systemd/unit.c
Lennart Poettering 80876c20f6 rework tty handling
We now make sure to run all services in their own session, possibly with
a controlling terminal.

This also extends the service and socket state machines a little.
2010-04-13 02:06:27 +02:00

1530 lines
44 KiB
C

/*-*- Mode: C; c-basic-offset: 8 -*-*/
/***
This file is part of systemd.
Copyright 2010 Lennart Poettering
systemd is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
systemd is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with systemd; If not, see <http://www.gnu.org/licenses/>.
***/
#include <assert.h>
#include <errno.h>
#include <string.h>
#include <sys/epoll.h>
#include <sys/timerfd.h>
#include <sys/poll.h>
#include <stdlib.h>
#include <unistd.h>
#include "set.h"
#include "unit.h"
#include "macro.h"
#include "strv.h"
#include "load-fragment.h"
#include "load-dropin.h"
#include "log.h"
const UnitVTable * const unit_vtable[_UNIT_TYPE_MAX] = {
[UNIT_SERVICE] = &service_vtable,
[UNIT_TIMER] = &timer_vtable,
[UNIT_SOCKET] = &socket_vtable,
[UNIT_TARGET] = &target_vtable,
[UNIT_DEVICE] = &device_vtable,
[UNIT_MOUNT] = &mount_vtable,
[UNIT_AUTOMOUNT] = &automount_vtable,
[UNIT_SNAPSHOT] = &snapshot_vtable
};
UnitType unit_name_to_type(const char *n) {
UnitType t;
assert(n);
for (t = 0; t < _UNIT_TYPE_MAX; t++)
if (endswith(n, unit_vtable[t]->suffix))
return t;
return _UNIT_TYPE_INVALID;
}
#define VALID_CHARS \
"0123456789" \
"abcdefghijklmnopqrstuvwxyz" \
"ABCDEFGHIJKLMNOPQRSTUVWXYZ" \
"-_.\\"
bool unit_name_is_valid(const char *n) {
UnitType t;
const char *e, *i;
assert(n);
if (strlen(n) >= UNIT_NAME_MAX)
return false;
t = unit_name_to_type(n);
if (t < 0 || t >= _UNIT_TYPE_MAX)
return false;
if (!(e = strrchr(n, '.')))
return false;
if (e == n)
return false;
for (i = n; i < e; i++)
if (!strchr(VALID_CHARS, *i))
return false;
return true;
}
char *unit_name_change_suffix(const char *n, const char *suffix) {
char *e, *r;
size_t a, b;
assert(n);
assert(unit_name_is_valid(n));
assert(suffix);
assert_se(e = strrchr(n, '.'));
a = e - n;
b = strlen(suffix);
if (!(r = new(char, a + b + 1)))
return NULL;
memcpy(r, n, a);
memcpy(r+a, suffix, b+1);
return r;
}
Unit *unit_new(Manager *m) {
Unit *u;
assert(m);
if (!(u = new0(Unit, 1)))
return NULL;
if (!(u->meta.names = set_new(string_hash_func, string_compare_func))) {
free(u);
return NULL;
}
u->meta.manager = m;
u->meta.type = _UNIT_TYPE_INVALID;
return u;
}
bool unit_has_name(Unit *u, const char *name) {
assert(u);
assert(name);
return !!set_get(u->meta.names, (char*) name);
}
int unit_add_name(Unit *u, const char *text) {
UnitType t;
char *s;
int r;
assert(u);
assert(text);
if (!unit_name_is_valid(text))
return -EINVAL;
if ((t = unit_name_to_type(text)) == _UNIT_TYPE_INVALID)
return -EINVAL;
if (u->meta.type != _UNIT_TYPE_INVALID && t != u->meta.type)
return -EINVAL;
if (u->meta.type != _UNIT_TYPE_INVALID &&
UNIT_VTABLE(u)->no_alias &&
!set_isempty(u->meta.names))
return -EEXIST;
if (!(s = strdup(text)))
return -ENOMEM;
if ((r = set_put(u->meta.names, s)) < 0) {
free(s);
if (r == -EEXIST)
return 0;
return r;
}
if ((r = hashmap_put(u->meta.manager->units, s, u)) < 0) {
set_remove(u->meta.names, s);
free(s);
return r;
}
if (u->meta.type == _UNIT_TYPE_INVALID) {
LIST_PREPEND(Meta, units_per_type, u->meta.manager->units_per_type[t], &u->meta);
u->meta.type = t;
if (UNIT_VTABLE(u)->init)
UNIT_VTABLE(u)->init(u);
}
if (!u->meta.id)
u->meta.id = s;
unit_add_to_dbus_queue(u);
return 0;
}
int unit_choose_id(Unit *u, const char *name) {
char *s;
assert(u);
assert(name);
/* Selects one of the names of this unit as the id */
if (!(s = set_get(u->meta.names, (char*) name)))
return -ENOENT;
u->meta.id = s;
unit_add_to_dbus_queue(u);
return 0;
}
int unit_set_description(Unit *u, const char *description) {
char *s;
assert(u);
if (!(s = strdup(description)))
return -ENOMEM;
free(u->meta.description);
u->meta.description = s;
unit_add_to_dbus_queue(u);
return 0;
}
void unit_add_to_load_queue(Unit *u) {
assert(u);
assert(u->meta.type != _UNIT_TYPE_INVALID);
if (u->meta.load_state != UNIT_STUB || u->meta.in_load_queue)
return;
LIST_PREPEND(Meta, load_queue, u->meta.manager->load_queue, &u->meta);
u->meta.in_load_queue = true;
}
void unit_add_to_cleanup_queue(Unit *u) {
assert(u);
if (u->meta.in_cleanup_queue)
return;
