mirror of
https://github.com/qemu/qemu.git
synced 2024-12-11 12:43:55 +08:00
df90dadb45
Commit 3c30dd5a68
(target-arm: Move reset
handling to arm_cpu_reset) QOM'ified CPU reset. Complete it by replacing
cpu_state_reset() with cpu_reset().
Signed-off-by: Andreas Färber <afaerber@suse.de>
Acked-by: Peter Maydell <peter.maydell@linaro.org>
2885 lines
83 KiB
C
2885 lines
83 KiB
C
#include "cpu.h"
|
|
#include "gdbstub.h"
|
|
#include "helper.h"
|
|
#include "host-utils.h"
|
|
#include "sysemu.h"
|
|
|
|
void cpu_state_reset(CPUARMState *env)
|
|
{
|
|
cpu_reset(ENV_GET_CPU(env));
|
|
}
|
|
|
|
static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
|
|
{
|
|
int nregs;
|
|
|
|
/* VFP data registers are always little-endian. */
|
|
nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
|
|
if (reg < nregs) {
|
|
stfq_le_p(buf, env->vfp.regs[reg]);
|
|
return 8;
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_NEON)) {
|
|
/* Aliases for Q regs. */
|
|
nregs += 16;
|
|
if (reg < nregs) {
|
|
stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
|
|
stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
|
|
return 16;
|
|
}
|
|
}
|
|
switch (reg - nregs) {
|
|
case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
|
|
case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
|
|
case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
|
|
{
|
|
int nregs;
|
|
|
|
nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
|
|
if (reg < nregs) {
|
|
env->vfp.regs[reg] = ldfq_le_p(buf);
|
|
return 8;
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_NEON)) {
|
|
nregs += 16;
|
|
if (reg < nregs) {
|
|
env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
|
|
env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
|
|
return 16;
|
|
}
|
|
}
|
|
switch (reg - nregs) {
|
|
case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
|
|
case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
|
|
case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
ARMCPU *cpu_arm_init(const char *cpu_model)
|
|
{
|
|
ARMCPU *cpu;
|
|
CPUARMState *env;
|
|
static int inited = 0;
|
|
|
|
if (!object_class_by_name(cpu_model)) {
|
|
return NULL;
|
|
}
|
|
cpu = ARM_CPU(object_new(cpu_model));
|
|
env = &cpu->env;
|
|
env->cpu_model_str = cpu_model;
|
|
arm_cpu_realize(cpu);
|
|
|
|
if (tcg_enabled() && !inited) {
|
|
inited = 1;
|
|
arm_translate_init();
|
|
}
|
|
|
|
cpu_reset(CPU(cpu));
|
|
if (arm_feature(env, ARM_FEATURE_NEON)) {
|
|
gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
|
|
51, "arm-neon.xml", 0);
|
|
} else if (arm_feature(env, ARM_FEATURE_VFP3)) {
|
|
gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
|
|
35, "arm-vfp3.xml", 0);
|
|
} else if (arm_feature(env, ARM_FEATURE_VFP)) {
|
|
gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
|
|
19, "arm-vfp.xml", 0);
|
|
}
|
|
qemu_init_vcpu(env);
|
|
return cpu;
|
|
}
|
|
|
|
typedef struct ARMCPUListState {
|
|
fprintf_function cpu_fprintf;
|
|
FILE *file;
|
|
} ARMCPUListState;
|
|
|
|
/* Sort alphabetically by type name, except for "any". */
|
|
static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
|
|
{
|
|
ObjectClass *class_a = (ObjectClass *)a;
|
|
ObjectClass *class_b = (ObjectClass *)b;
|
|
const char *name_a, *name_b;
|
|
|
|
name_a = object_class_get_name(class_a);
|
|
name_b = object_class_get_name(class_b);
|
|
if (strcmp(name_a, "any") == 0) {
|
|
return 1;
|
|
} else if (strcmp(name_b, "any") == 0) {
|
|
return -1;
|
|
} else {
|
|
return strcmp(name_a, name_b);
|
|
}
|
|
}
|
|
|
|
static void arm_cpu_list_entry(gpointer data, gpointer user_data)
|
|
{
|
|
ObjectClass *oc = data;
|
|
ARMCPUListState *s = user_data;
|
|
|
|
(*s->cpu_fprintf)(s->file, " %s\n",
|
|
object_class_get_name(oc));
|
|
}
|
|
|
|
void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
|
|
{
|
|
ARMCPUListState s = {
|
|
.file = f,
|
|
.cpu_fprintf = cpu_fprintf,
|
|
};
|
|
GSList *list;
|
|
|
|
list = object_class_get_list(TYPE_ARM_CPU, false);
|
|
list = g_slist_sort(list, arm_cpu_list_compare);
|
|
(*cpu_fprintf)(f, "Available CPUs:\n");
|
|
g_slist_foreach(list, arm_cpu_list_entry, &s);
|
|
g_slist_free(list);
|
|
}
|
|
|
|
static int bad_mode_switch(CPUARMState *env, int mode)
|
|
{
|
|
/* Return true if it is not valid for us to switch to
|
|
* this CPU mode (ie all the UNPREDICTABLE cases in
|
|
* the ARM ARM CPSRWriteByInstr pseudocode).
|
|
*/
|
|
switch (mode) {
|
|
case ARM_CPU_MODE_USR:
|
|
case ARM_CPU_MODE_SYS:
|
|
case ARM_CPU_MODE_SVC:
|
|
case ARM_CPU_MODE_ABT:
|
|
case ARM_CPU_MODE_UND:
|
|
case ARM_CPU_MODE_IRQ:
|
|
case ARM_CPU_MODE_FIQ:
|
|
return 0;
|
|
default:
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
uint32_t cpsr_read(CPUARMState *env)
|
|
{
|
|
int ZF;
|
|
ZF = (env->ZF == 0);
|
|
return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
|
|
(env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
|
|
| (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
|
|
| ((env->condexec_bits & 0xfc) << 8)
|
|
| (env->GE << 16);
|
|
}
|
|
|
|
void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
|
|
{
|
|
if (mask & CPSR_NZCV) {
|
|
env->ZF = (~val) & CPSR_Z;
|
|
env->NF = val;
|
|
env->CF = (val >> 29) & 1;
|
|
env->VF = (val << 3) & 0x80000000;
|
|
}
|
|
if (mask & CPSR_Q)
|
|
env->QF = ((val & CPSR_Q) != 0);
|
|
if (mask & CPSR_T)
|
|
env->thumb = ((val & CPSR_T) != 0);
|
|
if (mask & CPSR_IT_0_1) {
|
|
env->condexec_bits &= ~3;
|
|
env->condexec_bits |= (val >> 25) & 3;
|
|
}
|
|
if (mask & CPSR_IT_2_7) {
|
|
env->condexec_bits &= 3;
|
|
env->condexec_bits |= (val >> 8) & 0xfc;
|
|
}
|
|
if (mask & CPSR_GE) {
|
|
env->GE = (val >> 16) & 0xf;
|
|
}
|
|
|
|
if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
|
|
if (bad_mode_switch(env, val & CPSR_M)) {
|
|
/* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
|
|
* We choose to ignore the attempt and leave the CPSR M field
|
|
* untouched.
|
|
*/
|
|
mask &= ~CPSR_M;
|
|
} else {
|
|
switch_mode(env, val & CPSR_M);
|
|
}
|
|
}
|
|
mask &= ~CACHED_CPSR_BITS;
|
|
env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
|
|
}
|
|
|
|
/* Sign/zero extend */
|
|
uint32_t HELPER(sxtb16)(uint32_t x)
|
|
{
|
|
uint32_t res;
|
|
res = (uint16_t)(int8_t)x;
|
|
res |= (uint32_t)(int8_t)(x >> 16) << 16;
|
|
return res;
|
|
}
|
|
|
|
uint32_t HELPER(uxtb16)(uint32_t x)
|
|
{
|
|
uint32_t res;
|
|
res = (uint16_t)(uint8_t)x;
|
|
res |= (uint32_t)(uint8_t)(x >> 16) << 16;
|
|
return res;
|
|
}
|
|
|
|
uint32_t HELPER(clz)(uint32_t x)
|
|
{
|
|
return clz32(x);
|
|
}
|
|
|
|
int32_t HELPER(sdiv)(int32_t num, int32_t den)
|
|
{
|
|
if (den == 0)
|
|
return 0;
|
|
if (num == INT_MIN && den == -1)
|
|
return INT_MIN;
|
|
return num / den;
|
|
}
|
|
|
|
uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
|
|
{
|
|
if (den == 0)
|
|
return 0;
|
|
return num / den;
|
|
}
|
|
|
|
uint32_t HELPER(rbit)(uint32_t x)
|
|
{
|
|
x = ((x & 0xff000000) >> 24)
|
|
| ((x & 0x00ff0000) >> 8)
|
|
| ((x & 0x0000ff00) << 8)
|
|
| ((x & 0x000000ff) << 24);
|
|
x = ((x & 0xf0f0f0f0) >> 4)
|
|
| ((x & 0x0f0f0f0f) << 4);
|
|
x = ((x & 0x88888888) >> 3)
|
|
| ((x & 0x44444444) >> 1)
|
|
| ((x & 0x22222222) << 1)
|
|
| ((x & 0x11111111) << 3);
|
|
return x;
|
|
}
|
|
|
|
uint32_t HELPER(abs)(uint32_t x)
|
|
{
|
|
return ((int32_t)x < 0) ? -x : x;
|
|
}
|
|
|
|
#if defined(CONFIG_USER_ONLY)
|
|
|
|
void do_interrupt (CPUARMState *env)
|
|
{
|
|
env->exception_index = -1;
|
|
}
|
|
|
|
int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
|
|
int mmu_idx)
|
|
{
|
|
if (rw == 2) {
|
|
env->exception_index = EXCP_PREFETCH_ABORT;
|
|
env->cp15.c6_insn = address;
|
|
} else {
|
|
env->exception_index = EXCP_DATA_ABORT;
|
|
env->cp15.c6_data = address;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* These should probably raise undefined insn exceptions. */
|
|
void HELPER(set_cp)(CPUARMState *env, uint32_t insn, uint32_t val)
|
|
{
|
|
int op1 = (insn >> 8) & 0xf;
|
|
cpu_abort(env, "cp%i insn %08x\n", op1, insn);
|
|
return;
|
|
}
|
|
|
|
uint32_t HELPER(get_cp)(CPUARMState *env, uint32_t insn)
|
|
{
|
|
int op1 = (insn >> 8) & 0xf;
|
|
cpu_abort(env, "cp%i insn %08x\n", op1, insn);
|
|
return 0;
|
|
}
|
|
|
|
void HELPER(set_cp15)(CPUARMState *env, uint32_t insn, uint32_t val)
|
|
{
|
|
cpu_abort(env, "cp15 insn %08x\n", insn);
|
|
}
|
|
|
|
uint32_t HELPER(get_cp15)(CPUARMState *env, uint32_t insn)
|
|
{
|
|
cpu_abort(env, "cp15 insn %08x\n", insn);
|
|
}
|
|
|
|
/* These should probably raise undefined insn exceptions. */
|
|
void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
|
|
{
|
|
cpu_abort(env, "v7m_mrs %d\n", reg);
|
|
}
|
|
|
|
uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
|
|
{
|
|
