/* * Copyright (c) 1992, 1993, 1994, 1995, 1996 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that: (1) source code distributions * retain the above copyright notice and this paragraph in its entirety, (2) * distributions including binary code include the above copyright notice and * this paragraph in its entirety in the documentation or other materials * provided with the distribution, and (3) all advertising materials mentioning * features or use of this software display the following acknowledgement: * ``This product includes software developed by the University of California, * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of * the University nor the names of its contributors may be used to endorse * or promote products derived from this software without specific prior * written permission. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. */ #include /* * For 8-bit values; needed to fetch a one-byte value. Byte order * isn't relevant, and alignment isn't an issue. */ #define EXTRACT_U_1(p) (*(p)) #define EXTRACT_S_1(p) ((int8_t)(*(p))) /* * Inline functions or macros to extract possibly-unaligned big-endian * integral values. */ #include "funcattrs.h" /* * If we have versions of GCC or Clang that support an __attribute__ * to say "if we're building with unsigned behavior sanitization, * don't complain about undefined behavior in this function", we * label these functions with that attribute - we *know* it's undefined * in the C standard, but we *also* know it does what we want with * the ISA we're targeting and the compiler we're using. * * For GCC 4.9.0 and later, we use __attribute__((no_sanitize_undefined)); * pre-5.0 GCC doesn't have __has_attribute, and I'm not sure whether * GCC or Clang first had __attribute__((no_sanitize(XXX)). * * For Clang, we check for __attribute__((no_sanitize(XXX)) with * __has_attribute, as there are versions of Clang that support * __attribute__((no_sanitize("undefined")) but don't support * __attribute__((no_sanitize_undefined)). * * We define this here, rather than in funcattrs.h, because we * only want it used here, we don't want it to be broadly used. * (Any printer will get this defined, but this should at least * make it harder for people to find.) */ #if defined(__GNUC__) && ((__GNUC__ * 100 + __GNUC_MINOR__) >= 409) #define UNALIGNED_OK __attribute__((no_sanitize_undefined)) #elif __has_attribute(no_sanitize) #define UNALIGNED_OK __attribute__((no_sanitize("undefined"))) #else #define UNALIGNED_OK #endif #if (defined(__i386__) || defined(_M_IX86) || defined(__X86__) || defined(__x86_64__) || defined(_M_X64)) || \ (defined(__arm__) || defined(_M_ARM) || defined(__aarch64__)) || \ (defined(__m68k__) && (!defined(__mc68000__) && !defined(__mc68010__))) || \ (defined(__ppc__) || defined(__ppc64__) || defined(_M_PPC) || defined(_ARCH_PPC) || defined(_ARCH_PPC64)) || \ (defined(__s390__) || defined(__s390x__) || defined(__zarch__)) /* * The processor natively handles unaligned loads, so we can just * cast the pointer and fetch through it. * * XXX - are those all the x86 tests we need? * XXX - do we need to worry about ARMv1 through ARMv5, which didn't * support unaligned loads, and, if so, do we need to worry about all * of them, or just some of them, e.g. ARMv5? * XXX - are those the only 68k