qemu/target-sh4/op_helper.c
aurel32 d8299bccf2 SH4: Implement FD bit
SH4 manual say that if a floating point instruction is executed while
FD bit in the status register is 1, an exception should be raised. QEMU
presently does not do that, so the kernel does not initialize FP state
for any thread, nor does it save/restore FP state. The most apparent
consequence is that while recent gcc/libc expect double-precision mode
to be set by kernel, they run in single-precision mode, and all FP code
produces wrong values.

This patch fixes this. It also fixes a couple of places where PC was
not updated before handling an exception, although both those places
deal with invalid instruction and don't lead to any user-visible bugs.

(Vladimir Prus)

git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@5937 c046a42c-6fe2-441c-8c8c-71466251a162
2008-12-07 22:46:31 +00:00

607 lines
11 KiB
C

/*
* SH4 emulation
*
* Copyright (c) 2005 Samuel Tardieu
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <assert.h>
#include "exec.h"
#include "helper.h"
#ifndef CONFIG_USER_ONLY
#define MMUSUFFIX _mmu
#define SHIFT 0
#include "softmmu_template.h"
#define SHIFT 1
#include "softmmu_template.h"
#define SHIFT 2
#include "softmmu_template.h"
#define SHIFT 3
#include "softmmu_template.h"
void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
{
TranslationBlock *tb;
CPUState *saved_env;
unsigned long pc;
int ret;
/* XXX: hack to restore env in all cases, even if not called from
generated code */
saved_env = env;
env = cpu_single_env;
ret = cpu_sh4_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
if (ret) {
if (retaddr) {
/* now we have a real cpu fault */
pc = (unsigned long) retaddr;
tb = tb_find_pc(pc);
if (tb) {
/* the PC is inside the translated code. It means that we have
a virtual CPU fault */
cpu_restore_state(tb, env, pc, NULL);
}
}
cpu_loop_exit();
}
env = saved_env;
}
#endif
void helper_ldtlb(void)
{
#ifdef CONFIG_USER_ONLY
/* XXXXX */
assert(0);
#else
cpu_load_tlb(env);
#endif
}
void helper_raise_illegal_instruction(void)
{
env->exception_index = 0x180;
cpu_loop_exit();
}
void helper_raise_slot_illegal_instruction(void)
{
env->exception_index = 0x1a0;
cpu_loop_exit();
}
void helper_raise_fpu_disable(void)
{
env->exception_index = 0x800;
cpu_loop_exit();
}
void helper_raise_slot_fpu_disable(void)
{
env->exception_index = 0x820;
cpu_loop_exit();
}
void helper_debug(void)
{
env->exception_index = EXCP_DEBUG;
cpu_loop_exit();
}
void helper_sleep(uint32_t next_pc)
{
env->halted = 1;
env->exception_index = EXCP_HLT;
env->pc = next_pc;
cpu_loop_exit();
}
void helper_trapa(uint32_t tra)
{
env->tra = tra << 2;
env->exception_index = 0x160;
cpu_loop_exit();
}
uint32_t helper_addc(uint32_t arg0, uint32_t arg1)
{
uint32_t tmp0, tmp1;
tmp1 = arg0 + arg1;
tmp0 = arg1;
arg1 = tmp1 + (env->sr & 1);
if (tmp0 > tmp1)
env->sr |= SR_T;
else
env->sr &= ~SR_T;
if (tmp1 > arg1)
env->sr |= SR_T;
return arg1;
}
