mirror of
https://github.com/linux-sunxi/sunxi-tools.git
synced 2024-11-26 19:33:58 +08:00
a3ce5f9f76
The new function fel_get_sid_registers() uses ARM code for register access to the SID root key. This is necessary to retrieve correct values for certain SoCs, e.g. when not using this approach the H3 has been observed to return 'mangled' values (when reading SID from memory). See https://groups.google.com/forum/#!topic/linux-sunxi/ynyIP8c61Qs The FEL library provides a uniform fel_get_sid_root_key() wrapper that will automatically use the workaround method for SoCs that are tagged accordingly - so the application program does not have to bother with selecting memory vs. register-based access. Signed-off-by: Bernhard Nortmann <bernhard.nortmann@web.de>
682 lines
22 KiB
C
682 lines
22 KiB
C
/*
|
|
* Copyright (C) 2012 Henrik Nordstrom <henrik@henriknordstrom.net>
|
|
* Copyright (C) 2015 Siarhei Siamashka <siarhei.siamashka@gmail.com>
|
|
* Copyright (C) 2016 Bernhard Nortmann <bernhard.nortmann@web.de>
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/**********************************************************************
|
|
* USB library and helper functions for the FEL utility
|
|
**********************************************************************/
|
|
|
|
#include "portable_endian.h"
|
|
#include "fel_lib.h"
|
|
#include <libusb.h>
|
|
|
|
#include <assert.h>
|
|
#include <errno.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#define USB_TIMEOUT 10000 /* 10 seconds */
|
|
|
|
static bool fel_lib_initialized = false;
|
|
|
|
/* This is out 'private' data type that will be part of a "FEL device" handle */
|
|
struct _felusb_handle {
|
|
libusb_device_handle *handle;
|
|
int endpoint_out, endpoint_in;
|
|
bool iface_detached;
|
|
};
|
|
|
|
/* a helper function to report libusb errors */
|
|
void usb_error(int rc, const char *caption, int exitcode)
|
|
{
|
|
if (caption)
|
|
fprintf(stderr, "%s ", caption);
|
|
|
|
#if defined(LIBUSBX_API_VERSION) && (LIBUSBX_API_VERSION >= 0x01000102)
|
|
fprintf(stderr, "ERROR %d: %s\n", rc, libusb_strerror(rc));
|
|
#else
|
|
/* assume that libusb_strerror() is missing in the libusb API */
|
|
fprintf(stderr, "ERROR %d\n", rc);
|
|
#endif
|
|
|
|
if (exitcode != 0)
|
|
exit(exitcode);
|
|
}
|
|
|
|
/*
|
|
* AW_USB_MAX_BULK_SEND and the timeout constant USB_TIMEOUT are related.
|
|
* Both need to be selected in a way that transferring the maximum chunk size
|
|
* with (SoC-specific) slow transfer speed won't time out.
|
|
*
|
|
* The 512 KiB here are chosen based on the assumption that we want a 10 seconds
|
|
* timeout, and "slow" transfers take place at approx. 64 KiB/sec - so we can
|
|
* expect the maximum chunk being transmitted within 8 seconds or less.
|
|
*/
|
|
static const int AW_USB_MAX_BULK_SEND = 512 * 1024; /* 512 KiB per bulk request */
|
|
|
|
void usb_bulk_send(libusb_device_handle *usb, int ep, const void *data,
|
|
size_t length, bool progress)
|
|
{
|
|
/*
|
|
* With no progress notifications, we'll use the maximum chunk size.
|
|
* Otherwise, it's useful to lower the size (have more chunks) to get
|
|
* more frequent status updates. 128 KiB per request seem suitable.
|
|
* (Worst case of "slow" transfers -> one update every two seconds.)
