mirror of
https://github.com/qemu/qemu.git
synced 2025-01-05 21:23:28 +08:00
6971998e24
When the terminal GDB_FORK_ENABLED state is reached, the coordination
socket is not needed anymore and is therefore closed. However, if there
is a communication error between QEMU gdbstub and GDB, the generic
error handling code attempts to close it again.
Fix by closing it later - before returning - instead.
Fixes: Coverity CID 1539966
Fixes: d547e711a8
("gdbstub: Implement follow-fork-mode child")
Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com>
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Message-Id: <20240312001813.13720-1-iii@linux.ibm.com>
877 lines
23 KiB
C
877 lines
23 KiB
C
/*
|
|
* gdbstub user-mode helper routines.
|
|
*
|
|
* We know for user-mode we are using TCG so we can call stuff directly.
|
|
*
|
|
* Copyright (c) 2003-2005 Fabrice Bellard
|
|
* Copyright (c) 2022 Linaro Ltd
|
|
*
|
|
* SPDX-License-Identifier: LGPL-2.0+
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu/bitops.h"
|
|
#include "qemu/cutils.h"
|
|
#include "qemu/sockets.h"
|
|
#include "exec/hwaddr.h"
|
|
#include "exec/tb-flush.h"
|
|
#include "exec/gdbstub.h"
|
|
#include "gdbstub/syscalls.h"
|
|
#include "gdbstub/user.h"
|
|
#include "hw/core/cpu.h"
|
|
#include "trace.h"
|
|
#include "internals.h"
|
|
|
|
#define GDB_NR_SYSCALLS 1024
|
|
typedef unsigned long GDBSyscallsMask[BITS_TO_LONGS(GDB_NR_SYSCALLS)];
|
|
|
|
/*
|
|
* Forked child talks to its parent in order to let GDB enforce the
|
|
* follow-fork-mode. This happens inside a start_exclusive() section, so that
|
|
* the other threads, which may be forking too, do not interfere. The
|
|
* implementation relies on GDB not sending $vCont until it has detached
|
|
* either from the parent (follow-fork-mode child) or from the child
|
|
* (follow-fork-mode parent).
|
|
*
|
|
* The parent and the child share the GDB socket; at any given time only one
|
|
* of them is allowed to use it, as is reflected in the respective fork_state.
|
|
* This is negotiated via the fork_sockets pair as a reaction to $Hg.
|
|
*
|
|
* Below is a short summary of the possible state transitions:
|
|
*
|
|
* ENABLED : Terminal state.
|
|
* DISABLED : Terminal state.
|
|
* ACTIVE : Parent initial state.
|
|
* INACTIVE : Child initial state.
|
|
* ACTIVE -> DEACTIVATING: On $Hg.
|
|
* ACTIVE -> ENABLING : On $D.
|
|
* ACTIVE -> DISABLING : On $D.
|
|
* ACTIVE -> DISABLED : On communication error.
|
|
* DEACTIVATING -> INACTIVE : On gdb_read_byte() return.
|
|
* DEACTIVATING -> DISABLED : On communication error.
|
|
* INACTIVE -> ACTIVE : On $Hg in the peer.
|
|
* INACTIVE -> ENABLE : On $D in the peer.
|
|
* INACTIVE -> DISABLE : On $D in the peer.
|
|
* INACTIVE -> DISABLED : On communication error.
|
|
* ENABLING -> ENABLED : On gdb_read_byte() return.
|
|
* ENABLING -> DISABLED : On communication error.
|
|
* DISABLING -> DISABLED : On gdb_read_byte() return.
