We set ProtectKernelLogs=yes on all long running services except for
udevd, since it accesses /dev/kmsg, and journald, since it calls syslog
and accesses /dev/kmsg.
As discussed on systemd-devel [1], in Fedora we get lots of abrt reports
about the watchdog firing [2], but 100% of them seem to be caused by resource
starvation in the machine, and never actual deadlocks in the services being
monitored. Killing the services not only does not improve anything, but it
makes the resource starvation worse, because the service needs cycles to restart,
and coredump processing is also fairly expensive. This adds a configuration option
to allow the value to be changed. If the setting is not set, there is no change.
My plan is to set it to some ridiculusly high value, maybe 1h, to catch cases
where a service is actually hanging.
[1] https://lists.freedesktop.org/archives/systemd-devel/2019-October/043618.html
[2] https://bugzilla.redhat.com/show_bug.cgi?id=1300212
This reverts commit 971a7a1526.
These unit names are typically different on distributions, let's not
hardcode those. Stuff like this should probably live in the distro
RPM/.deb, but not upstream, where we should be distro agnostic and
agnostic to other higher level packages like this.
Users might end up with more than one of those service enabled, through
admin mistake, or broken installation scriptlets, or whatever. On my machine,
I had both chronyd and timesyncd happilly running at the same time. If
more than one is enabled, it's better to have just one running. Adding
Conflicts will make the issue more visible in logs too.
time-sync.target is supposed to indicate system clock is synchronized
with a remote clock, but as used through 241 it only provided a system
clock that was updated based on a locally-maintained timestamp. Systems
that are powered off for extended periods would not come up with
accurate time.
Retain the existing behavior using a new time-set.target leaving
time-sync.target for cases where accuracy is required.
Closes#8861
Previously, setting this option by default was problematic due to
SELinux (as this would also prohibit the transition from PID1's label to
the service's label). However, this restriction has since been lifted,
hence let's start making use of this universally in our services.
On SELinux system this change should be synchronized with a policy
update that ensures that NNP-ful transitions from init_t to service
labels is permitted.
An while we are at it: sort the settings in the unit files this touches.
This might increase the size of the change in this case, but hopefully
should result in stabler patches later on.
Fixes: #1219
This reverts commit 48d3e88c18.
I kept the follow-symlink=false → follow-symlink=true change instact, since
we're likely to have existing installations with a symlink now.
This is generally the safer approach, and is what container managers
(including nspawn) do, hence let's move to this too for our own
services. This is particularly useful as this this means the new
@system-service system call filter group will get serious real-life
testing quickly.
This also switches from firing SIGSYS on unexpected syscalls to
returning EPERM. This would have probably been a better default anyway,
but it's hard to change that these days. When whitelisting system calls
SIGSYS is highly problematic as system calls that are newly introduced
to Linux become minefields for services otherwise.
Note that this enables a system call filter for udev for the first time,
and will block @clock, @mount and @swap from it. Some downstream
distributions might want to revert this locally if they want to permit
unsafe operations on udev rules, but in general this shiuld be mostly
safe, as we already set MountFlags=shared for udevd, hence at least
@mount won't change anything.
Systems that have an accurate real-time clock may have an initial
unsynchronized time that is close enough to the synchronized time that
the final adjustment doesn't trigger a waking "clock set" event. Have
timesyncd touch a file in its runtime directory as a secondary signal
for synchronization. Continue to support the timerfd-based trigger as a
sufficient condition when the watchfile is not present.
Closes issue #8683
Basically, we turn it on for most long-running services, with the
exception of machined (whose child processes need to join containers
here and there), and importd (which sandboxes tar in a CLONE_NEWNET
namespace). machined is left unrestricted, and importd is restricted to
use only "net"
Let's make this an excercise in dogfooding: let's turn on more security
features for all our long-running services.
Specifically:
- Turn on RestrictRealtime=yes for all of them
- Turn on ProtectKernelTunables=yes and ProtectControlGroups=yes for most of
them
- Turn on RestrictAddressFamilies= for all of them, but different sets of
address families for each
Also, always order settings in the unit files, that the various sandboxing
features are close together.
Add a couple of missing, older settings for a numbre of unit files.
Note that this change turns off AF_INET/AF_INET6 from udevd, thus effectively
turning of networking from udev rule commands. Since this might break stuff
(that is already broken I'd argue) this is documented in NEWS.
Add a line
SystemCallFilter=~@clock @module @mount @obsolete @raw-io ptrace
for daemons shipped by systemd. As an exception, systemd-timesyncd
needs @clock system calls and systemd-localed is not privileged.
ptrace(2) is blocked to prevent seccomp escapes.
Apparently, disk IO issues are more frequent than we hope, and 1min
waiting for disk IO happens, so let's increase the watchdog timeout a
bit, for all our services.
See #1353 for an example where this triggers.
On Fri, Mar 13, 2015 at 8:25 PM, Michael Marineau <michael.marineau@coreos.com> wrote:
> Currently systemd-timesyncd.service includes
> ConditionVirtualization=no, disabling it in both containers and
> virtual machines. Each VM platform tends to deal with or ignore the
> time problem in their own special ways, KVM/QEMU has the kernel time
> source kvm-clock, Xen has had different schemes over the years, VMware
> expects a userspace daemon sync the clock, and other platforms are
> content to drift with the wind as far as I can tell.
>
> I don't know of a robust way to know if a platform needs a little
> extra help from userspace to keep the clock sane or not but it seems
> generally safer to try than to risk drifting. Does anyone know of a
> reason to leave timesyncd off by default? Otherwise switching to
> ConditionVirtualization=!container should be reasonable.
Also, rename ProtectedHome= to ProtectHome=, to simplify things a bit.
With this in place we now have two neat options ProtectSystem= and
ProtectHome= for protecting the OS itself (and optionally its
configuration), and for protecting the user's data.
ReadOnlySystem= uses fs namespaces to mount /usr and /boot read-only for
a service.
ProtectedHome= uses fs namespaces to mount /home and /run/user
inaccessible or read-only for a service.
This patch also enables these settings for all our long-running services.
Together they should be good building block for a minimal service
sandbox, removing the ability for services to modify the operating
system or access the user's private data.
Create initial stamp file with compiled-in time to prevent bootups
with clocks in the future from storing invalid timestamps.
At shutdown, only update the timestamp if we got an authoritative
time to store.
This is useful to make sure the system clock stays monotonic even on
systems that lack an RTC.
Also, why we are at it, also use the systemd release time for bumping
the clock, since it's a slightly less bad than starting with jan 1st,
1970.
This also moves timesyncd into the early bootphase, in order to make
sure this initial bump is guaranteed to have finished by the time we
start real daemons which might write to the file systemd and thus
shouldn't leave 1970's timestamps all over the place...