cpu_abort(env, "v7m_mrs %d\n", reg);
|
|
return 0;
|
|
}
|
|
|
|
void switch_mode(CPUARMState *env, int mode)
|
|
{
|
|
if (mode != ARM_CPU_MODE_USR)
|
|
cpu_abort(env, "Tried to switch out of user mode\n");
|
|
}
|
|
|
|
void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
|
|
{
|
|
cpu_abort(env, "banked r13 write\n");
|
|
}
|
|
|
|
uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
|
|
{
|
|
cpu_abort(env, "banked r13 read\n");
|
|
return 0;
|
|
}
|
|
|
|
#else
|
|
|
|
/* Map CPU modes onto saved register banks. */
|
|
static inline int bank_number(CPUARMState *env, int mode)
|
|
{
|
|
switch (mode) {
|
|
case ARM_CPU_MODE_USR:
|
|
case ARM_CPU_MODE_SYS:
|
|
return 0;
|
|
case ARM_CPU_MODE_SVC:
|
|
return 1;
|
|
case ARM_CPU_MODE_ABT:
|
|
return 2;
|
|
case ARM_CPU_MODE_UND:
|
|
return 3;
|
|
case ARM_CPU_MODE_IRQ:
|
|
return 4;
|
|
case ARM_CPU_MODE_FIQ:
|
|
return 5;
|
|
}
|
|
cpu_abort(env, "Bad mode %x\n", mode);
|
|
return -1;
|
|
}
|
|
|
|
void switch_mode(CPUARMState *env, int mode)
|
|
{
|
|
int old_mode;
|
|
int i;
|
|
|
|
old_mode = env->uncached_cpsr & CPSR_M;
|
|
if (mode == old_mode)
|
|
return;
|
|
|
|
if (old_mode == ARM_CPU_MODE_FIQ) {
|
|
memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
|
|
memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
|
|
} else if (mode == ARM_CPU_MODE_FIQ) {
|
|
memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
|
|
memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
|
|
}
|
|
|
|
i = bank_number(env, old_mode);
|
|
env->banked_r13[i] = env->regs[13];
|
|
env->banked_r14[i] = env->regs[14];
|
|
env->banked_spsr[i] = env->spsr;
|
|
|
|
i = bank_number(env, mode);
|
|
env->regs[13] = env->banked_r13[i];
|
|
env->regs[14] = env->banked_r14[i];
|
|
env->spsr = env->banked_spsr[i];
|
|
}
|
|
|
|
static void v7m_push(CPUARMState *env, uint32_t val)
|
|
{
|
|
env->regs[13] -= 4;
|
|
stl_phys(env->regs[13], val);
|
|
}
|
|
|
|
static uint32_t v7m_pop(CPUARMState *env)
|
|
{
|
|
uint32_t val;
|
|
val = ldl_phys(env->regs[13]);
|
|
env->regs[13] += 4;
|
|
return val;
|
|
}
|
|
|
|
/* Switch to V7M main or process stack pointer. */
|
|
static void switch_v7m_sp(CPUARMState *env, int process)
|
|
{
|
|
uint32_t tmp;
|
|
if (env->v7m.current_sp != process) {
|
|
tmp = env->v7m.other_sp;
|
|
env->v7m.other_sp = env->regs[13];
|
|
env->regs[13] = tmp;
|
|
env->v7m.current_sp = process;
|
|
}
|
|
}
|
|
|
|
static void do_v7m_exception_exit(CPUARMState *env)
|
|
{
|
|
uint32_t type;
|
|
uint32_t xpsr;
|
|
|
|
type = env->regs[15];
|
|
if (env->v7m.exception != 0)
|
|
armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
|
|
|
|
/* Switch to the target stack. */
|
|
switch_v7m_sp(env, (type & 4) != 0);
|
|
/* Pop registers. */
|
|
env->regs[0] = v7m_pop(env);
|
|
env->regs[1] = v7m_pop(env);
|
|
env->regs[2] = v7m_pop(env);
|
|
env->regs[3] = v7m_pop(env);
|
|
env->regs[12] = v7m_pop(env);
|
|
env->regs[14] = v7m_pop(env);
|
|
env->regs[15] = v7m_pop(env);
|
|
xpsr = v7m_pop(env);
|
|
xpsr_write(env, xpsr, 0xfffffdff);
|
|
/* Undo stack alignment. */
|
|
if (xpsr & 0x200)
|
|
env->regs[13] |= 4;
|
|
/* ??? The exception return type specifies Thread/Handler mode. However
|
|
this is also implied by the xPSR value. Not sure what to do
|
|
if there is a mismatch. */
|
|
/* ??? Likewise for mismatches between the CONTROL register and the stack
|
|
pointer. */
|
|
}
|
|
|
|
static void do_interrupt_v7m(CPUARMState *env)
|
|
{
|
|
uint32_t xpsr = xpsr_read(env);
|
|
uint32_t lr;
|
|
uint32_t addr;
|
|
|
|
lr = 0xfffffff1;
|
|
if (env->v7m.current_sp)
|
|
lr |= 4;
|
|
if (env->v7m.exception == 0)
|
|
lr |= 8;
|
|
|
|
/* For exceptions we just mark as pending on the NVIC, and let that
|
|
handle it. */
|
|
/* TODO: Need to escalate if the current priority is higher than the
|
|
one we're raising. */
|
|
switch (env->exception_index) {
|
|
case EXCP_UDEF:
|
|
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
|
|
return;
|
|
case EXCP_SWI:
|
|
env->regs[15] += 2;
|
|
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
|
|
return;
|
|
case EXCP_PREFETCH_ABORT:
|
|
case EXCP_DATA_ABORT:
|
|
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
|
|
return;
|
|
case EXCP_BKPT:
|
|
if (semihosting_enabled) {
|
|
int nr;
|
|
nr = arm_lduw_code(env->regs[15], env->bswap_code) & 0xff;
|
|
if (nr == 0xab) {
|
|
env->regs[15] += 2;
|
|
env->regs[0] = do_arm_semihosting(env);
|
|
return;
|
|
}
|
|
}
|
|
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
|
|
return;
|
|
case EXCP_IRQ:
|
|
env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
|
|
break;
|
|
case EXCP_EXCEPTION_EXIT:
|
|
do_v7m_exception_exit(env);
|
|
return;
|
|
default:
|
|
cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
|
|
return; /* Never happens. Keep compiler happy. */
|
|
}
|
|
|
|
/* Align stack pointer. */
|
|
/* ??? Should only do this if Configuration Control Register
|
|
STACKALIGN bit is set. */
|
|
if (env->regs[13] & 4) {
|
|
env->regs[13] -= 4;
|
|
xpsr |= 0x200;
|
|
}
|
|
/* Switch to the handler mode. */
|
|
v7m_push(env, xpsr);
|
|
v7m_push(env, env->regs[15]);
|
|
v7m_push(env, env->regs[14]);
|
|
v7m_push(env, env->regs[12]);
|
|
v7m_push(env, env->regs[3]);
|
|
v7m_push(env, env->regs[2]);
|
|
v7m_push(env, env->regs[1]);
|
|
v7m_push(env, env->regs[0]);
|
|
switch_v7m_sp(env, 0);
|
|
/* Clear IT bits */
|
|
env->condexec_bits = 0;
|
|
env->regs[14] = lr;
|
|
addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
|
|
env->regs[15] = addr & 0xfffffffe;
|
|
env->thumb = addr & 1;
|
|
}
|
|
|
|
/* Handle a CPU exception. */
|
|
void do_interrupt(CPUARMState *env)
|
|
{
|
|
uint32_t addr;
|
|
uint32_t mask;
|
|
int new_mode;
|
|
uint32_t offset;
|
|
|
|
if (IS_M(env)) {
|
|
do_interrupt_v7m(env);
|
|
return;
|
|
}
|
|
/* TODO: Vectored interrupt controller. */
|
|
switch (env->exception_index) {
|
|
case EXCP_UDEF:
|
|
new_mode = ARM_CPU_MODE_UND;
|
|
addr = 0x04;
|
|
mask = CPSR_I;
|
|
if (env->thumb)
|
|
offset = 2;
|
|
else
|
|
offset = 4;
|
|
break;
|
|
case EXCP_SWI:
|
|
if (semihosting_enabled) {
|
|
/* Check for semihosting interrupt. */
|
|
if (env->thumb) {
|
|
mask = arm_lduw_code(env->regs[15] - 2, env->bswap_code) & 0xff;
|
|
} else {
|
|
mask = arm_ldl_code(env->regs[15] - 4, env->bswap_code)
|
|
& 0xffffff;
|
|
}
|
|
/* Only intercept calls from privileged modes, to provide some
|
|
semblance of security. */
|
|
if (((mask == 0x123456 && !env->thumb)
|
|
|| (mask == 0xab && env->thumb))
|
|
&& (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
|
|
env->regs[0] = do_arm_semihosting(env);
|
|
return;
|
|
}
|
|
}
|
|
new_mode = ARM_CPU_MODE_SVC;
|
|
addr = 0x08;
|
|
mask = CPSR_I;
|
|
/* The PC already points to the next instruction. */
|
|
offset = 0;
|
|
break;
|
|
case EXCP_BKPT:
|
|
/* See if this is a semihosting syscall. */
|
|
if (env->thumb && semihosting_enabled) {
|
|
mask = arm_lduw_code(env->regs[15], env->bswap_code) & 0xff;
|
|
if (mask == 0xab
|
|
&& (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
|
|
env->regs[15] += 2;
|
|
env->regs[0] = do_arm_semihosting(env);
|
|
return;
|
|
}
|
|
}
|
|
env->cp15.c5_insn = 2;
|
|
/* Fall through to prefetch abort. */
|
|
case EXCP_PREFETCH_ABORT:
|
|
new_mode = ARM_CPU_MODE_ABT;
|
|
addr = 0x0c;
|
|
mask = CPSR_A | CPSR_I;
|
|
offset = 4;
|
|
break;
|
|
case EXCP_DATA_ABORT:
|
|
new_mode = ARM_CPU_MODE_ABT;
|
|
addr = 0x10;
|
|
mask = CPSR_A | CPSR_I;
|
|
offset = 8;
|
|
break;
|
|
case EXCP_IRQ:
|
|
new_mode = ARM_CPU_MODE_IRQ;
|
|
addr = 0x18;
|
|
/* Disable IRQ and imprecise data aborts. */
|
|
mask = CPSR_A | CPSR_I;
|
|
offset = 4;
|
|
break;
|
|
case EXCP_FIQ:
|
|
new_mode = ARM_CPU_MODE_FIQ;
|
|
addr = 0x1c;
|
|
/* Disable FIQ, IRQ and imprecise data aborts. */
|
|
mask = CPSR_A | CPSR_I | CPSR_F;
|
|
offset = 4;
|
|
break;
|
|
default:
|
|
cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
|
|
return; /* Never happens. Keep compiler happy. */
|
|
}
|
|
/* High vectors. */
|
|
if (env->cp15.c1_sys & (1 << 13)) {
|
|
addr += 0xffff0000;
|
|
}
|
|
switch_mode (env, new_mode);
|
|
env->spsr = cpsr_read(env);
|
|
/* Clear IT bits. */
|
|
env->condexec_bits = 0;
|
|
/* Switch to the new mode, and to the correct instruction set. */
|
|
env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
|
|
env->uncached_cpsr |= mask;
|
|
/* this is a lie, as the was no c1_sys on V4T/V5, but who cares
|
|
* and we should just guard the thumb mode on V4 */
|
|
if (arm_feature(env, ARM_FEATURE_V4T)) {
|
|
env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
|
|
}
|
|
env->regs[14] = env->regs[15] + offset;
|
|
env->regs[15] = addr;
|
|
env->interrupt_request |= CPU_INTERRUPT_EXITTB;
|
|
}
|
|
|
|
/* Check section/page access permissions.