tests we need not to generated * unaligned accesses if the target is the 68000 or 68010? * XXX - are there any tests we don't need, because some definitions are for * compilers that also predefine the GCC symbols? * XXX - do we need to test for both 32-bit and 64-bit versions of those * architectures in all cases? */ UNALIGNED_OK static inline uint16_t EXTRACT_BE_U_2(const void *p) { return ((uint16_t)ntohs(*(const uint16_t *)(p))); } UNALIGNED_OK static inline int16_t EXTRACT_BE_S_2(const void *p) { return ((int16_t)ntohs(*(const int16_t *)(p))); } UNALIGNED_OK static inline uint32_t EXTRACT_BE_U_4(const void *p) { return ((uint32_t)ntohl(*(const uint32_t *)(p))); } UNALIGNED_OK static inline int32_t EXTRACT_BE_S_4(const void *p) { return ((int32_t)ntohl(*(const int32_t *)(p))); } UNALIGNED_OK static inline uint64_t EXTRACT_BE_U_8(const void *p) { return ((uint64_t)(((uint64_t)ntohl(*((const uint32_t *)(p) + 0))) << 32 | ((uint64_t)ntohl(*((const uint32_t *)(p) + 1))) << 0)); } UNALIGNED_OK static inline int64_t EXTRACT_BE_S_8(const void *p) { return ((int64_t)(((int64_t)ntohl(*((const uint32_t *)(p) + 0))) << 32 | ((uint64_t)ntohl(*((const uint32_t *)(p) + 1))) << 0)); } /* * Extract an IPv4 address, which is in network byte order, and not * necessarily aligned, and provide the result in host byte order. */ UNALIGNED_OK static inline uint32_t EXTRACT_IPV4_TO_HOST_ORDER(const void *p) { return ((uint32_t)ntohl(*(const uint32_t *)(p))); } #elif ND_IS_AT_LEAST_GNUC_VERSION(2,0) && \ (defined(__alpha) || defined(__alpha__) || \ defined(__mips) || defined(__mips__)) /* * This is MIPS or Alpha, which don't natively handle unaligned loads, * but which have instructions that can help when doing unaligned * loads, and this is GCC 2.0 or later or a compiler that claims to * be GCC 2.0 or later, which we assume that mean we have * __attribute__((packed)), which we can use to convince the compiler * to generate those instructions. * * Declare packed structures containing a uint16_t and a uint32_t, * cast the pointer to point to one of those, and fetch through it; * the GCC manual doesn't appear to explicitly say that * __attribute__((packed)) causes the compiler to generate unaligned-safe * code, but it apppears to do so. * * We do this in case the compiler can generate code using those * instructions to do an unaligned load and pass stuff to "ntohs()" or * "ntohl()", which might be better than than the code to fetch the * bytes one at a time and assemble them. (That might not be the * case on a little-endian platform, such as DEC's MIPS machines and * Alpha machines, where "ntohs()" and "ntohl()" might not be done * inline.) * * We do this only for specific architectures because, for example, * at least some versions of GCC, when compiling for 64-bit SPARC, * generate code that assumes alignment if we do this. * * XXX - add other architectures and compilers as possible and * appropriate. * * HP's C compiler, indicated by __HP_cc being defined, supports * "#pragma unaligned N" in version A.05.50 and later, where "N" * specifies a number of bytes at which the typedef on the next * line is aligned, e.g. * * #pragma unalign 1 * typedef uint16_t unaligned_uint16_t; * * to define unaligned_uint16_t as a 16-bit unaligned data type. * This could be presumably