mirror of
https://github.com/qemu/qemu.git
synced 2024-12-05 01:33:41 +08:00
93b665693d
Currently IRQ are reinjected as soon as they are acknowledged to the RTC, but Windows sometimes do acknowledgement in a loop with global interrupt disabled waiting for interrupt to be cleared and it does not mask RTC vector in PIC/APIC while doing this. In such situation interrupt injection always fails and RTC interrupt is never cleared. Instead of reinjecting coalesced IRQs on acknowledgement the patch below reinjects them by accelerating RTC clock a bit. This way RTC interrupt is not constantly raced after coalesced interrupt. Signed-off-by: Gleb Natapov <gleb@redhat.com> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@7231 c046a42c-6fe2-441c-8c8c-71466251a162
726 lines
20 KiB
C
726 lines
20 KiB
C
/*
|
|
* QEMU MC146818 RTC emulation
|
|
*
|
|
* Copyright (c) 2003-2004 Fabrice Bellard
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
#include "hw.h"
|
|
#include "qemu-timer.h"
|
|
#include "sysemu.h"
|
|
#include "pc.h"
|
|
#include "isa.h"
|
|
#include "hpet_emul.h"
|
|
|
|
//#define DEBUG_CMOS
|
|
|
|
#define RTC_SECONDS 0
|
|
#define RTC_SECONDS_ALARM 1
|
|
#define RTC_MINUTES 2
|
|
#define RTC_MINUTES_ALARM 3
|
|
#define RTC_HOURS 4
|
|
#define RTC_HOURS_ALARM 5
|
|
#define RTC_ALARM_DONT_CARE 0xC0
|
|
|
|
#define RTC_DAY_OF_WEEK 6
|
|
#define RTC_DAY_OF_MONTH 7
|
|
#define RTC_MONTH 8
|
|
#define RTC_YEAR 9
|
|
|
|
#define RTC_REG_A 10
|
|
#define RTC_REG_B 11
|
|
#define RTC_REG_C 12
|
|
#define RTC_REG_D 13
|
|
|
|
#define REG_A_UIP 0x80
|
|
|
|
#define REG_B_SET 0x80
|
|
#define REG_B_PIE 0x40
|
|
#define REG_B_AIE 0x20
|
|
#define REG_B_UIE 0x10
|
|
#define REG_B_SQWE 0x08
|
|
#define REG_B_DM 0x04
|
|
|
|
struct RTCState {
|
|
uint8_t cmos_data[128];
|
|
uint8_t cmos_index;
|
|
struct tm current_tm;
|
|
int base_year;
|
|
qemu_irq irq;
|
|
qemu_irq sqw_irq;
|
|
int it_shift;
|
|
/* periodic timer */
|
|
QEMUTimer *periodic_timer;
|
|
int64_t next_periodic_time;
|
|
/* second update */
|
|
int64_t next_second_time;
|
|
#ifdef TARGET_I386
|
|
uint32_t irq_coalesced;
|
|
uint32_t period;
|
|
QEMUTimer *coalesced_timer;
|
|
#endif
|
|
QEMUTimer *second_timer;
|
|
QEMUTimer *second_timer2;
|
|
};
|
|
|
|
static void rtc_irq_raise(qemu_irq irq) {
|
|
/* When HPET is operating in legacy mode, RTC interrupts are disabled
|
|
* We block qemu_irq_raise, but not qemu_irq_lower, in case legacy
|
|
* mode is established while interrupt is raised. We want it to
|
|
* be lowered in any case
|
|
*/
|
|
#if defined TARGET_I386 || defined TARGET_X86_64
|
|
if (!hpet_in_legacy_mode())
|
|
#endif
|
|
qemu_irq_raise(irq);
|
|
}
|
|
|
|
static void rtc_set_time(RTCState *s);
|
|