|
|
Returns the page protection flags, or zero if the access is not
|
|
permitted. */
|
|
static inline int check_ap(CPUARMState *env, int ap, int domain_prot,
|
|
int access_type, int is_user)
|
|
{
|
|
int prot_ro;
|
|
|
|
if (domain_prot == 3) {
|
|
return PAGE_READ | PAGE_WRITE;
|
|
}
|
|
|
|
if (access_type == 1)
|
|
prot_ro = 0;
|
|
else
|
|
prot_ro = PAGE_READ;
|
|
|
|
switch (ap) {
|
|
case 0:
|
|
if (access_type == 1)
|
|
return 0;
|
|
switch ((env->cp15.c1_sys >> 8) & 3) {
|
|
case 1:
|
|
return is_user ? 0 : PAGE_READ;
|
|
case 2:
|
|
return PAGE_READ;
|
|
default:
|
|
return 0;
|
|
}
|
|
case 1:
|
|
return is_user ? 0 : PAGE_READ | PAGE_WRITE;
|
|
case 2:
|
|
if (is_user)
|
|
return prot_ro;
|
|
else
|
|
return PAGE_READ | PAGE_WRITE;
|
|
case 3:
|
|
return PAGE_READ | PAGE_WRITE;
|
|
case 4: /* Reserved. */
|
|
return 0;
|
|
case 5:
|
|
return is_user ? 0 : prot_ro;
|
|
case 6:
|
|
return prot_ro;
|
|
case 7:
|
|
if (!arm_feature (env, ARM_FEATURE_V6K))
|
|
return 0;
|
|
return prot_ro;
|
|
default:
|
|
abort();
|
|
}
|
|
}
|
|
|
|
static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address)
|
|
{
|
|
uint32_t table;
|
|
|
|
if (address & env->cp15.c2_mask)
|
|
table = env->cp15.c2_base1 & 0xffffc000;
|
|
else
|
|
table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
|
|
|
|
table |= (address >> 18) & 0x3ffc;
|
|
return table;
|
|
}
|
|
|
|
static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
|
|
int is_user, uint32_t *phys_ptr, int *prot,
|
|
target_ulong *page_size)
|
|
{
|
|
int code;
|
|
uint32_t table;
|
|
uint32_t desc;
|
|
int type;
|
|
int ap;
|
|
int domain;
|
|
int domain_prot;
|
|
uint32_t phys_addr;
|
|
|
|
/* Pagetable walk. */
|
|
/* Lookup l1 descriptor. */
|
|
table = get_level1_table_address(env, address);
|
|
desc = ldl_phys(table);
|
|
type = (desc & 3);
|
|
domain = (desc >> 5) & 0x0f;
|
|
domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
|
|
if (type == 0) {
|
|
/* Section translation fault. */
|
|
code = 5;
|
|
goto do_fault;
|
|
}
|
|
if (domain_prot == 0 || domain_prot == 2) {
|
|
if (type == 2)
|
|
code = 9; /* Section domain fault. */
|
|
else
|
|
code = 11; /* Page domain fault. */
|
|
goto do_fault;
|
|
}
|
|
if (type == 2) {
|
|
/* 1Mb section. */
|
|
phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
|
|
ap = (desc >> 10) & 3;
|
|
code = 13;
|
|
*page_size = 1024 * 1024;
|
|
} else {
|
|
/* Lookup l2 entry. */
|
|
if (type == 1) {
|
|
/* Coarse pagetable. */
|
|
table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
|
|
} else {
|
|
/* Fine pagetable. */
|
|
table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
|
|
}
|
|
desc = ldl_phys(table);
|
|
switch (desc & 3) {
|
|
case 0: /* Page translation fault. */
|
|
code = 7;
|
|
goto do_fault;
|
|
case 1: /* 64k page. */
|
|
phys_addr = (desc & 0xffff0000) | (address & 0xffff);
|
|
ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
|
|
*page_size = 0x10000;
|
|
break;
|
|
case 2: /* 4k page. */
|
|
phys_addr = (desc & 0xfffff000) | (address & 0xfff);
|
|
ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
|
|
*page_size = 0x1000;
|
|
break;
|
|
case 3: /* 1k page. */
|
|
if (type == 1) {
|
|
if (arm_feature(env, ARM_FEATURE_XSCALE)) {
|
|
phys_addr = (desc & 0xfffff000) | (address & 0xfff);
|
|
} else {
|
|
/* Page translation fault. */
|
|
code = 7;
|
|
goto do_fault;
|
|
}
|
|
} else {
|
|
phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
|
|
}
|
|
ap = (desc >> 4) & 3;
|
|
*page_size = 0x400;
|
|
break;
|
|
default:
|
|
/* Never happens, but compiler isn't smart enough to tell. */
|
|
abort();
|
|
}
|
|
code = 15;
|
|
}
|
|
*prot = check_ap(env, ap, domain_prot, access_type, is_user);
|
|
if (!*prot) {
|
|
/* Access permission fault. */
|
|
goto do_fault;
|
|
}
|
|
*prot |= PAGE_EXEC;
|
|
*phys_ptr = phys_addr;
|
|
return 0;
|
|
do_fault:
|
|
return code | (domain << 4);
|
|
}
|
|
|
|
static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
|
|
int is_user, uint32_t *phys_ptr, int *prot,
|
|
target_ulong *page_size)
|
|
{
|
|
int code;
|
|
uint32_t table;
|
|
uint32_t desc;
|
|
uint32_t xn;
|
|
int type;
|
|
int ap;
|
|
int domain;
|
|
int domain_prot;
|
|
uint32_t phys_addr;
|
|
|
|
/* Pagetable walk. */
|
|
/* Lookup l1 descriptor. */
|
|
table = get_level1_table_address(env, address);
|
|
desc = ldl_phys(table);
|
|
type = (desc & 3);
|
|
if (type == 0) {
|
|
/* Section translation fault. */
|
|
code = 5;
|
|
domain = 0;
|
|
goto do_fault;
|
|
} else if (type == 2 && (desc & (1 << 18))) {
|
|
/* Supersection. */
|
|
domain = 0;
|
|
} else {
|
|
/* Section or page. */
|
|
domain = (desc >> 5) & 0x0f;
|
|
}
|
|
domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
|
|
if (domain_prot == 0 || domain_prot == 2) {
|
|
if (type == 2)
|
|
code = 9; /* Section domain fault. */
|
|
else
|
|
code = 11; /* Page domain fault. */
|
|
goto do_fault;
|
|
}
|
|
if (type == 2) {
|
|
if (desc & (1 << 18)) {
|
|
/* Supersection. */
|
|
phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
|
|
*page_size = 0x1000000;
|
|
} else {
|
|
/* Section. */
|
|
phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
|
|
*page_size = 0x100000;
|
|
}
|
|
ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
|
|
xn = desc & (1 << 4);
|
|
code = 13;
|
|
} else {
|
|
/* Lookup l2 entry. */
|
|
table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
|
|
desc = ldl_phys(table);
|
|
ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
|
|
switch (desc & 3) {
|
|
case 0: /* Page translation fault. */
|
|
code = 7;
|
|
goto do_fault;
|
|
case 1: /* 64k page. */
|
|
phys_addr = (desc & 0xffff0000) | (address & 0xffff);
|
|
xn = desc & (1 << 15);
|
|
*page_size = 0x10000;
|
|
break;
|
|
case 2: case 3: /* 4k page. */
|
|
phys_addr = (desc & 0xfffff000) | (address & 0xfff);
|
|
xn = desc & 1;
|
|
*page_size = 0x1000;
|
|
break;
|
|
default:
|
|
/* Never happens, but compiler isn't smart enough to tell. */
|
|
abort();
|
|
}
|
|
code = 15;
|
|
}
|
|
if (domain_prot == 3) {
|
|
*prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
|
|
} else {
|
|
if (xn && access_type == 2)
|
|
goto do_fault;
|
|
|
|
/* The simplified model uses AP[0] as an access control bit. */
|
|
if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
|
|
/* Access flag fault. */
|
|
code = (code == 15) ? 6 : 3;
|
|
goto do_fault;
|
|
}
|
|
*prot = check_ap(env, ap, domain_prot, access_type, is_user);
|
|
if (!*prot) {
|
|
/* Access permission fault. */
|
|
goto do_fault;
|
|
}
|
|
if (!xn) {
|
|
*prot |= PAGE_EXEC;
|
|
}
|
|
}
|
|
*phys_ptr = phys_addr;
|
|
return 0;
|
|
do_fault:
|
|
return code | (domain << 4);
|
|
}
|
|
|
|
static int get_phys_addr_mpu(CPUARMState *env, uint32_t address, int access_type,
|
|
int is_user, uint32_t *phys_ptr, int *prot)
|
|
{
|
|
int n;
|
|
uint32_t mask;
|
|
uint32_t base;
|
|
|
|
*phys_ptr = address;
|
|
for (n = 7; n >= 0; n--) {
|
|
base = env->cp15.c6_region[n];
|
|
if ((base & 1) == 0)
|
|
continue;
|
|
mask = 1 << ((base >> 1) & 0x1f);
|
|
/* Keep this shift separate from the above to avoid an
|
|
(undefined) << 32. */
|
|
mask = (mask << 1) - 1;
|
|
if (((base ^ address) & ~mask) == 0)
|
|
break;
|
|
}
|
|
if (n < 0)
|
|
return 2;
|
|
|
|
if (access_type == 2) {
|
|
mask = env->cp15.c5_insn;
|
|
} else {
|
|
mask = env->cp15.c5_data;
|
|
}
|
|
mask = (mask >> (n * 4)) & 0xf;
|
|
switch (mask) {
|
|
case 0:
|
|
return 1;
|
|
case 1:
|
|
if (is_user)
|
|
return 1;
|
|
*prot = PAGE_READ | PAGE_WRITE;
|
|
break;
|
|
case 2:
|
|
*prot = PAGE_READ;
|
|
if (!is_user)
|
|
*prot |= PAGE_WRITE;
|
|
break;
|
|
case 3:
|
|
*prot = PAGE_READ | PAGE_WRITE;
|
|
break;
|
|
case 5:
|
|
if (is_user)
|
|
return 1;
|
|
*prot = PAGE_READ;
|
|
break;
|
|
case 6:
|
|
*prot = PAGE_READ;
|
|
break;
|
|
default:
|
|
/* Bad permission. */
|
|
return 1;
|
|
}
|
|
*prot |= PAGE_EXEC;
|
|
return 0;
|
|
}
|
|
|
|
static inline int get_phys_addr(CPUARMState *env, uint32_t address,
|
|
int access_type, int is_user,
|
|
uint32_t *phys_ptr, int *prot,
|
|
target_ulong *page_size)
|
|
{
|
|
/* Fast Context Switch Extension. */
|
|
if (address < 0x02000000)
|
|
address += env->cp15.c13_fcse;
|
|
|
|
if ((env->cp15.c1_sys & 1) == 0) {
|
|
/* MMU/MPU disabled. */
|
|
*phys_ptr = address;
|
|
*prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
|
|
*page_size = TARGET_PAGE_SIZE;
|
|
return 0;
|
|
} else if (arm_feature(env, ARM_FEATURE_MPU)) {
|
|
*page_size = TARGET_PAGE_SIZE;
|
|
return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
|
|
prot);
|
|
} else if (env->cp15.c1_sys & (1 << 23)) {
|
|
return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
|
|
prot, page_size);
|
|
} else {
|
|
return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
|
|
prot, page_size);
|
|
}
|
|
}
|
|
|
|
int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address,
|
|
int access_type, int mmu_idx)
|
|
{
|
|
uint32_t phys_addr;
|
|
target_ulong page_size;
|
|
int prot;
|
|
int ret, is_user;
|
|
|
|
is_user = mmu_idx == MMU_USER_IDX;
|
|
ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
|
|
&page_size);
|
|
if (ret == 0) {
|
|
/* Map a single [sub]page. */
|
|
phys_addr &= ~(uint32_t)0x3ff;
|
|
address &= ~(uint32_t)0x3ff;
|
|
tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
|
|
return 0;
|
|
}
|
|
|
|
if (access_type == 2) {
|
|
env->cp15.c5_insn = ret;
|
|
env->cp15.c6_insn = address;
|
|
env->exception_index = EXCP_PREFETCH_ABORT;
|
|
} else {
|
|
env->cp15.c5_data = ret;
|
|
if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
|
|
env->cp15.c5_data |= (1 << 11);
|
|
env->cp15.c6_data = address;
|
|
env->exception_index = EXCP_DATA_ABORT;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
target_phys_addr_t cpu_get_phys_page_debug(CPUARMState *env, target_ulong addr)
|
|
{
|
|
uint32_t phys_addr;
|
|
target_ulong page_size;
|
|
int prot;
|
|
int ret;
|
|
|
|
ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot, &page_size);
|
|
|
|
if (ret != 0)