LIST_PREPEND(Meta, cleanup_queue, u->meta.manager->cleanup_queue, &u->meta);
u->meta.in_cleanup_queue = true;
}
void unit_add_to_dbus_queue(Unit *u) {
assert(u);
assert(u->meta.type != _UNIT_TYPE_INVALID);
if (u->meta.load_state == UNIT_STUB || u->meta.in_dbus_queue || set_isempty(u->meta.manager->subscribed))
return;
LIST_PREPEND(Meta, dbus_queue, u->meta.manager->dbus_unit_queue, &u->meta);
u->meta.in_dbus_queue = true;
}
static void bidi_set_free(Unit *u, Set *s) {
Iterator i;
Unit *other;
assert(u);
/* Frees the set and makes sure we are dropped from the
* inverse pointers */
SET_FOREACH(other, s, i) {
UnitDependency d;
for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++)
set_remove(other->meta.dependencies[d], u);
}
set_free(s);
}
void unit_free(Unit *u) {
UnitDependency d;
Iterator i;
char *t;
assert(u);
bus_unit_send_removed_signal(u);
/* Detach from next 'bigger' objects */
SET_FOREACH(t, u->meta.names, i)
hashmap_remove_value(u->meta.manager->units, t, u);
if (u->meta.type != _UNIT_TYPE_INVALID)
LIST_REMOVE(Meta, units_per_type, u->meta.manager->units_per_type[u->meta.type], &u->meta);
if (u->meta.in_load_queue)
LIST_REMOVE(Meta, load_queue, u->meta.manager->load_queue, &u->meta);
if (u->meta.in_dbus_queue)
LIST_REMOVE(Meta, dbus_queue, u->meta.manager->dbus_unit_queue, &u->meta);
if (u->meta.in_cleanup_queue)
LIST_REMOVE(Meta, cleanup_queue, u->meta.manager->cleanup_queue, &u->meta);
/* Free data and next 'smaller' objects */
if (u->meta.job)
job_free(u->meta.job);
if (u->meta.load_state != UNIT_STUB)
if (UNIT_VTABLE(u)->done)
UNIT_VTABLE(u)->done(u);
cgroup_bonding_free_list(u->meta.cgroup_bondings);
for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++)
bidi_set_free(u, u->meta.dependencies[d]);
free(u->meta.description);
free(u->meta.fragment_path);
while ((t = set_steal_first(u->meta.names)))
free(t);
set_free(u->meta.names);
free(u);
}
UnitActiveState unit_active_state(Unit *u) {
assert(u);
if (u->meta.load_state != UNIT_LOADED)
return UNIT_INACTIVE;
return UNIT_VTABLE(u)->active_state(u);
}
static void complete_move(Set **s, Set **other) {
assert(s);
assert(other);
if (!*other)
return;
if (*s)
set_move(*s, *other);
else {
*s = *other;
*other = NULL;
}
}
static void merge_names(Unit *u, Unit *other) {
char *t;
Iterator i;
assert(u);
assert(other);
complete_move(&u->meta.names, &other->meta.names);
while ((t = set_steal_first(other->meta.names)))
free(t);
set_free(other->meta.names);
other->meta.names = NULL;
other->meta.id = NULL;
SET_FOREACH(t, u->meta.names, i)
assert_se(hashmap_replace(u->meta.manager->units, t, u) == 0);
}
static void merge_dependencies(Unit *u, Unit *other, UnitDependency d) {
Iterator i;
Unit *back;
int r;
assert(u);
assert(other);
assert(d < _UNIT_DEPENDENCY_MAX);
SET_FOREACH(back, other->meta.dependencies[d], i) {
UnitDependency k;
for (k = 0; k < _UNIT_DEPENDENCY_MAX; k++)
if ((r = set_remove_and_put(back->meta.dependencies[k], other, u)) < 0) {
if (r == -EEXIST)
set_remove(back->meta.dependencies[k], other);
else
assert(r == -ENOENT);
}
}
complete_move(&u->meta.dependencies[d], &other->meta.dependencies[d]);
set_free(other->meta.dependencies[d]);
other->meta.dependencies[d] = NULL;
}
int unit_merge(Unit *u, Unit *other) {
UnitDependency d;
assert(u);
assert(other);
assert(u->meta.manager == other->meta.manager);
other = unit_follow_merge(other);
if (other == u)
return 0;
if (u->meta.type != u->meta.type)
return -EINVAL;
if (other->meta.load_state != UNIT_STUB &&
other->meta.load_state != UNIT_FAILED)
return -EEXIST;
if (other->meta.job)
return -EEXIST;
if (unit_active_state(other) != UNIT_INACTIVE)
return -EEXIST;
/* Merge names */
merge_names(u, other);
/* Merge dependencies */
for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++)
merge_dependencies(u, other, d);
other->meta.load_state = UNIT_MERGED;
other->meta.merged_into = u;
/* If there is still some data attached to the other node, we
* don't need it anymore, and can free it. */
if (other->meta.load_state != UNIT_STUB)
if (UNIT_VTABLE(other)->done)
UNIT_VTABLE(other)->done(other);
unit_add_to_dbus_queue(u);
unit_add_to_cleanup_queue(other);
return 0;
}
int unit_merge_by_name(Unit *u, const char *name) {
Unit *other;
assert(u);
assert(name);
if (!(other = manager_get_unit(u->meta.manager, name)))
return unit_add_name(u, name);