|
|
*/
|
|
enum GDBForkState {
|
|
/* Fully owning the GDB socket. */
|
|
GDB_FORK_ENABLED,
|
|
/* Working with the GDB socket; the peer is inactive. */
|
|
GDB_FORK_ACTIVE,
|
|
/* Handing off the GDB socket to the peer. */
|
|
GDB_FORK_DEACTIVATING,
|
|
/* The peer is working with the GDB socket. */
|
|
GDB_FORK_INACTIVE,
|
|
/* Asking the peer to close its GDB socket fd. */
|
|
GDB_FORK_ENABLING,
|
|
/* Asking the peer to take over, closing our GDB socket fd. */
|
|
GDB_FORK_DISABLING,
|
|
/* The peer has taken over, our GDB socket fd is closed. */
|
|
GDB_FORK_DISABLED,
|
|
};
|
|
|
|
enum GDBForkMessage {
|
|
GDB_FORK_ACTIVATE = 'a',
|
|
GDB_FORK_ENABLE = 'e',
|
|
GDB_FORK_DISABLE = 'd',
|
|
};
|
|
|
|
/* User-mode specific state */
|
|
typedef struct {
|
|
int fd;
|
|
char *socket_path;
|
|
int running_state;
|
|
/*
|
|
* Store syscalls mask without memory allocation in order to avoid
|
|
* implementing synchronization.
|
|
*/
|
|
bool catch_all_syscalls;
|
|
GDBSyscallsMask catch_syscalls_mask;
|
|
bool fork_events;
|
|
enum GDBForkState fork_state;
|
|
int fork_sockets[2];
|
|
pid_t fork_peer_pid, fork_peer_tid;
|
|
uint8_t siginfo[MAX_SIGINFO_LENGTH];
|
|
unsigned long siginfo_len;
|
|
} GDBUserState;
|
|
|
|
static GDBUserState gdbserver_user_state;
|
|
|
|
int gdb_get_char(void)
|
|
{
|
|
uint8_t ch;
|
|
int ret;
|
|
|
|
for (;;) {
|
|
ret = recv(gdbserver_user_state.fd, &ch, 1, 0);
|
|
if (ret < 0) {
|
|
if (errno == ECONNRESET) {
|
|
gdbserver_user_state.fd = -1;
|
|
}
|
|
if (errno != EINTR) {
|
|
return -1;
|
|
}
|
|
} else if (ret == 0) {
|
|
close(gdbserver_user_state.fd);
|
|
gdbserver_user_state.fd = -1;
|
|
return -1;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
return ch;
|
|
}
|
|
|
|
bool gdb_got_immediate_ack(void)
|
|
{
|
|
int i;
|
|
|
|
i = gdb_get_char();
|
|
if (i < 0) {
|
|
/* no response, continue anyway */
|
|
return true;
|
|
}
|
|
|
|
if (i == '+') {
|
|
/* received correctly, continue */
|
|
return true;
|
|
}
|
|
|
|
/* anything else, including '-' then try again */
|
|
return false;
|
|
}
|
|
|
|
void gdb_put_buffer(const uint8_t *buf, int len)
|
|
{
|
|
int ret;
|
|
|
|
while (len > 0) {
|
|
ret = send(gdbserver_user_state.fd, buf, len, 0);
|
|
if (ret < 0) {
|
|
if (errno != EINTR) {
|
|
return;
|
|
}
|
|
} else {
|
|
buf += ret;
|
|
len -= ret;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Tell the remote gdb that the process has exited. */
|
|
void gdb_exit(int code)
|
|
{
|
|
char buf[4];
|
|
|
|
if (!gdbserver_state.init) {
|
|
return;
|
|
}
|
|
if (gdbserver_user_state.socket_path) {
|
|
unlink(gdbserver_user_state.socket_path);
|
|
}
|
|
if (gdbserver_user_state.fd < 0) {
|
|
return;
|
|
}
|
|
|
|
trace_gdbstub_op_exiting((uint8_t)code);
|
|
|
|
if (gdbserver_state.allow_stop_reply) {
|
|
snprintf(buf, sizeof(buf), "W%02x", (uint8_t)code);
|
|
gdb_put_packet(buf);
|
|
gdbserver_state.allow_stop_reply = false;
|
|
}
|
|
|
|
}
|
|
|
|
void gdb_qemu_exit(int code)
|
|
{
|
|
exit(code);
|
|
}
|
|
|
|
int gdb_handlesig(CPUState *cpu, int sig, const char *reason, void *siginfo,
|
|
int siginfo_len)
|
|
{
|
|
char buf[256];
|
|
int n;
|
|
|
|
if (!gdbserver_state.init || gdbserver_user_state.fd < 0) {
|
|
return sig;
|
|
}
|
|
|
|
if (siginfo) {
|
|
/*
|
|
* Save target-specific siginfo.