|
|
return -1;
|
|
|
|
return phys_addr;
|
|
}
|
|
|
|
void HELPER(set_cp)(CPUARMState *env, uint32_t insn, uint32_t val)
|
|
{
|
|
int cp_num = (insn >> 8) & 0xf;
|
|
int cp_info = (insn >> 5) & 7;
|
|
int src = (insn >> 16) & 0xf;
|
|
int operand = insn & 0xf;
|
|
|
|
if (env->cp[cp_num].cp_write)
|
|
env->cp[cp_num].cp_write(env->cp[cp_num].opaque,
|
|
cp_info, src, operand, val);
|
|
}
|
|
|
|
uint32_t HELPER(get_cp)(CPUARMState *env, uint32_t insn)
|
|
{
|
|
int cp_num = (insn >> 8) & 0xf;
|
|
int cp_info = (insn >> 5) & 7;
|
|
int dest = (insn >> 16) & 0xf;
|
|
int operand = insn & 0xf;
|
|
|
|
if (env->cp[cp_num].cp_read)
|
|
return env->cp[cp_num].cp_read(env->cp[cp_num].opaque,
|
|
cp_info, dest, operand);
|
|
return 0;
|
|
}
|
|
|
|
/* Return basic MPU access permission bits. */
|
|
static uint32_t simple_mpu_ap_bits(uint32_t val)
|
|
{
|
|
uint32_t ret;
|
|
uint32_t mask;
|
|
int i;
|
|
ret = 0;
|
|
mask = 3;
|
|
for (i = 0; i < 16; i += 2) {
|
|
ret |= (val >> i) & mask;
|
|
mask <<= 2;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* Pad basic MPU access permission bits to extended format. */
|
|
static uint32_t extended_mpu_ap_bits(uint32_t val)
|
|
{
|
|
uint32_t ret;
|
|
uint32_t mask;
|
|
int i;
|
|
ret = 0;
|
|
mask = 3;
|
|
for (i = 0; i < 16; i += 2) {
|
|
ret |= (val & mask) << i;
|
|
mask <<= 2;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void HELPER(set_cp15)(CPUARMState *env, uint32_t insn, uint32_t val)
|
|
{
|
|
int op1;
|
|
int op2;
|
|
int crm;
|
|
|
|
op1 = (insn >> 21) & 7;
|
|
op2 = (insn >> 5) & 7;
|
|
crm = insn & 0xf;
|
|
switch ((insn >> 16) & 0xf) {
|
|
case 0:
|
|
/* ID codes. */
|
|
if (arm_feature(env, ARM_FEATURE_XSCALE))
|
|
break;
|
|
if (arm_feature(env, ARM_FEATURE_OMAPCP))
|
|
break;
|
|
if (arm_feature(env, ARM_FEATURE_V7)
|
|
&& op1 == 2 && crm == 0 && op2 == 0) {
|
|
env->cp15.c0_cssel = val & 0xf;
|
|
break;
|
|
}
|
|
goto bad_reg;
|
|
case 1: /* System configuration. */
|
|
if (arm_feature(env, ARM_FEATURE_V7)
|
|
&& op1 == 0 && crm == 1 && op2 == 0) {
|
|
env->cp15.c1_scr = val;
|
|
break;
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_OMAPCP))
|
|
op2 = 0;
|
|
switch (op2) {
|
|
case 0:
|
|
if (!arm_feature(env, ARM_FEATURE_XSCALE) || crm == 0)
|
|
env->cp15.c1_sys = val;
|
|
/* ??? Lots of these bits are not implemented. */
|
|
/* This may enable/disable the MMU, so do a TLB flush. */
|
|
tlb_flush(env, 1);
|
|
break;
|
|
case 1: /* Auxiliary control register. */
|
|
if (arm_feature(env, ARM_FEATURE_XSCALE)) {
|
|
env->cp15.c1_xscaleauxcr = val;
|
|
break;
|
|
}
|
|
/* Not implemented. */
|
|
break;
|
|
case 2:
|
|
if (arm_feature(env, ARM_FEATURE_XSCALE))
|
|
goto bad_reg;
|
|
if (env->cp15.c1_coproc != val) {
|
|
env->cp15.c1_coproc = val;
|
|
/* ??? Is this safe when called from within a TB? */
|
|
tb_flush(env);
|
|
}
|
|
break;
|
|
default:
|
|
goto bad_reg;
|
|
}
|
|
break;
|
|
case 2: /* MMU Page table control / MPU cache control. */
|
|
if (arm_feature(env, ARM_FEATURE_MPU)) {
|
|
switch (op2) {
|
|
case 0:
|
|
env->cp15.c2_data = val;
|
|
break;
|
|
case 1:
|
|
env->cp15.c2_insn = val;
|
|
break;
|
|
default:
|
|
goto bad_reg;
|
|
}
|
|
} else {
|
|
switch (op2) {
|
|
case 0:
|
|
env->cp15.c2_base0 = val;
|
|
break;
|
|
case 1:
|
|
env->cp15.c2_base1 = val;
|
|
break;
|
|
case 2:
|
|
val &= 7;
|
|
env->cp15.c2_control = val;
|
|
env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> val);
|
|
env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> val);
|
|
break;
|
|
default:
|
|
goto bad_reg;
|
|
}
|
|
}
|
|
break;
|
|
case 3: /* MMU Domain access control / MPU write buffer control. */
|
|
env->cp15.c3 = val;
|
|
tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
|
|
break;
|
|
case 4: /* Reserved. */
|
|
goto bad_reg;
|
|
case 5: /* MMU Fault status / MPU access permission. */
|
|
if (arm_feature(env, ARM_FEATURE_OMAPCP))
|
|
op2 = 0;
|
|
switch (op2) {
|
|
case 0:
|
|
if (arm_feature(env, ARM_FEATURE_MPU))
|
|
val = extended_mpu_ap_bits(val);
|
|
env->cp15.c5_data = val;
|
|
break;
|
|
case 1:
|
|
if (arm_feature(env, ARM_FEATURE_MPU))
|
|
val = extended_mpu_ap_bits(val);
|
|
env->cp15.c5_insn = val;
|
|
break;
|
|
case 2:
|
|
if (!arm_feature(env, ARM_FEATURE_MPU))
|
|
goto bad_reg;
|
|
env->cp15.c5_data = val;
|
|
break;
|
|
case 3:
|
|
if (!arm_feature(env, ARM_FEATURE_MPU))
|
|
goto bad_reg;
|
|
env->cp15.c5_insn = val;
|
|
break;
|
|
default:
|
|
goto bad_reg;
|
|
}
|
|
break;
|
|
case 6: /* MMU Fault address / MPU base/size. */
|
|
if (arm_feature(env, ARM_FEATURE_MPU)) {
|
|
if (crm >= 8)
|
|
goto bad_reg;
|
|
env->cp15.c6_region[crm] = val;
|
|
} else {
|
|
if (arm_feature(env, ARM_FEATURE_OMAPCP))
|
|
op2 = 0;
|
|
switch (op2) {
|
|
case 0:
|
|
env->cp15.c6_data = val;
|
|
break;
|
|
case 1: /* ??? This is WFAR on armv6 */
|
|
case 2:
|
|
env->cp15.c6_insn = val;
|
|
break;
|
|
default:
|
|
goto bad_reg;
|
|
}
|
|
}
|
|
break;
|
|
case 7: /* Cache control. */
|
|
env->cp15.c15_i_max = 0x000;
|
|
env->cp15.c15_i_min = 0xff0;
|
|
if (op1 != 0) {
|
|
goto bad_reg;
|
|
}
|
|
/* No cache, so nothing to do except VA->PA translations. */
|
|
if (arm_feature(env, ARM_FEATURE_VAPA)) {
|
|
switch (crm) {
|
|
case 4:
|
|
if (arm_feature(env, ARM_FEATURE_V7)) {
|
|
env->cp15.c7_par = val & 0xfffff6ff;
|
|
} else {
|
|
env->cp15.c7_par = val & 0xfffff1ff;
|
|
}
|
|
break;
|
|
case 8: {
|
|
uint32_t phys_addr;
|
|
target_ulong page_size;
|
|
int prot;
|
|
int ret, is_user = op2 & 2;
|
|
int access_type = op2 & 1;
|
|
|
|
if (op2 & 4) {
|
|
/* Other states are only available with TrustZone */
|
|
goto bad_reg;
|
|
}
|
|
ret = get_phys_addr(env, val, access_type, is_user,
|
|
&phys_addr, &prot, &page_size);
|
|
if (ret == 0) {
|
|
/* We do not set any attribute bits in the PAR */
|
|
if (page_size == (1 << 24)
|
|
&& arm_feature(env, ARM_FEATURE_V7)) {
|
|
env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
|
|
} else {
|
|
env->cp15.c7_par = phys_addr & 0xfffff000;
|
|
}
|
|
} else {
|
|
env->cp15.c7_par = ((ret & (10 << 1)) >> 5) |
|
|
((ret & (12 << 1)) >> 6) |
|
|
((ret & 0xf) << 1) | 1;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case 8: /* MMU TLB control. */
|
|
switch (op2) {
|
|
case 0: /* Invalidate all (TLBIALL) */
|
|
tlb_flush(env, 1);
|
|
break;
|
|
case 1: /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
|
|
tlb_flush_page(env, val & TARGET_PAGE_MASK);
|
|
break;
|
|
case 2: /* Invalidate by ASID (TLBIASID) */
|
|
tlb_flush(env, val == 0);
|
|
break;
|
|
case 3: /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
|
|
tlb_flush_page(env, val & TARGET_PAGE_MASK);
|
|
break;
|
|
default:
|
|
goto bad_reg;
|
|
}
|
|
break;
|
|
case 9:
|
|
if (arm_feature(env, ARM_FEATURE_OMAPCP))
|
|
break;
|
|
if (arm_feature(env, ARM_FEATURE_STRONGARM))
|
|
break; /* Ignore ReadBuffer access */
|
|
switch (crm) {
|
|
case 0: /* Cache lockdown. */
|
|
switch (op1) {
|
|
case 0: /* L1 cache. */
|
|
switch (op2) {
|
|
case 0:
|
|
env->cp15.c9_data = val;
|
|
break;
|
|
case 1:
|
|
env->cp15.c9_insn = val;
|
|
break;
|
|
default:
|
|
goto bad_reg;
|
|
}
|
|
break;
|
|
case 1: /* L2 cache. */
|
|
/* Ignore writes to L2 lockdown/auxiliary registers. */
|
|
break;
|
|
default:
|
|
goto bad_reg;
|
|
}
|
|
break;
|
|
case 1: /* TCM memory region registers. */
|
|
/* Not implemented. */
|
|
goto bad_reg;
|
|
case 12: /* Performance monitor control */
|
|
/* Performance monitors are implementation defined in v7,
|
|
* but with an ARM recommended set of registers, which we
|
|
* follow (although we don't actually implement any counters)
|
|
*/
|
|
if (!arm_feature(env, ARM_FEATURE_V7)) {
|
|
goto bad_reg;
|
|
}
|
|
switch (op2) {
|
|
case 0: /* performance monitor control register */
|
|
/* only the DP, X, D and E bits are writable */
|
|
env->cp15.c9_pmcr &= ~0x39;
|
|
env->cp15.c9_pmcr |= (val & 0x39);
|
|
break;
|
|
case 1: /* Count enable set register */
|
|
val &= (1 << 31);
|
|
env->cp15.c9_pmcnten |= val;
|
|
break;
|
|
case 2: /* Count enable clear */
|
|
val &= (1 << 31);
|
|
env->cp15.c9_pmcnten &= ~val;
|
|
break;
|
|
case 3: /* Overflow flag status */
|
|
env->cp15.c9_pmovsr &= ~val;
|
|
break;
|
|
case 4: /* Software increment */
|
|
/* RAZ/WI since we don't implement the software-count event */
|
|
break;
|
|
case 5: /* Event counter selection register */
|
|
/* Since we don't implement any events, writing to this register
|
|
* is actually UNPREDICTABLE. So we choose to RAZ/WI.
|
|
*/
|
|
break;
|
|
default:
|
|
goto bad_reg;
|
|
}
|
|
break;
|
|
case 13: /* Performance counters */
|
|
if (!arm_feature(env, ARM_FEATURE_V7)) {
|
|
goto bad_reg;
|
|
}
|
|
switch (op2) {
|
|
case 0: /* Cycle count register: not implemented, so RAZ/WI */
|
|
break;
|
|
case 1: /* Event type select */
|
|
env->cp15.c9_pmxevtyper = val & 0xff;
|
|
break;
|
|
case 2: /* Event count register */
|
|
/* Unimplemented (we have no events), RAZ/WI */
|
|
break;
|
|
default:
|
|
goto bad_reg;
|
|
}
|
|
break;
|
|
case 14: /* Performance monitor control */
|
|
if (!arm_feature(env, ARM_FEATURE_V7)) {
|
|
goto bad_reg;
|
|
}
|
|
switch (op2) {
|
|
case 0: /* user enable */
|
|
env->cp15.c9_pmuserenr = val & 1;
|
|
/* changes access rights for cp registers, so flush tbs */
|
|
tb_flush(env);
|
|
break;
|
|
case 1: /* interrupt enable set */
|
|
/* We have no event counters so only the C bit can be changed */
|
|
val &= (1 << 31);
|
|
env->cp15.c9_pminten |= val;
|
|
break;
|
|
case 2: /* interrupt enable clear */
|
|
val &= (1 << 31);
|
|
env->cp15.c9_pminten &= ~val;
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
goto bad_reg;
|
|
}
|
|
break;
|
|
case 10: /* MMU TLB lockdown. */
|
|
/* ??? TLB lockdown not implemented. */
|
|
break;
|
|
case 12: /* Reserved. */
|
|
goto bad_reg;
|
|
case 13: /* Process ID. */
|
|
switch (op2) {
|
|
case 0:
|
|
/* Unlike real hardware the qemu TLB uses virtual addresses,
|
|
not modified virtual addresses, so this causes a TLB flush.
