mirror of
https://github.com/qemu/qemu.git
synced 2024-12-17 01:03:51 +08:00
3e8f1628e8
Use g2h_untagged in contexts that have no cpu, e.g. the binary loaders that operate before the primary cpu is created. As a colollary, target_mmap and friends must use untagged addresses, since they are used by the loaders. Use g2h_untagged on values returned from target_mmap, as the kernel never applies a tag itself. Use g2h_untagged on all pc values. The only current user of tags, aarch64, removes tags from code addresses upon branch, so "pc" is always untagged. Use g2h with the cpu context on hand wherever possible. Use g2h_untagged in lock_user, which will be updated soon. Reviewed-by: Peter Maydell <peter.maydell@linaro.org> Signed-off-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20210212184902.1251044-13-richard.henderson@linaro.org Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
706 lines
19 KiB
C
706 lines
19 KiB
C
/*
|
|
* Helpers for HPPA instructions.
|
|
*
|
|
* Copyright (c) 2016 Richard Henderson <rth@twiddle.net>
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "cpu.h"
|
|
#include "exec/exec-all.h"
|
|
#include "exec/helper-proto.h"
|
|
#include "exec/cpu_ldst.h"
|
|
#include "qemu/timer.h"
|
|
#include "sysemu/runstate.h"
|
|
#include "fpu/softfloat.h"
|
|
#include "trace.h"
|
|
|
|
void QEMU_NORETURN HELPER(excp)(CPUHPPAState *env, int excp)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
|
|
cs->exception_index = excp;
|
|
cpu_loop_exit(cs);
|
|
}
|
|
|
|
void QEMU_NORETURN hppa_dynamic_excp(CPUHPPAState *env, int excp, uintptr_t ra)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
|
|
cs->exception_index = excp;
|
|
cpu_loop_exit_restore(cs, ra);
|
|
}
|
|
|
|
void HELPER(tsv)(CPUHPPAState *env, target_ureg cond)
|
|
{
|
|
if (unlikely((target_sreg)cond < 0)) {
|
|
hppa_dynamic_excp(env, EXCP_OVERFLOW, GETPC());
|
|
}
|
|
}
|
|
|
|
void HELPER(tcond)(CPUHPPAState *env, target_ureg cond)
|
|
{
|
|
if (unlikely(cond)) {
|
|
hppa_dynamic_excp(env, EXCP_COND, GETPC());
|
|
}
|
|
}
|
|
|
|
static void atomic_store_3(CPUHPPAState *env, target_ulong addr, uint32_t val,
|
|
uint32_t mask, uintptr_t ra)
|
|
{
|
|
#ifdef CONFIG_USER_ONLY
|
|
uint32_t old, new, cmp;
|
|
|
|
uint32_t *haddr = g2h(env_cpu(env), addr - 1);
|
|
old = *haddr;
|
|
while (1) {
|
|
new = (old & ~mask) | (val & mask);
|
|
cmp = qatomic_cmpxchg(haddr, old, new);
|
|
if (cmp == old) {
|
|
return;
|
|
}
|
|
old = cmp;
|
|
}
|
|
#else
|
|
/* FIXME -- we can do better. */
|
|
cpu_loop_exit_atomic(env_cpu(env), ra);
|
|
#endif
|
|
}
|
|
|
|
static void do_stby_b(CPUHPPAState *env, target_ulong addr, target_ureg val,
|
|
bool parallel, uintptr_t ra)
|
|
{
|
|
switch (addr & 3) {
|
|
case 3:
|
|
cpu_stb_data_ra(env, addr, val, ra);
|
|
break;
|
|
case 2:
|
|
cpu_stw_data_ra(env, addr, val, ra);
|
|
break;
|
|
case 1:
|
|
/* The 3 byte store must appear atomic. */