|
|
*/
|
|
size_t max_chunk = progress ? 128 * 1024 : AW_USB_MAX_BULK_SEND;
|
|
|
|
size_t chunk;
|
|
int rc, sent;
|
|
while (length > 0) {
|
|
chunk = length < max_chunk ? length : max_chunk;
|
|
rc = libusb_bulk_transfer(usb, ep, (void *)data, chunk,
|
|
&sent, USB_TIMEOUT);
|
|
if (rc != 0)
|
|
usb_error(rc, "usb_bulk_send()", 2);
|
|
length -= sent;
|
|
data += sent;
|
|
|
|
if (progress)
|
|
progress_update(sent); /* notification after each chunk */
|
|
}
|
|
}
|
|
|
|
void usb_bulk_recv(libusb_device_handle *usb, int ep, void *data, int length)
|
|
{
|
|
int rc, recv;
|
|
while (length > 0) {
|
|
rc = libusb_bulk_transfer(usb, ep, data, length,
|
|
&recv, USB_TIMEOUT);
|
|
if (rc != 0)
|
|
usb_error(rc, "usb_bulk_recv()", 2);
|
|
length -= recv;
|
|
data += recv;
|
|
}
|
|
}
|
|
|
|
struct aw_usb_request {
|
|
char signature[8];
|
|
uint32_t length;
|
|
uint32_t unknown1; /* 0x0c000000 */
|
|
uint16_t request;
|
|
uint32_t length2; /* Same as length */
|
|
char pad[10];
|
|
} __attribute__((packed));
|
|
|
|
#define AW_USB_READ 0x11
|
|
#define AW_USB_WRITE 0x12
|
|
|
|
struct aw_fel_request {
|
|
uint32_t request;
|
|
uint32_t address;
|
|
uint32_t length;
|
|
uint32_t pad;
|
|
};
|
|
|
|
/* FEL request types */
|
|
#define AW_FEL_VERSION 0x001
|
|
#define AW_FEL_1_WRITE 0x101
|
|
#define AW_FEL_1_EXEC 0x102
|
|
#define AW_FEL_1_READ 0x103
|
|
|
|
static void aw_send_usb_request(feldev_handle *dev, int type, int length)
|
|
{
|
|
struct aw_usb_request req = {
|
|
.signature = "AWUC",
|
|
.request = htole16(type),
|
|
.length = htole32(length),
|
|
.unknown1 = htole32(0x0c000000)
|
|
};
|
|
req.length2 = req.length;
|
|
usb_bulk_send(dev->usb->handle, dev->usb->endpoint_out,
|
|
&req, sizeof(req), false);
|
|
}
|
|
|
|
static void aw_read_usb_response(feldev_handle *dev)
|
|
{
|
|
char buf[13];
|
|
usb_bulk_recv(dev->usb->handle, dev->usb->endpoint_in,
|
|
buf, sizeof(buf));
|
|
assert(strcmp(buf, "AWUS") == 0);
|
|
}
|
|
|
|
static void aw_usb_write(feldev_handle *dev, const void *data, size_t len,
|
|
bool progress)
|
|
{
|
|
aw_send_usb_request(dev, AW_USB_WRITE, len);
|
|
usb_bulk_send(dev->usb->handle, dev->usb->endpoint_out,
|
|
data, len, progress);
|
|
aw_read_usb_response(dev);
|
|
}
|
|
|
|
static void aw_usb_read(feldev_handle *dev, const void *data, size_t len)
|
|
{
|
|
aw_send_usb_request(dev, AW_USB_READ, len);
|
|
usb_bulk_send(dev->usb->handle, dev->usb->endpoint_in,
|
|
data, len, false);
|
|
aw_read_usb_response(dev);
|
|
}
|
|
|
|
void aw_send_fel_request(feldev_handle *dev, int type,
|
|
uint32_t addr, uint32_t length)
|
|
{
|
|
struct aw_fel_request req = {
|
|
.request = htole32(type),
|
|
.address = htole32(addr),
|
|
