systemd/man/systemd.service.xml

958 lines
54 KiB
XML

<?xml version='1.0'?> <!--*-nxml-*-->
<?xml-stylesheet type="text/xsl" href="http://docbook.sourceforge.net/release/xsl/current/xhtml/docbook.xsl"?>
<!DOCTYPE refentry PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN"
"http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd">
<!--
This file is part of systemd.
Copyright 2010 Lennart Poettering
systemd is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
systemd is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with systemd; If not, see <http://www.gnu.org/licenses/>.
-->
<refentry id="systemd.service">
<refentryinfo>
<title>systemd.service</title>
<productname>systemd</productname>
<authorgroup>
<author>
<contrib>Developer</contrib>
<firstname>Lennart</firstname>
<surname>Poettering</surname>
<email>lennart@poettering.net</email>
</author>
</authorgroup>
</refentryinfo>
<refmeta>
<refentrytitle>systemd.service</refentrytitle>
<manvolnum>5</manvolnum>
</refmeta>
<refnamediv>
<refname>systemd.service</refname>
<refpurpose>Service unit configuration</refpurpose>
</refnamediv>
<refsynopsisdiv>
<para><filename><replaceable>service</replaceable>.service</filename></para>
</refsynopsisdiv>
<refsect1>
<title>Description</title>
<para>A unit configuration file whose name ends in
<filename>.service</filename> encodes information
about a process controlled and supervised by
systemd.</para>
<para>This man page lists the configuration options
specific to this unit type. See
<citerefentry><refentrytitle>systemd.unit</refentrytitle><manvolnum>5</manvolnum></citerefentry>
for the common options of all unit configuration
files. The common configuration items are configured
in the generic <literal>[Unit]</literal> and
<literal>[Install]</literal> sections. The service
specific configuration options are configured in the
<literal>[Service]</literal> section.</para>
<para>Additional options are listed in
<citerefentry><refentrytitle>systemd.exec</refentrytitle><manvolnum>5</manvolnum></citerefentry>,
which define the execution environment the commands
are executed in, and in
<citerefentry><refentrytitle>systemd.kill</refentrytitle><manvolnum>5</manvolnum></citerefentry>
which define the way the processes of the service are
terminated.</para>
<para>Unless <varname>DefaultDependencies=</varname>
is set to <option>false</option>, service units will
implicitly have dependencies of type
<varname>Requires=</varname> and
<varname>After=</varname> on
<filename>basic.target</filename> as well as
dependencies of type <varname>Conflicts=</varname> and
<varname>Before=</varname> on
<filename>shutdown.target</filename>. These ensure
that normal service units pull in basic system
initialization, and are terminated cleanly prior to
system shutdown. Only services involved with early
boot or late system shutdown should disable this
option.</para>
<para>If a service is requested under a certain name
but no unit configuration file is found, systemd looks
for a SysV init script by the same name (with the
<filename>.service</filename> suffix removed) and
dynamically creates a service unit from that
script. This is useful for compatibility with
SysV. Note that this compatibility is quite
comprehensive but not 100%. For details about the
incompatibilities see the <ulink
url="http://www.freedesktop.org/wiki/Software/systemd/Incompatibilities">Incompatibilities
with SysV</ulink> document.