static void rtc_copy_date(RTCState *s);
|
|
|
|
#ifdef TARGET_I386
|
|
static void rtc_coalesced_timer_update(RTCState *s)
|
|
{
|
|
if (s->irq_coalesced == 0) {
|
|
qemu_del_timer(s->coalesced_timer);
|
|
} else {
|
|
/* divide each RTC interval to 2 - 8 smaller intervals */
|
|
int c = MIN(s->irq_coalesced, 7) + 1;
|
|
int64_t next_clock = qemu_get_clock(vm_clock) +
|
|
muldiv64(s->period / c, ticks_per_sec, 32768);
|
|
qemu_mod_timer(s->coalesced_timer, next_clock);
|
|
}
|
|
}
|
|
|
|
static void rtc_coalesced_timer(void *opaque)
|
|
{
|
|
RTCState *s = opaque;
|
|
|
|
if (s->irq_coalesced != 0) {
|
|
apic_reset_irq_delivered();
|
|
s->cmos_data[RTC_REG_C] |= 0xc0;
|
|
rtc_irq_raise(s->irq);
|
|
if (apic_get_irq_delivered()) {
|
|
s->irq_coalesced--;
|
|
}
|
|
}
|
|
|
|
rtc_coalesced_timer_update(s);
|
|
}
|
|
#endif
|
|
|
|
static void rtc_timer_update(RTCState *s, int64_t current_time)
|
|
{
|
|
int period_code, period;
|
|
int64_t cur_clock, next_irq_clock;
|
|
int enable_pie;
|
|
|
|
period_code = s->cmos_data[RTC_REG_A] & 0x0f;
|
|
#if defined TARGET_I386 || defined TARGET_X86_64
|
|
/* disable periodic timer if hpet is in legacy mode, since interrupts are
|
|
* disabled anyway.
|
|
*/
|
|
enable_pie = !hpet_in_legacy_mode();
|
|
#else
|
|
enable_pie = 1;
|
|
#endif
|
|
if (period_code != 0
|
|
&& (((s->cmos_data[RTC_REG_B] & REG_B_PIE) && enable_pie)
|
|
|| ((s->cmos_data[RTC_REG_B] & REG_B_SQWE) && s->sqw_irq))) {
|
|
if (period_code <= 2)
|
|
period_code += 7;
|
|
/* period in 32 Khz cycles */
|
|
period = 1 << (period_code - 1);
|
|
#ifdef TARGET_I386
|
|
if(period != s->period)
|
|
s->irq_coalesced = (s->irq_coalesced * s->period) / period;
|
|
s->period = period;
|
|
#endif
|
|
/* compute 32 khz clock */
|
|
cur_clock = muldiv64(current_time, 32768, ticks_per_sec);
|
|
next_irq_clock = (cur_clock & ~(period - 1)) + period;
|
|
s->next_periodic_time = muldiv64(next_irq_clock, ticks_per_sec, 32768) + 1;
|
|
qemu_mod_timer(s->periodic_timer, s->next_periodic_time);
|
|
} else {
|
|
#ifdef TARGET_I386
|
|
s->irq_coalesced = 0;
|
|
#endif
|
|
qemu_del_timer(s->periodic_timer);
|
|
}
|
|
}
|
|
|
|
static void rtc_periodic_timer(void *opaque)
|
|
{
|
|
RTCState *s = opaque;
|
|
|
|
rtc_timer_update(s, s->next_periodic_time);
|
|
if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
|
|
s->cmos_data[RTC_REG_C] |= 0xc0;
|
|
#ifdef TARGET_I386
|
|
if(rtc_td_hack) {
|
|
apic_reset_irq_delivered();
|
|
rtc_irq_raise(s->irq);
|
|
if (!apic_get_irq_delivered()) {
|
|
s->irq_coalesced++;
|
|
rtc_coalesced_timer_update(s);
|
|
}
|
|
} else
|
|
#endif
|
|
rtc_irq_raise(s->irq);
|
|
}
|
|
if (s->cmos_data[RTC_REG_B] & REG_B_SQWE) {
|
|
/* Not square wave at all but we don't want 2048Hz interrupts!