.length = htole32(length)
|
|
};
|
|
aw_usb_write(dev, &req, sizeof(req), false);
|
|
}
|
|
|
|
void aw_read_fel_status(feldev_handle *dev)
|
|
{
|
|
char buf[8];
|
|
aw_usb_read(dev, buf, sizeof(buf));
|
|
}
|
|
|
|
/* AW_FEL_VERSION request */
|
|
static void aw_fel_get_version(feldev_handle *dev, struct aw_fel_version *buf)
|
|
{
|
|
aw_send_fel_request(dev, AW_FEL_VERSION, 0, 0);
|
|
aw_usb_read(dev, buf, sizeof(*buf));
|
|
aw_read_fel_status(dev);
|
|
|
|
buf->soc_id = (le32toh(buf->soc_id) >> 8) & 0xFFFF;
|
|
buf->unknown_0a = le32toh(buf->unknown_0a);
|
|
buf->protocol = le32toh(buf->protocol);
|
|
buf->scratchpad = le16toh(buf->scratchpad);
|
|
buf->pad[0] = le32toh(buf->pad[0]);
|
|
buf->pad[1] = le32toh(buf->pad[1]);
|
|
}
|
|
|
|
/* AW_FEL_1_READ request */
|
|
void aw_fel_read(feldev_handle *dev, uint32_t offset, void *buf, size_t len)
|
|
{
|
|
aw_send_fel_request(dev, AW_FEL_1_READ, offset, len);
|
|
aw_usb_read(dev, buf, len);
|
|
aw_read_fel_status(dev);
|
|
}
|
|
|
|
/* AW_FEL_1_WRITE request */
|
|
void aw_fel_write(feldev_handle *dev, void *buf, uint32_t offset, size_t len)
|
|
{
|
|
aw_send_fel_request(dev, AW_FEL_1_WRITE, offset, len);
|
|
aw_usb_write(dev, buf, len, false);
|
|
aw_read_fel_status(dev);
|
|
}
|
|
|
|
/* AW_FEL_1_EXEC request */
|
|
void aw_fel_execute(feldev_handle *dev, uint32_t offset)
|
|
{
|
|
aw_send_fel_request(dev, AW_FEL_1_EXEC, offset, 0);
|
|
aw_read_fel_status(dev);
|
|
}
|
|
|
|
/*
|
|
* This function is a higher-level wrapper for the FEL write functionality.
|
|
* Unlike aw_fel_write() above - which is reserved for internal use - this
|
|
* routine optionally allows progress callbacks.
|
|
*/
|
|
void aw_fel_write_buffer(feldev_handle *dev, void *buf, uint32_t offset,
|
|
size_t len, bool progress)
|
|
{
|
|
aw_send_fel_request(dev, AW_FEL_1_WRITE, offset, len);
|
|
aw_usb_write(dev, buf, len, progress);
|
|
aw_read_fel_status(dev);
|
|
}
|
|
|
|
/*
|
|
* We don't want the scratch code/buffer to exceed a maximum size of 0x400 bytes
|
|
* (256 32-bit words) on readl_n/writel_n transfers. To guarantee this, we have
|
|
* to account for the amount of space the ARM code uses.
|
|
*/
|
|
#define LCODE_ARM_WORDS 12 /* word count of the [read/write]l_n scratch code */
|
|
#define LCODE_ARM_SIZE (LCODE_ARM_WORDS << 2) /* code size in bytes */
|
|
#define LCODE_MAX_TOTAL 0x100 /* max. words in buffer */
|
|
#define LCODE_MAX_WORDS (LCODE_MAX_TOTAL - LCODE_ARM_WORDS) /* data words */
|
|
|
|
/* multiple "readl" from sequential addresses to a destination buffer */
|
|
static void aw_fel_readl_n(feldev_handle *dev, uint32_t addr,
|
|
uint32_t *dst, size_t count)
|
|
{
|
|
if (count == 0) return;
|
|
if (count > LCODE_MAX_WORDS) {
|