|
|
if (parallel) {
|
|
atomic_store_3(env, addr, val, 0x00ffffffu, ra);
|
|
} else {
|
|
cpu_stb_data_ra(env, addr, val >> 16, ra);
|
|
cpu_stw_data_ra(env, addr + 1, val, ra);
|
|
}
|
|
break;
|
|
default:
|
|
cpu_stl_data_ra(env, addr, val, ra);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void HELPER(stby_b)(CPUHPPAState *env, target_ulong addr, target_ureg val)
|
|
{
|
|
do_stby_b(env, addr, val, false, GETPC());
|
|
}
|
|
|
|
void HELPER(stby_b_parallel)(CPUHPPAState *env, target_ulong addr,
|
|
target_ureg val)
|
|
{
|
|
do_stby_b(env, addr, val, true, GETPC());
|
|
}
|
|
|
|
static void do_stby_e(CPUHPPAState *env, target_ulong addr, target_ureg val,
|
|
bool parallel, uintptr_t ra)
|
|
{
|
|
switch (addr & 3) {
|
|
case 3:
|
|
/* The 3 byte store must appear atomic. */
|
|
if (parallel) {
|
|
atomic_store_3(env, addr - 3, val, 0xffffff00u, ra);
|
|
} else {
|
|
cpu_stw_data_ra(env, addr - 3, val >> 16, ra);
|
|
cpu_stb_data_ra(env, addr - 1, val >> 8, ra);
|
|
}
|
|
break;
|
|
case 2:
|
|
cpu_stw_data_ra(env, addr - 2, val >> 16, ra);
|
|
break;
|
|
case 1:
|
|
cpu_stb_data_ra(env, addr - 1, val >> 24, ra);
|
|
break;
|
|
default:
|
|
/* Nothing is stored, but protection is checked and the
|
|
cacheline is marked dirty. */
|
|
probe_write(env, addr, 0, cpu_mmu_index(env, 0), ra);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void HELPER(stby_e)(CPUHPPAState *env, target_ulong addr, target_ureg val)
|
|
{
|
|
do_stby_e(env, addr, val, false, GETPC());
|
|
}
|
|
|
|
void HELPER(stby_e_parallel)(CPUHPPAState *env, target_ulong addr,
|
|
target_ureg val)
|
|
{
|
|
do_stby_e(env, addr, val, true, GETPC());
|
|
}
|
|
|
|
void HELPER(ldc_check)(target_ulong addr)
|
|
{
|
|
if (unlikely(addr & 0xf)) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"Undefined ldc to unaligned address mod 16: "
|
|
TARGET_FMT_lx "\n", addr);
|
|
}
|
|
}
|
|
|
|
target_ureg HELPER(probe)(CPUHPPAState *env, target_ulong addr,
|
|
uint32_t level, uint32_t want)
|
|
{
|
|
#ifdef CONFIG_USER_ONLY
|
|
return page_check_range(addr, 1, want);
|
|
#else
|
|
int prot, excp;
|
|
hwaddr phys;
|
|
|
|
trace_hppa_tlb_probe(addr, level, want);
|
|
/* Fail if the requested privilege level is higher than current. */
|
|
if (level < (env->iaoq_f & 3)) {
|
|
return 0;
|
|
}
|
|
|
|
excp = hppa_get_physical_address(env, addr, level, 0, &phys, &prot);
|
|
if (excp >= 0) {
|
|
if (env->psw & PSW_Q) {
|
|
/* ??? Needs tweaking for hppa64. */
|
|
env->cr[CR_IOR] = addr;
|
|
env->cr[CR_ISR] = addr >> 32;
|
|
}
|
|
if (excp == EXCP_DTLB_MISS) {
|
|
excp = EXCP_NA_DTLB_MISS;
|
|
}
|
|
hppa_dynamic_excp(env, excp, GETPC());
|
|
}
|
|
return (want & prot) != 0;
|
|
#endif
|
|
}
|
|
|
|
void HELPER(loaded_fr0)(CPUHPPAState *env)
|
|
{
|
|
uint32_t shadow = env->fr[0] >> 32;
|
|
int rm, d;
|
|
|
|
env->fr0_shadow = shadow;
|
|
|
|
