mirror of
https://github.com/qemu/qemu.git
synced 2024-12-13 05:33:34 +08:00
d7788151a0
Provide helpers to convert bitmaps to little endian format. It can be used when we want to send one bitmap via network to some other hosts. One thing to mention is that, these helpers only solve the problem of endianess, but it does not solve the problem of different word size on machines (the bitmaps managing same count of bits may contains different size when malloced). So we need to take care of the size alignment issue on the callers for now. Signed-off-by: Peter Xu <peterx@redhat.com> Reviewed-by: Juan Quintela <quintela@redhat.com> Signed-off-by: Juan Quintela <quintela@redhat.com>
405 lines
10 KiB
C
405 lines
10 KiB
C
/*
|
|
* Bitmap Module
|
|
*
|
|
* Stolen from linux/src/lib/bitmap.c
|
|
*
|
|
* Copyright (C) 2010 Corentin Chary
|
|
*
|
|
* This source code is licensed under the GNU General Public License,
|
|
* Version 2.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu/bitops.h"
|
|
#include "qemu/bitmap.h"
|
|
#include "qemu/atomic.h"
|
|
|
|
/*
|
|
* bitmaps provide an array of bits, implemented using an
|
|
* array of unsigned longs. The number of valid bits in a
|
|
* given bitmap does _not_ need to be an exact multiple of
|
|
* BITS_PER_LONG.
|
|
*
|
|
* The possible unused bits in the last, partially used word
|
|
* of a bitmap are 'don't care'. The implementation makes
|
|
* no particular effort to keep them zero. It ensures that
|
|
* their value will not affect the results of any operation.
|
|
* The bitmap operations that return Boolean (bitmap_empty,
|
|
* for example) or scalar (bitmap_weight, for example) results
|
|
* carefully filter out these unused bits from impacting their
|
|
* results.
|
|
*
|
|
* These operations actually hold to a slightly stronger rule:
|
|
* if you don't input any bitmaps to these ops that have some
|
|
* unused bits set, then they won't output any set unused bits
|
|
* in output bitmaps.
|
|
*
|
|
* The byte ordering of bitmaps is more natural on little
|
|
* endian architectures.
|
|
*/
|
|
|
|
int slow_bitmap_empty(const unsigned long *bitmap, long bits)
|
|
{
|
|
long k, lim = bits/BITS_PER_LONG;
|
|
|
|
for (k = 0; k < lim; ++k) {
|
|
if (bitmap[k]) {
|
|
return 0;
|
|
}
|
|
}
|
|
if (bits % BITS_PER_LONG) {
|
|
if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
int slow_bitmap_full(const unsigned long *bitmap, long bits)
|
|
{
|
|
long k, lim = bits/BITS_PER_LONG;
|
|
|
|
for (k = 0; k < lim; ++k) {
|
|
if (~bitmap[k]) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (bits % BITS_PER_LONG) {
|
|
if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
int slow_bitmap_equal(const unsigned long *bitmap1,
|
|
const unsigned long *bitmap2, long bits)
|
|
{
|
|
long k, lim = bits/BITS_PER_LONG;
|
|
|
|
for (k = 0; k < lim; ++k) {
|
|
if (bitmap1[k] != bitmap2[k]) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (bits % BITS_PER_LONG) {
|
|
if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
void slow_bitmap_complement(unsigned long *dst, const unsigned long *src,
|
|
long bits)
|
|
{
|
|
long k, lim = bits/BITS_PER_LONG;
|
|
|
|
for (k = 0; k < lim; ++k) {
|
|
dst[k] = ~src[k];
|
|
}
|
|
|
|
if (bits % BITS_PER_LONG) {
|
|
dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits);
|
|
}
|
|
}
|
|
|
|
int slow_bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
|
|
const unsigned long *bitmap2, long bits)
|
|
{
|
|
long k;
|
|
long nr = BITS_TO_LONGS(bits);
|
|
unsigned long result = 0;
|
|
|
|
for (k = 0; k < nr; k++) {