|
|
Must be seen as a pulse. */
|
|
qemu_irq_raise(s->sqw_irq);
|
|
}
|
|
}
|
|
|
|
static void cmos_ioport_write(void *opaque, uint32_t addr, uint32_t data)
|
|
{
|
|
RTCState *s = opaque;
|
|
|
|
if ((addr & 1) == 0) {
|
|
s->cmos_index = data & 0x7f;
|
|
} else {
|
|
#ifdef DEBUG_CMOS
|
|
printf("cmos: write index=0x%02x val=0x%02x\n",
|
|
s->cmos_index, data);
|
|
#endif
|
|
switch(s->cmos_index) {
|
|
case RTC_SECONDS_ALARM:
|
|
case RTC_MINUTES_ALARM:
|
|
case RTC_HOURS_ALARM:
|
|
/* XXX: not supported */
|
|
s->cmos_data[s->cmos_index] = data;
|
|
break;
|
|
case RTC_SECONDS:
|
|
case RTC_MINUTES:
|
|
case RTC_HOURS:
|
|
case RTC_DAY_OF_WEEK:
|
|
case RTC_DAY_OF_MONTH:
|
|
case RTC_MONTH:
|
|
case RTC_YEAR:
|
|
s->cmos_data[s->cmos_index] = data;
|
|
/* if in set mode, do not update the time */
|
|
if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
|
|
rtc_set_time(s);
|
|
}
|
|
break;
|
|
case RTC_REG_A:
|
|
/* UIP bit is read only */
|
|
s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
|
|
(s->cmos_data[RTC_REG_A] & REG_A_UIP);
|
|
rtc_timer_update(s, qemu_get_clock(vm_clock));
|
|
break;
|
|
case RTC_REG_B:
|
|
if (data & REG_B_SET) {
|
|
/* set mode: reset UIP mode */
|
|
s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
|
|
data &= ~REG_B_UIE;
|
|
} else {
|
|
/* if disabling set mode, update the time */
|
|
if (s->cmos_data[RTC_REG_B] & REG_B_SET) {
|
|
rtc_set_time(s);
|
|
}
|
|
}
|
|
s->cmos_data[RTC_REG_B] = data;
|
|
rtc_timer_update(s, qemu_get_clock(vm_clock));
|
|
break;
|
|
case RTC_REG_C:
|
|
case RTC_REG_D:
|
|
/* cannot write to them */
|
|
break;
|
|
default:
|
|
s->cmos_data[s->cmos_index] = data;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline int to_bcd(RTCState *s, int a)
|
|
{
|
|
if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
|
|
return a;
|
|
} else {
|
|
return ((a / 10) << 4) | (a % 10);
|
|
}
|
|
}
|
|
|
|
static inline int from_bcd(RTCState *s, int a)
|
|
{
|
|
if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
|
|
return a;
|
|
} else {
|
|
return ((a >> 4) * 10) + (a & 0x0f);
|
|
}
|
|
}
|
|
|
|
static void rtc_set_time(RTCState *s)
|
|
{
|
|
struct tm *tm = &s->current_tm;
|
|
|
|
tm->tm_sec = from_bcd(s, s->cmos_data[RTC_SECONDS]);
|
|
tm->tm_min = from_bcd(s, s->cmos_data[RTC_MINUTES]);
|
|
tm->tm_hour = from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
|
|
if (!(s->cmos_data[RTC_REG_B] & 0x02) &&
|
|
(s->cmos_data[RTC_HOURS] & 0x80)) {
|
|
tm->tm_hour += 12;
|
|
}
|
|
tm->tm_wday = from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
|
|
tm->tm_mday = from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
|
|
tm->tm_mon = from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
|
|
tm->tm_year = from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year - 1900;
|
|
}
|
|
|
|
static void rtc_copy_date(RTCState *s)
|
|
{
|
|
const struct tm *tm = &s->current_tm;
|
|