</para>
</refsect1>
<refsect1>
<title>Options</title>
<para>Service files must include a
<literal>[Service]</literal> section, which carries
information about the service and the process it
supervises. A number of options that may be used in
this section are shared with other unit types. These
options are documented in
<citerefentry><refentrytitle>systemd.exec</refentrytitle><manvolnum>5</manvolnum></citerefentry>
and
<citerefentry><refentrytitle>systemd.kill</refentrytitle><manvolnum>5</manvolnum></citerefentry>. The
options specific to the <literal>[Service]</literal>
section of service units are the following:</para>
<variablelist class='unit-directives'>
<varlistentry>
<term><varname>Type=</varname></term>
<listitem><para>Configures the process
start-up type for this service
unit. One of <option>simple</option>,
<option>forking</option>,
<option>oneshot</option>,
<option>dbus</option>,
<option>notify</option> or
<option>idle</option>.</para>
<para>If set to
<option>simple</option> (the default
value if <varname>BusName=</varname>
is not specified) it is expected that
the process configured with
<varname>ExecStart=</varname> is the
main process of the service. In this
mode, if the process offers
functionality to other processes on
the system its communication channels
should be installed before the daemon
is started up (e.g. sockets set up by
systemd, via socket activation), as
systemd will immediately proceed
starting follow-up units.</para>
<para>If set to
<option>forking</option> it is
expected that the process configured
with <varname>ExecStart=</varname>
will call <function>fork()</function>
as part of its start-up. The parent process is
expected to exit when start-up is
complete and all communication
channels set up. The child continues
to run as the main daemon
process. This is the behavior of
traditional UNIX daemons. If this
setting is used, it is recommended to
also use the
<varname>PIDFile=</varname> option, so
that systemd can identify the main
process of the daemon. systemd will
proceed starting follow-up units as
soon as the parent process
exits.</para>
<para>Behavior of
<option>oneshot</option> is similar
to <option>simple</option>, however
it is expected that the process has to
exit before systemd starts follow-up
units. <varname>RemainAfterExit=</varname>
is particularly useful for this type
of service.</para>
<para>Behavior of
<option>dbus</option> is similar to
<option>simple</option>, however it is
expected that the daemon acquires a
name on the D-Bus bus, as configured
by
<varname>BusName=</varname>. systemd
will proceed starting follow-up units
after the D-Bus bus name has been
acquired. Service units with this
option configured implicitly gain
dependencies on the
<filename>dbus.socket</filename>
unit. This type is the default if
<varname>BusName=</varname> is
specified.</para>
<para>Behavior of
<option>notify</option> is similar to
<option>simple</option>, however it is
expected that the daemon sends a
notification message via
<citerefentry><refentrytitle>sd_notify</refentrytitle><manvolnum>3</manvolnum></citerefentry>
or an equivalent call when it finished
starting up. systemd will proceed
starting follow-up units after this
notification message has been sent. If
this option is used
<varname>NotifyAccess=</varname> (see
below) should be set to open access to
the notification socket provided by
systemd. If
<varname>NotifyAccess=</varname> is
not set, it will be implicitly set to
<option>main</option>.</para>
<para>Behavior of
<option>idle</option> is very similar
to <option>simple</option>, however
actual execution of the service
binary is delayed until all jobs are
dispatched. This may be used to avoid
interleaving of output of shell
services with the status output on the
console.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><varname>RemainAfterExit=</varname></term>
<listitem><para>Takes a boolean value
that specifies whether the service
shall be considered active even when
all its processes exited. Defaults to
<option>no</option>.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><varname>GuessMainPID=</varname></term>
<listitem><para>Takes a boolean value
that specifies whether systemd should
try to guess the main PID of a service
if it cannot be determined
reliably. This option is ignored
unless <option>Type=forking</option>
is set and <option>PIDFile=</option>
is unset because for the other types
or with an explicitly configured PID
file the main PID is always known. The
guessing algorithm might come to
incorrect conclusions if a daemon
consists of more than one process. If
the main PID cannot be determined
failure detection and automatic
restarting of a service will not work
reliably. Defaults to
<option>yes</option>.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><varname>PIDFile=</varname></term>
<listitem><para>Takes an absolute file
name pointing to the PID file of this
daemon. Use of this option is
recommended for services where
<varname>Type=</varname> is set to
<option>forking</option>. systemd will
read the PID of the main process of
the daemon after start-up of the
service. systemd will not write to the
file configured here.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><varname>BusName=</varname></term>
<listitem><para>Takes a D-Bus bus
name, that this service is reachable
as. This option is mandatory for
services where
<varname>Type=</varname> is set to
<option>dbus</option>, but its use
is otherwise recommended as well if
the process takes a name on the D-Bus
bus.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><varname>ExecStart=</varname></term>
<listitem><para>Commands with their
arguments that are executed when this
service is started. The first
argument must be an absolute path
name.</para>
<para>When
<varname>Type=oneshot</varname> is
used, more than one command may be
specified. Multiple command lines may
be concatenated in a single directive,
by separating them with semicolons
(these semicolons must be passed as
separate words). Alternatively, this
directive may be specified more than
once with the same effect. However,
the latter syntax is not recommended
for compatibility with parsers
suitable for XDG
<filename>.desktop</filename> files.