|
|
*
|
|
* siginfo size, i.e. siginfo_len, is asserted at compile-time to fit in
|
|
* gdbserver_user_state.siginfo, usually in the source file calling
|
|
* gdb_handlesig. See, for instance, {linux,bsd}-user/signal.c.
|
|
*/
|
|
memcpy(gdbserver_user_state.siginfo, siginfo, siginfo_len);
|
|
gdbserver_user_state.siginfo_len = siginfo_len;
|
|
}
|
|
|
|
/* disable single step if it was enabled */
|
|
cpu_single_step(cpu, 0);
|
|
tb_flush(cpu);
|
|
|
|
if (sig != 0) {
|
|
gdb_set_stop_cpu(cpu);
|
|
if (gdbserver_state.allow_stop_reply) {
|
|
g_string_printf(gdbserver_state.str_buf,
|
|
"T%02xthread:", gdb_target_signal_to_gdb(sig));
|
|
gdb_append_thread_id(cpu, gdbserver_state.str_buf);
|
|
g_string_append_c(gdbserver_state.str_buf, ';');
|
|
if (reason) {
|
|
g_string_append(gdbserver_state.str_buf, reason);
|
|
}
|
|
gdb_put_strbuf();
|
|
gdbserver_state.allow_stop_reply = false;
|
|
}
|
|
}
|
|
/*
|
|
* gdb_put_packet() might have detected that the peer terminated the
|
|
* connection.
|
|
*/
|
|
if (gdbserver_user_state.fd < 0) {
|
|
return sig;
|
|
}
|
|
|
|
sig = 0;
|
|
gdbserver_state.state = RS_IDLE;
|
|
gdbserver_user_state.running_state = 0;
|
|
while (gdbserver_user_state.running_state == 0) {
|
|
n = read(gdbserver_user_state.fd, buf, 256);
|
|
if (n > 0) {
|
|
int i;
|
|
|
|
for (i = 0; i < n; i++) {
|
|
gdb_read_byte(buf[i]);
|
|
}
|
|
} else {
|
|
/*
|
|
* XXX: Connection closed. Should probably wait for another
|
|
* connection before continuing.
|
|
*/
|
|
if (n == 0) {
|
|
close(gdbserver_user_state.fd);
|
|
}
|
|
gdbserver_user_state.fd = -1;
|
|
return sig;
|
|
}
|
|
}
|
|
sig = gdbserver_state.signal;
|
|
gdbserver_state.signal = 0;
|
|
return sig;
|
|
}
|
|
|
|
/* Tell the remote gdb that the process has exited due to SIG. */
|
|
void gdb_signalled(CPUArchState *env, int sig)
|
|
{
|
|
char buf[4];
|
|
|
|
if (!gdbserver_state.init || gdbserver_user_state.fd < 0 ||
|
|
!gdbserver_state.allow_stop_reply) {
|
|
return;
|
|
}
|
|
|
|
snprintf(buf, sizeof(buf), "X%02x", gdb_target_signal_to_gdb(sig));
|
|
gdb_put_packet(buf);
|
|
gdbserver_state.allow_stop_reply = false;
|
|
}
|
|
|
|
static void gdb_accept_init(int fd)
|
|
{
|
|
gdb_init_gdbserver_state();
|
|
gdb_create_default_process(&gdbserver_state);
|
|
gdbserver_state.processes[0].attached = true;
|
|
gdbserver_state.c_cpu = gdb_first_attached_cpu();
|
|
gdbserver_state.g_cpu = gdbserver_state.c_cpu;
|
|
gdbserver_user_state.fd = fd;
|
|
}
|
|
|
|
static bool gdb_accept_socket(int gdb_fd)
|
|
{
|
|
int fd;
|
|
|
|
for (;;) {
|
|
fd = accept(gdb_fd, NULL, NULL);
|
|
if (fd < 0 && errno != EINTR) {
|
|
perror("accept socket");
|
|
return false;
|
|
} else if (fd >= 0) {
|
|
qemu_set_cloexec(fd);
