/* $NetBSD: print-ah.c,v 1.4 1996/05/20 00:41:16 fvdl Exp $ */ /* * Copyright (c) 1988, 1989, 1990, 1991, 1992, 1993, 1994 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that: (1) source code distributions * retain the above copyright notice and this paragraph in its entirety, (2) * distributions including binary code include the above copyright notice and * this paragraph in its entirety in the documentation or other materials * provided with the distribution, and (3) all advertising materials mentioning * features or use of this software display the following acknowledgement: * ``This product includes software developed by the University of California, * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of * the University nor the names of its contributors may be used to endorse * or promote products derived from this software without specific prior * written permission. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. */ /* \summary: IPSEC Encapsulating Security Payload (ESP) printer */ #include #include "netdissect-stdinc.h" #include #include /* Any code in this file that depends on HAVE_LIBCRYPTO depends on * HAVE_OPENSSL_EVP_H too. Undefining the former when the latter isn't defined * is the simplest way of handling the dependency. */ #ifdef HAVE_LIBCRYPTO #ifdef HAVE_OPENSSL_EVP_H #include #else #undef HAVE_LIBCRYPTO #endif #endif #include "netdissect.h" #include "extract.h" #include "diag-control.h" #ifdef HAVE_LIBCRYPTO #include "strtoaddr.h" #include "ascii_strcasecmp.h" #endif #include "ip.h" #include "ip6.h" /* * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * RFC1827/2406 Encapsulated Security Payload. */ struct newesp { nd_uint32_t esp_spi; /* ESP */ nd_uint32_t esp_seq; /* Sequence number */ /*variable size*/ /* (IV and) Payload data */ /*variable size*/ /* padding */ /*8bit*/ /* pad size */ /*8bit*/ /* next header */ /*8bit*/ /* next header */ /*variable size, 32bit bound*/ /* Authentication data */ }; #ifdef HAVE_LIBCRYPTO union inaddr_u { nd_ipv4 in4; nd_ipv6 in6; }; struct sa_list { struct sa_list *next; u_int daddr_version; union inaddr_u daddr; uint32_t spi; /* if == 0, then IKEv2 */ int initiator; u_char spii[8]; /* for IKEv2 */ u_char spir[8]; const EVP_CIPHER *evp; u_int ivlen; int authlen; u_char authsecret[256]; int authsecret_len; u_char secret[256]; /* is that big enough for all secrets? */ int secretlen; }; #ifndef HAVE_EVP_CIPHER_CTX_NEW /* * Allocate an EVP_CIPHER_CTX. * Used if we have an older version of OpenSSL that doesn't provide * routines to allocate and free them. */ static EVP_CIPHER_CTX * EVP_CIPHER_CTX_new(void) { EVP_CIPHER_CTX *ctx; ctx = calloc(1, sizeof(*ctx)); return (ctx); } static void EVP_CIPHER_CTX_free(EVP_CIPHER_CTX *ctx) { EVP_CIPHER_CTX_cleanup(ctx); free(ctx); } #endif #ifdef HAVE_EVP_DECRYPTINIT_EX /* * Initialize the cipher by calling EVP_DecryptInit_ex(), because * calling EVP_DecryptInit() will reset the cipher context, clearing * the cipher, so calling it twice, with the second call having a * null cipher, will clear the already-set cipher. EVP_DecryptInit_ex(), * however, won't reset the cipher context, so you can use it to specify * the IV in a second call after a first call to EVP_DecryptInit_ex() * to set the cipher and the key. * * XXX - is there some reason why we need to make two calls? */ static int set_cipher_parameters(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, const