|
|
*/
|
|
if (env->cp15.c13_fcse != val)
|
|
tlb_flush(env, 1);
|
|
env->cp15.c13_fcse = val;
|
|
break;
|
|
case 1:
|
|
/* This changes the ASID, so do a TLB flush. */
|
|
if (env->cp15.c13_context != val
|
|
&& !arm_feature(env, ARM_FEATURE_MPU))
|
|
tlb_flush(env, 0);
|
|
env->cp15.c13_context = val;
|
|
break;
|
|
default:
|
|
goto bad_reg;
|
|
}
|
|
break;
|
|
case 14: /* Generic timer */
|
|
if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
|
|
/* Dummy implementation: RAZ/WI for all */
|
|
break;
|
|
}
|
|
goto bad_reg;
|
|
case 15: /* Implementation specific. */
|
|
if (arm_feature(env, ARM_FEATURE_XSCALE)) {
|
|
if (op2 == 0 && crm == 1) {
|
|
if (env->cp15.c15_cpar != (val & 0x3fff)) {
|
|
/* Changes cp0 to cp13 behavior, so needs a TB flush. */
|
|
tb_flush(env);
|
|
env->cp15.c15_cpar = val & 0x3fff;
|
|
}
|
|
break;
|
|
}
|
|
goto bad_reg;
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
|
|
switch (crm) {
|
|
case 0:
|
|
break;
|
|
case 1: /* Set TI925T configuration. */
|
|
env->cp15.c15_ticonfig = val & 0xe7;
|
|
env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */
|
|
ARM_CPUID_TI915T : ARM_CPUID_TI925T;
|
|
break;
|
|
case 2: /* Set I_max. */
|
|
env->cp15.c15_i_max = val;
|
|
break;
|
|
case 3: /* Set I_min. */
|
|
env->cp15.c15_i_min = val;
|
|
break;
|
|
case 4: /* Set thread-ID. */
|
|
env->cp15.c15_threadid = val & 0xffff;
|
|
break;
|
|
case 8: /* Wait-for-interrupt (deprecated). */
|
|
cpu_interrupt(env, CPU_INTERRUPT_HALT);
|
|
break;
|
|
default:
|
|
goto bad_reg;
|
|
}
|
|
}
|
|
if (ARM_CPUID(env) == ARM_CPUID_CORTEXA9) {
|
|
switch (crm) {
|
|
case 0:
|
|
if ((op1 == 0) && (op2 == 0)) {
|
|
env->cp15.c15_power_control = val;
|
|
} else if ((op1 == 0) && (op2 == 1)) {
|
|
env->cp15.c15_diagnostic = val;
|
|
} else if ((op1 == 0) && (op2 == 2)) {
|
|
env->cp15.c15_power_diagnostic = val;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
return;
|
|
bad_reg:
|
|
/* ??? For debugging only. Should raise illegal instruction exception. */
|
|
cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
|
|
(insn >> 16) & 0xf, crm, op1, op2);
|
|
}
|
|
|
|
uint32_t HELPER(get_cp15)(CPUARMState *env, uint32_t insn)
|
|
{
|
|
int op1;
|
|
int op2;
|
|
int crm;
|
|
|
|
op1 = (insn >> 21) & 7;
|
|
op2 = (insn >> 5) & 7;
|
|
crm = insn & 0xf;
|
|
switch ((insn >> 16) & 0xf) {
|
|
case 0: /* ID codes. */
|
|
switch (op1) {
|
|
case 0:
|
|
switch (crm) {
|
|
case 0:
|
|
switch (op2) {
|
|
case 0: /* Device ID. */
|
|
return env->cp15.c0_cpuid;
|
|
case 1: /* Cache Type. */
|
|
return env->cp15.c0_cachetype;
|
|
case 2: /* TCM status. */
|
|
return 0;
|
|
case 3: /* TLB type register. */
|
|
return 0; /* No lockable TLB entries. */
|
|
case 5: /* MPIDR */
|
|
/* The MPIDR was standardised in v7; prior to
|
|
* this it was implemented only in the 11MPCore.
|
|
* For all other pre-v7 cores it does not exist.
|
|
*/
|
|
if (arm_feature(env, ARM_FEATURE_V7) ||
|
|
ARM_CPUID(env) == ARM_CPUID_ARM11MPCORE) {
|
|
int mpidr = env->cpu_index;
|
|
/* We don't support setting cluster ID ([8..11])
|
|
* so these bits always RAZ.
|
|
*/
|
|
if (arm_feature(env, ARM_FEATURE_V7MP)) {
|
|
mpidr |= (1 << 31);
|
|
/* Cores which are uniprocessor (non-coherent)
|
|
* but still implement the MP extensions set
|
|
* bit 30. (For instance, A9UP.) However we do
|
|
* not currently model any of those cores.
|
|
*/
|
|
}
|
|
return mpidr;
|
|
}
|
|
/* otherwise fall through to the unimplemented-reg case */
|
|
default:
|
|
goto bad_reg;
|
|
}
|
|
case 1:
|
|
if (!arm_feature(env, ARM_FEATURE_V6))
|
|
goto bad_reg;
|
|
return env->cp15.c0_c1[op2];
|
|
case 2:
|
|
if (!arm_feature(env, ARM_FEATURE_V6))
|
|
goto bad_reg;
|
|
return env->cp15.c0_c2[op2];
|
|
case 3: case 4: case 5: case 6: case 7:
|
|
return 0;
|
|
default:
|
|
goto bad_reg;
|
|
}
|
|
case 1:
|
|
/* These registers aren't documented on arm11 cores. However
|
|
Linux looks at them anyway. */
|
|
if (!arm_feature(env, ARM_FEATURE_V6))
|
|
goto bad_reg;
|
|
if (crm != 0)
|
|
goto bad_reg;
|
|
if (!arm_feature(env, ARM_FEATURE_V7))
|
|
return 0;
|
|
|
|
switch (op2) {
|
|
case 0:
|
|
return env->cp15.c0_ccsid[env->cp15.c0_cssel];
|
|
case 1:
|
|
return env->cp15.c0_clid;
|
|
case 7:
|
|
return 0;
|
|
}
|
|
goto bad_reg;
|
|
case 2:
|
|
if (op2 != 0 || crm != 0)
|
|
goto bad_reg;
|
|
return env->cp15.c0_cssel;
|
|
default:
|
|
goto bad_reg;
|
|
}
|
|
case 1: /* System configuration. */
|
|
if (arm_feature(env, ARM_FEATURE_V7)
|
|
&& op1 == 0 && crm == 1 && op2 == 0) {
|
|
return env->cp15.c1_scr;
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_OMAPCP))
|
|
op2 = 0;
|
|
switch (op2) {
|
|
case 0: /* Control register. */
|
|
return env->cp15.c1_sys;
|
|
case 1: /* Auxiliary control register. */
|
|
if (arm_feature(env, ARM_FEATURE_XSCALE))
|
|
return env->cp15.c1_xscaleauxcr;
|
|
if (!arm_feature(env, ARM_FEATURE_AUXCR))
|
|
goto bad_reg;
|
|
switch (ARM_CPUID(env)) {
|
|
case ARM_CPUID_ARM1026:
|
|
return 1;
|
|
case ARM_CPUID_ARM1136:
|
|
case ARM_CPUID_ARM1136_R2:
|
|
case ARM_CPUID_ARM1176:
|
|
return 7;
|
|
case ARM_CPUID_ARM11MPCORE:
|
|
return 1;
|
|
case ARM_CPUID_CORTEXA8:
|
|
return 2;
|
|
case ARM_CPUID_CORTEXA9:
|
|
case ARM_CPUID_CORTEXA15:
|
|
return 0;
|
|
default:
|
|
goto bad_reg;
|
|
}
|
|
case 2: /* Coprocessor access register. */
|
|
if (arm_feature(env, ARM_FEATURE_XSCALE))
|
|
goto bad_reg;
|
|
return env->cp15.c1_coproc;
|
|
default:
|
|
goto bad_reg;
|
|
}
|
|
case 2: /* MMU Page table control / MPU cache control. */
|
|
if (arm_feature(env, ARM_FEATURE_MPU)) {
|
|
switch (op2) {
|
|
case 0:
|
|
return env->cp15.c2_data;
|
|
break;
|
|
case 1:
|
|
return env->cp15.c2_insn;
|
|
break;
|
|
default:
|
|
goto bad_reg;
|
|
}
|
|
} else {
|
|
switch (op2) {
|
|
case 0:
|
|
return env->cp15.c2_base0;
|
|
case 1:
|
|
return env->cp15.c2_base1;
|
|
case 2:
|
|
return env->cp15.c2_control;
|
|
default:
|
|
goto bad_reg;
|
|
}
|
|
}
|
|
case 3: /* MMU Domain access control / MPU write buffer control. */
|
|
return env->cp15.c3;
|
|
case 4: /* Reserved. */
|
|
goto bad_reg;
|
|
case 5: /* MMU Fault status / MPU access permission. */
|
|
if (arm_feature(env, ARM_FEATURE_OMAPCP))
|
|
op2 = 0;
|
|
switch (op2) {
|
|
case 0:
|
|
if (arm_feature(env, ARM_FEATURE_MPU))
|
|
return simple_mpu_ap_bits(env->cp15.c5_data);
|
|
return env->cp15.c5_data;
|
|
case 1:
|
|
if (arm_feature(env, ARM_FEATURE_MPU))
|
|
return simple_mpu_ap_bits(env->cp15.c5_insn);
|
|
return env->cp15.c5_insn;
|
|
case 2:
|
|
if (!arm_feature(env, ARM_FEATURE_MPU))
|
|
goto bad_reg;
|
|
return env->cp15.c5_data;
|
|
case 3:
|
|
if (!arm_feature(env, ARM_FEATURE_MPU))
|
|
goto bad_reg;
|
|
return env->cp15.c5_insn;
|
|
default:
|
|
goto bad_reg;
|
|
}
|
|
case 6: /* MMU Fault address. */
|
|
if (arm_feature(env, ARM_FEATURE_MPU)) {
|
|
if (crm >= 8)
|
|
goto bad_reg;
|
|
return env->cp15.c6_region[crm];
|
|
} else {
|
|
if (arm_feature(env, ARM_FEATURE_OMAPCP))
|
|
op2 = 0;
|
|
switch (op2) {
|
|
case 0:
|
|
return env->cp15.c6_data;
|
|
case 1:
|
|
if (arm_feature(env, ARM_FEATURE_V6)) {
|
|
/* Watchpoint Fault Adrress. */
|
|
return 0; /* Not implemented. */
|
|
} else {
|
|
/* Instruction Fault Adrress. */
|
|
/* Arm9 doesn't have an IFAR, but implementing it anyway
|
|
shouldn't do any harm. */
|
|
return env->cp15.c6_insn;
|
|
}
|
|
case 2:
|
|
if (arm_feature(env, ARM_FEATURE_V6)) {
|
|
/* Instruction Fault Adrress. */
|
|
return env->cp15.c6_insn;
|
|
} else {
|
|
goto bad_reg;
|
|
}
|
|
default:
|
|
goto bad_reg;
|
|
}
|
|
}
|
|
case 7: /* Cache control. */
|
|
if (crm == 4 && op1 == 0 && op2 == 0) {
|
|
return env->cp15.c7_par;
|
|
}
|
|
/* FIXME: Should only clear Z flag if destination is r15. */
|
|
env->ZF = 0;
|
|
return 0;
|
|
case 8: /* MMU TLB control. */
|
|
goto bad_reg;
|
|
case 9:
|
|
switch (crm) {
|
|
case 0: /* Cache lockdown */
|
|
switch (op1) {
|
|
case 0: /* L1 cache. */
|
|
if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
|
|
return 0;
|
|
}
|
|
switch (op2) {
|
|
case 0:
|
|
return env->cp15.c9_data;
|
|
case 1:
|
|
return env->cp15.c9_insn;
|
|
default:
|
|
goto bad_reg;
|
|
}
|
|
case 1: /* L2 cache */
|
|
/* L2 Lockdown and Auxiliary control. */
|
|
switch (op2) {
|
|
case 0:
|
|
/* L2 cache lockdown (A8 only) */
|
|
return 0;
|
|
case 2:
|
|
/* L2 cache auxiliary control (A8) or control (A15) */
|
|
if (ARM_CPUID(env) == ARM_CPUID_CORTEXA15) {
|
|
/* Linux wants the number of processors from here.
|
|
* Might as well set the interrupt-controller bit too.