|
|
break;
|
|
}
|
|
}
|
|
|
|
gdb_accept_init(fd);
|
|
return true;
|
|
}
|
|
|
|
static int gdbserver_open_socket(const char *path)
|
|
{
|
|
struct sockaddr_un sockaddr = {};
|
|
int fd, ret;
|
|
|
|
fd = socket(AF_UNIX, SOCK_STREAM, 0);
|
|
if (fd < 0) {
|
|
perror("create socket");
|
|
return -1;
|
|
}
|
|
|
|
sockaddr.sun_family = AF_UNIX;
|
|
pstrcpy(sockaddr.sun_path, sizeof(sockaddr.sun_path) - 1, path);
|
|
ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
|
|
if (ret < 0) {
|
|
perror("bind socket");
|
|
close(fd);
|
|
return -1;
|
|
}
|
|
ret = listen(fd, 1);
|
|
if (ret < 0) {
|
|
perror("listen socket");
|
|
close(fd);
|
|
return -1;
|
|
}
|
|
|
|
return fd;
|
|
}
|
|
|
|
static bool gdb_accept_tcp(int gdb_fd)
|
|
{
|
|
struct sockaddr_in sockaddr = {};
|
|
socklen_t len;
|
|
int fd;
|
|
|
|
for (;;) {
|
|
len = sizeof(sockaddr);
|
|
fd = accept(gdb_fd, (struct sockaddr *)&sockaddr, &len);
|
|
if (fd < 0 && errno != EINTR) {
|
|
perror("accept");
|
|
return false;
|
|
} else if (fd >= 0) {
|
|
qemu_set_cloexec(fd);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* set short latency */
|
|
if (socket_set_nodelay(fd)) {
|
|
perror("setsockopt");
|
|
close(fd);
|
|
return false;
|
|
}
|
|
|
|
gdb_accept_init(fd);
|
|
return true;
|
|
}
|
|
|
|
static int gdbserver_open_port(int port)
|
|
{
|
|
struct sockaddr_in sockaddr;
|
|
int fd, ret;
|
|
|
|
fd = socket(PF_INET, SOCK_STREAM, 0);
|
|
if (fd < 0) {
|
|
perror("socket");
|
|
return -1;
|
|
}
|
|
qemu_set_cloexec(fd);
|
|
|
|
socket_set_fast_reuse(fd);
|
|
|
|
sockaddr.sin_family = AF_INET;
|
|
sockaddr.sin_port = htons(port);
|
|
sockaddr.sin_addr.s_addr = 0;
|
|
ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
|
|
if (ret < 0) {
|
|
perror("bind");
|
|
close(fd);
|
|
return -1;
|
|
}
|
|
ret = listen(fd, 1);
|
|
if (ret < 0) {
|
|
perror("listen");
|
|
close(fd);
|
|
return -1;
|
|
}
|
|
|
|
return fd;
|
|
}
|
|
|
|
int gdbserver_start(const char *port_or_path)
|
|
{
|
|
int port = g_ascii_strtoull(port_or_path, NULL, 10);
|
|
int gdb_fd;
|
|
|
|
if (port > 0) {
|
|
gdb_fd = gdbserver_open_port(port);
|
|
} else {
|
|
gdb_fd = gdbserver_open_socket(port_or_path);
|
|
}
|
|
|
|
if (gdb_fd < 0) {
|
|
return -1;
|
|
}
|
|
|
|
if (port > 0 && gdb_accept_tcp(gdb_fd)) {
|
|
return 0;
|
|
} else if (gdb_accept_socket(gdb_fd)) {
|
|
gdbserver_user_state.socket_path = g_strdup(port_or_path);
|
|
return 0;
|
|
}
|
|
|
|
/* gone wrong */
|
|
close(gdb_fd);
|
|
return -1;
|
|
}
|
|
|
|
void gdbserver_fork_start(void)
|
|
{
|
|
if (!gdbserver_state.init || gdbserver_user_state.fd < 0) {
|
|
return;
|
|
}
|
|
if (!gdbserver_user_state.fork_events ||
|
|
qemu_socketpair(AF_UNIX, SOCK_STREAM, 0,