|
fprintf(stderr,
|
|
"ERROR: Max. word count exceeded, truncating aw_fel_readl_n() transfer\n");
|
|
count = LCODE_MAX_WORDS;
|
|
}
|
|
|
|
assert(LCODE_MAX_WORDS < 256); /* protect against corruption of ARM code */
|
|
uint32_t arm_code[] = {
|
|
htole32(0xe59f0020), /* ldr r0, [pc, #32] ; ldr r0,[read_addr] */
|
|
htole32(0xe28f1024), /* add r1, pc, #36 ; adr r1, read_data */
|
|
htole32(0xe59f201c), /* ldr r2, [pc, #28] ; ldr r2,[read_count] */
|
|
htole32(0xe3520000 + LCODE_MAX_WORDS), /* cmp r2, #LCODE_MAX_WORDS */
|
|
htole32(0xc3a02000 + LCODE_MAX_WORDS), /* movgt r2, #LCODE_MAX_WORDS */
|
|
/* read_loop: */
|
|
htole32(0xe2522001), /* subs r2, r2, #1 ; r2 -= 1 */
|
|
htole32(0x412fff1e), /* bxmi lr ; return if (r2 < 0) */
|
|
htole32(0xe4903004), /* ldr r3, [r0], #4 ; load and post-inc */
|
|
htole32(0xe4813004), /* str r3, [r1], #4 ; store and post-inc */
|
|
htole32(0xeafffffa), /* b read_loop */
|
|
htole32(addr), /* read_addr */
|
|
htole32(count) /* read_count */
|
|
/* read_data (buffer) follows, i.e. values go here */
|
|
};
|
|
assert(sizeof(arm_code) == LCODE_ARM_SIZE);
|
|
|
|
/* scratch buffer setup: transfers ARM code, including addr and count */
|
|
aw_fel_write(dev, arm_code, dev->soc_info->scratch_addr, sizeof(arm_code));
|
|
/* execute code, read back the result */
|
|
aw_fel_execute(dev, dev->soc_info->scratch_addr);
|
|
uint32_t buffer[count];
|
|
aw_fel_read(dev, dev->soc_info->scratch_addr + LCODE_ARM_SIZE,
|
|
buffer, sizeof(buffer));
|
|
/* extract values to destination buffer */
|
|
uint32_t *val = buffer;
|
|
while (count-- > 0)
|
|
*dst++ = le32toh(*val++);
|
|
}
|
|
|
|
/*
|
|
* aw_fel_readl_n() wrapper that can handle large transfers. If necessary,
|
|
* those will be done in separate 'chunks' of no more than LCODE_MAX_WORDS.
|
|
*/
|
|
void fel_readl_n(feldev_handle *dev, uint32_t addr, uint32_t *dst, size_t count)
|
|
{
|
|
while (count > 0) {
|
|
size_t n = count > LCODE_MAX_WORDS ? LCODE_MAX_WORDS : count;
|
|
aw_fel_readl_n(dev, addr, dst, n);
|
|
addr += n * sizeof(uint32_t);
|
|
dst += n;
|
|
count -= n;
|
|
}
|
|
}
|
|
|
|
/* multiple "writel" from a source buffer to sequential addresses */
|
|
static void aw_fel_writel_n(feldev_handle *dev, uint32_t addr,
|
|
uint32_t *src, size_t count)
|
|
{
|
|
if (count == 0) return;
|
|
if (count > LCODE_MAX_WORDS) {
|
|
fprintf(stderr,
|
|
"ERROR: Max. word count exceeded, truncating aw_fel_writel_n() transfer\n");
|
|
count = LCODE_MAX_WORDS;
|
|
}
|
|
|
|
assert(LCODE_MAX_WORDS < 256); /* protect against corruption of ARM code */
|
|
/*
|
|
* We need a fixed array size to allow for (partial) initialization,
|
|
* so we'll claim the maximum total number of words (0x100) here.
