mirror of
https://github.com/qemu/qemu.git
synced 2024-11-24 19:33:39 +08:00
e12ed72e5c
commit e1123a3b
introduced a data corruption regression
in the iscsi driver because it passed -1 as nr to bitmap_set
and bitmap_clear. Add an assertion to catch such flaws earlier.
Suggested-by: Fam Zheng <famz@redhat.com>
Reviewed-by: Fam Zheng <famz@redhat.com>
Signed-off-by: Peter Lieven <pl@kamp.de>
Message-Id: <1484844230-24490-1-git-send-email-pl@kamp.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
347 lines
8.7 KiB
C
347 lines
8.7 KiB
C
/*
|
|
* Bitmap Module
|
|
*
|
|
* Stolen from linux/src/lib/bitmap.c
|
|
*
|
|
* Copyright (C) 2010 Corentin Chary
|
|
*
|
|
* This source code is licensed under the GNU General Public License,
|
|
* Version 2.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu/bitops.h"
|
|
#include "qemu/bitmap.h"
|
|
#include "qemu/atomic.h"
|
|
|
|
/*
|
|
* bitmaps provide an array of bits, implemented using an
|
|
* array of unsigned longs. The number of valid bits in a
|
|
* given bitmap does _not_ need to be an exact multiple of
|
|
* BITS_PER_LONG.
|
|
*
|
|
* The possible unused bits in the last, partially used word
|
|
* of a bitmap are 'don't care'. The implementation makes
|
|
* no particular effort to keep them zero. It ensures that
|
|
* their value will not affect the results of any operation.
|
|
* The bitmap operations that return Boolean (bitmap_empty,
|
|
* for example) or scalar (bitmap_weight, for example) results
|
|
* carefully filter out these unused bits from impacting their
|
|
* results.
|
|
*
|
|
* These operations actually hold to a slightly stronger rule:
|
|
* if you don't input any bitmaps to these ops that have some
|
|
* unused bits set, then they won't output any set unused bits
|
|
* in output bitmaps.
|
|
*
|
|
* The byte ordering of bitmaps is more natural on little
|
|
* endian architectures.
|
|
*/
|
|
|
|
int slow_bitmap_empty(const unsigned long *bitmap, long bits)
|
|
{
|
|
long k, lim = bits/BITS_PER_LONG;
|
|
|
|
for (k = 0; k < lim; ++k) {
|
|
if (bitmap[k]) {
|
|
return 0;
|
|
}
|
|
}
|
|
if (bits % BITS_PER_LONG) {
|
|
if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
int slow_bitmap_full(const unsigned long *bitmap, long bits)
|
|
{
|
|
long k, lim = bits/BITS_PER_LONG;
|
|
|
|
for (k = 0; k < lim; ++k) {
|
|
if (~bitmap[k]) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (bits % BITS_PER_LONG) {
|
|
if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
int slow_bitmap_equal(const unsigned long *bitmap1,
|
|
const unsigned long *bitmap2, long bits)
|
|
{
|
|
long k, lim = bits/BITS_PER_LONG;
|
|
|
|
for (k = 0; k < lim; ++k) {
|
|
if (bitmap1[k] != bitmap2[k]) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (bits % BITS_PER_LONG) {
|
|
if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
void slow_bitmap_complement(unsigned long *dst, const unsigned long *src,
|
|
long bits)
|
|
{
|
|
long k, lim = bits/BITS_PER_LONG;
|
|
|
|
for (k = 0; k < lim; ++k) {
|
|
dst[k] = ~src[k];
|
|
}
|
|
|
|
if (bits % BITS_PER_LONG) {
|
|
dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits);
|
|
}
|
|
}
|
|
|
|
int slow_bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
|
|
const unsigned long *bitmap2, long bits)
|
|
{
|
|
long k;
|
|
long nr = BITS_TO_LONGS(bits);
|
|
unsigned long result = 0;
|
|
|
|
for (k = 0; k < nr; k++) {
|
|
result |= (dst[k] = bitmap1[k] & bitmap2[k]);
|
|
}
|
|
return result != 0;
|
|
}
|
|
|
|
void slow_bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
|
|
const unsigned long *bitmap2, long bits)
|
|
{
|
|
long k;
|
|
long nr = BITS_TO_LONGS(bits);
|
|
|
|
for (k = 0; k < nr; k++) {
|
|
dst[k] = bitmap1[k] | bitmap2[k];
|
|
}
|
|
}
|
|
|
|
void slow_bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
|
|
const unsigned long *bitmap2, long bits)
|
|
{
|
|
long k;
|
|
long nr = BITS_TO_LONGS(bits);
|
|
|
|
for (k = 0; k < nr; k++) {
|
|
dst[k] = bitmap1[k] ^ bitmap2[k];
|
|
}
|
|
}
|
|
|
|
int slow_bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
|
|
const unsigned long *bitmap2, long bits)
|
|
{
|
|
long k;
|
|
long nr = BITS_TO_LONGS(bits);
|
|
unsigned long result = 0;
|
|
|
|
for (k = 0; k < nr; k++) {
|
|
result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
|
|
}
|
|
return result != 0;
|
|
}
|
|
|
|
void bitmap_set(unsigned long *map, long start, long nr)
|
|
{
|
|
unsigned long *p = map + BIT_WORD(start);
|
|
const long size = start + nr;
|
|
int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
|
|
unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
|
|
|
|
assert(start >= 0 && nr >= 0);
|
|
|
|
while (nr - bits_to_set >= 0) {
|
|
*p |= mask_to_set;
|
|
nr -= bits_to_set;
|
|
bits_to_set = BITS_PER_LONG;
|
|
mask_to_set = ~0UL;
|
|
p++;
|
|
}
|
|
if (nr) {
|
|
mask_to_set &= BITMAP_LAST_WORD_MASK(size);
|
|
*p |= mask_to_set;
|
|
}
|
|
}
|
|
|
|
void bitmap_set_atomic(unsigned long *map, long start, long nr)
|
|
{
|
|
unsigned long *p = map + BIT_WORD(start);
|
|
const long size = start + nr;
|
|
int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
|
|
unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
|
|
|
|
assert(start >= 0 && nr >= 0);
|
|
|
|
/* First word */
|
|
if (nr - bits_to_set > 0) {
|
|
atomic_or(p, mask_to_set);
|
|
nr -= bits_to_set;
|
|
bits_to_set = BITS_PER_LONG;
|
|
mask_to_set = ~0UL;
|
|
p++;
|
|
}
|
|
|
|
/* Full words */
|
|
if (bits_to_set == BITS_PER_LONG) {
|
|
while (nr >= BITS_PER_LONG) {
|
|
*p = ~0UL;
|
|
nr -= BITS_PER_LONG;
|
|
p++;
|
|
}
|
|
}
|
|
|
|
/* Last word */
|
|
if (nr) {
|
|
mask_to_set &= BITMAP_LAST_WORD_MASK(size);
|
|
atomic_or(p, mask_to_set);
|
|
} else {
|
|
/* If we avoided the full barrier in atomic_or(), issue a
|
|
* barrier to account for the assignments in the while loop.