int year;
|
|
|
|
s->cmos_data[RTC_SECONDS] = to_bcd(s, tm->tm_sec);
|
|
s->cmos_data[RTC_MINUTES] = to_bcd(s, tm->tm_min);
|
|
if (s->cmos_data[RTC_REG_B] & 0x02) {
|
|
/* 24 hour format */
|
|
s->cmos_data[RTC_HOURS] = to_bcd(s, tm->tm_hour);
|
|
} else {
|
|
/* 12 hour format */
|
|
s->cmos_data[RTC_HOURS] = to_bcd(s, tm->tm_hour % 12);
|
|
if (tm->tm_hour >= 12)
|
|
s->cmos_data[RTC_HOURS] |= 0x80;
|
|
}
|
|
s->cmos_data[RTC_DAY_OF_WEEK] = to_bcd(s, tm->tm_wday + 1);
|
|
s->cmos_data[RTC_DAY_OF_MONTH] = to_bcd(s, tm->tm_mday);
|
|
s->cmos_data[RTC_MONTH] = to_bcd(s, tm->tm_mon + 1);
|
|
year = (tm->tm_year - s->base_year) % 100;
|
|
if (year < 0)
|
|
year += 100;
|
|
s->cmos_data[RTC_YEAR] = to_bcd(s, year);
|
|
}
|
|
|
|
/* month is between 0 and 11. */
|
|
static int get_days_in_month(int month, int year)
|
|
{
|
|
static const int days_tab[12] = {
|
|
31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
|
|
};
|
|
int d;
|
|
if ((unsigned )month >= 12)
|
|
return 31;
|
|
d = days_tab[month];
|
|
if (month == 1) {
|
|
if ((year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0))
|
|
d++;
|
|
}
|
|
return d;
|
|
}
|
|
|
|
/* update 'tm' to the next second */
|
|
static void rtc_next_second(struct tm *tm)
|
|
{
|
|
int days_in_month;
|
|
|
|
tm->tm_sec++;
|
|
if ((unsigned)tm->tm_sec >= 60) {
|
|
tm->tm_sec = 0;
|
|
tm->tm_min++;
|
|
if ((unsigned)tm->tm_min >= 60) {
|
|
tm->tm_min = 0;
|
|
tm->tm_hour++;
|
|
if ((unsigned)tm->tm_hour >= 24) {
|
|
tm->tm_hour = 0;
|
|
/* next day */
|
|
tm->tm_wday++;
|
|
if ((unsigned)tm->tm_wday >= 7)
|
|
tm->tm_wday = 0;
|
|
days_in_month = get_days_in_month(tm->tm_mon,
|
|
tm->tm_year + 1900);
|
|
tm->tm_mday++;
|
|
if (tm->tm_mday < 1) {
|
|
tm->tm_mday = 1;
|
|
} else if (tm->tm_mday > days_in_month) {
|
|
tm->tm_mday = 1;
|
|
tm->tm_mon++;
|
|
if (tm->tm_mon >= 12) {
|
|
tm->tm_mon = 0;
|
|
tm->tm_year++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void rtc_update_second(void *opaque)
|
|
{
|
|
RTCState *s = opaque;
|
|
int64_t delay;
|
|
|
|
/* if the oscillator is not in normal operation, we do not update */
|
|
if ((s->cmos_data[RTC_REG_A] & 0x70) != 0x20) {
|
|
s->next_second_time += ticks_per_sec;
|
|
qemu_mod_timer(s->second_timer, s->next_second_time);
|
|
} else {
|
|
rtc_next_second(&s->current_tm);
|
|
|
|
if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
|
|
/* update in progress bit */
|
|
s->cmos_data[RTC_REG_A] |= REG_A_UIP;
|
|
}
|
|
/* should be 244 us = 8 / 32768 seconds, but currently the
|
|
timers do not have the necessary resolution. */
|
|
delay = (ticks_per_sec * 1) / 100;
|
|
if (delay < 1)
|
|
delay = 1;
|
|
qemu_mod_timer(s->second_timer2,
|
|
s->next_second_time + delay);
|
|
}
|
|
}
|
|
|
|
static void rtc_update_second2(void *opaque)
|
|
{
|
|
RTCState *s = opaque;
|
|
|
|
if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
|
|
rtc_copy_date(s);
|
|
}
|
|
|
|
