 0;
if (!eflag)
printf(" RA:%s ",
etheraddr_string(((const struct ctrl_end_t *)p)->ra));
break;
case CTRL_END_ACK:
printf("CF-End+CF-Ack");
if (!TTEST2(*p, CTRL_END_ACK_HDRLEN))
return 0;
if (!eflag)
printf(" RA:%s ",
etheraddr_string(((const struct ctrl_end_ack_t *)p)->ra));
break;
default:
printf("Unknown Ctrl Subtype");
}
return 1;
}
/*
* Print Header funcs
*/
/*
* Data Frame - Address field contents
*
* To Ds | From DS | Addr 1 | Addr 2 | Addr 3 | Addr 4
* 0 | 0 | DA | SA | BSSID | n/a
* 0 | 1 | DA | BSSID | SA | n/a
* 1 | 0 | BSSID | SA | DA | n/a
* 1 | 1 | RA | TA | DA | SA
*/
static void
data_header_print(u_int16_t fc, const u_char *p, const u_int8_t **srcp,
const u_int8_t **dstp)
{
switch (FC_SUBTYPE(fc)) {
case DATA_DATA:
case DATA_NODATA:
break;
case DATA_DATA_CF_ACK:
case DATA_NODATA_CF_ACK:
printf("CF Ack ");
break;
case DATA_DATA_CF_POLL:
case DATA_NODATA_CF_POLL:
printf("CF Poll ");
break;
case DATA_DATA_CF_ACK_POLL:
case DATA_NODATA_CF_ACK_POLL:
printf("CF Ack/Poll ");
break;
}
#define ADDR1 (p + 4)
#define ADDR2 (p + 10)
#define ADDR3 (p + 16)
#define ADDR4 (p + 24)
if (!FC_TO_DS(fc) && !FC_FROM_DS(fc)) {
if (srcp != NULL)
*srcp = ADDR2;
if (dstp != NULL)
*dstp = ADDR1;
if (!eflag)
return;
printf("DA:%s SA:%s BSSID:%s ",
etheraddr_string(ADDR1), etheraddr_string(ADDR2),
etheraddr_string(ADDR3));
} else if (!FC_TO_DS(fc) && FC_FROM_DS(fc)) {
if (srcp != NULL)
*srcp = ADDR3;
if (dstp != NULL)
*dstp = ADDR1;
if (!eflag)
return;
printf("DA:%s BSSID:%s SA:%s ",
etheraddr_string(ADDR1), etheraddr_string(ADDR2),
etheraddr_string(ADDR3));
} else if (FC_TO_DS(fc) && !FC_FROM_DS(fc)) {
if (srcp != NULL)
*srcp = ADDR2;
if (dstp != NULL)
*dstp = ADDR3;
if (!eflag)
return;
printf("BSSID:%s SA:%s DA:%s ",
etheraddr_string(ADDR1), etheraddr_string(ADDR2),
etheraddr_string(ADDR3));
} else if (FC_TO_DS(fc) && FC_FROM_DS(fc)) {
if (srcp != NULL)
*srcp = ADDR4;
if (dstp != NULL)
*dstp = ADDR3;
if (!eflag)
return;
printf("RA:%s TA:%s DA:%s SA:%s ",
etheraddr_string(ADDR1), etheraddr_string(ADDR2),
etheraddr_string(ADDR3), etheraddr_string(ADDR4));
}
#undef ADDR1
#undef ADDR2
#undef ADDR3
#undef ADDR4
}
static void
mgmt_header_print(const u_char *p, const u_int8_t **srcp,
const u_int8_t **dstp)
{
const struct mgmt_header_t *hp = (const struct mgmt_header_t *) p;
if (srcp != NULL)
*srcp = hp->sa;
if (dstp != NULL)
*dstp = hp->da;
if (!eflag)
return;
printf("BSSID:%s DA:%s SA:%s ",
etheraddr_string((hp)->bssid), etheraddr_string((hp)->da),
etheraddr_string((hp)->sa));
}
static void
ctrl_header_print(u_int16_t fc, const u_char *p, const u_int8_t **srcp,
const u_int8_t **dstp)
{
if (srcp != NULL)
*srcp = NULL;
if (dstp != NULL)
*dstp = NULL;
if (!eflag)
return;
switch (FC_SUBTYPE(fc)) {
case CTRL_PS_POLL:
printf("BSSID:%s TA:%s ",
etheraddr_string(((const struct ctrl_ps_poll_t *)p)->bssid),