switch (extract32(shadow, 9, 2)) {
|
|
default:
|
|
rm = float_round_nearest_even;
|
|
break;
|
|
case 1:
|
|
rm = float_round_to_zero;
|
|
break;
|
|
case 2:
|
|
rm = float_round_up;
|
|
break;
|
|
case 3:
|
|
rm = float_round_down;
|
|
break;
|
|
}
|
|
set_float_rounding_mode(rm, &env->fp_status);
|
|
|
|
d = extract32(shadow, 5, 1);
|
|
set_flush_to_zero(d, &env->fp_status);
|
|
set_flush_inputs_to_zero(d, &env->fp_status);
|
|
}
|
|
|
|
void cpu_hppa_loaded_fr0(CPUHPPAState *env)
|
|
{
|
|
helper_loaded_fr0(env);
|
|
}
|
|
|
|
#define CONVERT_BIT(X, SRC, DST) \
|
|
((SRC) > (DST) \
|
|
? (X) / ((SRC) / (DST)) & (DST) \
|
|
: ((X) & (SRC)) * ((DST) / (SRC)))
|
|
|
|
static void update_fr0_op(CPUHPPAState *env, uintptr_t ra)
|
|
{
|
|
uint32_t soft_exp = get_float_exception_flags(&env->fp_status);
|
|
uint32_t hard_exp = 0;
|
|
uint32_t shadow = env->fr0_shadow;
|
|
|
|
if (likely(soft_exp == 0)) {
|
|
env->fr[0] = (uint64_t)shadow << 32;
|
|
return;
|
|
}
|
|
set_float_exception_flags(0, &env->fp_status);
|
|
|
|
hard_exp |= CONVERT_BIT(soft_exp, float_flag_inexact, 1u << 0);
|
|
hard_exp |= CONVERT_BIT(soft_exp, float_flag_underflow, 1u << 1);
|
|
hard_exp |= CONVERT_BIT(soft_exp, float_flag_overflow, 1u << 2);
|
|
hard_exp |= CONVERT_BIT(soft_exp, float_flag_divbyzero, 1u << 3);
|
|
hard_exp |= CONVERT_BIT(soft_exp, float_flag_invalid, 1u << 4);
|
|
shadow |= hard_exp << (32 - 5);
|
|
env->fr0_shadow = shadow;
|
|
env->fr[0] = (uint64_t)shadow << 32;
|
|
|
|
if (hard_exp & shadow) {
|
|
hppa_dynamic_excp(env, EXCP_ASSIST, ra);
|
|
}
|
|
}
|
|
|
|
float32 HELPER(fsqrt_s)(CPUHPPAState *env, float32 arg)
|
|
{
|
|
float32 ret = float32_sqrt(arg, &env->fp_status);
|
|
update_fr0_op(env, GETPC());
|
|
return ret;
|
|
}
|
|
|
|
float32 HELPER(frnd_s)(CPUHPPAState *env, float32 arg)
|
|
{
|
|
float32 ret = float32_round_to_int(arg, &env->fp_status);
|
|
update_fr0_op(env, GETPC());
|
|
return ret;
|
|
}
|
|
|
|
float32 HELPER(fadd_s)(CPUHPPAState *env, float32 a, float32 b)
|
|
{
|
|
float32 ret = float32_add(a, b, &env->fp_status);
|
|
update_fr0_op(env, GETPC());
|
|
return ret;
|
|
}
|
|
|
|
float32 HELPER(fsub_s)(CPUHPPAState *env, float32 a, float32 b)
|
|
{
|
|
float32 ret = float32_sub(a, b, &env->fp_status);
|
|
update_fr0_op(env, GETPC());
|
|
return ret;
|
|
}
|
|
|
|
float32 HELPER(fmpy_s)(CPUHPPAState *env, float32 a, float32 b)
|
|
{
|
|
float32 ret = float32_mul(a, b, &env->fp_status);
|
|
update_fr0_op(env, GETPC());
|
|
return ret;
|
|
}
|
|
|
|
float32 HELPER(fdiv_s)(CPUHPPAState *env, float32 a, float32 b)
|
|
{
|
|
float32 ret = float32_div(a, b, &env->fp_status);
|
|
update_fr0_op(env, GETPC());
|
|
return ret;
|
|
}
|
|
|
|
float64 HELPER(fsqrt_d)(CPUHPPAState *env, float64 arg)
|
|
{
|
|
float64 ret = float64_sqrt(arg, &env->fp_status);
|
|
update_fr0_op(env, GETPC());
|
|
return ret;
|
|
}
|
|
|
|