unsigned char *key, const unsigned char *iv) { return EVP_DecryptInit_ex(ctx, cipher, NULL, key, iv); } #else /* * Initialize the cipher by calling EVP_DecryptInit(), because we don't * have EVP_DecryptInit_ex(); we rely on it not trashing the context. */ static int set_cipher_parameters(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, const unsigned char *key, const unsigned char *iv) { return EVP_DecryptInit(ctx, cipher, key, iv); } #endif static u_char * do_decrypt(netdissect_options *ndo, const char *caller, struct sa_list *sa, const u_char *iv, const u_char *ct, unsigned int ctlen) { EVP_CIPHER_CTX *ctx; unsigned int block_size; unsigned int ptlen; u_char *pt; int len; ctx = EVP_CIPHER_CTX_new(); if (ctx == NULL) { /* * Failed to initialize the cipher context. * From a look at the OpenSSL code, this appears to * mean "couldn't allocate memory for the cipher context"; * note that we're not passing any parameters, so there's * not much else it can mean. */ (*ndo->ndo_error)(ndo, S_ERR_ND_MEM_ALLOC, "%s: can't allocate memory for cipher context", caller); return NULL; } if (set_cipher_parameters(ctx, sa->evp, sa->secret, NULL) < 0) { EVP_CIPHER_CTX_free(ctx); (*ndo->ndo_warning)(ndo, "%s: espkey init failed", caller); return NULL; } if (set_cipher_parameters(ctx, NULL, NULL, iv) < 0) { EVP_CIPHER_CTX_free(ctx); (*ndo->ndo_warning)(ndo, "%s: IV init failed", caller); return NULL; } /* * At least as I read RFC 5996 section 3.14 and RFC 4303 section 2.4, * if the cipher has a block size of which the ciphertext's size must * be a multiple, the payload must be padded to make that happen, so * the ciphertext length must be a multiple of the block size. Fail * if that's not the case. */ block_size = (unsigned int)EVP_CIPHER_CTX_block_size(ctx); if ((ctlen % block_size) != 0) { EVP_CIPHER_CTX_free(ctx); (*ndo->ndo_warning)(ndo, "%s: ciphertext size %u is not a multiple of the cipher block size %u", caller, ctlen, block_size); return NULL; } /* * Attempt to allocate a buffer for the decrypted data, because * we can't decrypt on top of the input buffer. */ ptlen = ctlen; pt = (u_char *)calloc(1, ptlen); if (pt == NULL) { EVP_CIPHER_CTX_free(ctx); (*ndo->ndo_error)(ndo, S_ERR_ND_MEM_ALLOC, "%s: can't allocate memory for decryption buffer", caller); return NULL; } /* * The size of the ciphertext handed to us is a multiple of the * cipher block size, so we don't need to worry about padding. */ if (!EVP_CIPHER_CTX_set_padding(ctx, 0)) { free(pt); EVP_CIPHER_CTX_free(ctx); (*ndo->ndo_warning)(ndo, "%s: EVP_CIPHER_CTX_set_padding failed", caller); return NULL; } if (!EVP_DecryptUpdate(ctx, pt, &len, ct, ctlen)) { free(pt); EVP_CIPHER_CTX_free(ctx); (*ndo->ndo_warning)(ndo, "%s: EVP_DecryptUpdate failed", caller); return NULL; } EVP_CIPHER_CTX_free(ctx); return pt; } /* * This will allocate a new buffer containing the decrypted data. * It returns 1 on success and 0 on failure. * * It will push the new buffer and the values of ndo->ndo_packetp and * ndo->ndo_snapend onto the buffer stack, and change ndo->ndo_packetp * and ndo->ndo_snapend to refer to the new buffer. * * Our caller must pop the buffer off the stack when it's finished * dissecting anything in it and before it does any dissection of * anything in the old buffer. That will free the new buffer. */ DIAG_OFF_DEPRECATION int esp_decrypt_buffer_by_ikev2_print(netdissect_options *ndo, int initiator, const