|
|
result |= (dst[k] = bitmap1[k] & bitmap2[k]);
|
|
}
|
|
return result != 0;
|
|
}
|
|
|
|
void slow_bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
|
|
const unsigned long *bitmap2, long bits)
|
|
{
|
|
long k;
|
|
long nr = BITS_TO_LONGS(bits);
|
|
|
|
for (k = 0; k < nr; k++) {
|
|
dst[k] = bitmap1[k] | bitmap2[k];
|
|
}
|
|
}
|
|
|
|
void slow_bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
|
|
const unsigned long *bitmap2, long bits)
|
|
{
|
|
long k;
|
|
long nr = BITS_TO_LONGS(bits);
|
|
|
|
for (k = 0; k < nr; k++) {
|
|
dst[k] = bitmap1[k] ^ bitmap2[k];
|
|
}
|
|
}
|
|
|
|
int slow_bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
|
|
const unsigned long *bitmap2, long bits)
|
|
{
|
|
long k;
|
|
long nr = BITS_TO_LONGS(bits);
|
|
unsigned long result = 0;
|
|
|
|
for (k = 0; k < nr; k++) {
|
|
result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
|
|
}
|
|
return result != 0;
|
|
}
|
|
|
|
void bitmap_set(unsigned long *map, long start, long nr)
|
|
{
|
|
unsigned long *p = map + BIT_WORD(start);
|
|
const long size = start + nr;
|
|
int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
|
|
unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
|
|
|
|
assert(start >= 0 && nr >= 0);
|
|
|
|
while (nr - bits_to_set >= 0) {
|
|
*p |= mask_to_set;
|
|
nr -= bits_to_set;
|
|
bits_to_set = BITS_PER_LONG;
|
|
mask_to_set = ~0UL;
|
|
p++;
|
|
}
|
|
if (nr) {
|
|
mask_to_set &= BITMAP_LAST_WORD_MASK(size);
|
|
*p |= mask_to_set;
|
|
}
|
|
}
|
|
|
|
void bitmap_set_atomic(unsigned long *map, long start, long nr)
|
|
{
|
|
unsigned long *p = map + BIT_WORD(start);
|
|
const long size = start + nr;
|
|
int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
|
|
unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
|
|
|
|
assert(start >= 0 && nr >= 0);
|
|
|
|
/* First word */
|
|
if (nr - bits_to_set > 0) {
|
|
atomic_or(p, mask_to_set);
|
|
nr -= bits_to_set;
|
|
bits_to_set = BITS_PER_LONG;
|
|
mask_to_set = ~0UL;
|
|
p++;
|
|
}
|
|
|
|
/* Full words */
|
|
if (bits_to_set == BITS_PER_LONG) {
|
|
while (nr >= BITS_PER_LONG) {
|
|
*p = ~0UL;
|
|
nr -= BITS_PER_LONG;
|
|
p++;
|
|
}
|
|
}
|
|
|
|
/* Last word */
|
|
if (nr) {
|
|
mask_to_set &= BITMAP_LAST_WORD_MASK(size);
|
|
atomic_or(p, mask_to_set);
|
|
} else {
|
|
/* If we avoided the full barrier in atomic_or(), issue a
|
|
* barrier to account for the assignments in the while loop.
|
|
*/
|
|
smp_mb();
|
|
}
|
|
}
|
|
|
|
void bitmap_clear(unsigned long *map, long start, long nr)
|
|
{
|
|
unsigned long *p = map + BIT_WORD(start);
|
|
const long size = start + nr;
|
|
int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
|
|
unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
|
|
|
|
assert(start >= 0 && nr >= 0);
|
|
|
|
while (nr - bits_to_clear >= 0) {
|
|
*p &= ~mask_to_clear;
|
|
nr -= bits_to_clear;
|
|
bits_to_clear = BITS_PER_LONG;
|
|
mask_to_clear = ~0UL;
|
|
p++;
|
|
}
|
|
if (nr) {
|
|
mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
|
|
*p &= ~mask_to_clear;
|
|
}
|
|
}
|
|
|
|
bool bitmap_test_and_clear_atomic(unsigned long *map, long start, long nr)
|
|
{
|
|
unsigned long *p = map + BIT_WORD(start);
|
|
const long size = start + nr;
|
|
int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
|
|
unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
|
|
unsigned long dirty = 0;
|
|
unsigned long old_bits;
|
|
|
|
assert(start >= 0 && nr >= 0);
|
|
|
|
/* First word */
|
|
if (nr - bits_to_clear > 0) {
|
|
old_bits = atomic_fetch_and(p, ~mask_to_clear);