return unit_merge(u, other);
}
Unit* unit_follow_merge(Unit *u) {
assert(u);
while (u->meta.load_state == UNIT_MERGED)
assert_se(u = u->meta.merged_into);
return u;
}
int unit_add_exec_dependencies(Unit *u, ExecContext *c) {
int r;
assert(u);
assert(c);
if (c->std_output != EXEC_OUTPUT_KERNEL && c->std_output != EXEC_OUTPUT_SYSLOG)
return 0;
/* If syslog or kernel logging is requested, make sure our own
* logging daemon is run first. */
if ((r = unit_add_dependency_by_name(u, UNIT_AFTER, SPECIAL_LOGGER_SOCKET)) < 0)
return r;
if (u->meta.manager->running_as != MANAGER_SESSION)
if ((r = unit_add_dependency_by_name(u, UNIT_REQUIRES, SPECIAL_LOGGER_SOCKET)) < 0)
return r;
return 0;
}
const char* unit_id(Unit *u) {
assert(u);
if (u->meta.id)
return u->meta.id;
return set_first(u->meta.names);
}
const char *unit_description(Unit *u) {
assert(u);
if (u->meta.description)
return u->meta.description;
return unit_id(u);
}
void unit_dump(Unit *u, FILE *f, const char *prefix) {
char *t;
UnitDependency d;
Iterator i;
char *p2;
const char *prefix2;
CGroupBonding *b;
char timestamp1[FORMAT_TIMESTAMP_MAX], timestamp2[FORMAT_TIMESTAMP_MAX];
assert(u);
if (!prefix)
prefix = "";
p2 = strappend(prefix, "\t");
prefix2 = p2 ? p2 : prefix;
fprintf(f,
"%s→ Unit %s:\n"
"%s\tDescription: %s\n"
"%s\tUnit Load State: %s\n"
"%s\tUnit Active State: %s\n"
"%s\tActive Enter Timestamp: %s\n"
"%s\tActive Exit Timestamp: %s\n",
prefix, unit_id(u),
prefix, unit_description(u),
prefix, unit_load_state_to_string(u->meta.load_state),
prefix, unit_active_state_to_string(unit_active_state(u)),
prefix, strna(format_timestamp(timestamp1, sizeof(timestamp1), u->meta.active_enter_timestamp)),
prefix, strna(format_timestamp(timestamp2, sizeof(timestamp2), u->meta.active_exit_timestamp)));
SET_FOREACH(t, u->meta.names, i)
fprintf(f, "%s\tName: %s\n", prefix, t);
if (u->meta.fragment_path)
fprintf(f, "%s\tFragment Path: %s\n", prefix, u->meta.fragment_path);
for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++) {
Unit *other;
SET_FOREACH(other, u->meta.dependencies[d], i)
fprintf(f, "%s\t%s: %s\n", prefix, unit_dependency_to_string(d), unit_id(other));
}
if (u->meta.load_state == UNIT_LOADED) {
fprintf(f,
"%s\tRecursive Stop: %s\n"
"%s\tStop When Unneeded: %s\n",
prefix, yes_no(u->meta.recursive_stop),
prefix, yes_no(u->meta.stop_when_unneeded));
LIST_FOREACH(by_unit, b, u->meta.cgroup_bondings)
fprintf(f, "%s\tControlGroup: %s:%s\n",
prefix, b->controller, b->path);
if (UNIT_VTABLE(u)->dump)
UNIT_VTABLE(u)->dump(u, f, prefix2);
} else if (u->meta.load_state == UNIT_MERGED)
fprintf(f,
"%s\tMerged into: %s\n",
prefix, unit_id(u->meta.merged_into));
if (u->meta.job)
job_dump(u->meta.job, f, prefix2);
free(p2);
}
/* Common implementation for multiple backends */
int unit_load_fragment_and_dropin(Unit *u) {
int r;
assert(u);
/* Load a .service file */
if ((r = unit_load_fragment(u)) < 0)
return r;
if (u->meta.load_state == UNIT_STUB)
return -ENOENT;
/* Load drop-in directory data */
if ((r = unit_load_dropin(unit_follow_merge(u))) < 0)
return r;
return 0;
}
/* Common implementation for multiple backends */
int unit_load_fragment_and_dropin_optional(Unit *u) {
int r;
assert(u);
/* Same as unit_load_fragment_and_dropin(), but whether
* something can be loaded or not doesn't matter. */
/* Load a .service file */
if ((r = unit_load_fragment(u)) < 0)
return r;
if (u->meta.load_state == UNIT_STUB)
u->meta.load_state = UNIT_LOADED;
/* Load drop-in directory data */
if ((r = unit_load_dropin(unit_follow_merge(u))) < 0)
return r;
return 0;
}
int unit_load(Unit *u) {
int r;
assert(u);
if (u->meta.in_load_queue) {
LIST_REMOVE(Meta, load_queue, u->meta.manager->load_queue, &u->meta);
u->meta.in_load_queue = false;
}
if (u->meta.type == _UNIT_TYPE_INVALID)
return -EINVAL;
if (u->meta.load_state != UNIT_STUB)
return 0;
if (UNIT_VTABLE(u)->load)
if ((r = UNIT_VTABLE(u)->load(u)) < 0)
goto fail;
if (u->meta.load_state == UNIT_STUB) {
r = -ENOENT;
goto fail;
}
assert((u->meta.load_state != UNIT_MERGED) == !u->meta.merged_into);
unit_add_to_dbus_queue(unit_follow_merge(u));
return 0;
fail:
u->meta.load_state = UNIT_FAILED;
unit_add_to_dbus_queue(u);
log_error("Failed to load configuration for %s: %s", unit_id(u), strerror(-r));
return r;
}
/* Errors:
* -EBADR: This unit type does not support starting.