|
|
*/
|
|
uint32_t arm_code[LCODE_MAX_TOTAL] = {
|
|
htole32(0xe59f0020), /* ldr r0, [pc, #32] ; ldr r0,[write_addr] */
|
|
htole32(0xe28f1024), /* add r1, pc, #36 ; adr r1, write_data */
|
|
htole32(0xe59f201c), /* ldr r2, [pc, #28] ; ldr r2,[write_count]*/
|
|
htole32(0xe3520000 + LCODE_MAX_WORDS), /* cmp r2, #LCODE_MAX_WORDS */
|
|
htole32(0xc3a02000 + LCODE_MAX_WORDS), /* movgt r2, #LCODE_MAX_WORDS */
|
|
/* write_loop: */
|
|
htole32(0xe2522001), /* subs r2, r2, #1 ; r2 -= 1 */
|
|
htole32(0x412fff1e), /* bxmi lr ; return if (r2 < 0) */
|
|
htole32(0xe4913004), /* ldr r3, [r1], #4 ; load and post-inc */
|
|
htole32(0xe4803004), /* str r3, [r0], #4 ; store and post-inc */
|
|
htole32(0xeafffffa), /* b write_loop */
|
|
htole32(addr), /* write_addr */
|
|
htole32(count) /* write_count */
|
|
/* write_data (buffer) follows, i.e. values taken from here */
|
|
};
|
|
|
|
/* copy values from source buffer */
|
|
size_t i;
|
|
for (i = 0; i < count; i++)
|
|
arm_code[LCODE_ARM_WORDS + i] = htole32(*src++);
|
|
/* scratch buffer setup: transfers ARM code and data */
|
|
aw_fel_write(dev, arm_code, dev->soc_info->scratch_addr,
|
|
(LCODE_ARM_WORDS + count) * sizeof(uint32_t));
|
|
/* execute, and we're done */
|
|
aw_fel_execute(dev, dev->soc_info->scratch_addr);
|
|
}
|
|
|
|
/*
|
|
* aw_fel_writel_n() wrapper that can handle large transfers. If necessary,
|
|
* those will be done in separate 'chunks' of no more than LCODE_MAX_WORDS.
|
|
*/
|
|
void fel_writel_n(feldev_handle *dev, uint32_t addr, uint32_t *src, size_t count)
|
|
{
|
|
while (count > 0) {
|
|
size_t n = count > LCODE_MAX_WORDS ? LCODE_MAX_WORDS : count;
|
|
aw_fel_writel_n(dev, addr, src, n);
|
|
addr += n * sizeof(uint32_t);
|
|
src += n;
|
|
count -= n;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Memory access to the SID (root) keys proved to be unreliable for certain
|
|
* SoCs. This function uses an alternative, register-based approach to retrieve
|
|
* the values.
|
|
*/
|
|
static void fel_get_sid_registers(feldev_handle *dev, uint32_t *result)
|
|
{
|
|
uint32_t arm_code[] = {
|
|
htole32(0xe59f0040), /* 0: ldr r0, [pc, #64] */
|
|
htole32(0xe3a01000), /* 4: mov r1, #0 */
|
|
htole32(0xe28f303c), /* 8: add r3, pc, #60 */
|
|
/* <sid_read_loop>: */
|
|
htole32(0xe1a02801), /* c: lsl r2, r1, #16 */
|
|
htole32(0xe3822b2b), /* 10: orr r2, r2, #44032 */
|
|
htole32(0xe3822002), /* 14: orr r2, r2, #2 */
|
|
htole32(0xe5802040), /* 18: str r2, [r0, #64] */
|
|
/* <sid_read_wait>: */
|
|
htole32(0xe5902040), /* 1c: ldr r2, [r0, #64] */
|
|
htole32(0xe3120002), /* 20: tst r2, #2 */
|
|
htole32(0x1afffffc), /* 24: bne 1c <sid_read_wait> */
|
|
htole32(0xe5902060), /* 28: ldr r2, [r0, #96] */
|
|
htole32(0xe7832001), /* 2c: str r2, [r3, r1] */
|
|
htole32(0xe2811004), /* 30: add r1, r1, #4 */
|
|
htole32(0xe3510010), /* 34: cmp r1, #16 */
|
|
htole32(0x3afffff3), /* 38: bcc c <sid_read_loop> */
|
|
htole32(0xe3a02000), /* 3c: mov r2, #0 */
|
|
htole32(0xe5802040), /* 40: str r2, [r0, #64] */
|
|
htole32(0xe12fff1e), /* 44: bx lr */
|
|
htole32(dev->soc_info->sid_base), /* SID base addr */
|
|
/* retrieved SID values go here */
|
|
};
|
|
/* write and execute code */
|
|
aw_fel_write(dev, arm_code, dev->soc_info->scratch_addr, sizeof(arm_code));
|
|
aw_fel_execute(dev, dev->soc_info->scratch_addr);
|
|
/* read back the result */
|
|
aw_fel_read(dev, dev->soc_info->scratch_addr + sizeof(arm_code),
|
|
result, 4 * sizeof(uint32_t));
|
|
for (unsigned i = 0; i < 4; i++)
|
|
result[i] = le32toh(result[i]);
|
|
}
|
|
|
|
/* Read the SID "root" key (128 bits). You need to pass the device handle,
|
|
* a pointer to a result array capable of receiving at least four 32-bit words,
|
|
* and a flag specifying if the register-access workaround should be enforced.