float64 HELPER(frnd_d)(CPUHPPAState *env, float64 arg)
|
|
{
|
|
float64 ret = float64_round_to_int(arg, &env->fp_status);
|
|
update_fr0_op(env, GETPC());
|
|
return ret;
|
|
}
|
|
|
|
float64 HELPER(fadd_d)(CPUHPPAState *env, float64 a, float64 b)
|
|
{
|
|
float64 ret = float64_add(a, b, &env->fp_status);
|
|
update_fr0_op(env, GETPC());
|
|
return ret;
|
|
}
|
|
|
|
float64 HELPER(fsub_d)(CPUHPPAState *env, float64 a, float64 b)
|
|
{
|
|
float64 ret = float64_sub(a, b, &env->fp_status);
|
|
update_fr0_op(env, GETPC());
|
|
return ret;
|
|
}
|
|
|
|
float64 HELPER(fmpy_d)(CPUHPPAState *env, float64 a, float64 b)
|
|
{
|
|
float64 ret = float64_mul(a, b, &env->fp_status);
|
|
update_fr0_op(env, GETPC());
|
|
return ret;
|
|
}
|
|
|
|
float64 HELPER(fdiv_d)(CPUHPPAState *env, float64 a, float64 b)
|
|
{
|
|
float64 ret = float64_div(a, b, &env->fp_status);
|
|
update_fr0_op(env, GETPC());
|
|
return ret;
|
|
}
|
|
|
|
float64 HELPER(fcnv_s_d)(CPUHPPAState *env, float32 arg)
|
|
{
|
|
float64 ret = float32_to_float64(arg, &env->fp_status);
|
|
update_fr0_op(env, GETPC());
|
|
return ret;
|
|
}
|
|
|
|
float32 HELPER(fcnv_d_s)(CPUHPPAState *env, float64 arg)
|
|
{
|
|
float32 ret = float64_to_float32(arg, &env->fp_status);
|
|
update_fr0_op(env, GETPC());
|
|
return ret;
|
|
}
|
|
|
|
float32 HELPER(fcnv_w_s)(CPUHPPAState *env, int32_t arg)
|
|
{
|
|
float32 ret = int32_to_float32(arg, &env->fp_status);
|
|
update_fr0_op(env, GETPC());
|
|
return ret;
|
|
}
|
|
|
|
float32 HELPER(fcnv_dw_s)(CPUHPPAState *env, int64_t arg)
|
|
{
|
|
float32 ret = int64_to_float32(arg, &env->fp_status);
|
|
update_fr0_op(env, GETPC());
|
|
return ret;
|
|
}
|
|
|
|
float64 HELPER(fcnv_w_d)(CPUHPPAState *env, int32_t arg)
|
|
{
|
|
float64 ret = int32_to_float64(arg, &env->fp_status);
|
|
update_fr0_op(env, GETPC());
|
|
return ret;
|
|
}
|
|
|
|
float64 HELPER(fcnv_dw_d)(CPUHPPAState *env, int64_t arg)
|
|
{
|
|
float64 ret = int64_to_float64(arg, &env->fp_status);
|
|
update_fr0_op(env, GETPC());
|
|
return ret;
|
|
}
|
|
|
|
int32_t HELPER(fcnv_s_w)(CPUHPPAState *env, float32 arg)
|
|
{
|
|
int32_t ret = float32_to_int32(arg, &env->fp_status);
|
|
update_fr0_op(env, GETPC());
|
|
return ret;
|
|
}
|
|
|
|
int32_t HELPER(fcnv_d_w)(CPUHPPAState *env, float64 arg)
|
|
{
|
|
int32_t ret = float64_to_int32(arg, &env->fp_status);
|
|
update_fr0_op(env, GETPC());
|
|
return ret;
|
|
}
|
|
|
|
int64_t HELPER(fcnv_s_dw)(CPUHPPAState *env, float32 arg)
|
|
{
|
|
int64_t ret = float32_to_int64(arg, &env->fp_status);
|
|
update_fr0_op(env, GETPC());
|
|
return ret;
|
|
}
|
|
|
|
int64_t HELPER(fcnv_d_dw)(CPUHPPAState *env, float64 arg)
|
|
{
|
|
int64_t ret = float64_to_int64(arg, &env->fp_status);
|
|
update_fr0_op(env, GETPC());
|
|
return ret;
|
|
}
|
|
|
|
int32_t HELPER(fcnv_t_s_w)(CPUHPPAState *env, float32 arg)
|
|
{
|
|
int32_t ret = float32_to_int32_round_to_zero(arg, &env->fp_status);