The commands are invoked one by one
sequentially in the order they appear
in the unit file. When
<varname>Type</varname> is not
<option>oneshot</option>, only one
command may be given. Lone semicolons
may be escaped as
'<literal>\;</literal>'. If the empty
string is assigned to this option the
list of commands to start is reset,
prior assignments of this option will
have no effect.</para>
<para>Unless
<varname>Type=forking</varname> is
set, the process started via this
command line will be considered the
main process of the daemon.</para>
<para>The command line accepts
'<literal>%</literal>' specifiers as
described in
<citerefentry><refentrytitle>systemd.unit</refentrytitle><manvolnum>5</manvolnum></citerefentry>. Note
that the first argument of the command
line (i.e. the program to execute) may
not include specifiers.</para>
<para>On top of that basic environment
variable substitution is
supported. Use
<literal>${FOO}</literal> as part of a
word, or as a word of its own on the
command line, in which case it will be
replaced by the value of the
environment variable including all
whitespace it contains, resulting in a
single argument. Use
<literal>$FOO</literal> as a separate
word on the command line, in which
case it will be replaced by the value
of the environment variable split up
at whitespace, resulting in no or more
arguments. Note that the first
argument (i.e. the program to execute)
may not be a variable, since it must
be a literal and absolute path
name.</para>
<para>Optionally, if the absolute file
name is prefixed with
'<literal>@</literal>', the second token
will be passed as
<literal>argv[0]</literal> to the
executed process, followed by the
further arguments specified. If the
absolute file name is prefixed with
'<literal>-</literal>' an exit code of
the command normally considered a
failure (i.e. non-zero exit status or
abnormal exit due to signal) is ignored
and considered success. If both
'<literal>-</literal>' and
'<literal>@</literal>' are used they
can appear in either order.</para>
<para>Note that this setting does not
directly support shell command
lines. If shell command lines are to
be used they need to be passed
explicitly to a shell implementation
of some kind. Example:
<literal>ExecStart=/bin/sh -c 'dmesg | tac'</literal></para>
<para>For services run by a user
instance of systemd the special
environment variable
<literal>MANAGERPID</literal> is set
to the PID of the systemd
instance.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><varname>ExecStartPre=</varname></term>
<term><varname>ExecStartPost=</varname></term>
<listitem><para>Additional commands
that are executed before or after
the command in
<varname>ExecStart=</varname>, respectively.