|
|
gdbserver_user_state.fork_sockets) < 0) {
|
|
gdbserver_user_state.fork_state = GDB_FORK_DISABLED;
|
|
return;
|
|
}
|
|
gdbserver_user_state.fork_state = GDB_FORK_INACTIVE;
|
|
gdbserver_user_state.fork_peer_pid = getpid();
|
|
gdbserver_user_state.fork_peer_tid = qemu_get_thread_id();
|
|
}
|
|
|
|
static void disable_gdbstub(CPUState *thread_cpu)
|
|
{
|
|
CPUState *cpu;
|
|
|
|
close(gdbserver_user_state.fd);
|
|
gdbserver_user_state.fd = -1;
|
|
CPU_FOREACH(cpu) {
|
|
cpu_breakpoint_remove_all(cpu, BP_GDB);
|
|
/* no cpu_watchpoint_remove_all for user-mode */
|
|
cpu_single_step(cpu, 0);
|
|
}
|
|
tb_flush(thread_cpu);
|
|
}
|
|
|
|
void gdbserver_fork_end(CPUState *cpu, pid_t pid)
|
|
{
|
|
char b;
|
|
int fd;
|
|
|
|
if (!gdbserver_state.init || gdbserver_user_state.fd < 0) {
|
|
return;
|
|
}
|
|
|
|
if (pid == -1) {
|
|
if (gdbserver_user_state.fork_state != GDB_FORK_DISABLED) {
|
|
g_assert(gdbserver_user_state.fork_state == GDB_FORK_INACTIVE);
|
|
close(gdbserver_user_state.fork_sockets[0]);
|
|
close(gdbserver_user_state.fork_sockets[1]);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (gdbserver_user_state.fork_state == GDB_FORK_DISABLED) {
|
|
if (pid == 0) {
|
|
disable_gdbstub(cpu);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (pid == 0) {
|
|
close(gdbserver_user_state.fork_sockets[0]);
|
|
fd = gdbserver_user_state.fork_sockets[1];
|
|
g_assert(gdbserver_state.process_num == 1);
|
|
g_assert(gdbserver_state.processes[0].pid ==
|
|
gdbserver_user_state.fork_peer_pid);
|
|
g_assert(gdbserver_state.processes[0].attached);
|
|
gdbserver_state.processes[0].pid = getpid();
|
|
} else {
|
|
close(gdbserver_user_state.fork_sockets[1]);
|
|
fd = gdbserver_user_state.fork_sockets[0];
|
|
gdbserver_user_state.fork_state = GDB_FORK_ACTIVE;
|
|
gdbserver_user_state.fork_peer_pid = pid;
|
|
gdbserver_user_state.fork_peer_tid = pid;
|
|
|
|
if (!gdbserver_state.allow_stop_reply) {
|
|
goto fail;
|
|
}
|
|
g_string_printf(gdbserver_state.str_buf,
|
|
"T%02xfork:p%02x.%02x;thread:p%02x.%02x;",
|
|
gdb_target_signal_to_gdb(gdb_target_sigtrap()),
|
|
pid, pid, (int)getpid(), qemu_get_thread_id());
|
|
gdb_put_strbuf();
|
|
}
|
|
|
|
gdbserver_state.state = RS_IDLE;
|
|
gdbserver_state.allow_stop_reply = false;
|
|
gdbserver_user_state.running_state = 0;
|
|
for (;;) {
|
|
switch (gdbserver_user_state.fork_state) {
|
|
case GDB_FORK_ENABLED:
|
|
if (gdbserver_user_state.running_state) {
|
|
close(fd);
|
|
return;
|
|
}
|
|
QEMU_FALLTHROUGH;
|
|
case GDB_FORK_ACTIVE:
|
|
if (read(gdbserver_user_state.fd, &b, 1) != 1) {
|
|
goto fail;
|
|
}
|
|
gdb_read_byte(b);
|
|
break;
|
|
case GDB_FORK_DEACTIVATING:
|
|
b = GDB_FORK_ACTIVATE;
|
|
if (write(fd, &b, 1) != 1) {