* -EALREADY: Unit is already started.
* -EAGAIN: An operation is already in progress. Retry later.
*/
int unit_start(Unit *u) {
UnitActiveState state;
assert(u);
/* If this is already (being) started, then this will
* succeed. Note that this will even succeed if this unit is
* not startable by the user. This is relied on to detect when
* we need to wait for units and when waiting is finished. */
state = unit_active_state(u);
if (UNIT_IS_ACTIVE_OR_RELOADING(state))
return -EALREADY;
/* If it is stopped, but we cannot start it, then fail */
if (!UNIT_VTABLE(u)->start)
return -EBADR;
/* We don't suppress calls to ->start() here when we are
* already starting, to allow this request to be used as a
* "hurry up" call, for example when the unit is in some "auto
* restart" state where it waits for a holdoff timer to elapse
* before it will start again. */
unit_add_to_dbus_queue(u);
return UNIT_VTABLE(u)->start(u);
}
bool unit_can_start(Unit *u) {
assert(u);
return !!UNIT_VTABLE(u)->start;
}
/* Errors:
* -EBADR: This unit type does not support stopping.
* -EALREADY: Unit is already stopped.
* -EAGAIN: An operation is already in progress. Retry later.
*/
int unit_stop(Unit *u) {
UnitActiveState state;
assert(u);
state = unit_active_state(u);
if (state == UNIT_INACTIVE)
return -EALREADY;
if (!UNIT_VTABLE(u)->stop)
return -EBADR;
unit_add_to_dbus_queue(u);
return UNIT_VTABLE(u)->stop(u);
}
/* Errors:
* -EBADR: This unit type does not support reloading.
* -ENOEXEC: Unit is not started.
* -EAGAIN: An operation is already in progress. Retry later.
*/
int unit_reload(Unit *u) {
UnitActiveState state;
assert(u);
if (!unit_can_reload(u))
return -EBADR;
state = unit_active_state(u);
if (unit_active_state(u) == UNIT_ACTIVE_RELOADING)
return -EALREADY;
if (unit_active_state(u) != UNIT_ACTIVE)
return -ENOEXEC;
unit_add_to_dbus_queue(u);
return UNIT_VTABLE(u)->reload(u);
}
bool unit_can_reload(Unit *u) {
assert(u);
if (!UNIT_VTABLE(u)->reload)
return false;
if (!UNIT_VTABLE(u)->can_reload)
return true;
return UNIT_VTABLE(u)->can_reload(u);
}
static void unit_check_uneeded(Unit *u) {
Iterator i;
Unit *other;
assert(u);
/* If this service shall be shut down when unneeded then do
* so. */
if (!u->meta.stop_when_unneeded)
return;
if (!UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(u)))
return;
SET_FOREACH(other, u->meta.dependencies[UNIT_REQUIRED_BY], i)
if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other)))
return;
SET_FOREACH(other, u->meta.dependencies[UNIT_SOFT_REQUIRED_BY], i)
if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other)))
return;
SET_FOREACH(other, u->meta.dependencies[UNIT_WANTED_BY], i)
if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other)))
return;
log_debug("Service %s is not needed anymore. Stopping.", unit_id(u));
/* Ok, nobody needs us anymore. Sniff. Then let's commit suicide */
manager_add_job(u->meta.manager, JOB_STOP, u, JOB_FAIL, true, NULL);
}
static void retroactively_start_dependencies(Unit *u) {
Iterator i;
Unit *other;
assert(u);
assert(UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(u)));
SET_FOREACH(other, u->meta.dependencies[UNIT_REQUIRES], i)
if (!UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other)))
manager_add_job(u->meta.manager, JOB_START, other, JOB_REPLACE, true, NULL);
SET_FOREACH(other, u->meta.dependencies[UNIT_SOFT_REQUIRES], i)
if (!UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other)))
manager_add_job(u->meta.manager, JOB_START, other, JOB_FAIL, false, NULL);
SET_FOREACH(other, u->meta.dependencies[UNIT_REQUISITE], i)
if (!UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other)))
manager_add_job(u->meta.manager, JOB_START, other, JOB_REPLACE, true, NULL);
SET_FOREACH(other, u->meta.dependencies[UNIT_WANTS], i)
if (!UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other)))
manager_add_job(u->meta.manager, JOB_START, other, JOB_FAIL, false, NULL);