etheraddr_string(((const struct ctrl_ps_poll_t *)p)->ta));
break;
case CTRL_RTS:
printf("RA:%s TA:%s ",
etheraddr_string(((const struct ctrl_rts_t *)p)->ra),
etheraddr_string(((const struct ctrl_rts_t *)p)->ta));
break;
case CTRL_CTS:
printf("RA:%s ",
etheraddr_string(((const struct ctrl_cts_t *)p)->ra));
break;
case CTRL_ACK:
printf("RA:%s ",
etheraddr_string(((const struct ctrl_ack_t *)p)->ra));
break;
case CTRL_CF_END:
printf("RA:%s BSSID:%s ",
etheraddr_string(((const struct ctrl_end_t *)p)->ra),
etheraddr_string(((const struct ctrl_end_t *)p)->bssid));
break;
case CTRL_END_ACK:
printf("RA:%s BSSID:%s ",
etheraddr_string(((const struct ctrl_end_ack_t *)p)->ra),
etheraddr_string(((const struct ctrl_end_ack_t *)p)->bssid));
break;
default:
printf("(H) Unknown Ctrl Subtype");
break;
}
}
static int
extract_header_length(u_int16_t fc)
{
switch (FC_TYPE(fc)) {
case T_MGMT:
return MGMT_HDRLEN;
case T_CTRL:
switch (FC_SUBTYPE(fc)) {
case CTRL_PS_POLL:
return CTRL_PS_POLL_HDRLEN;
case CTRL_RTS:
return CTRL_RTS_HDRLEN;
case CTRL_CTS:
return CTRL_CTS_HDRLEN;
case CTRL_ACK:
return CTRL_ACK_HDRLEN;
case CTRL_CF_END:
return CTRL_END_HDRLEN;
case CTRL_END_ACK:
return CTRL_END_ACK_HDRLEN;
default:
return 0;
}
case T_DATA:
return (FC_TO_DS(fc) && FC_FROM_DS(fc)) ? 30 : 24;
default:
printf("unknown IEEE802.11 frame type (%d)", FC_TYPE(fc));
return 0;
}
}
/*
* Print the 802.11 MAC header if eflag is set, and set "*srcp" and "*dstp"
* to point to the source and destination MAC addresses in any case if
* "srcp" and "dstp" aren't null.
*/
static inline void
ieee_802_11_hdr_print(u_int16_t fc, const u_char *p, const u_int8_t **srcp,
const u_int8_t **dstp)
{
if (vflag) {
if (FC_MORE_DATA(fc))
printf("More Data ");
if (FC_MORE_FLAG(fc))
printf("More Fragments ");
if (FC_POWER_MGMT(fc))
printf("Pwr Mgmt ");
if (FC_RETRY(fc))
printf("Retry ");
if (FC_ORDER(fc))
printf("Strictly Ordered ");
if (FC_WEP(fc))
printf("WEP Encrypted ");
if (FC_TYPE(fc) != T_CTRL || FC_SUBTYPE(fc) != CTRL_PS_POLL)
printf("%dus ",
EXTRACT_LE_16BITS(
&((const struct mgmt_header_t *)p)->duration));
}
switch (FC_TYPE(fc)) {
case T_MGMT:
mgmt_header_print(p, srcp, dstp);
break;
case T_CTRL:
ctrl_header_print(fc, p, srcp, dstp);
break;
case T_DATA:
data_header_print(fc, p, srcp, dstp);
break;
default:
printf("(header) unknown IEEE802.11 frame type (%d)",
FC_TYPE(fc));
*srcp = NULL;
*dstp = NULL;
break;
}
}
static u_int
ieee802_11_print(const u_char *p, u_int length, u_int caplen)
{
u_int16_t fc;
u_int hdrlen;
const u_int8_t *src, *dst;
u_short extracted_ethertype;
if (caplen < IEEE802_11_FC_LEN) {
printf("[|802.11]");
return caplen;
}
fc = EXTRACT_LE_16BITS(p);
hdrlen = extract_header_length(fc);
if (caplen < hdrlen) {
printf("[|802.11]");
return hdrlen;
}
ieee_802_11_hdr_print(fc, p, &src, &dst);
/*
* Go past the 802.11 header.