|
|
* Return value indicates whether the result is expected to be usable:
|
|
* The function will return `false` (and zero the result) if it cannot access
|
|
* the SID registers.
|
|
*/
|
|
bool fel_get_sid_root_key(feldev_handle *dev, uint32_t *result,
|
|
bool force_workaround)
|
|
{
|
|
if (!dev->soc_info->sid_base) {
|
|
/* SID unavailable */
|
|
for (unsigned i = 0; i < 4; i++) result[i] = 0;
|
|
return false;
|
|
}
|
|
|
|
if (dev->soc_info->sid_fix || force_workaround)
|
|
/* Work around SID issues by using ARM thunk code */
|
|
fel_get_sid_registers(dev, result);
|
|
else
|
|
/* Read SID directly from memory */
|
|
fel_readl_n(dev, dev->soc_info->sid_base
|
|
+ dev->soc_info->sid_offset, result, 4);
|
|
return true;
|
|
}
|
|
|
|
/* general functions, "FEL device" management */
|
|
|
|
static int feldev_get_endpoint(feldev_handle *dev)
|
|
{
|
|
struct libusb_device *usb = libusb_get_device(dev->usb->handle);
|
|
struct libusb_config_descriptor *config;
|
|
int if_idx, set_idx, ep_idx, ret;
|
|
const struct libusb_interface *iface;
|
|
const struct libusb_interface_descriptor *setting;
|
|
const struct libusb_endpoint_descriptor *ep;
|
|
|
|
ret = libusb_get_active_config_descriptor(usb, &config);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (if_idx = 0; if_idx < config->bNumInterfaces; if_idx++) {
|
|
iface = config->interface + if_idx;
|
|
|
|
for (set_idx = 0; set_idx < iface->num_altsetting; set_idx++) {
|
|
setting = iface->altsetting + set_idx;
|
|
|
|
for (ep_idx = 0; ep_idx < setting->bNumEndpoints; ep_idx++) {
|
|
ep = setting->endpoint + ep_idx;
|
|
|
|
/* Test for bulk transfer endpoint */
|
|
if ((ep->bmAttributes & LIBUSB_TRANSFER_TYPE_MASK)
|
|
!= LIBUSB_TRANSFER_TYPE_BULK)
|
|
continue;
|
|
|
|
if ((ep->bEndpointAddress & LIBUSB_ENDPOINT_DIR_MASK)
|
|
== LIBUSB_ENDPOINT_IN)
|
|
dev->usb->endpoint_in = ep->bEndpointAddress;
|
|
else
|
|
dev->usb->endpoint_out = ep->bEndpointAddress;
|
|
}
|
|
}
|
|
}
|
|
|
|
libusb_free_config_descriptor(config);
|
|
return LIBUSB_SUCCESS;
|
|
}
|
|
|
|
/* claim USB interface associated with the libusb handle for a FEL device */
|
|
void feldev_claim(feldev_handle *dev)
|
|
{
|
|
int rc = libusb_claim_interface(dev->usb->handle, 0);
|
|
#if defined(__linux__)
|
|
if (rc != LIBUSB_SUCCESS) {
|
|
libusb_detach_kernel_driver(dev->usb->handle, 0);
|
|
dev->usb->iface_detached = true;
|
|
rc = libusb_claim_interface(dev->usb->handle, 0);
|
|
}
|
|
#endif
|
|
if (rc)
|
|
usb_error(rc, "libusb_claim_interface()", 1);
|
|
|
|
rc = feldev_get_endpoint(dev);
|
|
if (rc)
|
|
usb_error(rc, "FAILED to get FEL mode endpoint addresses!", 1);
|
|
}
|
|
|
|
/* release USB interface associated with the libusb handle for a FEL device */
|
|
void feldev_release(feldev_handle *dev)