SET_FOREACH(other, u->meta.dependencies[UNIT_CONFLICTS], i)
if (!UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other)))
manager_add_job(u->meta.manager, JOB_STOP, other, JOB_REPLACE, true, NULL);
}
static void retroactively_stop_dependencies(Unit *u) {
Iterator i;
Unit *other;
assert(u);
assert(UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(u)));
if (u->meta.recursive_stop) {
/* Pull down units need us recursively if enabled */
SET_FOREACH(other, u->meta.dependencies[UNIT_REQUIRED_BY], i)
if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other)))
manager_add_job(u->meta.manager, JOB_STOP, other, JOB_REPLACE, true, NULL);
}
/* Garbage collect services that might not be needed anymore, if enabled */
SET_FOREACH(other, u->meta.dependencies[UNIT_REQUIRES], i)
if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other)))
unit_check_uneeded(other);
SET_FOREACH(other, u->meta.dependencies[UNIT_SOFT_REQUIRES], i)
if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other)))
unit_check_uneeded(other);
SET_FOREACH(other, u->meta.dependencies[UNIT_WANTS], i)
if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other)))
unit_check_uneeded(other);
SET_FOREACH(other, u->meta.dependencies[UNIT_REQUISITE], i)
if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other)))
unit_check_uneeded(other);
SET_FOREACH(other, u->meta.dependencies[UNIT_SOFT_REQUISITE], i)
if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other)))
unit_check_uneeded(other);
}
void unit_notify(Unit *u, UnitActiveState os, UnitActiveState ns) {
bool unexpected = false;
assert(u);
assert(os < _UNIT_ACTIVE_STATE_MAX);
assert(ns < _UNIT_ACTIVE_STATE_MAX);
assert(!(os == UNIT_ACTIVE && ns == UNIT_ACTIVATING));
assert(!(os == UNIT_INACTIVE && ns == UNIT_DEACTIVATING));
/* Note that this is called for all low-level state changes,
* even if they might map to the same high-level
* UnitActiveState! That means that ns == os is OK an expected
* behaviour here. For example: if a mount point is remounted
* this function will be called too and the utmp code below
* relies on that! */
if (!UNIT_IS_ACTIVE_OR_RELOADING(os) && UNIT_IS_ACTIVE_OR_RELOADING(ns))
u->meta.active_enter_timestamp = now(CLOCK_REALTIME);
else if (UNIT_IS_ACTIVE_OR_RELOADING(os) && !UNIT_IS_ACTIVE_OR_RELOADING(ns))
u->meta.active_exit_timestamp = now(CLOCK_REALTIME);
if (u->meta.job) {
if (u->meta.job->state == JOB_WAITING)
/* So we reached a different state for this
* job. Let's see if we can run it now if it
* failed previously due to EAGAIN. */
job_add_to_run_queue(u->meta.job);
else {
assert(u->meta.job->state == JOB_RUNNING);
/* Let's check whether this state change
* constitutes a finished job, or maybe
* cotradicts a running job and hence needs to
* invalidate jobs. */
switch (u->meta.job->type) {
case JOB_START:
case JOB_VERIFY_ACTIVE:
if (UNIT_IS_ACTIVE_OR_RELOADING(ns))
job_finish_and_invalidate(u->meta.job, true);
else if (ns != UNIT_ACTIVATING) {
unexpected = true;
job_finish_and_invalidate(u->meta.job, false);
}
break;
case JOB_RELOAD:
case JOB_RELOAD_OR_START:
if (ns == UNIT_ACTIVE)
job_finish_and_invalidate(u->meta.job, true);
else if (ns != UNIT_ACTIVATING && ns != UNIT_ACTIVE_RELOADING) {
unexpected = true;
job_finish_and_invalidate(u->meta.job, false);
}
break;
case JOB_STOP:
case JOB_RESTART:
case JOB_TRY_RESTART:
if (ns == UNIT_INACTIVE)
job_finish_and_invalidate(u->meta.job, true);
else if (ns != UNIT_DEACTIVATING) {
unexpected = true;
job_finish_and_invalidate(u->meta.job, false);
}
break;
default:
assert_not_reached("Job type unknown");
}
}
}
/* If this state change happened without being requested by a
* job, then let's retroactively start or stop dependencies */
if (unexpected) {
if (UNIT_IS_INACTIVE_OR_DEACTIVATING(os) && UNIT_IS_ACTIVE_OR_ACTIVATING(ns))
retroactively_start_dependencies(u);
else if (UNIT_IS_ACTIVE_OR_ACTIVATING(os) && UNIT_IS_INACTIVE_OR_DEACTIVATING(ns))