u_char spii[8], const u_char spir[8], const u_char *buf, const u_char *end) { struct sa_list *sa; const u_char *iv; const u_char *ct; unsigned int ctlen; u_char *pt; /* initiator arg is any non-zero value */ if(initiator) initiator=1; /* see if we can find the SA, and if so, decode it */ for (sa = ndo->ndo_sa_list_head; sa != NULL; sa = sa->next) { if (sa->spi == 0 && initiator == sa->initiator && memcmp(spii, sa->spii, 8) == 0 && memcmp(spir, sa->spir, 8) == 0) break; } if(sa == NULL) return 0; if(sa->evp == NULL) return 0; /* * remove authenticator, and see if we still have something to * work with */ end = end - sa->authlen; iv = buf; ct = iv + sa->ivlen; ctlen = end-ct; if(end <= ct) return 0; pt = do_decrypt(ndo, __func__, sa, iv, ct, ctlen); if (pt == NULL) return 0; /* * Switch to the output buffer for dissection, and save it * on the buffer stack so it can be freed; our caller must * pop it when done. */ if (!nd_push_buffer(ndo, pt, pt, ctlen)) { free(pt); (*ndo->ndo_error)(ndo, S_ERR_ND_MEM_ALLOC, "%s: can't push buffer on buffer stack", __func__); } return 1; } DIAG_ON_DEPRECATION static void esp_print_addsa(netdissect_options *ndo, const struct sa_list *sa, int sa_def) { /* copy the "sa" */ struct sa_list *nsa; /* malloc() return used in a 'struct sa_list': do not free() */ nsa = (struct sa_list *)malloc(sizeof(struct sa_list)); if (nsa == NULL) (*ndo->ndo_error)(ndo, S_ERR_ND_MEM_ALLOC, "%s: malloc", __func__); *nsa = *sa; if (sa_def) ndo->ndo_sa_default = nsa; nsa->next = ndo->ndo_sa_list_head; ndo->ndo_sa_list_head = nsa; } static u_int hexdigit(netdissect_options *ndo, char hex) { if (hex >= '0' && hex <= '9') return (hex - '0'); else if (hex >= 'A' && hex <= 'F') return (hex - 'A' + 10); else if (hex >= 'a' && hex <= 'f') return (hex - 'a' + 10); else { (*ndo->ndo_error)(ndo, S_ERR_ND_ESP_SECRET, "invalid hex digit %c in espsecret\n", hex); } } static u_int hex2byte(netdissect_options *ndo, char *hexstring) { u_int byte; byte = (hexdigit(ndo, hexstring[0]) << 4) + hexdigit(ndo, hexstring[1]); return byte; } /* * returns size of binary, 0 on failure. */ static int espprint_decode_hex(netdissect_options *ndo, u_char *binbuf, unsigned int binbuf_len, char *hex) { unsigned int len; int i; len = strlen(hex) / 2; if (len > binbuf_len) { (*ndo->ndo_warning)(ndo, "secret is too big: %u\n", len); return 0; } i = 0; while (hex[0] != '\0' && hex[1]!='\0') { binbuf[i] = hex2byte(ndo, hex); hex += 2; i++; } return i; } /* * decode the form: SPINUM@IP ALGONAME:0xsecret */ DIAG_OFF_DEPRECATION static int espprint_decode_encalgo(netdissect_options *ndo, char *decode, struct sa_list *sa) { size_t i; const EVP_CIPHER *evp; int authlen = 0; char *colon, *p; colon = strchr(decode, ':'); if (colon == NULL) { (*ndo->ndo_warning)(ndo, "failed to decode espsecret: %s\n", decode); return 0; } *colon = '\0'; if (strlen(decode) > strlen("-hmac96") && !strcmp(decode + strlen(decode) - strlen("-hmac96"), "-hmac96")) { p = strstr(decode, "-hmac96"); *p = '\0'; authlen = 12; } if (strlen(decode) > strlen("-cbc") && !strcmp(decode + strlen(decode) - strlen("-cbc"), "-cbc")) { p = strstr(decode, "-cbc"); *p = '\0'; } evp = EVP_get_cipherbyname(decode); if (!evp) { (*ndo->ndo_warning)(ndo, "failed to find cipher algo %s\n", decode); sa->evp = NULL; sa->authlen = 0; sa->ivlen = 0; return 0; } sa->evp = evp; sa->authlen = authlen; /* This returns an int, but it should never