Syntax is the same as for
<varname>ExecStart=</varname>, except
that multiple command lines are allowed
and the commands are executed one
after the other, serially.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><varname>ExecReload=</varname></term>
<listitem><para>Commands to execute to
trigger a configuration reload in the
service. This argument takes multiple
command lines, following the same
scheme as described for
<varname>ExecStart=</varname>
above. Use of this setting is
optional. Specifier and environment
variable substitution is supported
here following the same scheme as for
<varname>ExecStart=</varname>. One
additional special environment
variables is set: if known
<literal>$MAINPID</literal> is set to
the main process of the daemon, and
may be used for command lines like the
following: <command>/bin/kill -HUP
$MAINPID</command>.</para></listitem>
</varlistentry>
<varlistentry>
<term><varname>ExecStop=</varname></term>
<listitem><para>Commands to execute to
stop the service started via
<varname>ExecStart=</varname>. This
argument takes multiple command lines,
following the same scheme as described
for <varname>ExecStart=</varname>
above. Use of this setting is
optional. All processes remaining for
a service after the commands
configured in this option are run are
terminated according to the
<varname>KillMode=</varname> setting
(see
<citerefentry><refentrytitle>systemd.kill</refentrytitle><manvolnum>5</manvolnum></citerefentry>). If
this option is not specified the
process is terminated right-away when
service stop is requested. Specifier
and environment variable substitution
is supported (including
<literal>$MAINPID</literal>, see
above).</para></listitem>
</varlistentry>
<varlistentry>
<term><varname>ExecStopPost=</varname></term>
<listitem><para>Additional commands
that are executed after the service
was stopped using the commands
configured in
<varname>ExecStop=</varname>. This
argument takes multiple command lines,
following the same scheme as described
for <varname>ExecStart</varname>. Use
of these settings is
optional. Specifier and environment
variable substitution is
supported.</para></listitem>
</varlistentry>
<varlistentry>
<term><varname>RestartSec=</varname></term>
<listitem><para>Configures the time to
sleep before restarting a service (as
configured with
<varname>Restart=</varname>). Takes a
unit-less value in seconds, or a time
span value such as "5min
20s". Defaults to
100ms.</para></listitem>
</varlistentry>
<varlistentry>
<term><varname>TimeoutStartSec=</varname></term>
<listitem><para>Configures the time to
wait for start-up. If a
daemon service does not signal
start-up completion within the
configured time, the service will be
considered failed and be shut down
again.
Takes a unit-less value in seconds, or a
time span value such as "5min
20s". Pass 0 to disable the timeout
logic. Defaults to 90s, except when
<varname>Type=oneshot</varname> is
used in which case the timeout
is disabled by default.
</para></listitem>
</varlistentry>
<varlistentry>
<term><varname>TimeoutStopSec=</varname></term>
<listitem><para>Configures the time to
wait for stop. If a service is asked
to stop but does not terminate in the
specified time, it will be terminated
forcibly via SIGTERM, and after
another delay of this time with
SIGKILL (See
<varname>KillMode=</varname>
in <citerefentry><refentrytitle>systemd.kill</refentrytitle><manvolnum>5</manvolnum></citerefentry>).
Takes a unit-less value in seconds, or a
time span value such as "5min
20s". Pass 0 to disable the timeout
logic. Defaults to 90s.
</para></listitem>
</varlistentry>
<varlistentry>
<term><varname>TimeoutSec=</varname></term>
<listitem><para>A shorthand for configuring
both <varname>TimeoutStartSec=</varname>
and <varname>TimeoutStopSec=</varname>
to the specified value.
</para></listitem>
</varlistentry>
<varlistentry>
<term><varname>WatchdogSec=</varname></term>
<listitem><para>Configures the
watchdog timeout for a service. This
is activated when the start-up is
completed. The service must call
<citerefentry><refentrytitle>sd_notify</refentrytitle><manvolnum>3</manvolnum></citerefentry>
regularly with "WATCHDOG=1" (i.e. the
"keep-alive ping"). If the time
between two such calls is larger than
the configured time then the service
is placed in a failure state. By