used, in sufficiently recent versions of * the compiler, with macros similar to those below. This would be * useful only if that compiler could generate better code for PA-RISC * or Itanium than would be generated by a bunch of shifts-and-ORs. * * DEC C, indicated by __DECC being defined, has, at least on Alpha, * an __unaligned qualifier that can be applied to pointers to get the * compiler to generate code that does unaligned loads and stores when * dereferencing the pointer in question. * * XXX - what if the native C compiler doesn't support * __attribute__((packed))? How can we get it to generate unaligned * accesses for *specific* items? */ typedef struct { uint16_t val; } __attribute__((packed)) unaligned_uint16_t; typedef struct { int16_t val; } __attribute__((packed)) unaligned_int16_t; typedef struct { uint32_t val; } __attribute__((packed)) unaligned_uint32_t; typedef struct { int32_t val; } __attribute__((packed)) unaligned_int32_t; UNALIGNED_OK static inline uint16_t EXTRACT_BE_U_2(const void *p) { return ((uint16_t)ntohs(((const unaligned_uint16_t *)(p))->val)); } UNALIGNED_OK static inline int16_t EXTRACT_BE_S_2(const void *p) { return ((int16_t)ntohs(((const unaligned_int16_t *)(p))->val)); } UNALIGNED_OK static inline uint32_t EXTRACT_BE_U_4(const void *p) { return ((uint32_t)ntohl(((const unaligned_uint32_t *)(p))->val)); } UNALIGNED_OK static inline int32_t EXTRACT_BE_S_4(const void *p) { return ((int32_t)ntohl(((const unaligned_int32_t *)(p))->val)); } UNALIGNED_OK static inline uint64_t EXTRACT_BE_U_8(const void *p) { return ((uint64_t)(((uint64_t)ntohl(((const unaligned_uint32_t *)(p) + 0)->val)) << 32 | ((uint64_t)ntohl(((const unaligned_uint32_t *)(p) + 1)->val)) << 0)); } UNALIGNED_OK static inline int64_t EXTRACT_BE_S_8(const void *p) { return ((int64_t)(((uint64_t)ntohl(((const unaligned_uint32_t *)(p) + 0)->val)) << 32 | ((uint64_t)ntohl(((const unaligned_uint32_t *)(p) + 1)->val)) << 0)); } /* * Extract an IPv4 address, which is in network byte order, and not * necessarily aligned, and provide the result in host byte order. */ UNALIGNED_OK static inline uint32_t EXTRACT_IPV4_TO_HOST_ORDER(const void *p) { return ((uint32_t)ntohl(((const unaligned_uint32_t *)(p))->val)); } #else /* * This architecture doesn't natively support unaligned loads, and either * this isn't a GCC-compatible compiler, we don't have __attribute__, * or we do but we don't know of any better way with this instruction * set to do unaligned loads, so do unaligned loads of big-endian * quantities the hard way - fetch the bytes one at a time and * assemble them. */ #define EXTRACT_BE_U_2(p) \ ((uint16_t)(((uint16_t)(*((const uint8_t *)(p) + 0)) << 8) | \ ((uint16_t)(*((const uint8_t *)(p) + 1)) << 0))) #define EXTRACT_BE_S_2(p) \ ((int16_t)(((uint16_t)(*((const uint8_t *)(p) + 0)) << 8) | \ ((uint16_t)(*((const uint8_t *)(p) + 1)) << 0))) #define EXTRACT_BE_U_4(p) \ ((uint32_t)(((uint32_t)(*((const uint8_t *)(p) + 0)) << 24) | \ ((uint32_t)(*((const uint8_t *)(p) + 1)) << 16) | \ ((uint32_t)(*((const uint8_t *)(p) + 2)) << 8) | \ ((uint32_t)(*((const uint8_t *)(p) + 3)) << 0))) #define EXTRACT_BE_S_4(p) \ ((int32_t)(((uint32_t)(*((const uint8_t *)(p) + 0)) << 24) | \ ((uint32_t)(*((const uint8_t *)(p) + 1)) << 16) | \ ((uint32_t)(*((const uint8_t *)(p) + 2)) << 