*/
length -= hdrlen;
caplen -= hdrlen;
p += hdrlen;
switch (FC_TYPE(fc)) {
case T_MGMT:
if (!mgmt_body_print(fc,
(const struct mgmt_header_t *)(p - hdrlen), p)) {
printf("[|802.11]");
return hdrlen;
}
break;
case T_CTRL:
if (!ctrl_body_print(fc, p - hdrlen)) {
printf("[|802.11]");
return hdrlen;
}
break;
case T_DATA:
/* There may be a problem w/ AP not having this bit set */
if (FC_WEP(fc)) {
if (!wep_print(p)) {
printf("[|802.11]");
return hdrlen;
}
} else if (llc_print(p, length, caplen, dst, src,
&extracted_ethertype) == 0) {
/*
* Some kinds of LLC packet we cannot
* handle intelligently
*/
if (!eflag)
ieee_802_11_hdr_print(fc, p - hdrlen, NULL,
NULL);
if (extracted_ethertype)
printf("(LLC %s) ",
etherproto_string(
htons(extracted_ethertype)));
if (!xflag && !qflag)
default_print(p, caplen);
}
break;
default:
printf("unknown 802.11 frame type (%d)", FC_TYPE(fc));
break;
}
return hdrlen;
}
/*
* This is the top level routine of the printer. 'p' points
* to the 802.11 header of the packet, 'h->ts' is the timestamp,
* 'h->len' is the length of the packet off the wire, and 'h->caplen'
* is the number of bytes actually captured.
*/
u_int
ieee802_11_if_print(const struct pcap_pkthdr *h, const u_char *p)
{
return ieee802_11_print(p, h->len, h->caplen);
}
static int
print_radiotap_field(struct cpack_state *s, u_int32_t bit)
{
union {
int8_t i8;
u_int8_t u8;
int16_t i16;
u_int16_t u16;
u_int32_t u32;
u_int64_t u64;
} u, u2;
int rc;
switch (bit) {
case IEEE80211_RADIOTAP_FLAGS:
case IEEE80211_RADIOTAP_RATE:
case IEEE80211_RADIOTAP_DB_ANTSIGNAL:
case IEEE80211_RADIOTAP_DB_ANTNOISE:
case IEEE80211_RADIOTAP_ANTENNA:
rc = cpack_uint8(s, &u.u8);
break;
case IEEE80211_RADIOTAP_DBM_ANTSIGNAL:
case IEEE80211_RADIOTAP_DBM_ANTNOISE:
rc = cpack_int8(s, &u.i8);
break;
case IEEE80211_RADIOTAP_CHANNEL:
rc = cpack_uint16(s, &u.u16);
if (rc != 0)
break;
rc = cpack_uint16(s, &u2.u16);
break;
case IEEE80211_RADIOTAP_FHSS:
case IEEE80211_RADIOTAP_LOCK_QUALITY:
case IEEE80211_RADIOTAP_TX_ATTENUATION:
rc = cpack_uint16(s, &u.u16);
break;
case IEEE80211_RADIOTAP_DB_TX_ATTENUATION:
rc = cpack_uint8(s, &u.u8);
break;
case IEEE80211_RADIOTAP_DBM_TX_POWER:
rc = cpack_int8(s, &u.i8);
break;
case IEEE80211_RADIOTAP_TSFT:
rc = cpack_uint64(s, &u.u64);
break;
default:
/* this bit indicates a field whose
* size we do not know, so we cannot
* proceed.