|
|
*/
|
|
return ((smp_cpus - 1) << 24) | (1 << 23);
|
|
}
|
|
return 0;
|
|
case 3:
|
|
/* L2 cache extended control (A15) */
|
|
return 0;
|
|
default:
|
|
goto bad_reg;
|
|
}
|
|
default:
|
|
goto bad_reg;
|
|
}
|
|
break;
|
|
case 12: /* Performance monitor control */
|
|
if (!arm_feature(env, ARM_FEATURE_V7)) {
|
|
goto bad_reg;
|
|
}
|
|
switch (op2) {
|
|
case 0: /* performance monitor control register */
|
|
return env->cp15.c9_pmcr;
|
|
case 1: /* count enable set */
|
|
case 2: /* count enable clear */
|
|
return env->cp15.c9_pmcnten;
|
|
case 3: /* overflow flag status */
|
|
return env->cp15.c9_pmovsr;
|
|
case 4: /* software increment */
|
|
case 5: /* event counter selection register */
|
|
return 0; /* Unimplemented, RAZ/WI */
|
|
default:
|
|
goto bad_reg;
|
|
}
|
|
case 13: /* Performance counters */
|
|
if (!arm_feature(env, ARM_FEATURE_V7)) {
|
|
goto bad_reg;
|
|
}
|
|
switch (op2) {
|
|
case 1: /* Event type select */
|
|
return env->cp15.c9_pmxevtyper;
|
|
case 0: /* Cycle count register */
|
|
case 2: /* Event count register */
|
|
/* Unimplemented, so RAZ/WI */
|
|
return 0;
|
|
default:
|
|
goto bad_reg;
|
|
}
|
|
case 14: /* Performance monitor control */
|
|
if (!arm_feature(env, ARM_FEATURE_V7)) {
|
|
goto bad_reg;
|
|
}
|
|
switch (op2) {
|
|
case 0: /* user enable */
|
|
return env->cp15.c9_pmuserenr;
|
|
case 1: /* interrupt enable set */
|
|
case 2: /* interrupt enable clear */
|
|
return env->cp15.c9_pminten;
|
|
default:
|
|
goto bad_reg;
|
|
}
|
|
default:
|
|
goto bad_reg;
|
|
}
|
|
break;
|
|
case 10: /* MMU TLB lockdown. */
|
|
/* ??? TLB lockdown not implemented. */
|
|
return 0;
|
|
case 11: /* TCM DMA control. */
|
|
case 12: /* Reserved. */
|
|
goto bad_reg;
|
|
case 13: /* Process ID. */
|
|
switch (op2) {
|
|
case 0:
|
|
return env->cp15.c13_fcse;
|
|
case 1:
|
|
return env->cp15.c13_context;
|
|
default:
|
|
goto bad_reg;
|
|
}
|
|
case 14: /* Generic timer */
|
|
if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
|
|
/* Dummy implementation: RAZ/WI for all */
|
|
return 0;
|
|
}
|
|
goto bad_reg;
|
|
case 15: /* Implementation specific. */
|
|
if (arm_feature(env, ARM_FEATURE_XSCALE)) {
|
|
if (op2 == 0 && crm == 1)
|
|
return env->cp15.c15_cpar;
|
|
|
|
goto bad_reg;
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
|
|
switch (crm) {
|
|
case 0:
|
|
return 0;
|
|
case 1: /* Read TI925T configuration. */
|
|
return env->cp15.c15_ticonfig;
|
|
case 2: /* Read I_max. */
|
|
return env->cp15.c15_i_max;
|
|
case 3: /* Read I_min. */
|
|
return env->cp15.c15_i_min;
|
|
case 4: /* Read thread-ID. */
|
|
return env->cp15.c15_threadid;
|
|
case 8: /* TI925T_status */
|
|
return 0;
|
|
}
|
|
/* TODO: Peripheral port remap register:
|
|
* On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt
|
|
* controller base address at $rn & ~0xfff and map size of
|
|
* 0x200 << ($rn & 0xfff), when MMU is off. */
|
|
goto bad_reg;
|
|
}
|
|
if (ARM_CPUID(env) == ARM_CPUID_CORTEXA9) {
|
|
switch (crm) {
|
|
case 0:
|
|
if ((op1 == 4) && (op2 == 0)) {
|
|
/* The config_base_address should hold the value of
|
|
* the peripheral base. ARM should get this from a CPU
|
|
* object property, but that support isn't available in
|
|
* December 2011. Default to 0 for now and board models
|
|
* that care can set it by a private hook */
|
|
return env->cp15.c15_config_base_address;
|
|
} else if ((op1 == 0) && (op2 == 0)) {
|
|
/* power_control should be set to maximum latency. Again,
|
|
default to 0 and set by private hook */
|
|
return env->cp15.c15_power_control;
|
|
} else if ((op1 == 0) && (op2 == 1)) {
|
|
return env->cp15.c15_diagnostic;
|
|
} else if ((op1 == 0) && (op2 == 2)) {
|
|
return env->cp15.c15_power_diagnostic;
|
|
}
|
|
break;
|
|
case 1: /* NEON Busy */
|
|
return 0;
|
|
case 5: /* tlb lockdown */
|
|
case 6:
|
|
case 7:
|
|
if ((op1 == 5) && (op2 == 2)) {
|
|
return 0;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
goto bad_reg;
|
|
}
|
|
return 0;
|
|
}
|
|
bad_reg:
|
|
/* ??? For debugging only. Should raise illegal instruction exception. */
|
|
cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
|
|
(insn >> 16) & 0xf, crm, op1, op2);
|
|
return 0;
|
|
}
|
|
|
|
void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
|
|
{
|
|
if ((env->uncached_cpsr & CPSR_M) == mode) {
|
|
env->regs[13] = val;
|
|
} else {
|
|
env->banked_r13[bank_number(env, mode)] = val;
|
|
}
|
|
}
|
|
|
|
uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
|
|
{
|
|
if ((env->uncached_cpsr & CPSR_M) == mode) {
|
|
return env->regs[13];
|
|
} else {
|
|
return env->banked_r13[bank_number(env, mode)];
|
|
}
|
|
}
|
|
|
|
uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
|
|
{
|
|
switch (reg) {
|
|
case 0: /* APSR */
|
|
return xpsr_read(env) & 0xf8000000;
|
|
case 1: /* IAPSR */
|
|
return xpsr_read(env) & 0xf80001ff;
|
|
case 2: /* EAPSR */
|
|
return xpsr_read(env) & 0xff00fc00;
|
|
case 3: /* xPSR */
|
|
return xpsr_read(env) & 0xff00fdff;
|
|
case 5: /* IPSR */
|
|
return xpsr_read(env) & 0x000001ff;
|
|
case 6: /* EPSR */
|
|
return xpsr_read(env) & 0x0700fc00;
|
|
case 7: /* IEPSR */
|
|
return xpsr_read(env) & 0x0700edff;
|
|
case 8: /* MSP */
|
|
return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
|
|
case 9: /* PSP */
|
|
return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
|
|
case 16: /* PRIMASK */
|
|
return (env->uncached_cpsr & CPSR_I) != 0;
|
|
case 17: /* BASEPRI */
|
|
case 18: /* BASEPRI_MAX */
|
|
return env->v7m.basepri;
|
|
case 19: /* FAULTMASK */
|
|
return (env->uncached_cpsr & CPSR_F) != 0;
|
|
case 20: /* CONTROL */
|
|
return env->v7m.control;
|
|
default:
|
|
/* ??? For debugging only. */
|
|
cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
|
|
{
|
|
switch (reg) {
|
|
case 0: /* APSR */
|
|
xpsr_write(env, val, 0xf8000000);
|
|
break;
|
|
case 1: /* IAPSR */
|
|
xpsr_write(env, val, 0xf8000000);
|
|
break;
|
|
case 2: /* EAPSR */
|
|
xpsr_write(env, val, 0xfe00fc00);
|
|
break;
|
|
case 3: /* xPSR */
|
|
xpsr_write(env, val, 0xfe00fc00);
|
|
break;
|
|
case 5: /* IPSR */
|
|
/* IPSR bits are readonly. */
|
|
break;
|
|
case 6: /* EPSR */
|
|
xpsr_write(env, val, 0x0600fc00);
|
|
break;
|
|
case 7: /* IEPSR */
|
|
xpsr_write(env, val, 0x0600fc00);
|
|
break;
|
|
case 8: /* MSP */
|
|
if (env->v7m.current_sp)
|
|
env->v7m.other_sp = val;
|
|
else
|
|
env->regs[13] = val;
|
|
break;
|
|
case 9: /* PSP */
|
|
if (env->v7m.current_sp)
|
|
env->regs[13] = val;
|
|
else
|
|
env->v7m.other_sp = val;
|
|
break;
|
|
case 16: /* PRIMASK */
|
|
if (val & 1)
|
|
env->uncached_cpsr |= CPSR_I;
|
|
else
|
|
env->uncached_cpsr &= ~CPSR_I;
|
|
break;
|
|
case 17: /* BASEPRI */
|
|
env->v7m.basepri = val & 0xff;
|
|
break;
|
|
case 18: /* BASEPRI_MAX */
|
|
val &= 0xff;
|
|
if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
|
|
env->v7m.basepri = val;
|
|
break;
|
|
case 19: /* FAULTMASK */
|
|
if (val & 1)
|
|
env->uncached_cpsr |= CPSR_F;
|
|
else
|
|
env->uncached_cpsr &= ~CPSR_F;
|
|
break;
|
|
case 20: /* CONTROL */
|
|
env->v7m.control = val & 3;
|
|
switch_v7m_sp(env, (val & 2) != 0);
|
|
break;
|
|
default:
|
|
/* ??? For debugging only. */
|
|
cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
|
|
return;
|
|
}
|
|
}
|
|
|
|
void cpu_arm_set_cp_io(CPUARMState *env, int cpnum,
|
|
ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write,
|
|
void *opaque)
|
|
{
|
|
if (cpnum < 0 || cpnum > 14) {
|
|
cpu_abort(env, "Bad coprocessor number: %i\n", cpnum);
|
|
return;
|
|
}
|
|
|
|
env->cp[cpnum].cp_read = cp_read;
|
|
env->cp[cpnum].cp_write = cp_write;
|
|
env->cp[cpnum].opaque = opaque;
|
|
}
|
|
|
|
#endif
|
|
|
|
/* Note that signed overflow is undefined in C. The following routines are
|
|
careful to use unsigned types where modulo arithmetic is required.