retroactively_stop_dependencies(u);
}
/* Some names are special */
if (UNIT_IS_ACTIVE_OR_RELOADING(ns)) {
if (unit_has_name(u, SPECIAL_DBUS_SERVICE)) {
/* The bus just might have become available,
* hence try to connect to it, if we aren't
* yet connected. */
bus_init_system(u->meta.manager);
bus_init_api(u->meta.manager);
}
if (unit_has_name(u, SPECIAL_SYSLOG_SERVICE))
/* The syslog daemon just might have become
* available, hence try to connect to it, if
* we aren't yet connected. */
log_open_syslog();
if (u->meta.type == UNIT_MOUNT)
/* Another directory became available, let's
* check if that is enough to write our utmp
* entry. */
manager_write_utmp_reboot(u->meta.manager);
if (u->meta.type == UNIT_TARGET)
/* A target got activated, maybe this is a runlevel? */
manager_write_utmp_runlevel(u->meta.manager, u);
} else if (!UNIT_IS_ACTIVE_OR_RELOADING(ns)) {
if (unit_has_name(u, SPECIAL_SYSLOG_SERVICE))
/* The syslog daemon might just have
* terminated, hence try to disconnect from
* it. */
log_close_syslog();
/* We don't care about D-Bus here, since we'll get an
* asynchronous notification for it anyway. */
}
/* Maybe we finished startup and are now ready for being
* stopped because unneeded? */
unit_check_uneeded(u);
unit_add_to_dbus_queue(u);
}
int unit_watch_fd(Unit *u, int fd, uint32_t events, Watch *w) {
struct epoll_event ev;
assert(u);
assert(fd >= 0);
assert(w);
assert(w->type == WATCH_INVALID || (w->type == WATCH_FD && w->fd == fd && w->data.unit == u));
zero(ev);
ev.data.ptr = w;
ev.events = events;
if (epoll_ctl(u->meta.manager->epoll_fd,
w->type == WATCH_INVALID ? EPOLL_CTL_ADD : EPOLL_CTL_MOD,
fd,
&ev) < 0)
return -errno;
w->fd = fd;
w->type = WATCH_FD;
w->data.unit = u;
return 0;
}
void unit_unwatch_fd(Unit *u, Watch *w) {
assert(u);
assert(w);
if (w->type == WATCH_INVALID)
return;
assert(w->type == WATCH_FD);
assert(w->data.unit == u);
assert_se(epoll_ctl(u->meta.manager->epoll_fd, EPOLL_CTL_DEL, w->fd, NULL) >= 0);
w->fd = -1;
w->type = WATCH_INVALID;
w->data.unit = NULL;
}
int unit_watch_pid(Unit *u, pid_t pid) {
assert(u);
assert(pid >= 1);
return hashmap_put(u->meta.manager->watch_pids, UINT32_TO_PTR(pid), u);
}
void unit_unwatch_pid(Unit *u, pid_t pid) {
assert(u);
assert(pid >= 1);
hashmap_remove(u->meta.manager->watch_pids, UINT32_TO_PTR(pid));
}
int unit_watch_timer(Unit *u, usec_t delay, Watch *w) {
struct itimerspec its;
int flags, fd;
bool ours;
assert(u);
assert(w);
assert(w->type == WATCH_INVALID || (w->type == WATCH_TIMER && w->data.unit == u));
/* This will try to reuse the old timer if there is one */
if (w->type == WATCH_TIMER) {
ours = false;
fd = w->fd;
} else {
ours = true;
if ((fd = timerfd_create(CLOCK_MONOTONIC, TFD_NONBLOCK|TFD_CLOEXEC)) < 0)
return -errno;
}
zero(its);
if (delay <= 0) {
/* Set absolute time in the past, but not 0, since we
* don't want to disarm the timer */
its.it_value.tv_sec = 0;
its.it_value.tv_nsec = 1;
flags = TFD_TIMER_ABSTIME;
} else {
timespec_store(&its.it_value, delay);
flags = 0;
}
/* This will also flush the elapse counter */
if (timerfd_settime(fd, flags, &its, NULL) < 0)
goto fail;
if (w->type == WATCH_INVALID) {
struct epoll_event ev;
zero(ev);
ev.data.ptr = w;
ev.events = EPOLLIN;
if (epoll_ctl(u->meta.manager->epoll_fd, EPOLL_CTL_ADD, fd, &ev) < 0)
goto fail;
}
w->fd = fd;
w->type = WATCH_TIMER;
w->data.unit = u;
return 0;
fail:
if (ours)
close_nointr_nofail(fd);
return -errno;
}
void unit_unwatch_timer(Unit *u, Watch *w) {
assert(u);
assert(w);
if (w->type == WATCH_INVALID)
return;
assert(w->type == WATCH_TIMER && w->data.unit == u);
assert_se(epoll_ctl(u->meta.manager->epoll_fd, EPOLL_CTL_DEL, w->fd, NULL) >= 0);
assert_se(close_nointr(w->fd) == 0);
w->fd = -1;
w->type = WATCH_INVALID;
w->data.unit = NULL;
}
bool unit_job_is_applicable(Unit *u, JobType j) {
assert(u);
assert(j >= 0 && j < _JOB_TYPE_MAX);