setting <varname>Restart=</varname> to
<option>on-failure</option> or
<option>always</option> the service
will be automatically restarted. The
time configured here will be passed to
the executed service process in the
<varname>WATCHDOG_USEC=</varname>
environment variable. This allows
daemons to automatically enable the
keep-alive pinging logic if watchdog
support is enabled for the service. If
this option is used
<varname>NotifyAccess=</varname> (see
below) should be set to open access to
the notification socket provided by
systemd. If
<varname>NotifyAccess=</varname> is
not set, it will be implicitly set to
<option>main</option>. Defaults to 0,
which disables this
feature.</para></listitem>
</varlistentry>
<varlistentry>
<term><varname>Restart=</varname></term>
<listitem><para>Configures whether the
main service process shall be
restarted when it exits. Takes one of
<option>no</option>,
<option>on-success</option>,
<option>on-failure</option>,
<option>on-abort</option> or
<option>always</option>. If set to
<option>no</option> (the default) the
service will not be restarted when it
exits. If set to
<option>on-success</option> it will be
restarted only when it exited cleanly,
i.e. terminated with an exit code of
0. If set to
<option>on-failure</option> it will be
restarted only when it exited with an
exit code not equaling 0, when
terminated by a signal (including on
core dump), when an operation (such as
service reload) times out or when the
configured watchdog timeout is
triggered. If set to
<option>on-abort</option> it will be
restarted only if it exits due to
reception of an uncaught signal
(including on core dump). If set to
<option>always</option> the service
will be restarted regardless whether
it exited cleanly or not, got
terminated abnormally by a signal or
hit a timeout.</para></listitem>
</varlistentry>
<varlistentry>
<term><varname>SuccessExitStatus=</varname></term>
<listitem><para>Takes a list of exit
status definitions that when returned
by the main service process will be
considered successful termination, in
addition to the normal successful exit
code 0 and the signals SIGHUP, SIGINT,
SIGTERM and SIGPIPE. Exit status
definitions can either be numeric exit
codes or termination signal names, and
are separated by spaces. Example:
"<literal>SuccessExitStatus=1 2 8
SIGKILL</literal>", ensures that exit
codes 1, 2, 8 and the termination
signal SIGKILL are considered clean
service terminations. This option may
appear more than once in which case
the list of successful exit statuses
is merged. If the empty string is
assigned to this option the list is
reset, all prior assignments of this
option will have no
effect.</para></listitem>
</varlistentry>
<varlistentry>
<term><varname>RestartPreventExitStatus=</varname></term>
<listitem><para>Takes a list of exit
status definitions that when returned
by the main service process will
prevent automatic service restarts
regardless of the restart setting
configured with
<varname>Restart=</varname>. Exit
status definitions can either be
numeric exit codes or termination
signal names, and are separated by
spaces. Defaults to the empty list, so
that by default no exit status is
excluded from the configured restart
logic. Example:
"<literal>RestartPreventExitStatus=1 6
SIGABRT</literal>", ensures that exit
codes 1 and 6 and the termination
signal SIGABRT will not result in
automatic service restarting. This
option may appear more than once in
which case the list of restart preventing
statuses is merged. If the empty
string is assigned to this option the
list is reset, all prior assignments
of this option will have no
effect.</para></listitem>
</varlistentry>
<varlistentry>
<term><varname>PermissionsStartOnly=</varname></term>
<listitem><para>Takes a boolean
argument. If true, the permission
related execution options as
configured with
<varname>User=</varname> and similar
options (see
<citerefentry><refentrytitle>systemd.exec</refentrytitle><manvolnum>5</manvolnum></citerefentry>
for more information) are only applied
to the process started with
<varname>ExecStart=</varname>, and not
to the various other
<varname>ExecStartPre=</varname>,
<varname>ExecStartPost=</varname>,
<varname>ExecReload=</varname>,
<varname>ExecStop=</varname>,
<varname>ExecStopPost=</varname>
commands. If false, the setting is