|
|
Failure to do so _will_ break on newer gcc. */
|
|
|
|
/* Signed saturating arithmetic. */
|
|
|
|
/* Perform 16-bit signed saturating addition. */
|
|
static inline uint16_t add16_sat(uint16_t a, uint16_t b)
|
|
{
|
|
uint16_t res;
|
|
|
|
res = a + b;
|
|
if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
|
|
if (a & 0x8000)
|
|
res = 0x8000;
|
|
else
|
|
res = 0x7fff;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/* Perform 8-bit signed saturating addition. */
|
|
static inline uint8_t add8_sat(uint8_t a, uint8_t b)
|
|
{
|
|
uint8_t res;
|
|
|
|
res = a + b;
|
|
if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
|
|
if (a & 0x80)
|
|
res = 0x80;
|
|
else
|
|
res = 0x7f;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/* Perform 16-bit signed saturating subtraction. */
|
|
static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
|
|
{
|
|
uint16_t res;
|
|
|
|
res = a - b;
|
|
if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
|
|
if (a & 0x8000)
|
|
res = 0x8000;
|
|
else
|
|
res = 0x7fff;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/* Perform 8-bit signed saturating subtraction. */
|
|
static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
|
|
{
|
|
uint8_t res;
|
|
|
|
res = a - b;
|
|
if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
|
|
if (a & 0x80)
|
|
res = 0x80;
|
|
else
|
|
res = 0x7f;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
|
|
#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
|
|
#define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
|
|
#define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
|
|
#define PFX q
|
|
|
|
#include "op_addsub.h"
|
|
|
|
/* Unsigned saturating arithmetic. */
|
|
static inline uint16_t add16_usat(uint16_t a, uint16_t b)
|
|
{
|
|
uint16_t res;
|
|
res = a + b;
|
|
if (res < a)
|
|
res = 0xffff;
|
|
return res;
|
|
}
|
|
|
|
static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
|
|
{
|
|
if (a > b)
|
|
return a - b;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static inline uint8_t add8_usat(uint8_t a, uint8_t b)
|
|
{
|
|
uint8_t res;
|
|
res = a + b;
|
|
if (res < a)
|
|
res = 0xff;
|
|
return res;
|
|
}
|
|
|
|
static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
|
|
{
|
|
if (a > b)
|
|
return a - b;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
|
|
#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
|
|
#define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
|
|
#define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
|
|
#define PFX uq
|
|
|
|
#include "op_addsub.h"
|
|
|
|
/* Signed modulo arithmetic. */
|
|
#define SARITH16(a, b, n, op) do { \
|
|
int32_t sum; \
|
|
sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
|
|
RESULT(sum, n, 16); \
|
|
if (sum >= 0) \
|
|
ge |= 3 << (n * 2); \
|
|
} while(0)
|
|
|
|
#define SARITH8(a, b, n, op) do { \
|
|
int32_t sum; \
|
|
sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
|
|
RESULT(sum, n, 8); \
|
|
if (sum >= 0) \
|
|
ge |= 1 << n; \
|
|
} while(0)
|
|
|
|
|
|
#define ADD16(a, b, n) SARITH16(a, b, n, +)
|
|
#define SUB16(a, b, n) SARITH16(a, b, n, -)
|
|
#define ADD8(a, b, n) SARITH8(a, b, n, +)
|
|
#define SUB8(a, b, n) SARITH8(a, b, n, -)
|
|
#define PFX s
|
|
#define ARITH_GE
|
|
|
|
#include "op_addsub.h"
|
|
|
|
/* Unsigned modulo arithmetic. */
|
|
#define ADD16(a, b, n) do { \
|
|
uint32_t sum; \
|
|
sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
|
|
RESULT(sum, n, 16); \
|
|
if ((sum >> 16) == 1) \
|
|
ge |= 3 << (n * 2); \
|
|
} while(0)
|
|
|
|
#define ADD8(a, b, n) do { \
|
|
uint32_t sum; \
|
|
sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
|
|
RESULT(sum, n, 8); \
|
|
if ((sum >> 8) == 1) \
|
|
ge |= 1 << n; \
|
|
} while(0)
|
|
|
|
#define SUB16(a, b, n) do { \
|
|
uint32_t sum; \
|
|
sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
|
|
RESULT(sum, n, 16); \
|
|
if ((sum >> 16) == 0) \
|
|
ge |= 3 << (n * 2); \
|
|
} while(0)
|
|
|
|
#define SUB8(a, b, n) do { \
|
|
uint32_t sum; \
|
|
sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
|
|
RESULT(sum, n, 8); \
|
|
if ((sum >> 8) == 0) \
|
|
ge |= 1 << n; \
|
|
} while(0)
|
|
|
|
#define PFX u
|
|
#define ARITH_GE
|
|
|
|
#include "op_addsub.h"
|
|
|
|
/* Halved signed arithmetic. */
|
|
#define ADD16(a, b, n) \
|
|
RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
|
|
#define SUB16(a, b, n) \
|
|
RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
|
|
#define ADD8(a, b, n) \
|
|
RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
|
|
#define SUB8(a, b, n) \
|
|
RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
|
|
#define PFX sh
|
|
|
|
#include "op_addsub.h"
|
|
|
|
/* Halved unsigned arithmetic. */
|
|
#define ADD16(a, b, n) \
|
|
RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
|
|
#define SUB16(a, b, n) \
|
|
RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
|
|
#define ADD8(a, b, n) \
|
|
RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
|
|
#define SUB8(a, b, n) \
|
|
RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
|
|
#define PFX uh
|
|
|
|
#include "op_addsub.h"
|
|
|
|
static inline uint8_t do_usad(uint8_t a, uint8_t b)
|
|
{
|
|
if (a > b)
|
|
return a - b;
|
|
else
|
|
return b - a;
|
|
}
|
|
|
|
/* Unsigned sum of absolute byte differences. */
|
|
uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
|
|
{
|
|
uint32_t sum;
|
|
sum = do_usad(a, b);
|
|
sum += do_usad(a >> 8, b >> 8);
|
|
sum += do_usad(a >> 16, b >>16);
|
|
sum += do_usad(a >> 24, b >> 24);
|
|
return sum;
|
|
}
|
|
|
|
/* For ARMv6 SEL instruction. */
|
|
uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
|
|
{
|
|
uint32_t mask;
|
|
|
|
mask = 0;
|
|
if (flags & 1)
|
|
mask |= 0xff;
|
|
if (flags & 2)
|
|
mask |= 0xff00;
|
|
if (flags & 4)
|
|
mask |= 0xff0000;
|
|
if (flags & 8)
|
|
mask |= 0xff000000;
|
|
return (a & mask) | (b & ~mask);
|
|
}
|
|
|
|
uint32_t HELPER(logicq_cc)(uint64_t val)
|
|
{
|
|
return (val >> 32) | (val != 0);
|
|
}
|
|
|
|
/* VFP support. We follow the convention used for VFP instrunctions:
|
|
Single precition routines have a "s" suffix, double precision a
|
|
"d" suffix. */
|
|
|
|
/* Convert host exception flags to vfp form. */
|
|
static inline int vfp_exceptbits_from_host(int host_bits)
|
|
{
|
|
int target_bits = 0;
|
|
|
|
if (host_bits & float_flag_invalid)
|
|
target_bits |= 1;
|
|
if (host_bits & float_flag_divbyzero)
|
|
target_bits |= 2;
|
|
if (host_bits & float_flag_overflow)
|
|
target_bits |= 4;
|
|
if (host_bits & (float_flag_underflow | float_flag_output_denormal))
|
|
target_bits |= 8;
|
|
if (host_bits & float_flag_inexact)
|
|
target_bits |= 0x10;
|
|
if (host_bits & float_flag_input_denormal)
|
|
target_bits |= 0x80;
|
|
return target_bits;
|
|
}
|
|
|
|
uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
|
|
{
|
|
int i;
|
|
uint32_t fpscr;
|
|
|
|
fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
|
|
| (env->vfp.vec_len << 16)
|
|
| (env->vfp.vec_stride << 20);
|
|
i = get_float_exception_flags(&env->vfp.fp_status);
|
|
i |= get_float_exception_flags(&env->vfp.standard_fp_status);
|
|
fpscr |= vfp_exceptbits_from_host(i);
|
|
return fpscr;
|
|
}
|
|
|
|
uint32_t vfp_get_fpscr(CPUARMState *env)
|
|
{
|
|
return HELPER(vfp_get_fpscr)(env);
|
|
}
|
|
|
|
/* Convert vfp exception flags to target form. */
|
|
static inline int vfp_exceptbits_to_host(int target_bits)
|
|
{
|
|
int host_bits = 0;
|
|
|
|
if (target_bits & 1)
|
|
host_bits |= float_flag_invalid;
|
|
if (target_bits & 2)
|
|
host_bits |= float_flag_divbyzero;
|
|
if (target_bits & 4)
|
|
host_bits |= float_flag_overflow;
|
|
if (target_bits & 8)
|
|
host_bits |= float_flag_underflow;
|
|
if (target_bits & 0x10)
|
|
host_bits |= float_flag_inexact;
|
|
if (target_bits & 0x80)
|
|
host_bits |= float_flag_input_denormal;
|
|
return host_bits;
|
|
}
|
|
|
|
void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
|
|
{
|
|
int i;
|
|
uint32_t changed;
|
|
|
|
changed = env->vfp.xregs[ARM_VFP_FPSCR];
|
|
env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
|
|
env->vfp.vec_len = (val >> 16) & 7;
|
|
env->vfp.vec_stride = (val >> 20) & 3;
|
|
|
|
changed ^= val;
|
|
if (changed & (3 << 22)) {
|
|
i = (val >> 22) & 3;
|
|
switch (i) {
|
|
case 0:
|
|
i = float_round_nearest_even;
|
|
break;
|
|
case 1:
|
|
i = float_round_up;
|
|
break;
|
|
case 2:
|
|
i = float_round_down;
|
|
break;
|
|
case 3:
|
|
i = float_round_to_zero;
|
|
break;
|
|
}
|
|
set_float_rounding_mode(i, &env->vfp.fp_status);
|
|
}
|
|
if (changed & (1 << 24)) {
|
|
set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
|
|
set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
|
|
}
|
|
if (changed & (1 << 25))
|
|
set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
|
|
|
|
i = vfp_exceptbits_to_host(val);
|
|
set_float_exception_flags(i, &env->vfp.fp_status);
|
|
set_float_exception_flags(0, &env->vfp.standard_fp_status);
|
|
}
|
|
|
|
void vfp_set_fpscr(CPUARMState *env, uint32_t val)
|
|
{
|
|
HELPER(vfp_set_fpscr)(env, val);
|
|
}
|
|
|
|
#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
|
|
|
|
#define VFP_BINOP(name) \
|
|
float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
|
|
{ \
|
|
float_status *fpst = fpstp; \
|
|
return float32_ ## name(a, b, fpst); \
|
|
} \
|
|
float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
|
|
{ \
|
|
float_status *fpst = fpstp; \
|
|
return float64_ ## name(a, b, fpst); \
|
|
}
|
|
VFP_BINOP(add)
|
|
VFP_BINOP(sub)
|
|
VFP_BINOP(mul)
|
|
VFP_BINOP(div)
|
|
#undef VFP_BINOP
|
|
|
|
float32 VFP_HELPER(neg, s)(float32 a)
|
|
{
|
|
return float32_chs(a);
|
|
}
|
|
|
|
float64 VFP_HELPER(neg, d)(float64 a)
|
|
{
|
|
return float64_chs(a);
|
|
}
|
|
|
|
float32 VFP_HELPER(abs, s)(float32 a)
|
|
{
|
|
return float32_abs(a);
|
|
}
|
|
|
|
float64 VFP_HELPER(abs, d)(float64 a)
|
|
{
|
|
return float64_abs(a);
|
|
}
|
|
|
|
float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
|
|
{
|
|
return float32_sqrt(a, &env->vfp.fp_status);
|
|
}
|
|
|
|
float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
|
|
{
|
|
return float64_sqrt(a, &env->vfp.fp_status);
|
|
}
|
|
|
|
/* XXX: check quiet/signaling case */
|
|
#define DO_VFP_cmp(p, type) \
|
|
void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
|
|
{ \
|
|
uint32_t flags; \
|
|
switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
|
|
case 0: flags = 0x6; break; \
|
|
case -1: flags = 0x8; break; \
|
|
case 1: flags = 0x2; break; \
|
|
default: case 2: flags = 0x3; break; \
|
|
} \
|
|
env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
|
|
| (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
|
|
} \
|
|
void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
|
|
{ \
|
|
uint32_t flags; \
|
|
switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
|
|
case 0: flags = 0x6; break; \
|
|
case -1: flags = 0x8; break; \
|
|
case 1: flags = 0x2; break; \
|
|
default: case 2: flags = 0x3; break; \
|
|
} \
|
|
env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
|
|
| (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
|
|
}
|
|
DO_VFP_cmp(s, float32)
|
|
DO_VFP_cmp(d, float64)
|
|
#undef DO_VFP_cmp
|
|
|
|
/* Integer to float and float to integer conversions */
|
|
|
|
#define CONV_ITOF(name, fsz, sign) \
|
|
float##fsz HELPER(name)(uint32_t x, void *fpstp) \
|
|
{ \
|
|
float_status *fpst = fpstp; \
|
|
return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
|
|
}
|
|
|
|
#define CONV_FTOI(name, fsz, sign, round) \
|
|
uint32_t HELPER(name)(float##fsz x, void *fpstp) \
|
|
{ \
|
|
float_status *fpst = fpstp; \
|
|
if (float##fsz##_is_any_nan(x)) { \
|
|
float_raise(float_flag_invalid, fpst); \
|
|
return 0; \
|
|
} \
|
|
return float##fsz##_to_##sign##int32##round(x, fpst); \
|
|
}
|
|
|
|
#define FLOAT_CONVS(name, p, fsz, sign) \
|
|
CONV_ITOF(vfp_##name##to##p, fsz, sign) \
|
|
CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
|
|
CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
|
|
|
|
FLOAT_CONVS(si, s, 32, )
|
|
FLOAT_CONVS(si, d, 64, )
|
|
FLOAT_CONVS(ui, s, 32, u)
|
|
FLOAT_CONVS(ui, d, 64, u)
|
|
|
|
#undef CONV_ITOF
|
|
#undef CONV_FTOI
|
|
#undef FLOAT_CONVS
|
|
|
|
/* floating point conversion */
|
|
float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
|
|
{
|
|
float64 r = float32_to_float64(x, &env->vfp.fp_status);
|
|
/* ARM requires that S<->D conversion of any kind of NaN generates
|
|
* a quiet NaN by forcing the most significant frac bit to 1.
|
|
*/
|
|
return float64_maybe_silence_nan(r);
|
|
}
|
|
|
|
float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
|
|
{
|
|
float32 r = float64_to_float32(x, &env->vfp.fp_status);
|
|
/* ARM requires that S<->D conversion of any kind of NaN generates
|
|
* a quiet NaN by forcing the most significant frac bit to 1.