be negative */ sa->ivlen = EVP_CIPHER_iv_length(evp); colon++; if (colon[0] == '0' && colon[1] == 'x') { /* decode some hex! */ colon += 2; sa->secretlen = espprint_decode_hex(ndo, sa->secret, sizeof(sa->secret), colon); if(sa->secretlen == 0) return 0; } else { i = strlen(colon); if (i < sizeof(sa->secret)) { memcpy(sa->secret, colon, i); sa->secretlen = i; } else { memcpy(sa->secret, colon, sizeof(sa->secret)); sa->secretlen = sizeof(sa->secret); } } return 1; } DIAG_ON_DEPRECATION /* * for the moment, ignore the auth algorithm, just hard code the authenticator * length. Need to research how openssl looks up HMAC stuff. */ static int espprint_decode_authalgo(netdissect_options *ndo, char *decode, struct sa_list *sa) { char *colon; colon = strchr(decode, ':'); if (colon == NULL) { (*ndo->ndo_warning)(ndo, "failed to decode espsecret: %s\n", decode); return 0; } *colon = '\0'; if(ascii_strcasecmp(decode,"sha1") == 0 || ascii_strcasecmp(decode,"md5") == 0) { sa->authlen = 12; } return 1; } static void esp_print_decode_ikeline(netdissect_options *ndo, char *line, const char *file, int lineno) { /* it's an IKEv2 secret, store it instead */ struct sa_list sa1; char *init; char *icookie, *rcookie; int ilen, rlen; char *authkey; char *enckey; init = strsep(&line, " \t"); icookie = strsep(&line, " \t"); rcookie = strsep(&line, " \t"); authkey = strsep(&line, " \t"); enckey = strsep(&line, " \t"); /* if any fields are missing */ if(!init || !icookie || !rcookie || !authkey || !enckey) { (*ndo->ndo_warning)(ndo, "print_esp: failed to find all fields for ikev2 at %s:%u", file, lineno); return; } ilen = strlen(icookie); rlen = strlen(rcookie); if((init[0]!='I' && init[0]!='R') || icookie[0]!='0' || icookie[1]!='x' || rcookie[0]!='0' || rcookie[1]!='x' || ilen!=18 || rlen!=18) { (*ndo->ndo_warning)(ndo, "print_esp: line %s:%u improperly formatted.", file, lineno); (*ndo->ndo_warning)(ndo, "init=%s icookie=%s(%u) rcookie=%s(%u)", init, icookie, ilen, rcookie, rlen); return; } sa1.spi = 0; sa1.initiator = (init[0] == 'I'); if(espprint_decode_hex(ndo, sa1.spii, sizeof(sa1.spii), icookie+2)!=8) return; if(espprint_decode_hex(ndo, sa1.spir, sizeof(sa1.spir), rcookie+2)!=8) return; if(!espprint_decode_encalgo(ndo, enckey, &sa1)) return; if(!espprint_decode_authalgo(ndo, authkey, &sa1)) return; esp_print_addsa(ndo, &sa1, FALSE); } /* * * special form: file /name * causes us to go read from this file instead. * */ static void esp_print_decode_onesecret(netdissect_options *ndo, char *line, const char *file, int lineno) { struct sa_list sa1; int sa_def; char *spikey; char *decode; spikey = strsep(&line, " \t"); sa_def = 0; memset(&sa1, 0, sizeof(struct sa_list)); /* if there is only one token, then it is an algo:key token */ if (line == NULL) { decode = spikey; spikey = NULL; /* sa1.daddr.version = 0; */ /* memset(&sa1.daddr, 0, sizeof(sa1.daddr)); */ /* sa1.spi = 0; */ sa_def = 1; } else decode = line; if (spikey && ascii_strcasecmp(spikey, "file") == 0) { /* open file and read it */ FILE *secretfile; char fileline[1024]; int subfile_lineno=0; char *nl; char *filename = line; secretfile = fopen(filename, FOPEN_READ_TXT); if (secretfile == NULL) { (*ndo->ndo_error)(ndo, S_ERR_ND_OPEN_FILE, "%s: can't open %s: %s\n", __func__, filename, strerror(errno)); } while (fgets(fileline, sizeof(fileline)-1, secretfile) != NULL) { subfile_lineno++; /* remove newline from the line */ nl = strchr(fileline, '\n'); if (nl) *nl = '\0'; if (fileline[0] == '#') continue; if (fileline[0] == '\0') continue; esp_print_decode_onesecret(ndo, fileline, filename, subfile_lineno); } fclose(secretfile); return; } if (spikey && ascii_strcasecmp(spikey, "ikev2") == 0) { esp_print_decode_ikeline(ndo, line, file, lineno); return; } if (spikey) { char *spistr, *foo; uint32_t spino; spistr = strsep(&spikey, "@"); if (spistr == NULL) { (*ndo->ndo_warning)(ndo, "print_esp: failed to find the @ token"); return; } spino = strtoul(spistr, &foo, 0); if (spistr == foo || !spikey) { (*ndo->ndo_warning)(ndo, "print_esp: failed to decode spi# %s\n", foo); return; } sa1.spi = spino; if (strtoaddr6(spikey, &sa1.daddr.in6) == 1) { sa1.daddr_version = 6; } else if (strtoaddr(spikey, &sa1.daddr.in4) == 1) { sa1.daddr_version = 4; } else { (*ndo->ndo_warning)(ndo, "print_esp: can not decode IP# %s\n", spikey); return; } } if (decode) { /* skip any blank spaces */ while (*decode == ' ' || *decode == '\t' || *decode == '\r' || *decode == '\n') decode++; if(!espprint_decode_encalgo(ndo, decode, &sa1)) { return; } } esp_print_addsa(ndo, &sa1, sa_def); } DIAG_OFF_DEPRECATION static void esp_init(netdissect_options *ndo _U_) { /* * 0.9.6 doesn't appear to define OPENSSL_API_COMPAT, so * we check whether it's undefined or it's less than the * value for 1.1.0. */ #if !defined(OPENSSL_API_COMPAT) || OPENSSL_API_COMPAT < 0x10100000L OpenSSL_add_all_algorithms(); #endif EVP_add_cipher_alias(SN_des_ede3_cbc, "3des"); } DIAG_ON_DEPRECATION void esp_decodesecret_print(netdissect_options *ndo) { char *line; char *p; static int initialized = 0; if (!initialized) { esp_init(ndo); initialized = 1; } p = ndo->ndo_espsecret; while (p && p[0] != '\0') { /* pick out the first line or first thing until a comma */ if ((line = strsep(&p, "\n,")) == NULL) { line = p; p = NULL; } esp_print_decode_onesecret(ndo, line, "cmdline", 0); } ndo->ndo_espsecret = NULL; } #endif #ifdef HAVE_LIBCRYPTO #define USED_IF_LIBCRYPTO #else #define USED_IF_LIBCRYPTO _U_ #endif #ifdef HAVE_LIBCRYPTO DIAG_OFF_DEPRECATION #endif void esp_print(netdissect_options *ndo, const u_char *bp, u_int length, const u_char *bp2 USED_IF_LIBCRYPTO, u_int ver USED_IF_LIBCRYPTO, int fragmented USED_IF_LIBCRYPTO, u_int ttl_hl USED_IF_LIBCRYPTO) { const struct newesp *esp; const u_char *ep; #ifdef HAVE_LIBCRYPTO const struct ip *ip; struct sa_list *sa = NULL; const struct ip6_hdr *ip6 = NULL; const u_char *iv; u_int ivlen; u_int payloadlen; const u_char *ct; u_char *pt; u_int padlen; u_int nh; #endif ndo->ndo_protocol = "esp"; esp = (const struct newesp *)bp; /* 'ep' points to the end of available data. */ ep = ndo->ndo_snapend; if ((const u_char *)(esp + 1) >= ep) { nd_print_trunc(ndo); return; } ND_PRINT("ESP(spi=0x%08x", GET_BE_U_4(esp->esp_spi)); ND_PRINT(",seq=0x%x)", GET_BE_U_4(esp->esp_seq)); ND_PRINT(", length %u", length); #ifdef HAVE_LIBCRYPTO /* initialize SAs */ if (ndo->ndo_sa_list_head == NULL) { if (!ndo->ndo_espsecret) return; esp_decodesecret_print(ndo); } if (ndo->ndo_sa_list_head == NULL) return; ip = (const struct ip *)bp2; switch (ver) { case 6: ip6 = (const struct ip6_hdr *)bp2; /* we do not attempt to decrypt jumbograms */ if (!GET_BE_U_2(ip6->ip6_plen)) return; /* XXX - check whether it's fragmented? */ /* if we can't get nexthdr, we do not need to decrypt it */ /* see if we can find the SA, and if so, decode it */ for (sa = ndo->ndo_sa_list_head; sa != NULL; sa = sa->next) { if (sa->spi == GET_BE_U_4(esp->esp_spi) && sa->daddr_version == 6 && UNALIGNED_MEMCMP(&sa->daddr.in6, &ip6->ip6_dst, sizeof(nd_ipv6)) == 0) { break; } } break; case 4: /* nexthdr & padding are in the last fragment */ if (fragmented) return; /* see if we can find the SA, and if so, decode it */ for (sa = ndo->ndo_sa_list_head; sa != NULL; sa = sa->next) { if (sa->spi == GET_BE_U_4(esp->esp_spi) && sa->daddr_version == 4 && UNALIGNED_MEMCMP(&sa->daddr.in4, &ip->ip_dst, sizeof(nd_ipv4)) == 0) { break; } } break; default: return; } /* if we didn't find the specific one, then look for * an unspecified one. */ if (sa == NULL) sa = ndo->ndo_sa_default; /* if not found fail */ if (sa == NULL) return; /* pointer to the IV, if there is one */ iv = (const u_char *)(esp + 1) + 0; /* length of the IV, if there is one; 0, if there isn't */ ivlen = sa->ivlen; /* * Get a pointer to the ciphertext. * * p points to the beginning of the payload, i.e. to the * initialization vector, so if we skip past the initialization * vector, it points to the beginning of the ciphertext. */ ct = iv + ivlen; /* * Make sure the authentication data/integrity check value length * isn't bigger than the total amount of data available after * the ESP header and initialization vector is removed and, * if not, slice the authentication data/ICV off. */ if (ep - ct < sa->authlen) { nd_print_trunc(ndo); return; } ep = ep - sa->authlen; /* * Calculate the length of the ciphertext. ep points to * the beginning of the authentication data/integrity check * value, i.e. right past the end of the ciphertext; */ payloadlen = ep - ct; if (sa->evp == NULL) return; /* * If the next header value is past the end of the available * data, we won't be able to fetch it once we've decrypted * the ciphertext, so there's no point in decrypting the data. * * Report it as truncation. */ if (!ND_TTEST_1(ep - 1)) { nd_print_trunc(ndo); return; } pt = do_decrypt(ndo, __func__, sa, iv, ct, payloadlen); if (pt == NULL) return; /* * Switch to the output buffer for dissection, and * save it on the buffer stack so it can be freed. */ if (!nd_push_buffer(ndo, pt, pt, payloadlen)) { free(pt); (*ndo->ndo_error)(ndo, S_ERR_ND_MEM_ALLOC, "%s: can't push buffer on buffer stack", __func__); } /* * Sanity check for pad length; if it, plus 2 for the pad * length and next header fields, is bigger than the ciphertext * length (which is also the plaintext length), it's too big. * * XXX - the check can fail if the packet is corrupt *or* if * it was not decrypted with the correct key, so that the * "plaintext" is not what was being sent. */ padlen = GET_U_1(pt + payloadlen - 2); if (padlen + 2 > payloadlen) { nd_print_trunc(ndo); return; } /* Get the next header */ nh = GET_U_1(pt + payloadlen - 1); ND_PRINT(": "); /* * Don't put padding + padding length(1 byte) + next header(1 byte) * in the buffer because they are not part of the plaintext to decode. */ if (!nd_push_snaplen(ndo, pt, payloadlen - (padlen + 2))) { (*ndo->ndo_error)(ndo, S_ERR_ND_MEM_ALLOC, "%s: can't push snaplen on buffer stack", __func__); } /* Now dissect the plaintext. */ ip_demux_print(ndo, pt, payloadlen - (padlen + 2), ver, fragmented, ttl_hl, nh, bp2); /* Pop the buffer, freeing it. */ nd_pop_packet_info(ndo); /* Pop the nd_push_snaplen */ nd_pop_packet_info(ndo); #endif } #ifdef HAVE_LIBCRYPTO DIAG_ON_DEPRECATION #endif