|
|
{
|
|
libusb_release_interface(dev->usb->handle, 0);
|
|
#if defined(__linux__)
|
|
if (dev->usb->iface_detached)
|
|
libusb_attach_kernel_driver(dev->usb->handle, 0);
|
|
#endif
|
|
}
|
|
|
|
/* open handle to desired FEL device */
|
|
feldev_handle *feldev_open(int busnum, int devnum,
|
|
uint16_t vendor_id, uint16_t product_id)
|
|
{
|
|
if (!fel_lib_initialized) /* if not already done: auto-initialize */
|
|
feldev_init();
|
|
feldev_handle *result = calloc(1, sizeof(feldev_handle));
|
|
if (!result) {
|
|
fprintf(stderr, "FAILED to allocate feldev_handle memory.\n");
|
|
exit(1);
|
|
}
|
|
result->usb = calloc(1, sizeof(felusb_handle));
|
|
if (!result->usb) {
|
|
fprintf(stderr, "FAILED to allocate felusb_handle memory.\n");
|
|
free(result);
|
|
exit(1);
|
|
}
|
|
|
|
if (busnum < 0 || devnum < 0) {
|
|
/* With the default values (busnum -1, devnum -1) we don't care
|
|
* for a specific USB device; so let libusb open the first
|
|
* device that matches VID/PID.
|
|
*/
|
|
result->usb->handle = libusb_open_device_with_vid_pid(NULL, vendor_id, product_id);
|
|
if (!result->usb->handle) {
|
|
switch (errno) {
|
|
case EACCES:
|
|
fprintf(stderr, "ERROR: You don't have permission to access Allwinner USB FEL device\n");
|
|
break;
|
|
default:
|
|
fprintf(stderr, "ERROR: Allwinner USB FEL device not found!\n");
|
|
break;
|
|
}
|
|
exit(1);
|
|
}
|
|
} else {
|
|
/* look for specific bus and device number */
|
|
bool found = false;
|
|
ssize_t rc, i;
|
|
libusb_device **list;
|
|
|
|
rc = libusb_get_device_list(NULL, &list);
|
|
if (rc < 0)
|
|
usb_error(rc, "libusb_get_device_list()", 1);
|
|
for (i = 0; i < rc; i++) {
|
|
if (libusb_get_bus_number(list[i]) == busnum
|
|
&& libusb_get_device_address(list[i]) == devnum) {
|
|
found = true; /* bus:devnum matched */
|
|
struct libusb_device_descriptor desc;
|
|
libusb_get_device_descriptor(list[i], &desc);
|
|
if (desc.idVendor != vendor_id
|
|
|| desc.idProduct != product_id) {
|
|
fprintf(stderr, "ERROR: Bus %03d Device %03d not a FEL device "
|
|
"(expected %04x:%04x, got %04x:%04x)\n", busnum, devnum,
|
|
vendor_id, product_id, desc.idVendor, desc.idProduct);
|
|
exit(1);
|
|
}
|
|
/* open handle to this specific device (incrementing its refcount) */
|
|
rc = libusb_open(list[i], &result->usb->handle);
|
|
if (rc != 0)
|
|
usb_error(rc, "libusb_open()", 1);
|
|
break;
|
|
}
|
|
}
|
|
libusb_free_device_list(list, true);
|
|
|
|
if (!found) {
|
|
fprintf(stderr, "ERROR: Bus %03d Device %03d not found in libusb device list\n",
|
|
busnum, devnum);
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
feldev_claim(result); /* claim interface, detect USB endpoints */
|
|
|
|
/* retrieve BROM version and SoC information */
|
|
aw_fel_get_version(result, &result->soc_version);