8) | \ ((uint32_t)(*((const uint8_t *)(p) + 3)) << 0))) #define EXTRACT_BE_U_8(p) \ ((uint64_t)(((uint64_t)(*((const uint8_t *)(p) + 0)) << 56) | \ ((uint64_t)(*((const uint8_t *)(p) + 1)) << 48) | \ ((uint64_t)(*((const uint8_t *)(p) + 2)) << 40) | \ ((uint64_t)(*((const uint8_t *)(p) + 3)) << 32) | \ ((uint64_t)(*((const uint8_t *)(p) + 4)) << 24) | \ ((uint64_t)(*((const uint8_t *)(p) + 5)) << 16) | \ ((uint64_t)(*((const uint8_t *)(p) + 6)) << 8) | \ ((uint64_t)(*((const uint8_t *)(p) + 7)) << 0))) #define EXTRACT_BE_S_8(p) \ ((int64_t)(((uint64_t)(*((const uint8_t *)(p) + 0)) << 56) | \ ((uint64_t)(*((const uint8_t *)(p) + 1)) << 48) | \ ((uint64_t)(*((const uint8_t *)(p) + 2)) << 40) | \ ((uint64_t)(*((const uint8_t *)(p) + 3)) << 32) | \ ((uint64_t)(*((const uint8_t *)(p) + 4)) << 24) | \ ((uint64_t)(*((const uint8_t *)(p) + 5)) << 16) | \ ((uint64_t)(*((const uint8_t *)(p) + 6)) << 8) | \ ((uint64_t)(*((const uint8_t *)(p) + 7)) << 0))) /* * Extract an IPv4 address, which is in network byte order, and not * necessarily aligned, and provide the result in host byte order. */ #define EXTRACT_IPV4_TO_HOST_ORDER(p) \ ((uint32_t)(((uint32_t)(*((const uint8_t *)(p) + 0)) << 24) | \ ((uint32_t)(*((const uint8_t *)(p) + 1)) << 16) | \ ((uint32_t)(*((const uint8_t *)(p) + 2)) << 8) | \ ((uint32_t)(*((const uint8_t *)(p) + 3)) << 0))) #endif /* unaligned access checks */ /* * Extract numerical values in *host* byte order. (Some metadata * headers are in the byte order of the host that wrote the file, * and libpcap translate them to the byte order of the host * reading the file. This means that if a program on that host * reads with libpcap and writes to a new file, the new file will * be written in the byte order of the host writing the file. Thus, * the magic number in pcap files and byte-order magic in pcapng * files can be used to determine the byte order in those metadata * headers.) * * XXX - on platforms that can do unaligned accesses, just cast and * dereference the pointer. */ static inline uint16_t EXTRACT_HE_U_2(const void *p) { uint16_t val; UNALIGNED_MEMCPY(&val, p, sizeof(uint16_t)); return val; } static inline int16_t EXTRACT_HE_S_2(const void *p) { int16_t val; UNALIGNED_MEMCPY(&val, p, sizeof(int16_t)); return val; } static inline uint32_t EXTRACT_HE_U_4(const void *p) { uint32_t val; UNALIGNED_MEMCPY(&val, p, sizeof(uint32_t)); return val; } static inline int32_t EXTRACT_HE_S_4(const void *p) { int32_t val; UNALIGNED_MEMCPY(&val, p, sizeof(int32_t)); return val; } /* * Extract an IPv4 address, which is in network byte order, and which * is not necessarily aligned on a 4-byte boundary, and provide the * result in network byte order. * * This works the same way regardless of the host's byte order. */ static inline uint32_t EXTRACT_IPV4_TO_NETWORK_ORDER(const void *p) { uint32_t addr; UNALIGNED_MEMCPY(&addr, p, sizeof(uint32_t)); return addr; } /* * Non-power-of-2 sizes. */ #define EXTRACT_BE_U_3(p) \ ((uint32_t)(((uint32_t)(*((const uint8_t *)(p) + 0)) << 16) | \ ((uint32_t)(*((const uint8_t *)(p) + 1)) << 8) | \ ((uint32_t)(*((const uint8_t *)(p) + 2)) << 0))) #define EXTRACT_BE_S_3(p) \ (((*((const uint8_t *)(p) + 0)) & 0x80) ? \ ((int32_t)(((uint32_t)(*((const uint8_t *)(p) + 0)) << 16) | \ ((uint32_t)(*((const uint8_t *)(p) + 1)) << 