applied to all configured commands the
same way. Defaults to
false.</para></listitem>
</varlistentry>
<varlistentry>
<term><varname>RootDirectoryStartOnly=</varname></term>
<listitem><para>Takes a boolean
argument. If true, the root directory
as configured with the
<varname>RootDirectory=</varname>
option (see
<citerefentry><refentrytitle>systemd.exec</refentrytitle><manvolnum>5</manvolnum></citerefentry>
for more information) is only applied
to the process started with
<varname>ExecStart=</varname>, and not
to the various other
<varname>ExecStartPre=</varname>,
<varname>ExecStartPost=</varname>,
<varname>ExecReload=</varname>,
<varname>ExecStop=</varname>,
<varname>ExecStopPost=</varname>
commands. If false, the setting is
applied to all configured commands the
same way. Defaults to
false.</para></listitem>
</varlistentry>
<varlistentry>
<term><varname>NonBlocking=</varname></term>
<listitem><para>Set O_NONBLOCK flag
for all file descriptors passed via
socket-based activation. If true, all
file descriptors >= 3 (i.e. all except
STDIN/STDOUT/STDERR) will have
the O_NONBLOCK flag set and hence are in
non-blocking mode. This option is only
useful in conjunction with a socket
unit, as described in
<citerefentry><refentrytitle>systemd.socket</refentrytitle><manvolnum>5</manvolnum></citerefentry>. Defaults
to false.</para></listitem>
</varlistentry>
<varlistentry>
<term><varname>NotifyAccess=</varname></term>
<listitem><para>Controls access to the
service status notification socket, as
accessible via the
<citerefentry><refentrytitle>sd_notify</refentrytitle><manvolnum>3</manvolnum></citerefentry>
call. Takes one of
<option>none</option> (the default),
<option>main</option> or
<option>all</option>. If
<option>none</option> no daemon status
updates are accepted from the service
processes, all status update messages
are ignored. If <option>main</option>
only service updates sent from the
main process of the service are
accepted. If <option>all</option> all
services updates from all members of
the service's control group are
accepted. This option should be set to
open access to the notification socket
when using
<varname>Type=notify</varname> or
<varname>WatchdogSec=</varname> (see
above). If those options are used but
<varname>NotifyAccess=</varname> not
configured it will be implicitly set
to
<option>main</option>.</para></listitem>
</varlistentry>
<varlistentry>
<term><varname>Sockets=</varname></term>
<listitem><para>Specifies the name of
the socket units this service shall
inherit the sockets from when the
service is started. Normally it
should not be necessary to use this
setting as all sockets whose unit
shares the same name as the service
(ignoring the different suffix of course)
are passed to the spawned
process.</para>
<para>Note that the same socket may be
passed to multiple processes at the
same time. Also note that a different
service may be activated on incoming
traffic than inherits the sockets. Or
in other words: the
<varname>Service=</varname> setting of
<filename>.socket</filename> units
doesn't have to match the inverse of
the <varname>Sockets=</varname>
setting of the
<filename>.service</filename> it
refers to.</para>
<para>This option may appear more than
once, in which case the list of socket
units is merged. If the empty string
is assigned to this option the list of
sockets is reset, all prior uses of
this setting will have no
effect.</para></listitem>
</varlistentry>
<varlistentry>
<term><varname>StartLimitInterval=</varname></term>
<term><varname>StartLimitBurst=</varname></term>
<listitem><para>Configure service
start rate limiting. By default
services which are started more often
than 5 times within 10s are not
permitted to start any more times
until the 10s interval ends. With
these two options this rate limiting
may be modified. Use
<varname>StartLimitInterval=</varname>
to configure the checking interval
(defaults to 10s, set to 0 to disable
any kind of rate limiting). Use
<varname>StartLimitBurst=</varname> to
configure how many starts per interval
are allowed (defaults to 5). These
configuration options are particularly
useful in conjunction with
<varname>Restart=</varname>, however
apply to all kinds of starts
(including manual), not just those
triggered by the
<varname>Restart=</varname> logic.