/* check alarm */
|
|
if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
|
|
if (((s->cmos_data[RTC_SECONDS_ALARM] & 0xc0) == 0xc0 ||
|
|
s->cmos_data[RTC_SECONDS_ALARM] == s->current_tm.tm_sec) &&
|
|
((s->cmos_data[RTC_MINUTES_ALARM] & 0xc0) == 0xc0 ||
|
|
s->cmos_data[RTC_MINUTES_ALARM] == s->current_tm.tm_mon) &&
|
|
((s->cmos_data[RTC_HOURS_ALARM] & 0xc0) == 0xc0 ||
|
|
s->cmos_data[RTC_HOURS_ALARM] == s->current_tm.tm_hour)) {
|
|
|
|
s->cmos_data[RTC_REG_C] |= 0xa0;
|
|
rtc_irq_raise(s->irq);
|
|
}
|
|
}
|
|
|
|
/* update ended interrupt */
|
|
if (s->cmos_data[RTC_REG_B] & REG_B_UIE) {
|
|
s->cmos_data[RTC_REG_C] |= 0x90;
|
|
rtc_irq_raise(s->irq);
|
|
}
|
|
|
|
/* clear update in progress bit */
|
|
s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
|
|
|
|
s->next_second_time += ticks_per_sec;
|
|
qemu_mod_timer(s->second_timer, s->next_second_time);
|
|
}
|
|
|
|
static uint32_t cmos_ioport_read(void *opaque, uint32_t addr)
|
|
{
|
|
RTCState *s = opaque;
|
|
int ret;
|
|
if ((addr & 1) == 0) {
|
|
return 0xff;
|
|
} else {
|
|
switch(s->cmos_index) {
|
|
case RTC_SECONDS:
|
|
case RTC_MINUTES:
|
|
case RTC_HOURS:
|
|
case RTC_DAY_OF_WEEK:
|
|
case RTC_DAY_OF_MONTH:
|
|
case RTC_MONTH:
|
|
case RTC_YEAR:
|
|
ret = s->cmos_data[s->cmos_index];
|
|
break;
|
|
case RTC_REG_A:
|
|
ret = s->cmos_data[s->cmos_index];
|
|
break;
|
|
case RTC_REG_C:
|
|
ret = s->cmos_data[s->cmos_index];
|
|
qemu_irq_lower(s->irq);
|
|
s->cmos_data[RTC_REG_C] = 0x00;
|
|
break;
|
|
default:
|
|
ret = s->cmos_data[s->cmos_index];
|
|
break;
|
|
}
|
|
#ifdef DEBUG_CMOS
|
|
printf("cmos: read index=0x%02x val=0x%02x\n",
|
|
s->cmos_index, ret);
|
|
#endif
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
void rtc_set_memory(RTCState *s, int addr, int val)
|
|
{
|
|
if (addr >= 0 && addr <= 127)
|
|
s->cmos_data[addr] = val;
|
|
}
|
|
|
|
void rtc_set_date(RTCState *s, const struct tm *tm)
|
|
{
|
|
s->current_tm = *tm;
|
|
rtc_copy_date(s);
|
|
}
|
|
|
|
/* PC cmos mappings */
|
|
#define REG_IBM_CENTURY_BYTE 0x32
|
|
#define REG_IBM_PS2_CENTURY_BYTE 0x37
|
|
|
|
static void rtc_set_date_from_host(RTCState *s)
|
|
{
|
|
struct tm tm;
|
|
int val;
|
|
|
|
/* set the CMOS date */
|
|
qemu_get_timedate(&tm, 0);
|
|
rtc_set_date(s, &tm);
|
|
|
|
val = to_bcd(s, (tm.tm_year / 100) + 19);
|
|
rtc_set_memory(s, REG_IBM_CENTURY_BYTE, val);
|
|
rtc_set_memory(s, REG_IBM_PS2_CENTURY_BYTE, val);
|
|
}
|
|
|
|
static void rtc_save(QEMUFile *f, void *opaque)
|
|
{
|
|
RTCState *s = opaque;
|
|
|
|
qemu_put_buffer(f, s->cmos_data, 128);
|
|
qemu_put_8s(f, &s->cmos_index);
|
|
|
|
qemu_put_be32(f, s->current_tm.tm_sec);
|
|
qemu_put_be32(f, s->current_tm.tm_min);
|
|
qemu_put_be32(f, s->current_tm.tm_hour);
|
|
qemu_put_be32(f, s->current_tm.tm_wday);
|
|
qemu_put_be32(f, s->current_tm.tm_mday);
|
|
qemu_put_be32(f, s->current_tm.tm_mon);
|
|
qemu_put_be32(f, s->current_tm.tm_year);
|
|
|
|