|
|
update_fr0_op(env, GETPC());
|
|
return ret;
|
|
}
|
|
|
|
int32_t HELPER(fcnv_t_d_w)(CPUHPPAState *env, float64 arg)
|
|
{
|
|
int32_t ret = float64_to_int32_round_to_zero(arg, &env->fp_status);
|
|
update_fr0_op(env, GETPC());
|
|
return ret;
|
|
}
|
|
|
|
int64_t HELPER(fcnv_t_s_dw)(CPUHPPAState *env, float32 arg)
|
|
{
|
|
int64_t ret = float32_to_int64_round_to_zero(arg, &env->fp_status);
|
|
update_fr0_op(env, GETPC());
|
|
return ret;
|
|
}
|
|
|
|
int64_t HELPER(fcnv_t_d_dw)(CPUHPPAState *env, float64 arg)
|
|
{
|
|
int64_t ret = float64_to_int64_round_to_zero(arg, &env->fp_status);
|
|
update_fr0_op(env, GETPC());
|
|
return ret;
|
|
}
|
|
|
|
float32 HELPER(fcnv_uw_s)(CPUHPPAState *env, uint32_t arg)
|
|
{
|
|
float32 ret = uint32_to_float32(arg, &env->fp_status);
|
|
update_fr0_op(env, GETPC());
|
|
return ret;
|
|
}
|
|
|
|
float32 HELPER(fcnv_udw_s)(CPUHPPAState *env, uint64_t arg)
|
|
{
|
|
float32 ret = uint64_to_float32(arg, &env->fp_status);
|
|
update_fr0_op(env, GETPC());
|
|
return ret;
|
|
}
|
|
|
|
float64 HELPER(fcnv_uw_d)(CPUHPPAState *env, uint32_t arg)
|
|
{
|
|
float64 ret = uint32_to_float64(arg, &env->fp_status);
|
|
update_fr0_op(env, GETPC());
|
|
return ret;
|
|
}
|
|
|
|
float64 HELPER(fcnv_udw_d)(CPUHPPAState *env, uint64_t arg)
|
|
{
|
|
float64 ret = uint64_to_float64(arg, &env->fp_status);
|
|
update_fr0_op(env, GETPC());
|
|
return ret;
|
|
}
|
|
|
|
uint32_t HELPER(fcnv_s_uw)(CPUHPPAState *env, float32 arg)
|
|
{
|
|
uint32_t ret = float32_to_uint32(arg, &env->fp_status);
|
|
update_fr0_op(env, GETPC());
|
|
return ret;
|
|
}
|
|
|
|
uint32_t HELPER(fcnv_d_uw)(CPUHPPAState *env, float64 arg)
|
|
{
|
|
uint32_t ret = float64_to_uint32(arg, &env->fp_status);
|
|
update_fr0_op(env, GETPC());
|
|
return ret;
|
|
}
|
|
|
|
uint64_t HELPER(fcnv_s_udw)(CPUHPPAState *env, float32 arg)
|
|
{
|
|
uint64_t ret = float32_to_uint64(arg, &env->fp_status);
|
|
update_fr0_op(env, GETPC());
|
|
return ret;
|
|
}
|
|
|
|
uint64_t HELPER(fcnv_d_udw)(CPUHPPAState *env, float64 arg)
|
|
{
|
|
uint64_t ret = float64_to_uint64(arg, &env->fp_status);
|
|
update_fr0_op(env, GETPC());
|
|
return ret;
|
|
}
|
|
|
|
uint32_t HELPER(fcnv_t_s_uw)(CPUHPPAState *env, float32 arg)
|
|
{
|
|
uint32_t ret = float32_to_uint32_round_to_zero(arg, &env->fp_status);
|
|
update_fr0_op(env, GETPC());
|
|
return ret;
|
|
}
|
|
|
|
uint32_t HELPER(fcnv_t_d_uw)(CPUHPPAState *env, float64 arg)
|
|
{
|
|
uint32_t ret = float64_to_uint32_round_to_zero(arg, &env->fp_status);
|
|
update_fr0_op(env, GETPC());
|
|
return ret;
|
|
}
|
|
|
|
uint64_t HELPER(fcnv_t_s_udw)(CPUHPPAState *env, float32 arg)
|
|
{
|
|
uint64_t ret = float32_to_uint64_round_to_zero(arg, &env->fp_status);
|
|
update_fr0_op(env, GETPC());
|
|
return ret;
|
|
}
|
|
|
|
uint64_t HELPER(fcnv_t_d_udw)(CPUHPPAState *env, float64 arg)
|
|
{
|
|