switch (j) {
case JOB_VERIFY_ACTIVE:
case JOB_START:
return true;
case JOB_STOP:
case JOB_RESTART:
case JOB_TRY_RESTART:
return unit_can_start(u);
case JOB_RELOAD:
return unit_can_reload(u);
case JOB_RELOAD_OR_START:
return unit_can_reload(u) && unit_can_start(u);
default:
assert_not_reached("Invalid job type");
}
}
int unit_add_dependency(Unit *u, UnitDependency d, Unit *other) {
static const UnitDependency inverse_table[_UNIT_DEPENDENCY_MAX] = {
[UNIT_REQUIRES] = UNIT_REQUIRED_BY,
[UNIT_SOFT_REQUIRES] = UNIT_SOFT_REQUIRED_BY,
[UNIT_WANTS] = UNIT_WANTED_BY,
[UNIT_REQUISITE] = UNIT_REQUIRED_BY,
[UNIT_SOFT_REQUISITE] = UNIT_SOFT_REQUIRED_BY,
[UNIT_REQUIRED_BY] = _UNIT_DEPENDENCY_INVALID,
[UNIT_SOFT_REQUIRED_BY] = _UNIT_DEPENDENCY_INVALID,
[UNIT_WANTED_BY] = _UNIT_DEPENDENCY_INVALID,
[UNIT_CONFLICTS] = UNIT_CONFLICTS,
[UNIT_BEFORE] = UNIT_AFTER,
[UNIT_AFTER] = UNIT_BEFORE
};
int r;
assert(u);
assert(d >= 0 && d < _UNIT_DEPENDENCY_MAX);
assert(inverse_table[d] != _UNIT_DEPENDENCY_INVALID);
assert(other);
/* We won't allow dependencies on ourselves. We will not
* consider them an error however. */
if (u == other)
return 0;
if ((r = set_ensure_allocated(&u->meta.dependencies[d], trivial_hash_func, trivial_compare_func)) < 0)
return r;
if ((r = set_ensure_allocated(&other->meta.dependencies[inverse_table[d]], trivial_hash_func, trivial_compare_func)) < 0)
return r;
if ((r = set_put(u->meta.dependencies[d], other)) < 0)
return r;
if ((r = set_put(other->meta.dependencies[inverse_table[d]], u)) < 0) {
set_remove(u->meta.dependencies[d], other);
return r;
}
unit_add_to_dbus_queue(u);
return 0;
}
int unit_add_dependency_by_name(Unit *u, UnitDependency d, const char *name) {
Unit *other;
int r;
if ((r = manager_load_unit(u->meta.manager, name, &other)) < 0)
return r;
if ((r = unit_add_dependency(u, d, other)) < 0)
return r;
return 0;
}
int unit_add_dependency_by_name_inverse(Unit *u, UnitDependency d, const char *name) {
Unit *other;
int r;
if ((r = manager_load_unit(u->meta.manager, name, &other)) < 0)
return r;
if ((r = unit_add_dependency(other, d, u)) < 0)
return r;
return 0;
}
int set_unit_path(const char *p) {
char *cwd, *c;
int r;
/* This is mostly for debug purposes */
if (path_is_absolute(p)) {
if (!(c = strdup(p)))
return -ENOMEM;
} else {
if (!(cwd = get_current_dir_name()))
return -errno;
r = asprintf(&c, "%s/%s", cwd, p);
free(cwd);
if (r < 0)
return -ENOMEM;
}
if (setenv("SYSTEMD_UNIT_PATH", c, 0) < 0) {
r = -errno;
free(c);
return r;
}
return 0;
}
char *unit_name_escape_path(const char *path, const char *suffix) {
char *r, *t;
const char *f;
size_t a, b;
assert(path);
/* Takes a path and a suffix and prefix and makes a nice
* string suitable as unit name of it, escaping all weird
* chars on the way.
*
* / becomes ., and all chars not alloweed in a unit name get
* escaped as \xFF, including \ and ., of course. This
* escaping is hence reversible.
*/
if (!suffix)
suffix = "";
a = strlen(path);
b = strlen(suffix);
if (!(r = new(char, a*4+b+1)))
return NULL;
for (f = path, t = r; *f; f++) {
if (*f == '/')
*(t++) = '.';
else if (*f == '.' || *f == '\\' || !strchr(VALID_CHARS, *f)) {
*(t++) = '\\';
*(t++) = 'x';
*(t++) = hexchar(*f > 4);
*(t++) = hexchar(*f);
} else
*(t++) = *f;
}
memcpy(t, suffix, b+1);
return r;
}
char *unit_dbus_path(Unit *u) {
char *p, *e;
assert(u);
if (!(e = bus_path_escape(unit_id(u))))
return NULL;
if (asprintf(&p, "/org/freedesktop/systemd1/unit/%s", e) < 0) {
free(e);
return NULL;
}
free(e);
return p;
}
int unit_add_cgroup(Unit *u, CGroupBonding *b) {
CGroupBonding *l;
int r;
assert(u);
assert(b);
assert(b->path);
/* Ensure this hasn't been added yet */
assert(!b->unit);
l = hashmap_get(u->meta.manager->cgroup_bondings, b->path);
LIST_PREPEND(CGroupBonding, by_path, l, b);
if ((r = hashmap_replace(u->meta.manager->cgroup_bondings, b->path, l)) < 0) {
LIST_REMOVE(CGroupBonding, by_path, l, b);