8) | \ ((uint32_t)(*((const uint8_t *)(p) + 2)) << 0))) : \ ((int32_t)(0xFF000000U | \ ((uint32_t)(*((const uint8_t *)(p) + 0)) << 16) | \ ((uint32_t)(*((const uint8_t *)(p) + 1)) << 8) | \ ((uint32_t)(*((const uint8_t *)(p) + 2)) << 0)))) #define EXTRACT_BE_U_5(p) \ ((uint64_t)(((uint64_t)(*((const uint8_t *)(p) + 0)) << 32) | \ ((uint64_t)(*((const uint8_t *)(p) + 1)) << 24) | \ ((uint64_t)(*((const uint8_t *)(p) + 2)) << 16) | \ ((uint64_t)(*((const uint8_t *)(p) + 3)) << 8) | \ ((uint64_t)(*((const uint8_t *)(p) + 4)) << 0))) #define EXTRACT_BE_S_5(p) \ (((*((const uint8_t *)(p) + 0)) & 0x80) ? \ ((int64_t)(((uint64_t)(*((const uint8_t *)(p) + 0)) << 32) | \ ((uint64_t)(*((const uint8_t *)(p) + 1)) << 24) | \ ((uint64_t)(*((const uint8_t *)(p) + 2)) << 16) | \ ((uint64_t)(*((const uint8_t *)(p) + 3)) << 8) | \ ((uint64_t)(*((const uint8_t *)(p) + 4)) << 0))) : \ ((int64_t)(INT64_T_CONSTANT(0xFFFFFF0000000000U) | \ ((uint64_t)(*((const uint8_t *)(p) + 0)) << 32) | \ ((uint64_t)(*((const uint8_t *)(p) + 1)) << 24) | \ ((uint64_t)(*((const uint8_t *)(p) + 2)) << 16) | \ ((uint64_t)(*((const uint8_t *)(p) + 3)) << 8) | \ ((uint64_t)(*((const uint8_t *)(p) + 4)) << 0)))) #define EXTRACT_BE_U_6(p) \ ((uint64_t)(((uint64_t)(*((const uint8_t *)(p) + 0)) << 40) | \ ((uint64_t)(*((const uint8_t *)(p) + 1)) << 32) | \ ((uint64_t)(*((const uint8_t *)(p) + 2)) << 24) | \ ((uint64_t)(*((const uint8_t *)(p) + 3)) << 16) | \ ((uint64_t)(*((const uint8_t *)(p) + 4)) << 8) | \ ((uint64_t)(*((const uint8_t *)(p) + 5)) << 0))) #define EXTRACT_BE_S_6(p) \ (((*((const uint8_t *)(p) + 0)) & 0x80) ? \ ((uint64_t)(((uint64_t)(*((const uint8_t *)(p) + 0)) << 40) | \ ((uint64_t)(*((const uint8_t *)(p) + 1)) << 32) | \ ((uint64_t)(*((const uint8_t *)(p) + 2)) << 24) | \ ((uint64_t)(*((const uint8_t *)(p) + 3)) << 16) | \ ((uint64_t)(*((const uint8_t *)(p) + 4)) << 8) | \ ((uint64_t)(*((const uint8_t *)(p) + 5)) << 0))) : \ ((int64_t)(INT64_T_CONSTANT(0xFFFFFFFF00000000U) | \ ((uint64_t)(*((const uint8_t *)(p) + 0)) << 40) | \ ((uint64_t)(*((const uint8_t *)(p) + 1)) << 32) | \ ((uint64_t)(*((const uint8_t *)(p) + 2)) << 24) | \ ((uint64_t)(*((const uint8_t *)(p) + 3)) << 16) | \ ((uint64_t)(*((const uint8_t *)(p) + 4)) << 8) | \ ((uint64_t)(*((const uint8_t *)(p) + 5)) << 0)))) #define EXTRACT_BE_U_7(p) \ ((uint64_t)(((uint64_t)(*((const uint8_t *)(p) + 0)) << 48) | \ ((uint64_t)(*((const uint8_t *)(p) + 1)) << 40) | \ ((uint64_t)(*((const uint8_t *)(p) + 2)) << 32) | \ ((uint64_t)(*((const uint8_t *)(p) + 3)) << 24) | \ ((uint64_t)(*((const uint8_t *)(p) + 4)) << 16) | \ ((uint64_t)(*((const uint8_t *)(p) + 5)) << 8) | \ ((uint64_t)(*((const uint8_t *)(p) + 6)) << 0))) #define EXTRACT_BE_S_7(p) \ (((*((const uint8_t *)(p) + 0)) & 0x80) ? \ ((int64_t)(((uint64_t)(*((const uint8_t *)(p) + 0)) << 48) | \ ((uint64_t)(*((const uint8_t *)(p) + 1)) << 40) | \ ((uint64_t)(*((const uint8_t *)(p) + 2)) << 32) | \ ((uint64_t)(*((const uint8_t *)(p) + 3)) << 24) | \ ((uint64_t)(*((const uint8_t *)(p) + 4)) << 16) | \ ((uint64_t)(*((const uint8_t *)(p) + 5)) << 8) | \ ((uint64_t)(*((const uint8_t *)(p) + 6)) << 0))) : \ ((int64_t)(INT64_T_CONSTANT(0xFFFFFFFFFF000000U) | \ ((uint64_t)(*((const uint8_t *)(p) + 0)) << 48) | \ ((uint64_t)(*((const uint8_t *)(p) + 1)) << 40) | \ ((uint64_t)(*((const uint8_t *)(p) + 2)) << 32) | \ ((uint64_t)(*((const uint8_t *)(p) + 3)) << 24) | \ ((uint64_t)(*((const uint8_t *)(p) + 4)) << 16) | \ ((uint64_t)(*((const uint8_t *)(p) + 5)) << 8) | \ ((uint64_t)(*((const uint8_t *)(p) + 6)) << 0)))) /* * Macros to extract possibly-unaligned little-endian integral values. * XXX - do loads on little-endian machines that support unaligned loads? */ #define EXTRACT_LE_U_2(p) \ ((uint16_t)(((uint16_t)(*((const uint8_t *)(p) + 1)) << 8) | \ ((uint16_t)(*((const uint8_t *)(p) + 0)) << 0))) #define EXTRACT_LE_S_2(p) \ ((int16_t)(((uint16_t)(*((const uint8_t *)(p) + 1)) << 8) | \ ((uint16_t)(*((const uint8_t *)(p) + 0)) << 0))) #define EXTRACT_LE_U_4(p) \ ((uint32_t)(((uint32_t)(*((const uint8_t *)(p) + 3)) << 24) | \ ((uint32_t)(*((const uint8_t *)(p) + 2)) << 16) | \ ((uint32_t)(*((const uint8_t *)(p) + 1)) << 8) | \ ((uint32_t)(*((const uint8_t *)(p) + 0)) << 0))) #define EXTRACT_LE_S_4(p) \ ((int32_t)(((uint32_t)(*((const uint8_t *)(p) + 3)) << 24) | \ ((uint32_t)(*((const uint8_t *)(p) + 2)) << 16) | \ ((uint32_t)(*((const uint8_t *)(p) + 1)) << 8) | \ ((uint32_t)(*((const uint8_t *)(p) + 0)) << 0))) #define EXTRACT_LE_U_3(p) \ ((uint32_t)(((uint32_t)(*((const uint8_t *)(p) + 2)) << 16) | \ ((uint32_t)(*((const uint8_t *)(p) + 1)) << 8) | \ ((uint32_t)(*((const uint8_t *)(p) + 0)) << 0))) #define EXTRACT_LE_S_3(p) \ ((int32_t)(((uint32_t)(*((const uint8_t *)(p) + 2)) << 16) | \ ((uint32_t)(*((const uint8_t *)(p) + 1)) << 8) | \ ((uint32_t)(*((const uint8_t *)(p) + 0)) << 0))) #define EXTRACT_LE_U_8(p) \ ((uint64_t)(((uint64_t)(*((const uint8_t *)(p) + 7)) << 56) | \ ((uint64_t)(*((const uint8_t *)(p) + 6)) << 48) | \ ((uint64_t)(*((const uint8_t *)(p) + 5)) << 40) | \ ((uint64_t)(*((const uint8_t *)(p) + 4)) << 32) | \ ((uint64_t)(*((const uint8_t *)(p) + 3)) << 24) | \ ((uint64_t)(*((const uint8_t *)(p) + 2)) << 16) | \ ((uint64_t)(*((const uint8_t *)(p) + 1)) << 8) | \ ((uint64_t)(*((const uint8_t *)(p) + 0)) << 0))) #define EXTRACT_LE_S_8(p) \ ((int64_t)(((uint64_t)(*((const uint8_t *)(p) + 7)) << 56) | \ ((uint64_t)(*((const uint8_t *)(p) + 6)) << 48) | \ ((uint64_t)(*((const uint8_t *)(p) + 5)) << 40) | \ ((uint64_t)(*((const uint8_t *)(p) + 4)) << 32) | \ ((uint64_t)(*((const uint8_t *)(p) + 3)) << 24) | \ ((uint64_t)(*((const uint8_t *)(p) + 2)) << 16) | \ ((uint64_t)(*((const uint8_t *)(p) + 1)) << 8) | \ ((uint64_t)(*((const uint8_t *)(p) + 0)) << 0))) /* * Macros to check the presence of the values in question. */ #define ND_TTEST_1(p) ND_TTEST_LEN((p), 1) #define ND_TCHECK_1(p) ND_TCHECK_LEN((p), 1) #define ND_TTEST_2(p) ND_TTEST_LEN((p), 2) #define ND_TCHECK_2(p) ND_TCHECK_LEN((p), 2) #define ND_TTEST_3(p) ND_TTEST_LEN((p), 3) #define ND_TCHECK_3(p) ND_TCHECK_LEN((p), 3) #define ND_TTEST_4(p) ND_TTEST_LEN((p), 4) #define ND_TCHECK_4(p) ND_TCHECK_LEN((p), 4) #define ND_TTEST_5(p) ND_TTEST_LEN((p), 5) #define ND_TCHECK_5(p) ND_TCHECK_LEN((p), 5) #define ND_TTEST_6(p) ND_TTEST_LEN((p), 6) #define ND_TCHECK_6(p) ND_TCHECK_LEN((p), 6) #define ND_TTEST_7(p) ND_TTEST_LEN((p), 7) #define ND_TCHECK_7(p) ND_TCHECK_LEN((p), 7) #define ND_TTEST_8(p) ND_TTEST_LEN((p), 8) #define ND_TCHECK_8(p) ND_TCHECK_LEN((p), 8) #define ND_TTEST_16(p) ND_TTEST_LEN((p), 16) #define ND_TCHECK_16(p) ND_TCHECK_LEN((p), 16)