uint64_t ret = float64_to_uint64_round_to_zero(arg, &env->fp_status);
|
|
update_fr0_op(env, GETPC());
|
|
return ret;
|
|
}
|
|
|
|
static void update_fr0_cmp(CPUHPPAState *env, uint32_t y,
|
|
uint32_t c, FloatRelation r)
|
|
{
|
|
uint32_t shadow = env->fr0_shadow;
|
|
|
|
switch (r) {
|
|
case float_relation_greater:
|
|
c = extract32(c, 4, 1);
|
|
break;
|
|
case float_relation_less:
|
|
c = extract32(c, 3, 1);
|
|
break;
|
|
case float_relation_equal:
|
|
c = extract32(c, 2, 1);
|
|
break;
|
|
case float_relation_unordered:
|
|
c = extract32(c, 1, 1);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
if (y) {
|
|
/* targeted comparison */
|
|
/* set fpsr[ca[y - 1]] to current compare */
|
|
shadow = deposit32(shadow, 21 - (y - 1), 1, c);
|
|
} else {
|
|
/* queued comparison */
|
|
/* shift cq right by one place */
|
|
shadow = deposit32(shadow, 11, 10, extract32(shadow, 12, 10));
|
|
/* move fpsr[c] to fpsr[cq[0]] */
|
|
shadow = deposit32(shadow, 21, 1, extract32(shadow, 26, 1));
|
|
/* set fpsr[c] to current compare */
|
|
shadow = deposit32(shadow, 26, 1, c);
|
|
}
|
|
|
|
env->fr0_shadow = shadow;
|
|
env->fr[0] = (uint64_t)shadow << 32;
|
|
}
|
|
|
|
void HELPER(fcmp_s)(CPUHPPAState *env, float32 a, float32 b,
|
|
uint32_t y, uint32_t c)
|
|
{
|
|
FloatRelation r;
|
|
if (c & 1) {
|
|
r = float32_compare(a, b, &env->fp_status);
|
|
} else {
|
|
r = float32_compare_quiet(a, b, &env->fp_status);
|
|
}
|
|
update_fr0_op(env, GETPC());
|
|
update_fr0_cmp(env, y, c, r);
|
|
}
|
|
|
|
void HELPER(fcmp_d)(CPUHPPAState *env, float64 a, float64 b,
|
|
uint32_t y, uint32_t c)
|
|
{
|
|
FloatRelation r;
|
|
if (c & 1) {
|
|
r = float64_compare(a, b, &env->fp_status);
|
|
} else {
|
|
r = float64_compare_quiet(a, b, &env->fp_status);
|
|
}
|
|
update_fr0_op(env, GETPC());
|
|
update_fr0_cmp(env, y, c, r);
|
|
}
|
|
|
|
float32 HELPER(fmpyfadd_s)(CPUHPPAState *env, float32 a, float32 b, float32 c)
|
|
{
|
|
float32 ret = float32_muladd(a, b, c, 0, &env->fp_status);
|
|
update_fr0_op(env, GETPC());
|
|
return ret;
|
|
}
|
|
|
|
float32 HELPER(fmpynfadd_s)(CPUHPPAState *env, float32 a, float32 b, float32 c)
|
|
{
|
|
float32 ret = float32_muladd(a, b, c, float_muladd_negate_product,
|
|
&env->fp_status);
|
|
update_fr0_op(env, GETPC());
|
|
return ret;
|
|
}
|
|
|
|
float64 HELPER(fmpyfadd_d)(CPUHPPAState *env, float64 a, float64 b, float64 c)
|
|
{
|
|
float64 ret = float64_muladd(a, b, c, 0, &env->fp_status);
|
|
update_fr0_op(env, GETPC());
|
|
return ret;
|
|
}
|
|
|
|
float64 HELPER(fmpynfadd_d)(CPUHPPAState *env, float64 a, float64 b, float64 c)
|
|
{
|
|
float64 ret = float64_muladd(a, b, c, float_muladd_negate_product,
|
|
&env->fp_status);
|
|
update_fr0_op(env, GETPC());
|
|
return ret;
|
|
}
|
|
|
|
target_ureg HELPER(read_interval_timer)(void)
|
|
{
|
|
#ifdef CONFIG_USER_ONLY
|
|
/* In user-mode, QEMU_CLOCK_VIRTUAL doesn't exist.