uint32_t helper_addv(uint32_t arg0, uint32_t arg1)
{
uint32_t dest, src, ans;
if ((int32_t) arg1 >= 0)
dest = 0;
else
dest = 1;
if ((int32_t) arg0 >= 0)
src = 0;
else
src = 1;
src += dest;
arg1 += arg0;
if ((int32_t) arg1 >= 0)
ans = 0;
else
ans = 1;
ans += dest;
if (src == 0 || src == 2) {
if (ans == 1)
env->sr |= SR_T;
else
env->sr &= ~SR_T;
} else
env->sr &= ~SR_T;
return arg1;
}
#define T (env->sr & SR_T)
#define Q (env->sr & SR_Q ? 1 : 0)
#define M (env->sr & SR_M ? 1 : 0)
#define SETT env->sr |= SR_T
#define CLRT env->sr &= ~SR_T
#define SETQ env->sr |= SR_Q
#define CLRQ env->sr &= ~SR_Q
#define SETM env->sr |= SR_M
#define CLRM env->sr &= ~SR_M
uint32_t helper_div1(uint32_t arg0, uint32_t arg1)
{
uint32_t tmp0, tmp2;
uint8_t old_q, tmp1 = 0xff;
//printf("div1 arg0=0x%08x arg1=0x%08x M=%d Q=%d T=%d\n", arg0, arg1, M, Q, T);
old_q = Q;
if ((0x80000000 & arg1) != 0)
SETQ;
else
CLRQ;
tmp2 = arg0;
arg1 <<= 1;
arg1 |= T;
switch (old_q) {
case 0:
switch (M) {
case 0:
tmp0 = arg1;
arg1 -= tmp2;
tmp1 = arg1 > tmp0;
switch (Q) {
case 0:
if (tmp1)
SETQ;
else
CLRQ;
break;
case 1:
if (tmp1 == 0)
SETQ;
else
CLRQ;
break;
}
break;
case 1:
tmp0 = arg1;
arg1 += tmp2;
tmp1 = arg1 < tmp0;
switch (Q) {
case 0:
if (tmp1 == 0)
SETQ;
else
CLRQ;
break;
case 1:
if (tmp1)
SETQ;
else
CLRQ;
break;
}
break;
}
break;
case 1:
switch (M) {
case 0:
tmp0 = arg1;
arg1 += tmp2;
tmp1 = arg1 < tmp0;
switch (Q) {
case 0:
if (tmp1)
SETQ;
else
CLRQ;
break;
case 1:
if (tmp1 == 0)
SETQ;
else
CLRQ;
break;
}
break;
case 1:
tmp0 = arg1;
arg1 -= tmp2;
tmp1 = arg1 > tmp0;
switch (Q) {
case 0:
if (tmp1 == 0)
SETQ;
else
CLRQ;
break;
case 1:
if (tmp1)
SETQ;
else
CLRQ;
break;
}
break;
}
break;
}
if (Q == M)
SETT;
else
CLRT;
//printf("Output: arg1=0x%08x M=%d Q=%d T=%d\n", arg1, M, Q, T);
return arg1;
}
void helper_macl(uint32_t arg0, uint32_t arg1)
{
int64_t res;
res = ((uint64_t) env->mach << 32) | env->macl;
res += (int64_t) (int32_t) arg0 *(int64_t) (int32_t) arg1;
env->mach = (res >> 32) & 0xffffffff;
env->macl = res & 0xffffffff;
if (env->sr & SR_S) {
if (res < 0)
env->mach |= 0xffff0000;
else
env->mach &= 0x00007fff;
}
}
void helper_macw(uint32_t arg0, uint32_t arg1)
{
int64_t res;
res = ((uint64_t) env->mach << 32) | env->macl;
res += (int64_t) (int16_t) arg0 *(int64_t) (int16_t) arg1;
env->mach = (res >> 32) & 0xffffffff;
env->macl = res & 0xffffffff;
if (env->sr & SR_S) {
if (res < -0x80000000) {
env->mach = 1;
env->macl = 0x80000000;
} else if (res > 0x000000007fffffff) {
env->mach = 1;
env->macl = 0x7fffffff;
}
}
}
uint32_t helper_negc(uint32_t arg)
{
uint32_t temp;
temp = -arg;
arg = temp - (env->sr & SR_T);
if (0 < temp)
env->sr |= SR_T;
else
env->sr &= ~SR_T;
if (temp < arg)
env->sr |= SR_T;
return arg;
}
uint32_t helper_subc(uint32_t arg0, uint32_t arg1)
{
uint32_t tmp0, tmp1;
tmp1 = arg1 - arg0;
tmp0 = arg1;
arg1 = tmp1 - (env->sr & SR_T);
if (tmp0 < tmp1)
env->sr |= SR_T;
else
env->sr &= ~SR_T;
if (tmp1 < arg1)
env->sr |= SR_T;
return arg1;