*/
printf("[0x%08x] ", bit);
return -1;
}
if (rc != 0) {
printf("[|802.11]");
return rc;
}
switch (bit) {
case IEEE80211_RADIOTAP_CHANNEL:
printf("%u MHz ", u.u16);
if (u2.u16 != 0)
printf("(0x%04x) ", u2.u16);
break;
case IEEE80211_RADIOTAP_FHSS:
printf("fhset %d fhpat %d ", u.u16 & 0xff, (u.u16 >> 8) & 0xff);
break;
case IEEE80211_RADIOTAP_RATE:
PRINT_RATE("", u.u8, " Mb/s ");
break;
case IEEE80211_RADIOTAP_DBM_ANTSIGNAL:
printf("%ddB signal ", u.i8);
break;
case IEEE80211_RADIOTAP_DBM_ANTNOISE:
printf("%ddB noise ", u.i8);
break;
case IEEE80211_RADIOTAP_DB_ANTSIGNAL:
printf("%ddB signal ", u.u8);
break;
case IEEE80211_RADIOTAP_DB_ANTNOISE:
printf("%ddB noise ", u.u8);
break;
case IEEE80211_RADIOTAP_LOCK_QUALITY:
printf("%u sq ", u.u16);
break;
case IEEE80211_RADIOTAP_TX_ATTENUATION:
printf("%d tx power ", -(int)u.u16);
break;
case IEEE80211_RADIOTAP_DB_TX_ATTENUATION:
printf("%ddB tx power ", -(int)u.u8);
break;
case IEEE80211_RADIOTAP_DBM_TX_POWER:
printf("%ddBm tx power ", u.i8);
break;
case IEEE80211_RADIOTAP_FLAGS:
if (u.u8 & IEEE80211_RADIOTAP_F_CFP)
printf("cfp ");
if (u.u8 & IEEE80211_RADIOTAP_F_SHORTPRE)
printf("short preamble ");
if (u.u8 & IEEE80211_RADIOTAP_F_WEP)
printf("wep ");
if (u.u8 & IEEE80211_RADIOTAP_F_FRAG)
printf("fragmented ");
break;
case IEEE80211_RADIOTAP_ANTENNA:
printf("antenna %d ", u.u8);
break;
case IEEE80211_RADIOTAP_TSFT:
printf("%" PRIu64 "us tsft ", u.u64);
break;
}
return 0;
}
static u_int
ieee802_11_radio_print(const u_char *p, u_int length, u_int caplen)
{
#define BITNO_32(x) (((x) >> 16) ? 16 + BITNO_16((x) >> 16) : BITNO_16((x)))
#define BITNO_16(x) (((x) >> 8) ? 8 + BITNO_8((x) >> 8) : BITNO_8((x)))
#define BITNO_8(x) (((x) >> 4) ? 4 + BITNO_4((x) >> 4) : BITNO_4((x)))
#define BITNO_4(x) (((x) >> 2) ? 2 + BITNO_2((x) >> 2) : BITNO_2((x)))
#define BITNO_2(x) (((x) & 2) ? 1 : 0)
#define BIT(n) (1 << n)
#define IS_EXTENDED(__p) \
(EXTRACT_LE_32BITS(__p) & BIT(IEEE80211_RADIOTAP_EXT)) != 0
struct cpack_state cpacker;
struct ieee80211_radiotap_header *hdr;
u_int32_t present, next_present;
u_int32_t *presentp, *last_presentp;
enum ieee80211_radiotap_type bit;
int bit0;
const u_char *iter;
u_int len;
if (caplen < sizeof(*hdr)) {
printf("[|802.11]");
return caplen;
}
hdr = (struct ieee80211_radiotap_header *)p;
len = EXTRACT_LE_16BITS(&hdr->it_len);
if (caplen < len) {
printf("[|802.11]");
return caplen;
}
for (last_presentp = &hdr->it_present;
IS_EXTENDED(last_presentp) &&
(u_char*)(last_presentp + 1) <= p + len;
last_presentp++);
/* are there more bitmap extensions than bytes in header? */
if (IS_EXTENDED(last_presentp)) {
printf("[|802.11]");
return caplen;
}
iter = (u_char*)(last_presentp + 1);