|
|
Just pass through the host cpu clock ticks. */
|
|
return cpu_get_host_ticks();
|
|
#else
|
|
/* In system mode we have access to a decent high-resolution clock.
|
|
In order to make OS-level time accounting work with the cr16,
|
|
present it with a well-timed clock fixed at 250MHz. */
|
|
return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) >> 2;
|
|
#endif
|
|
}
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
void HELPER(write_interval_timer)(CPUHPPAState *env, target_ureg val)
|
|
{
|
|
HPPACPU *cpu = env_archcpu(env);
|
|
uint64_t current = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
|
|
uint64_t timeout;
|
|
|
|
/* Even in 64-bit mode, the comparator is always 32-bit. But the
|
|
value we expose to the guest is 1/4 of the speed of the clock,
|
|
so moosh in 34 bits. */
|
|
timeout = deposit64(current, 0, 34, (uint64_t)val << 2);
|
|
|
|
/* If the mooshing puts the clock in the past, advance to next round. */
|
|
if (timeout < current + 1000) {
|
|
timeout += 1ULL << 34;
|
|
}
|
|
|
|
cpu->env.cr[CR_IT] = timeout;
|
|
timer_mod(cpu->alarm_timer, timeout);
|
|
}
|
|
|
|
void HELPER(halt)(CPUHPPAState *env)
|
|
{
|
|
qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
|
|
helper_excp(env, EXCP_HLT);
|
|
}
|
|
|
|
void HELPER(reset)(CPUHPPAState *env)
|
|
{
|
|
qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
|
|
helper_excp(env, EXCP_HLT);
|
|
}
|
|
|
|
target_ureg HELPER(swap_system_mask)(CPUHPPAState *env, target_ureg nsm)
|
|
{
|
|
target_ulong psw = env->psw;
|
|
/*
|
|
* Setting the PSW Q bit to 1, if it was not already 1, is an
|
|
* undefined operation.
|
|
*
|
|
* However, HP-UX 10.20 does this with the SSM instruction.
|
|
* Tested this on HP9000/712 and HP9000/785/C3750 and both
|
|
* machines set the Q bit from 0 to 1 without an exception,
|
|
* so let this go without comment.
|
|
*/
|
|
env->psw = (psw & ~PSW_SM) | (nsm & PSW_SM);
|
|
return psw & PSW_SM;
|
|
}
|
|
|
|
void HELPER(rfi)(CPUHPPAState *env)
|
|
{
|
|
env->iasq_f = (uint64_t)env->cr[CR_IIASQ] << 32;
|
|
env->iasq_b = (uint64_t)env->cr_back[0] << 32;
|
|
env->iaoq_f = env->cr[CR_IIAOQ];
|
|
env->iaoq_b = env->cr_back[1];
|
|
cpu_hppa_put_psw(env, env->cr[CR_IPSW]);
|
|
}
|
|
|
|
void HELPER(rfi_r)(CPUHPPAState *env)
|
|
{
|
|
env->gr[1] = env->shadow[0];
|
|
env->gr[8] = env->shadow[1];
|
|
env->gr[9] = env->shadow[2];
|
|
env->gr[16] = env->shadow[3];
|
|
env->gr[17] = env->shadow[4];
|
|
env->gr[24] = env->shadow[5];
|
|
env->gr[25] = env->shadow[6];
|
|
helper_rfi(env);
|
|
}
|
|
#endif
|