qemu_put_timer(f, s->periodic_timer);
|
|
qemu_put_be64(f, s->next_periodic_time);
|
|
|
|
qemu_put_be64(f, s->next_second_time);
|
|
qemu_put_timer(f, s->second_timer);
|
|
qemu_put_timer(f, s->second_timer2);
|
|
}
|
|
|
|
static int rtc_load(QEMUFile *f, void *opaque, int version_id)
|
|
{
|
|
RTCState *s = opaque;
|
|
|
|
if (version_id != 1)
|
|
return -EINVAL;
|
|
|
|
qemu_get_buffer(f, s->cmos_data, 128);
|
|
qemu_get_8s(f, &s->cmos_index);
|
|
|
|
s->current_tm.tm_sec=qemu_get_be32(f);
|
|
s->current_tm.tm_min=qemu_get_be32(f);
|
|
s->current_tm.tm_hour=qemu_get_be32(f);
|
|
s->current_tm.tm_wday=qemu_get_be32(f);
|
|
s->current_tm.tm_mday=qemu_get_be32(f);
|
|
s->current_tm.tm_mon=qemu_get_be32(f);
|
|
s->current_tm.tm_year=qemu_get_be32(f);
|
|
|
|
qemu_get_timer(f, s->periodic_timer);
|
|
s->next_periodic_time=qemu_get_be64(f);
|
|
|
|
s->next_second_time=qemu_get_be64(f);
|
|
qemu_get_timer(f, s->second_timer);
|
|
qemu_get_timer(f, s->second_timer2);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef TARGET_I386
|
|
static void rtc_save_td(QEMUFile *f, void *opaque)
|
|
{
|
|
RTCState *s = opaque;
|
|
|
|
qemu_put_be32(f, s->irq_coalesced);
|
|
qemu_put_be32(f, s->period);
|
|
}
|
|
|
|
static int rtc_load_td(QEMUFile *f, void *opaque, int version_id)
|
|
{
|
|
RTCState *s = opaque;
|
|
|
|
if (version_id != 1)
|
|
return -EINVAL;
|
|
|
|
s->irq_coalesced = qemu_get_be32(f);
|
|
s->period = qemu_get_be32(f);
|
|
rtc_coalesced_timer_update(s);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
RTCState *rtc_init_sqw(int base, qemu_irq irq, qemu_irq sqw_irq, int base_year)
|
|
{
|
|
RTCState *s;
|
|
|
|
s = qemu_mallocz(sizeof(RTCState));
|
|
|
|
s->irq = irq;
|
|
s->sqw_irq = sqw_irq;
|
|
s->cmos_data[RTC_REG_A] = 0x26;
|
|
s->cmos_data[RTC_REG_B] = 0x02;
|
|
s->cmos_data[RTC_REG_C] = 0x00;
|
|
s->cmos_data[RTC_REG_D] = 0x80;
|
|
|
|
s->base_year = base_year;
|
|
rtc_set_date_from_host(s);
|
|
|
|
s->periodic_timer = qemu_new_timer(vm_clock,
|
|
rtc_periodic_timer, s);
|
|
#ifdef TARGET_I386
|
|
if (rtc_td_hack)
|
|
s->coalesced_timer = qemu_new_timer(vm_clock, rtc_coalesced_timer, s);
|
|
#endif
|
|
s->second_timer = qemu_new_timer(vm_clock,
|
|
rtc_update_second, s);
|
|
s->second_timer2 = qemu_new_timer(vm_clock,
|
|
rtc_update_second2, s);
|
|
|
|
s->next_second_time = qemu_get_clock(vm_clock) + (ticks_per_sec * 99) / 100;
|
|
qemu_mod_timer(s->second_timer2, s->next_second_time);
|
|
|
|
register_ioport_write(base, 2, 1, cmos_ioport_write, s);
|
|
register_ioport_read(base, 2, 1, cmos_ioport_read, s);
|
|
|
|
register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s);
|
|
#ifdef TARGET_I386
|
|
if (rtc_td_hack)
|
|
register_savevm("mc146818rtc-td", base, 1, rtc_save_td, rtc_load_td, s);
|
|
#endif
|
|
return s;
|
|
}
|
|
|
|
RTCState *rtc_init(int base, qemu_irq irq, int base_year)
|
|
{
|
|
return rtc_init_sqw(base, irq, NULL, base_year);