|
|
goto fail;
|
|
}
|
|
gdbserver_user_state.fork_state = GDB_FORK_INACTIVE;
|
|
break;
|
|
case GDB_FORK_INACTIVE:
|
|
if (read(fd, &b, 1) != 1) {
|
|
goto fail;
|
|
}
|
|
switch (b) {
|
|
case GDB_FORK_ACTIVATE:
|
|
gdbserver_user_state.fork_state = GDB_FORK_ACTIVE;
|
|
break;
|
|
case GDB_FORK_ENABLE:
|
|
gdbserver_user_state.fork_state = GDB_FORK_ENABLED;
|
|
break;
|
|
case GDB_FORK_DISABLE:
|
|
gdbserver_user_state.fork_state = GDB_FORK_DISABLED;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
break;
|
|
case GDB_FORK_ENABLING:
|
|
b = GDB_FORK_DISABLE;
|
|
if (write(fd, &b, 1) != 1) {
|
|
goto fail;
|
|
}
|
|
gdbserver_user_state.fork_state = GDB_FORK_ENABLED;
|
|
break;
|
|
case GDB_FORK_DISABLING:
|
|
b = GDB_FORK_ENABLE;
|
|
if (write(fd, &b, 1) != 1) {
|
|
goto fail;
|
|
}
|
|
gdbserver_user_state.fork_state = GDB_FORK_DISABLED;
|
|
break;
|
|
case GDB_FORK_DISABLED:
|
|
close(fd);
|
|
disable_gdbstub(cpu);
|
|
return;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
fail:
|
|
close(fd);
|
|
if (pid == 0) {
|
|
disable_gdbstub(cpu);
|
|
}
|
|
}
|
|
|
|
void gdb_handle_query_supported_user(const char *gdb_supported)
|
|
{
|
|
if (strstr(gdb_supported, "fork-events+")) {
|
|
gdbserver_user_state.fork_events = true;
|
|
}
|
|
g_string_append(gdbserver_state.str_buf, ";fork-events+");
|
|
}
|
|
|
|
bool gdb_handle_set_thread_user(uint32_t pid, uint32_t tid)
|
|
{
|
|
if (gdbserver_user_state.fork_state == GDB_FORK_ACTIVE &&
|
|
pid == gdbserver_user_state.fork_peer_pid &&
|
|
tid == gdbserver_user_state.fork_peer_tid) {
|
|
gdbserver_user_state.fork_state = GDB_FORK_DEACTIVATING;
|
|
gdb_put_packet("OK");
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool gdb_handle_detach_user(uint32_t pid)
|
|
{
|
|
bool enable;
|
|
|
|
if (gdbserver_user_state.fork_state == GDB_FORK_ACTIVE) {
|
|
enable = pid == gdbserver_user_state.fork_peer_pid;
|
|
if (enable || pid == getpid()) {
|
|
gdbserver_user_state.fork_state = enable ? GDB_FORK_ENABLING :
|
|
GDB_FORK_DISABLING;
|
|
gdb_put_packet("OK");
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Execution state helpers
|
|
*/
|
|
|
|
void gdb_handle_query_attached(GArray *params, void *user_ctx)
|
|
{
|
|
gdb_put_packet("0");
|
|
}
|
|
|
|
void gdb_continue(void)
|
|
{
|
|
gdbserver_user_state.running_state = 1;
|
|
trace_gdbstub_op_continue();
|
|
}
|
|
|
|
/*
|
|
* Resume execution, for user-mode emulation it's equivalent to
|
|
* gdb_continue.
|
|
*/
|
|
int gdb_continue_partial(char *newstates)
|
|
{
|
|
CPUState *cpu;
|
|
int res = 0;
|
|
/*
|
|
* This is not exactly accurate, but it's an improvement compared to the
|
|
* previous situation, where only one CPU would be single-stepped.