|
|
*/
|
|
smp_mb();
|
|
}
|
|
}
|
|
|
|
void bitmap_clear(unsigned long *map, long start, long nr)
|
|
{
|
|
unsigned long *p = map + BIT_WORD(start);
|
|
const long size = start + nr;
|
|
int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
|
|
unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
|
|
|
|
assert(start >= 0 && nr >= 0);
|
|
|
|
while (nr - bits_to_clear >= 0) {
|
|
*p &= ~mask_to_clear;
|
|
nr -= bits_to_clear;
|
|
bits_to_clear = BITS_PER_LONG;
|
|
mask_to_clear = ~0UL;
|
|
p++;
|
|
}
|
|
if (nr) {
|
|
mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
|
|
*p &= ~mask_to_clear;
|
|
}
|
|
}
|
|
|
|
bool bitmap_test_and_clear_atomic(unsigned long *map, long start, long nr)
|
|
{
|
|
unsigned long *p = map + BIT_WORD(start);
|
|
const long size = start + nr;
|
|
int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
|
|
unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
|
|
unsigned long dirty = 0;
|
|
unsigned long old_bits;
|
|
|
|
assert(start >= 0 && nr >= 0);
|
|
|
|
/* First word */
|
|
if (nr - bits_to_clear > 0) {
|
|
old_bits = atomic_fetch_and(p, ~mask_to_clear);
|
|
dirty |= old_bits & mask_to_clear;
|
|
nr -= bits_to_clear;
|
|
bits_to_clear = BITS_PER_LONG;
|
|
mask_to_clear = ~0UL;
|
|
p++;
|
|
}
|
|
|
|
/* Full words */
|
|
if (bits_to_clear == BITS_PER_LONG) {
|
|
while (nr >= BITS_PER_LONG) {
|
|
if (*p) {
|
|
old_bits = atomic_xchg(p, 0);
|
|
dirty |= old_bits;
|
|
}
|
|
nr -= BITS_PER_LONG;
|
|
p++;
|
|
}
|
|
}
|
|
|
|
/* Last word */
|
|
if (nr) {
|
|
mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
|
|
old_bits = atomic_fetch_and(p, ~mask_to_clear);
|
|
dirty |= old_bits & mask_to_clear;
|
|
} else {
|
|
if (!dirty) {
|
|
smp_mb();
|
|
}
|
|
}
|
|
|
|
return dirty != 0;
|
|
}
|
|
|
|
#define ALIGN_MASK(x,mask) (((x)+(mask))&~(mask))
|
|
|
|
/**
|
|
* bitmap_find_next_zero_area - find a contiguous aligned zero area
|
|
* @map: The address to base the search on
|
|
* @size: The bitmap size in bits
|
|
* @start: The bitnumber to start searching at
|
|
* @nr: The number of zeroed bits we're looking for
|
|
* @align_mask: Alignment mask for zero area
|
|
*
|
|
* The @align_mask should be one less than a power of 2; the effect is that
|
|
* the bit offset of all zero areas this function finds is multiples of that
|
|
* power of 2. A @align_mask of 0 means no alignment is required.
|
|
*/
|
|
unsigned long bitmap_find_next_zero_area(unsigned long *map,
|
|
unsigned long size,
|
|
unsigned long start,
|
|
unsigned long nr,
|
|
unsigned long align_mask)
|
|
{
|
|
unsigned long index, end, i;
|
|
again:
|
|
index = find_next_zero_bit(map, size, start);
|
|
|
|
/* Align allocation */
|
|
index = ALIGN_MASK(index, align_mask);
|
|
|
|
end = index + nr;
|
|
if (end > size) {
|
|
return end;
|
|
}
|
|
i = find_next_bit(map, end, index);
|
|
if (i < end) {
|
|
start = i + 1;
|
|
goto again;
|
|
}
|
|
return index;
|
|
}
|
|
|
|
int slow_bitmap_intersects(const unsigned long *bitmap1,
|
|
const unsigned long *bitmap2, long bits)
|
|
{
|
|
long k, lim = bits/BITS_PER_LONG;
|
|
|
|
for (k = 0; k < lim; ++k) {
|
|
if (bitmap1[k] & bitmap2[k]) {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
if (bits % BITS_PER_LONG) {
|
|
if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) {
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|