Note that units which are configured
for <varname>Restart=</varname> and
which reach the start limit are not
attempted to be restarted anymore,
however they may still be restarted
manually at a later point from which
point on the restart logic is again
activated. Note that
<command>systemctl
reset-failed</command> will cause the
restart rate counter for a service to
be flushed, which is useful if the
administrator wants to manually start
a service and the start limit
interferes with
that.</para></listitem>
</varlistentry>
<varlistentry>
<term><varname>StartLimitAction=</varname></term>
<listitem><para>Configure the action
to take if the rate limit configured
with
<varname>StartLimitInterval=</varname>
and
<varname>StartLimitBurst=</varname> is
hit. Takes one of
<option>none</option>,
<option>reboot</option>,
<option>reboot-force</option> or
<option>reboot-immediate</option>. If
<option>none</option> is set,
hitting the rate limit will trigger no
action besides that the start will not
be
permitted. <option>reboot</option>
causes a reboot following the normal
shutdown procedure (i.e. equivalent to
<command>systemctl reboot</command>),
<option>reboot-force</option> causes
an forced reboot which will terminate
all processes forcibly but should
cause no dirty file systems on reboot
(i.e. equivalent to <command>systemctl
reboot -f</command>) and
<option>reboot-immediate</option>
causes immediate execution of the
<citerefentry><refentrytitle>reboot</refentrytitle><manvolnum>2</manvolnum></citerefentry>
system call, which might result in
data loss. Defaults to
<option>none</option>.</para></listitem>
</varlistentry>
</variablelist>
<para>Check
<citerefentry><refentrytitle>systemd.exec</refentrytitle><manvolnum>5</manvolnum></citerefentry>
and
<citerefentry><refentrytitle>systemd.kill</refentrytitle><manvolnum>5</manvolnum></citerefentry>
for more settings.</para>
</refsect1>
<refsect1>
<title>Compatibility Options</title>
<para>The following options are also available in the
<literal>[Service]</literal> section, but exist purely
for compatibility reasons and should not be used in
newly written service files.</para>
<variablelist class='unit-directives'>
<varlistentry>
<term><varname>SysVStartPriority=</varname></term>
<listitem><para>Set the SysV start
priority to use to order this service
in relation to SysV services lacking
LSB headers. This option is only
necessary to fix ordering in relation
to legacy SysV services, that have no
ordering information encoded in the
script headers. As such it should only
be used as temporary compatibility
option, and not be used in new unit
files. Almost always it is a better
choice to add explicit ordering
directives via
<varname>After=</varname> or
<varname>Before=</varname>,
instead. For more details see
<citerefentry><refentrytitle>systemd.unit</refentrytitle><manvolnum>5</manvolnum></citerefentry>. If
used, pass an integer value in the
range 0-99.</para></listitem>
</varlistentry>
<varlistentry>
<term><varname>FsckPassNo=</varname></term>
<listitem><para>Set the fsck passno
priority to use to order this service
in relation to other file system
checking services. This option is only
necessary to fix ordering in relation
to fsck jobs automatically created for
all <filename>/etc/fstab</filename>
entries with a value in the fs_passno
column > 0. As such it should only be
used as option for fsck
services. Almost always it is a better
choice to add explicit ordering
directives via
<varname>After=</varname> or
<varname>Before=</varname>,
instead. For more details see
<citerefentry><refentrytitle>systemd.unit</refentrytitle><manvolnum>5</manvolnum></citerefentry>. If
used, pass an integer value in the
same range as
<filename>/etc/fstab</filename>'s
fs_passno column. See
<citerefentry><refentrytitle>fstab</refentrytitle><manvolnum>5</manvolnum></citerefentry>
for details.</para></listitem>
</varlistentry>
</variablelist>
</refsect1>
<refsect1>
<title>See Also</title>
<para>
<citerefentry><refentrytitle>systemd</refentrytitle><manvolnum>1</manvolnum></citerefentry>,
<citerefentry><refentrytitle>systemctl</refentrytitle><manvolnum>8</manvolnum></citerefentry>,
<citerefentry><refentrytitle>systemd.unit</refentrytitle><manvolnum>5</manvolnum></citerefentry>,
<citerefentry><refentrytitle>systemd.exec</refentrytitle><manvolnum>5</manvolnum></citerefentry>,
<citerefentry><refentrytitle>systemd.kill</refentrytitle><manvolnum>5</manvolnum></citerefentry>,
<citerefentry><refentrytitle>systemd.directives</refentrytitle><manvolnum>7</manvolnum></citerefentry>
</para>
</refsect1>
</refentry>