|
|
*/
|
|
CPU_FOREACH(cpu) {
|
|
if (newstates[cpu->cpu_index] == 's') {
|
|
trace_gdbstub_op_stepping(cpu->cpu_index);
|
|
cpu_single_step(cpu, gdbserver_state.sstep_flags);
|
|
}
|
|
}
|
|
gdbserver_user_state.running_state = 1;
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* Memory access helpers
|
|
*/
|
|
int gdb_target_memory_rw_debug(CPUState *cpu, hwaddr addr,
|
|
uint8_t *buf, int len, bool is_write)
|
|
{
|
|
CPUClass *cc;
|
|
|
|
cc = CPU_GET_CLASS(cpu);
|
|
if (cc->memory_rw_debug) {
|
|
return cc->memory_rw_debug(cpu, addr, buf, len, is_write);
|
|
}
|
|
return cpu_memory_rw_debug(cpu, addr, buf, len, is_write);
|
|
}
|
|
|
|
/*
|
|
* cpu helpers
|
|
*/
|
|
|
|
unsigned int gdb_get_max_cpus(void)
|
|
{
|
|
CPUState *cpu;
|
|
unsigned int max_cpus = 1;
|
|
|
|
CPU_FOREACH(cpu) {
|
|
max_cpus = max_cpus <= cpu->cpu_index ? cpu->cpu_index + 1 : max_cpus;
|
|
}
|
|
|
|
return max_cpus;
|
|
}
|
|
|
|
/* replay not supported for user-mode */
|
|
bool gdb_can_reverse(void)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Break/Watch point helpers
|
|
*/
|
|
|
|
bool gdb_supports_guest_debug(void)
|
|
{
|
|
/* user-mode == TCG == supported */
|
|
return true;
|
|
}
|
|
|
|
int gdb_breakpoint_insert(CPUState *cs, int type, vaddr addr, vaddr len)
|
|
{
|
|
CPUState *cpu;
|
|
int err = 0;
|
|
|
|
switch (type) {
|
|
case GDB_BREAKPOINT_SW:
|
|
case GDB_BREAKPOINT_HW:
|
|
CPU_FOREACH(cpu) {
|
|
err = cpu_breakpoint_insert(cpu, addr, BP_GDB, NULL);
|
|
if (err) {
|
|
break;
|
|
}
|
|
}
|
|
return err;
|
|
default:
|
|
/* user-mode doesn't support watchpoints */
|
|
return -ENOSYS;
|
|
}
|
|
}
|
|
|
|
int gdb_breakpoint_remove(CPUState *cs, int type, vaddr addr, vaddr len)
|
|
{
|
|
CPUState *cpu;
|
|
int err = 0;
|
|
|
|
switch (type) {
|
|
case GDB_BREAKPOINT_SW:
|
|
case GDB_BREAKPOINT_HW:
|
|
CPU_FOREACH(cpu) {
|
|
err = cpu_breakpoint_remove(cpu, addr, BP_GDB);
|
|
if (err) {
|
|
break;
|
|
}
|
|
}
|
|
return err;
|
|
default:
|
|
/* user-mode doesn't support watchpoints */
|
|
return -ENOSYS;
|
|
}
|
|
}
|
|
|
|
void gdb_breakpoint_remove_all(CPUState *cs)
|
|
{
|
|
cpu_breakpoint_remove_all(cs, BP_GDB);
|
|
}
|
|
|
|
/*
|
|
* For user-mode syscall support we send the system call immediately
|
|
* and then return control to gdb for it to process the syscall request.
|
|
* Since the protocol requires that gdb hands control back to us
|
|
* using a "here are the results" F packet, we don't need to check
|
|
* gdb_handlesig's return value (which is the signal to deliver if
|
|
* execution was resumed via a continue packet).