return r;
}
LIST_PREPEND(CGroupBonding, by_unit, u->meta.cgroup_bondings, b);
b->unit = u;
return 0;
}
static char *default_cgroup_path(Unit *u) {
char *p;
assert(u);
if (asprintf(&p, "%s/%s", u->meta.manager->cgroup_hierarchy, unit_id(u)) < 0)
return NULL;
return p;
}
int unit_add_cgroup_from_text(Unit *u, const char *name) {
size_t n;
char *controller = NULL, *path = NULL;
CGroupBonding *b = NULL;
int r;
assert(u);
assert(name);
/* Detect controller name */
n = strcspn(name, ":");
if (name[n] == 0 ||
(name[n] == ':' && name[n+1] == 0)) {
/* Only controller name, no path? */
if (!(path = default_cgroup_path(u)))
return -ENOMEM;
} else {
const char *p;
/* Controller name, and path. */
p = name+n+1;
if (!path_is_absolute(p))
return -EINVAL;
if (!(path = strdup(p)))
return -ENOMEM;
}
if (n > 0)
controller = strndup(name, n);
else
controller = strdup(u->meta.manager->cgroup_controller);
if (!controller) {
r = -ENOMEM;
goto fail;
}
if (cgroup_bonding_find_list(u->meta.cgroup_bondings, controller)) {
r = -EEXIST;
goto fail;
}
if (!(b = new0(CGroupBonding, 1))) {
r = -ENOMEM;
goto fail;
}
b->controller = controller;
b->path = path;
b->only_us = false;
b->clean_up = false;
if ((r = unit_add_cgroup(u, b)) < 0)
goto fail;
return 0;
fail:
free(path);
free(controller);
free(b);
return r;
}
int unit_add_default_cgroup(Unit *u) {
CGroupBonding *b;
int r = -ENOMEM;
assert(u);
/* Adds in the default cgroup data, if it wasn't specified yet */
if (unit_get_default_cgroup(u))
return 0;
if (!(b = new0(CGroupBonding, 1)))
return -ENOMEM;
if (!(b->controller = strdup(u->meta.manager->cgroup_controller)))
goto fail;
if (!(b->path = default_cgroup_path(u)))
goto fail;
b->clean_up = true;
b->only_us = true;
if ((r = unit_add_cgroup(u, b)) < 0)
goto fail;
return 0;
fail:
free(b->path);
free(b->controller);
free(b);
return r;
}
CGroupBonding* unit_get_default_cgroup(Unit *u) {
assert(u);
return cgroup_bonding_find_list(u->meta.cgroup_bondings, u->meta.manager->cgroup_controller);
}
int unit_load_related_unit(Unit *u, const char *type, Unit **_found) {
char *t;
int r;
assert(u);
assert(type);
assert(_found);
if (!(t = unit_name_change_suffix(unit_id(u), type)))
return -ENOMEM;
assert(!unit_has_name(u, t));
r = manager_load_unit(u->meta.manager, t, _found);
free(t);
if (r >= 0)
assert(*_found != u);
return r;
}
static const char* const unit_type_table[_UNIT_TYPE_MAX] = {
[UNIT_SERVICE] = "service",
[UNIT_TIMER] = "timer",
[UNIT_SOCKET] = "socket",
[UNIT_TARGET] = "target",
[UNIT_DEVICE] = "device",
[UNIT_MOUNT] = "mount",
[UNIT_AUTOMOUNT] = "automount",
[UNIT_SNAPSHOT] = "snapshot"
};
DEFINE_STRING_TABLE_LOOKUP(unit_type, UnitType);
static const char* const unit_load_state_table[_UNIT_LOAD_STATE_MAX] = {
[UNIT_STUB] = "stub",
[UNIT_LOADED] = "loaded",
[UNIT_FAILED] = "failed",
[UNIT_MERGED] = "merged"
};
DEFINE_STRING_TABLE_LOOKUP(unit_load_state, UnitLoadState);
static const char* const unit_active_state_table[_UNIT_ACTIVE_STATE_MAX] = {
[UNIT_ACTIVE] = "active",
[UNIT_INACTIVE] = "inactive",
[UNIT_ACTIVATING] = "activating",
[UNIT_DEACTIVATING] = "deactivating"
};
DEFINE_STRING_TABLE_LOOKUP(unit_active_state, UnitActiveState);
static const char* const unit_dependency_table[_UNIT_DEPENDENCY_MAX] = {
[UNIT_REQUIRES] = "Requires",
[UNIT_SOFT_REQUIRES] = "SoftRequires",
[UNIT_WANTS] = "Wants",
[UNIT_REQUISITE] = "Requisite",
[UNIT_SOFT_REQUISITE] = "SoftRequisite",
[UNIT_REQUIRED_BY] = "RequiredBy",
[UNIT_SOFT_REQUIRED_BY] = "SoftRequiredBy",
[UNIT_WANTED_BY] = "WantedBy",
[UNIT_CONFLICTS] = "Conflicts",
[UNIT_BEFORE] = "Before",
[UNIT_AFTER] = "After",
};
DEFINE_STRING_TABLE_LOOKUP(unit_dependency, UnitDependency);
static const char* const kill_mode_table[_KILL_MODE_MAX] = {
[KILL_CONTROL_GROUP] = "control-group",
[KILL_PROCESS_GROUP] = "process-group",
[KILL_PROCESS] = "process",
[KILL_NONE] = "none"
};
DEFINE_STRING_TABLE_LOOKUP(kill_mode, KillMode);