|
|
dirty |= old_bits & mask_to_clear;
|
|
nr -= bits_to_clear;
|
|
bits_to_clear = BITS_PER_LONG;
|
|
mask_to_clear = ~0UL;
|
|
p++;
|
|
}
|
|
|
|
/* Full words */
|
|
if (bits_to_clear == BITS_PER_LONG) {
|
|
while (nr >= BITS_PER_LONG) {
|
|
if (*p) {
|
|
old_bits = atomic_xchg(p, 0);
|
|
dirty |= old_bits;
|
|
}
|
|
nr -= BITS_PER_LONG;
|
|
p++;
|
|
}
|
|
}
|
|
|
|
/* Last word */
|
|
if (nr) {
|
|
mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
|
|
old_bits = atomic_fetch_and(p, ~mask_to_clear);
|
|
dirty |= old_bits & mask_to_clear;
|
|
} else {
|
|
if (!dirty) {
|
|
smp_mb();
|
|
}
|
|
}
|
|
|
|
return dirty != 0;
|
|
}
|
|
|
|
void bitmap_copy_and_clear_atomic(unsigned long *dst, unsigned long *src,
|
|
long nr)
|
|
{
|
|
while (nr > 0) {
|
|
*dst = atomic_xchg(src, 0);
|
|
dst++;
|
|
src++;
|
|
nr -= BITS_PER_LONG;
|
|
}
|
|
}
|
|
|
|
#define ALIGN_MASK(x,mask) (((x)+(mask))&~(mask))
|
|
|
|
/**
|
|
* bitmap_find_next_zero_area - find a contiguous aligned zero area
|
|
* @map: The address to base the search on
|
|
* @size: The bitmap size in bits
|
|
* @start: The bitnumber to start searching at
|
|
* @nr: The number of zeroed bits we're looking for
|
|
* @align_mask: Alignment mask for zero area
|
|
*
|
|
* The @align_mask should be one less than a power of 2; the effect is that
|
|
* the bit offset of all zero areas this function finds is multiples of that
|
|
* power of 2. A @align_mask of 0 means no alignment is required.
|
|
*/
|
|
unsigned long bitmap_find_next_zero_area(unsigned long *map,
|
|
unsigned long size,
|
|
unsigned long start,
|
|
unsigned long nr,
|
|
unsigned long align_mask)
|
|
{
|
|
unsigned long index, end, i;
|
|
again:
|
|
index = find_next_zero_bit(map, size, start);
|
|
|
|
/* Align allocation */
|
|
index = ALIGN_MASK(index, align_mask);
|
|
|
|
end = index + nr;
|
|
if (end > size) {
|
|
return end;
|
|
}
|
|
i = find_next_bit(map, end, index);
|
|
if (i < end) {
|
|
start = i + 1;
|
|
goto again;
|
|
}
|
|
return index;
|
|
}
|
|
|
|
int slow_bitmap_intersects(const unsigned long *bitmap1,
|
|
const unsigned long *bitmap2, long bits)
|
|
{
|
|
long k, lim = bits/BITS_PER_LONG;
|
|
|
|
for (k = 0; k < lim; ++k) {
|
|
if (bitmap1[k] & bitmap2[k]) {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
if (bits % BITS_PER_LONG) {
|
|
if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) {
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
long slow_bitmap_count_one(const unsigned long *bitmap, long nbits)
|
|
{
|
|
long k, lim = nbits / BITS_PER_LONG, result = 0;
|
|
|
|
for (k = 0; k < lim; k++) {
|
|
result += ctpopl(bitmap[k]);
|
|
}
|
|
|
|
if (nbits % BITS_PER_LONG) {
|
|
result += ctpopl(bitmap[k] & BITMAP_LAST_WORD_MASK(nbits));
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static void bitmap_to_from_le(unsigned long *dst,
|
|
const unsigned long *src, long nbits)
|
|
{
|
|
long len = BITS_TO_LONGS(nbits);
|
|
|
|
#ifdef HOST_WORDS_BIGENDIAN
|
|
long index;
|
|
|
|
for (index = 0; index < len; index++) {
|
|
# if HOST_LONG_BITS == 64
|
|
dst[index] = bswap64(src[index]);
|
|
# else
|
|
dst[index] = bswap32(src[index]);
|
|
# endif
|
|
}
|
|
#else
|
|
memcpy(dst, src, len * sizeof(unsigned long));
|
|
#endif
|
|
}
|
|
|
|
void bitmap_from_le(unsigned long *dst, const unsigned long *src,
|
|
long nbits)
|
|
{
|
|
bitmap_to_from_le(dst, src, nbits);
|
|
}
|
|
|
|
void bitmap_to_le(unsigned long *dst, const unsigned long *src,
|
|
long nbits)
|
|
{
|
|
bitmap_to_from_le(dst, src, nbits);
|
|
}
|