|
|
*/
|
|
void gdb_syscall_handling(const char *syscall_packet)
|
|
{
|
|
gdb_put_packet(syscall_packet);
|
|
gdb_handlesig(gdbserver_state.c_cpu, 0, NULL, NULL, 0);
|
|
}
|
|
|
|
static bool should_catch_syscall(int num)
|
|
{
|
|
if (gdbserver_user_state.catch_all_syscalls) {
|
|
return true;
|
|
}
|
|
if (num < 0 || num >= GDB_NR_SYSCALLS) {
|
|
return false;
|
|
}
|
|
return test_bit(num, gdbserver_user_state.catch_syscalls_mask);
|
|
}
|
|
|
|
void gdb_syscall_entry(CPUState *cs, int num)
|
|
{
|
|
if (should_catch_syscall(num)) {
|
|
g_autofree char *reason = g_strdup_printf("syscall_entry:%x;", num);
|
|
gdb_handlesig(cs, gdb_target_sigtrap(), reason, NULL, 0);
|
|
}
|
|
}
|
|
|
|
void gdb_syscall_return(CPUState *cs, int num)
|
|
{
|
|
if (should_catch_syscall(num)) {
|
|
g_autofree char *reason = g_strdup_printf("syscall_return:%x;", num);
|
|
gdb_handlesig(cs, gdb_target_sigtrap(), reason, NULL, 0);
|
|
}
|
|
}
|
|
|
|
void gdb_handle_set_catch_syscalls(GArray *params, void *user_ctx)
|
|
{
|
|
const char *param = get_param(params, 0)->data;
|
|
GDBSyscallsMask catch_syscalls_mask;
|
|
bool catch_all_syscalls;
|
|
unsigned int num;
|
|
const char *p;
|
|
|
|
/* "0" means not catching any syscalls. */
|
|
if (strcmp(param, "0") == 0) {
|
|
gdbserver_user_state.catch_all_syscalls = false;
|
|
memset(gdbserver_user_state.catch_syscalls_mask, 0,
|
|
sizeof(gdbserver_user_state.catch_syscalls_mask));
|
|
gdb_put_packet("OK");
|
|
return;
|
|
}
|
|
|
|
/* "1" means catching all syscalls. */
|
|
if (strcmp(param, "1") == 0) {
|
|
gdbserver_user_state.catch_all_syscalls = true;
|
|
gdb_put_packet("OK");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* "1;..." means catching only the specified syscalls.
|
|
* The syscall list must not be empty.
|
|
*/
|
|
if (param[0] == '1' && param[1] == ';') {
|
|
catch_all_syscalls = false;
|
|
memset(catch_syscalls_mask, 0, sizeof(catch_syscalls_mask));
|
|
for (p = ¶m[2];; p++) {
|
|
if (qemu_strtoui(p, &p, 16, &num) || (*p && *p != ';')) {
|
|
goto err;
|
|
}
|
|
if (num >= GDB_NR_SYSCALLS) {
|
|
/*
|
|
* Fall back to reporting all syscalls. Reporting extra
|
|
* syscalls is inefficient, but the spec explicitly allows it.
|
|
* Keep parsing in case there is a syntax error ahead.
|
|
*/
|
|
catch_all_syscalls = true;
|
|
} else {
|
|
set_bit(num, catch_syscalls_mask);
|
|
}
|
|
if (!*p) {
|
|
break;
|
|
}
|
|
}
|
|
gdbserver_user_state.catch_all_syscalls = catch_all_syscalls;
|
|
if (!catch_all_syscalls) {
|
|
memcpy(gdbserver_user_state.catch_syscalls_mask,
|
|
catch_syscalls_mask, sizeof(catch_syscalls_mask));
|
|
}
|
|
gdb_put_packet("OK");
|
|
return;
|
|
}
|
|
|
|
err:
|
|
gdb_put_packet("E00");
|
|
}
|
|
|
|
void gdb_handle_query_xfer_siginfo(GArray *params, void *user_ctx)
|
|
{
|
|
unsigned long offset, len;
|
|
uint8_t *siginfo_offset;
|
|
|
|
offset = get_param(params, 0)->val_ul;
|
|
len = get_param(params, 1)->val_ul;
|
|
|
|
if (offset + len > gdbserver_user_state.siginfo_len) {
|
|
/* Invalid offset and/or requested length. */
|
|
gdb_put_packet("E01");
|
|
return;
|
|
}
|
|
|
|
siginfo_offset = (uint8_t *)gdbserver_user_state.siginfo + offset;
|
|
|
|
/* Reply */
|
|
g_string_assign(gdbserver_state.str_buf, "l");
|
|
gdb_memtox(gdbserver_state.str_buf, (const char *)siginfo_offset, len);
|
|
gdb_put_packet_binary(gdbserver_state.str_buf->str,
|
|
gdbserver_state.str_buf->len, true);
|
|
}
|