|
|
*/
|
|
return float32_maybe_silence_nan(r);
|
|
}
|
|
|
|
/* VFP3 fixed point conversion. */
|
|
#define VFP_CONV_FIX(name, p, fsz, itype, sign) \
|
|
float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t x, uint32_t shift, \
|
|
void *fpstp) \
|
|
{ \
|
|
float_status *fpst = fpstp; \
|
|
float##fsz tmp; \
|
|
tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \
|
|
return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
|
|
} \
|
|
uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \
|
|
void *fpstp) \
|
|
{ \
|
|
float_status *fpst = fpstp; \
|
|
float##fsz tmp; \
|
|
if (float##fsz##_is_any_nan(x)) { \
|
|
float_raise(float_flag_invalid, fpst); \
|
|
return 0; \
|
|
} \
|
|
tmp = float##fsz##_scalbn(x, shift, fpst); \
|
|
return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \
|
|
}
|
|
|
|
VFP_CONV_FIX(sh, d, 64, int16, )
|
|
VFP_CONV_FIX(sl, d, 64, int32, )
|
|
VFP_CONV_FIX(uh, d, 64, uint16, u)
|
|
VFP_CONV_FIX(ul, d, 64, uint32, u)
|
|
VFP_CONV_FIX(sh, s, 32, int16, )
|
|
VFP_CONV_FIX(sl, s, 32, int32, )
|
|
VFP_CONV_FIX(uh, s, 32, uint16, u)
|
|
VFP_CONV_FIX(ul, s, 32, uint32, u)
|
|
#undef VFP_CONV_FIX
|
|
|
|
/* Half precision conversions. */
|
|
static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
|
|
{
|
|
int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
|
|
float32 r = float16_to_float32(make_float16(a), ieee, s);
|
|
if (ieee) {
|
|
return float32_maybe_silence_nan(r);
|
|
}
|
|
return r;
|
|
}
|
|
|
|
static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
|
|
{
|
|
int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
|
|
float16 r = float32_to_float16(a, ieee, s);
|
|
if (ieee) {
|
|
r = float16_maybe_silence_nan(r);
|
|
}
|
|
return float16_val(r);
|
|
}
|
|
|
|
float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
|
|
{
|
|
return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
|
|
}
|
|
|
|
uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
|
|
{
|
|
return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
|
|
}
|
|
|
|
float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
|
|
{
|
|
return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
|
|
}
|
|
|
|
uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
|
|
{
|
|
return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
|
|
}
|
|
|
|
#define float32_two make_float32(0x40000000)
|
|
#define float32_three make_float32(0x40400000)
|
|
#define float32_one_point_five make_float32(0x3fc00000)
|
|
|
|
float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
|
|
{
|
|
float_status *s = &env->vfp.standard_fp_status;
|
|
if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
|
|
(float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
|
|
if (!(float32_is_zero(a) || float32_is_zero(b))) {
|
|
float_raise(float_flag_input_denormal, s);
|
|
}
|
|
return float32_two;
|
|
}
|
|
return float32_sub(float32_two, float32_mul(a, b, s), s);
|
|
}
|
|
|
|
float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
|
|
{
|
|
float_status *s = &env->vfp.standard_fp_status;
|
|
float32 product;
|
|
if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
|
|
(float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
|
|
if (!(float32_is_zero(a) || float32_is_zero(b))) {
|
|
float_raise(float_flag_input_denormal, s);
|
|
}
|
|
return float32_one_point_five;
|
|
}
|
|
product = float32_mul(a, b, s);
|
|
return float32_div(float32_sub(float32_three, product, s), float32_two, s);
|
|
}
|
|
|
|
/* NEON helpers. */
|
|
|
|
/* Constants 256 and 512 are used in some helpers; we avoid relying on
|
|
* int->float conversions at run-time. */
|
|
#define float64_256 make_float64(0x4070000000000000LL)
|
|
#define float64_512 make_float64(0x4080000000000000LL)
|
|
|
|
/* The algorithm that must be used to calculate the estimate
|
|
* is specified by the ARM ARM.
|
|
*/
|
|
static float64 recip_estimate(float64 a, CPUARMState *env)
|
|
{
|
|
/* These calculations mustn't set any fp exception flags,
|
|
* so we use a local copy of the fp_status.
|
|
*/
|
|
float_status dummy_status = env->vfp.standard_fp_status;
|
|
float_status *s = &dummy_status;
|
|
/* q = (int)(a * 512.0) */
|
|
float64 q = float64_mul(float64_512, a, s);
|
|
int64_t q_int = float64_to_int64_round_to_zero(q, s);
|
|
|
|
/* r = 1.0 / (((double)q + 0.5) / 512.0) */
|
|
q = int64_to_float64(q_int, s);
|
|
q = float64_add(q, float64_half, s);
|
|
q = float64_div(q, float64_512, s);
|
|
q = float64_div(float64_one, q, s);
|
|
|
|
/* s = (int)(256.0 * r + 0.5) */
|
|
q = float64_mul(q, float64_256, s);
|
|
q = float64_add(q, float64_half, s);
|
|
q_int = float64_to_int64_round_to_zero(q, s);
|
|
|
|
/* return (double)s / 256.0 */
|
|
return float64_div(int64_to_float64(q_int, s), float64_256, s);
|
|
}
|
|
|
|
float32 HELPER(recpe_f32)(float32 a, CPUARMState *env)
|
|
{
|
|
float_status *s = &env->vfp.standard_fp_status;
|
|
float64 f64;
|
|
uint32_t val32 = float32_val(a);
|
|
|
|
int result_exp;
|
|
int a_exp = (val32 & 0x7f800000) >> 23;
|
|
int sign = val32 & 0x80000000;
|
|
|
|
if (float32_is_any_nan(a)) {
|
|
if (float32_is_signaling_nan(a)) {
|
|
float_raise(float_flag_invalid, s);
|
|
}
|
|
return float32_default_nan;
|
|
} else if (float32_is_infinity(a)) {
|
|
return float32_set_sign(float32_zero, float32_is_neg(a));
|
|
} else if (float32_is_zero_or_denormal(a)) {
|
|
if (!float32_is_zero(a)) {
|
|
float_raise(float_flag_input_denormal, s);
|
|
}
|
|
float_raise(float_flag_divbyzero, s);
|
|
return float32_set_sign(float32_infinity, float32_is_neg(a));
|
|
} else if (a_exp >= 253) {
|
|
float_raise(float_flag_underflow, s);
|
|
return float32_set_sign(float32_zero, float32_is_neg(a));
|
|
}
|
|
|
|
f64 = make_float64((0x3feULL << 52)
|
|
| ((int64_t)(val32 & 0x7fffff) << 29));
|
|
|
|
result_exp = 253 - a_exp;
|
|
|
|
f64 = recip_estimate(f64, env);
|
|
|
|
val32 = sign
|
|
| ((result_exp & 0xff) << 23)
|
|
| ((float64_val(f64) >> 29) & 0x7fffff);
|
|
return make_float32(val32);
|
|
}
|
|
|
|
/* The algorithm that must be used to calculate the estimate
|
|
* is specified by the ARM ARM.
|
|
*/
|
|
static float64 recip_sqrt_estimate(float64 a, CPUARMState *env)
|
|
{
|
|
/* These calculations mustn't set any fp exception flags,
|
|
* so we use a local copy of the fp_status.
|
|
*/
|
|
float_status dummy_status = env->vfp.standard_fp_status;
|
|
float_status *s = &dummy_status;
|
|
float64 q;
|
|
int64_t q_int;
|
|
|
|
if (float64_lt(a, float64_half, s)) {
|
|
/* range 0.25 <= a < 0.5 */
|
|
|
|
/* a in units of 1/512 rounded down */
|
|
/* q0 = (int)(a * 512.0); */
|
|
q = float64_mul(float64_512, a, s);
|
|
q_int = float64_to_int64_round_to_zero(q, s);
|
|
|
|
/* reciprocal root r */
|
|
/* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
|
|
q = int64_to_float64(q_int, s);
|
|
q = float64_add(q, float64_half, s);
|
|
q = float64_div(q, float64_512, s);
|
|
q = float64_sqrt(q, s);
|
|
q = float64_div(float64_one, q, s);
|
|
} else {
|
|
/* range 0.5 <= a < 1.0 */
|
|
|
|
/* a in units of 1/256 rounded down */
|
|
/* q1 = (int)(a * 256.0); */
|
|
q = float64_mul(float64_256, a, s);
|
|
int64_t q_int = float64_to_int64_round_to_zero(q, s);
|
|
|
|
/* reciprocal root r */
|
|
/* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
|
|
q = int64_to_float64(q_int, s);
|
|
q = float64_add(q, float64_half, s);
|
|
q = float64_div(q, float64_256, s);
|
|
q = float64_sqrt(q, s);
|
|
q = float64_div(float64_one, q, s);
|
|
}
|
|
/* r in units of 1/256 rounded to nearest */
|
|
/* s = (int)(256.0 * r + 0.5); */
|
|
|
|
q = float64_mul(q, float64_256,s );
|
|
q = float64_add(q, float64_half, s);
|
|
q_int = float64_to_int64_round_to_zero(q, s);
|
|
|
|
/* return (double)s / 256.0;*/
|
|
return float64_div(int64_to_float64(q_int, s), float64_256, s);
|
|
}
|
|
|
|
float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env)
|
|
{
|
|
float_status *s = &env->vfp.standard_fp_status;
|
|
int result_exp;
|
|
float64 f64;
|
|
uint32_t val;
|
|
uint64_t val64;
|
|
|
|
val = float32_val(a);
|
|
|
|
if (float32_is_any_nan(a)) {
|
|
if (float32_is_signaling_nan(a)) {
|
|
float_raise(float_flag_invalid, s);
|
|
}
|
|
return float32_default_nan;
|
|
} else if (float32_is_zero_or_denormal(a)) {
|
|
if (!float32_is_zero(a)) {
|
|
float_raise(float_flag_input_denormal, s);
|
|
}
|
|
float_raise(float_flag_divbyzero, s);
|
|
return float32_set_sign(float32_infinity, float32_is_neg(a));
|
|
} else if (float32_is_neg(a)) {
|
|
float_raise(float_flag_invalid, s);
|
|
return float32_default_nan;
|
|
} else if (float32_is_infinity(a)) {
|
|
return float32_zero;
|
|
}
|
|
|
|
/* Normalize to a double-precision value between 0.25 and 1.0,
|
|
* preserving the parity of the exponent. */
|
|
if ((val & 0x800000) == 0) {
|
|
f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
|
|
| (0x3feULL << 52)
|
|
| ((uint64_t)(val & 0x7fffff) << 29));
|
|
} else {
|
|
f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
|
|
| (0x3fdULL << 52)
|
|
| ((uint64_t)(val & 0x7fffff) << 29));
|
|
}
|
|
|
|
result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;
|
|
|
|
f64 = recip_sqrt_estimate(f64, env);
|
|
|
|
val64 = float64_val(f64);
|
|
|
|
val = ((result_exp & 0xff) << 23)
|
|
| ((val64 >> 29) & 0x7fffff);
|
|
return make_float32(val);
|
|
}
|
|
|
|
uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env)
|
|
{
|
|
float64 f64;
|
|
|
|
if ((a & 0x80000000) == 0) {
|
|
return 0xffffffff;
|
|
}
|
|
|
|
f64 = make_float64((0x3feULL << 52)
|
|
| ((int64_t)(a & 0x7fffffff) << 21));
|
|
|
|
f64 = recip_estimate (f64, env);
|
|
|
|
return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
|
|
}
|
|
|
|
uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env)
|
|
{
|
|
float64 f64;
|
|
|
|
if ((a & 0xc0000000) == 0) {
|
|
return 0xffffffff;
|
|
}
|
|
|
|
if (a & 0x80000000) {
|
|
f64 = make_float64((0x3feULL << 52)
|
|
| ((uint64_t)(a & 0x7fffffff) << 21));
|
|
} else { /* bits 31-30 == '01' */
|
|
f64 = make_float64((0x3fdULL << 52)
|
|
| ((uint64_t)(a & 0x3fffffff) << 22));
|
|
}
|
|
|
|
f64 = recip_sqrt_estimate(f64, env);
|
|
|
|
return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
|
|
}
|
|
|
|
/* VFPv4 fused multiply-accumulate */
|
|
float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
|
|
{
|
|
float_status *fpst = fpstp;
|
|
return float32_muladd(a, b, c, 0, fpst);
|
|
}
|
|
|
|
float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
|
|
{
|
|
float_status *fpst = fpstp;
|
|
return float64_muladd(a, b, c, 0, fpst);
|
|
}
|
|
|
|
void HELPER(set_teecr)(CPUARMState *env, uint32_t val)
|
|
{
|
|
val &= 1;
|
|
if (env->teecr != val) {
|
|
env->teecr = val;
|
|
tb_flush(env);
|
|
}
|
|
}
|