if (cpack_init(&cpacker, (u_int8_t*)iter, len - (iter - p)) != 0) {
/* XXX */
printf("[|802.11]");
return caplen;
}
for (bit0 = 0, presentp = &hdr->it_present; presentp <= last_presentp;
presentp++, bit0 += 32) {
for (present = EXTRACT_LE_32BITS(presentp); present;
present = next_present) {
/* clear the least significant bit that is set */
next_present = present & (present - 1);
/* extract the least significant bit that is set */
bit = (enum ieee80211_radiotap_type)
(bit0 + BITNO_32(present ^ next_present));
if (print_radiotap_field(&cpacker, bit) != 0)
goto out;
}
}
out:
return len + ieee802_11_print(p + len, length - len, caplen - len);
#undef BITNO_32
#undef BITNO_16
#undef BITNO_8
#undef BITNO_4
#undef BITNO_2
#undef BIT
}
static u_int
ieee802_11_avs_radio_print(const u_char *p, u_int length, u_int caplen)
{
u_int32_t caphdr_len;
caphdr_len = EXTRACT_32BITS(p + 4);
if (caphdr_len < 8) {
/*
* Yow! The capture header length is claimed not
* to be large enough to include even the version
* cookie or capture header length!
*/
printf("[|802.11]");
return caplen;
}
if (caplen < caphdr_len) {
printf("[|802.11]");
return caplen;
}
return caphdr_len + ieee802_11_print(p + caphdr_len,
length - caphdr_len, caplen - caphdr_len);
}
#define PRISM_HDR_LEN 144
#define WLANCAP_MAGIC_COOKIE_V1 0x80211001
/*
* For DLT_PRISM_HEADER; like DLT_IEEE802_11, but with an extra header,
* containing information such as radio information, which we
* currently ignore.
*
* If, however, the packet begins with WLANCAP_MAGIC_COOKIE_V1, it's
* really DLT_IEEE802_11_RADIO (currently, on Linux, there's no
* ARPHRD_ type for DLT_IEEE802_11_RADIO, as there is a
* ARPHRD_IEEE80211_PRISM for DLT_PRISM_HEADER, so
* ARPHRD_IEEE80211_PRISM is used for DLT_IEEE802_11_RADIO, and
* the first 4 bytes of the header are used to indicate which it is).
*/
u_int
prism_if_print(const struct pcap_pkthdr *h, const u_char *p)
{
u_int caplen = h->caplen;
u_int length = h->len;
if (caplen < 4) {
printf("[|802.11]");
return caplen;
}
if (EXTRACT_32BITS(p) == WLANCAP_MAGIC_COOKIE_V1)
return ieee802_11_avs_radio_print(p, length, caplen);
if (caplen < PRISM_HDR_LEN) {
printf("[|802.11]");
return caplen;
}
return PRISM_HDR_LEN + ieee802_11_print(p + PRISM_HDR_LEN,
length - PRISM_HDR_LEN, caplen - PRISM_HDR_LEN);
}
/*
* For DLT_IEEE802_11_RADIO; like DLT_IEEE802_11, but with an extra
* header, containing information such as radio information, which we
* currently ignore.
*/
u_int
ieee802_11_radio_if_print(const struct pcap_pkthdr *h, const u_char *p)
{
u_int caplen = h->caplen;
u_int length = h->len;
if (caplen < 8) {
printf("[|802.11]");
return caplen;
}
return ieee802_11_radio_print(p, length, caplen);
}