This patch adds code to compile 'systemd-readahead-analyze' and install
it into $bindir.
Use this program to parse the contents of the readahead pack file, or
an arbitrary pack file and display which files are listed in it, and
how much of the files are requested to be readahead.
This code is not new - it's partially taken from sreadahead (formerly
maintained by Arjan van der Ven and me, and was originally written
by me), and adapted with the right bits to parse the systemd
readahead pack files, which are slightly different in format.
v2 adds a common READAHEAD_PACK_FILE_VERSION used in all the code
to provide a quick way to assure all these programs are always
synchronized. v3 fixes the integer math.
This takes handling of chassis power and sleep keys as well as the lid
switch over from acpid.
This logic is enabled by default for power and sleep keys, but not for
the lid switch.
If a graphical session is in the foreground no action is taken under the
assumption that the graphical session does this.
In rescue mode let's not establish all sockets, so that we don't end up
starting a lot of additional services automatically.
Instead of pulling in basic.target we now only pull in sysinit.target
which pulls in local-fs.target and swap.target. That way rescue mode has
all the really basic setup around, but normal services are not started
and not autostarted either.
RequiresMountsFor= is a shortcut for adding requires and after
dependencies to all mount units neeed for the specified paths.
This solves a couple of issues regarding dep loop cycles for encrypted
swap.
Two of our current job types are special:
JOB_TRY_RESTART, JOB_RELOAD_OR_START.
They differ from other job types by being sensitive to the unit active state.
They perform some action when the unit is active and some other action
otherwise. This raises a question: when exactly should the unit state be
checked to make the decision?
Currently the unit state is checked when the job becomes runnable. It's more
sensible to check the state immediately when the job is added by the user.
When the user types "systemctl try-restart foo.service", he really intends
to restart the service if it's running right now. If it isn't running right
now, the restart is pointless.
Consider the example (from Bugzilla[1]):
sleep.service takes some time to start.
hello.service has After=sleep.service.
Both services get started. Two jobs will appear:
hello.service/start waiting
sleep.service/start running
Then someone runs "systemctl try-restart hello.service".
Currently the try-restart operation will block and wait for
sleep.service/start to complete.
The correct result is to complete the try-restart operation immediately
with success, because hello.service is not running. The two original
jobs must not be disturbed by this.
To fix this we introduce two new concepts:
- a new job type: JOB_NOP
A JOB_NOP job does not do anything to the unit. It does not pull in any
dependencies. It is always immediately runnable. When installed to a unit,
it sits in a special slot (u->nop_job) where it never conflicts with
the installed job (u->job) of a different type. It never merges with jobs
of other types, but it can merge into an already installed JOB_NOP job.
- "collapsing" of job types
When a job of one of the two special types is added, the state of the unit
is checked immediately and the job type changes:
JOB_TRY_RESTART -> JOB_RESTART or JOB_NOP
JOB_RELOAD_OR_START -> JOB_RELOAD or JOB_START
Should a job type JOB_RELOAD_OR_START appear later during job merging, it
collapses immediately afterwards.
Collapsing actually makes some things simpler, because there are now fewer
job types that are allowed in the transaction.
[1] Fixes: https://bugzilla.redhat.com/show_bug.cgi?id=753586
We shouldn't hardcode the name of the NTP implementation in the
timedated mechanism, especially since Fedora currently switched from NTP
to chrony.
This patch introduces a new target that is enabled/disabled instead of
the actual NTP implementation. The various NTP implementations should
then add .wants/ symlinks to their services and BindTo back to the
target, so that their implementations are started/stopped jointly with
the target.
https://bugzilla.redhat.com/show_bug.cgi?id=815748
manager.c takes care of the main loop, unit management, signal handling, ...
transaction.c computes transactions.
After split:
manager.c: 65 KB
transaction.c: 40 KB