|
|
get_soc_name_from_id(result->soc_name, result->soc_version.soc_id);
|
|
result->soc_info = get_soc_info_from_version(&result->soc_version);
|
|
|
|
return result;
|
|
}
|
|
|
|
/* close FEL device (optional, dev may be NULL) */
|
|
void feldev_close(feldev_handle *dev)
|
|
{
|
|
if (dev) {
|
|
if (dev->usb->handle) {
|
|
feldev_release(dev);
|
|
libusb_close(dev->usb->handle);
|
|
}
|
|
free(dev->usb); /* release memory allocated for felusb_handle */
|
|
}
|
|
}
|
|
|
|
void feldev_init(void)
|
|
{
|
|
int rc = libusb_init(NULL);
|
|
if (rc != 0)
|
|
usb_error(rc, "libusb_init()", 1);
|
|
fel_lib_initialized = true;
|
|
}
|
|
|
|
void feldev_done(feldev_handle *dev)
|
|
{
|
|
feldev_close(dev);
|
|
free(dev);
|
|
if (fel_lib_initialized) libusb_exit(NULL);
|
|
}
|
|
|
|
/*
|
|
* Enumerate (all) FEL devices. Allocates a list (array of feldev_list_entry)
|
|
* and optionally returns the number of elements via "count". You may
|
|
* alternatively detect the end of the list by checking the entry's soc_version
|
|
* for a zero ID.
|
|
* It's your responsibility to call free() on the result later.
|
|
*/
|
|
feldev_list_entry *list_fel_devices(size_t *count)
|
|
{
|
|
feldev_list_entry *list, *entry;
|
|
ssize_t rc, i;
|
|
libusb_context *ctx;
|
|
libusb_device **usb;
|
|
struct libusb_device_descriptor desc;
|
|
feldev_handle *dev;
|
|
size_t devices = 0;
|
|
|
|
libusb_init(&ctx);
|
|
rc = libusb_get_device_list(ctx, &usb);
|
|
if (rc < 0)
|
|
usb_error(rc, "libusb_get_device_list()", 1);
|
|
|
|
/*
|
|
* Size our array to hold entries for every USB device,
|
|
* plus an empty one at the end (for list termination).
|
|
*/
|
|
list = calloc(rc + 1, sizeof(feldev_list_entry));
|
|
if (!list) {
|
|
fprintf(stderr, "list_fel_devices() FAILED to allocate list memory.\n");
|
|
exit(1);
|
|
}
|
|
|
|
for (i = 0; i < rc; i++) {
|
|
libusb_get_device_descriptor(usb[i], &desc);
|
|
if (desc.idVendor != AW_USB_VENDOR_ID
|
|
|| desc.idProduct != AW_USB_PRODUCT_ID)
|
|
continue; /* not an Allwinner FEL device */
|
|
|
|
entry = list + devices; /* pointer to current feldev_list_entry */
|
|
devices += 1;
|
|
|
|
entry->busnum = libusb_get_bus_number(usb[i]);
|
|
entry->devnum = libusb_get_device_address(usb[i]);
|
|
dev = feldev_open(entry->busnum, entry->devnum,
|
|
AW_USB_VENDOR_ID, AW_USB_PRODUCT_ID);
|
|
|
|
/* copy relevant fields */
|
|
entry->soc_version = dev->soc_version;
|
|
entry->soc_info = dev->soc_info;
|
|
strncpy(entry->soc_name, dev->soc_name, sizeof(soc_name_t));
|
|
|
|
/* retrieve SID bits */
|
|
fel_get_root_key(dev, entry->SID, false);
|
|
|
|
feldev_close(dev);
|
|
free(dev);
|
|
}
|
|
libusb_free_device_list(usb, true);
|
|
libusb_exit(ctx);
|
|
|
|
if (count) *count = devices;
|
|
return list;
|
|
}
|