|
|
}
|
|
|
|
/* Memory mapped interface */
|
|
static uint32_t cmos_mm_readb (void *opaque, target_phys_addr_t addr)
|
|
{
|
|
RTCState *s = opaque;
|
|
|
|
return cmos_ioport_read(s, addr >> s->it_shift) & 0xFF;
|
|
}
|
|
|
|
static void cmos_mm_writeb (void *opaque,
|
|
target_phys_addr_t addr, uint32_t value)
|
|
{
|
|
RTCState *s = opaque;
|
|
|
|
cmos_ioport_write(s, addr >> s->it_shift, value & 0xFF);
|
|
}
|
|
|
|
static uint32_t cmos_mm_readw (void *opaque, target_phys_addr_t addr)
|
|
{
|
|
RTCState *s = opaque;
|
|
uint32_t val;
|
|
|
|
val = cmos_ioport_read(s, addr >> s->it_shift) & 0xFFFF;
|
|
#ifdef TARGET_WORDS_BIGENDIAN
|
|
val = bswap16(val);
|
|
#endif
|
|
return val;
|
|
}
|
|
|
|
static void cmos_mm_writew (void *opaque,
|
|
target_phys_addr_t addr, uint32_t value)
|
|
{
|
|
RTCState *s = opaque;
|
|
#ifdef TARGET_WORDS_BIGENDIAN
|
|
value = bswap16(value);
|
|
#endif
|
|
cmos_ioport_write(s, addr >> s->it_shift, value & 0xFFFF);
|
|
}
|
|
|
|
static uint32_t cmos_mm_readl (void *opaque, target_phys_addr_t addr)
|
|
{
|
|
RTCState *s = opaque;
|
|
uint32_t val;
|
|
|
|
val = cmos_ioport_read(s, addr >> s->it_shift);
|
|
#ifdef TARGET_WORDS_BIGENDIAN
|
|
val = bswap32(val);
|
|
#endif
|
|
return val;
|
|
}
|
|
|
|
static void cmos_mm_writel (void *opaque,
|
|
target_phys_addr_t addr, uint32_t value)
|
|
{
|
|
RTCState *s = opaque;
|
|
#ifdef TARGET_WORDS_BIGENDIAN
|
|
value = bswap32(value);
|
|
#endif
|
|
cmos_ioport_write(s, addr >> s->it_shift, value);
|
|
}
|
|
|
|
static CPUReadMemoryFunc *rtc_mm_read[] = {
|
|
&cmos_mm_readb,
|
|
&cmos_mm_readw,
|
|
&cmos_mm_readl,
|
|
};
|
|
|
|
static CPUWriteMemoryFunc *rtc_mm_write[] = {
|
|
&cmos_mm_writeb,
|
|
&cmos_mm_writew,
|
|
&cmos_mm_writel,
|
|
};
|
|
|
|
RTCState *rtc_mm_init(target_phys_addr_t base, int it_shift, qemu_irq irq,
|
|
int base_year)
|
|
{
|
|
RTCState *s;
|
|
int io_memory;
|
|
|
|
s = qemu_mallocz(sizeof(RTCState));
|
|
|
|
s->irq = irq;
|
|
s->cmos_data[RTC_REG_A] = 0x26;
|
|
s->cmos_data[RTC_REG_B] = 0x02;
|
|
s->cmos_data[RTC_REG_C] = 0x00;
|
|
s->cmos_data[RTC_REG_D] = 0x80;
|
|
|
|
s->base_year = base_year;
|
|
rtc_set_date_from_host(s);
|
|
|
|
s->periodic_timer = qemu_new_timer(vm_clock,
|
|
rtc_periodic_timer, s);
|
|
s->second_timer = qemu_new_timer(vm_clock,
|
|
rtc_update_second, s);
|
|
s->second_timer2 = qemu_new_timer(vm_clock,
|
|
rtc_update_second2, s);
|
|
|
|
s->next_second_time = qemu_get_clock(vm_clock) + (ticks_per_sec * 99) / 100;
|
|
qemu_mod_timer(s->second_timer2, s->next_second_time);
|
|
|
|
io_memory = cpu_register_io_memory(0, rtc_mm_read, rtc_mm_write, s);
|
|
cpu_register_physical_memory(base, 2 << it_shift, io_memory);
|
|
|
|
register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s);
|
|
#ifdef TARGET_I386
|
|
if (rtc_td_hack)
|
|
register_savevm("mc146818rtc-td", base, 1, rtc_save_td, rtc_load_td, s);
|
|
#endif
|
|
return s;
|
|
}
|