}
uint32_t helper_subv(uint32_t arg0, uint32_t arg1)
{
int32_t dest, src, ans;
if ((int32_t) arg1 >= 0)
dest = 0;
else
dest = 1;
if ((int32_t) arg0 >= 0)
src = 0;
else
src = 1;
src += dest;
arg1 -= arg0;
if ((int32_t) arg1 >= 0)
ans = 0;
else
ans = 1;
ans += dest;
if (src == 1) {
if (ans == 1)
env->sr |= SR_T;
else
env->sr &= ~SR_T;
} else
env->sr &= ~SR_T;
return arg1;
}
static inline void set_t(void)
{
env->sr |= SR_T;
}
static inline void clr_t(void)
{
env->sr &= ~SR_T;
}
void helper_ld_fpscr(uint32_t val)
{
env->fpscr = val & 0x003fffff;
if (val & 0x01)
set_float_rounding_mode(float_round_to_zero, &env->fp_status);
else
set_float_rounding_mode(float_round_nearest_even, &env->fp_status);
}
uint32_t helper_fabs_FT(uint32_t t0)
{
CPU_FloatU f;
f.l = t0;
f.f = float32_abs(f.f);
return f.l;
}
uint64_t helper_fabs_DT(uint64_t t0)
{
CPU_DoubleU d;
d.ll = t0;
d.d = float64_abs(d.d);
return d.ll;
}
uint32_t helper_fadd_FT(uint32_t t0, uint32_t t1)
{
CPU_FloatU f0, f1;
f0.l = t0;
f1.l = t1;
f0.f = float32_add(f0.f, f1.f, &env->fp_status);
return f0.l;
}
uint64_t helper_fadd_DT(uint64_t t0, uint64_t t1)
{
CPU_DoubleU d0, d1;
d0.ll = t0;
d1.ll = t1;
d0.d = float64_add(d0.d, d1.d, &env->fp_status);
return d0.ll;
}
void helper_fcmp_eq_FT(uint32_t t0, uint32_t t1)
{
CPU_FloatU f0, f1;
f0.l = t0;
f1.l = t1;
if (float32_compare(f0.f, f1.f, &env->fp_status) == 0)
set_t();
else
clr_t();
}
void helper_fcmp_eq_DT(uint64_t t0, uint64_t t1)
{
CPU_DoubleU d0, d1;
d0.ll = t0;
d1.ll = t1;
if (float64_compare(d0.d, d1.d, &env->fp_status) == 0)
set_t();
else
clr_t();
}
void helper_fcmp_gt_FT(uint32_t t0, uint32_t t1)
{
CPU_FloatU f0, f1;
f0.l = t0;
f1.l = t1;
if (float32_compare(f0.f, f1.f, &env->fp_status) == 1)
set_t();
else
clr_t();
}
void helper_fcmp_gt_DT(uint64_t t0, uint64_t t1)
{
CPU_DoubleU d0, d1;
d0.ll = t0;
d1.ll = t1;
if (float64_compare(d0.d, d1.d, &env->fp_status) == 1)
set_t();
else
clr_t();
}
uint64_t helper_fcnvsd_FT_DT(uint32_t t0)
{
CPU_DoubleU d;
CPU_FloatU f;
f.l = t0;
d.d = float32_to_float64(f.f, &env->fp_status);
return d.ll;
}
uint32_t helper_fcnvds_DT_FT(uint64_t t0)
{
CPU_DoubleU d;
CPU_FloatU f;
d.ll = t0;
f.f = float64_to_float32(d.d, &env->fp_status);
return f.l;
}
uint32_t helper_fdiv_FT(uint32_t t0, uint32_t t1)
{
CPU_FloatU f0, f1;
f0.l = t0;
f1.l = t1;
f0.f = float32_div(f0.f, f1.f, &env->fp_status);
return f0.l;
}
uint64_t helper_fdiv_DT(uint64_t t0, uint64_t t1)
{
CPU_DoubleU d0, d1;
d0.ll = t0;
d1.ll = t1;
d0.d = float64_div(d0.d, d1.d, &env->fp_status);
return d0.ll;
}
uint32_t helper_float_FT(uint32_t t0)
{
CPU_FloatU f;
f.f = int32_to_float32(t0, &env->fp_status);
return f.l;
}
uint64_t helper_float_DT(uint32_t t0)
{
CPU_DoubleU d;
d.d = int32_to_float64(t0, &env->fp_status);
return d.ll;
}
uint32_t helper_fmul_FT(uint32_t t0, uint32_t t1)
{
CPU_FloatU f0, f1;
f0.l = t0;
f1.l = t1;
f0.f = float32_mul(f0.f, f1.f, &env->fp_status);
return f0.l;
}
uint64_t helper_fmul_DT(uint64_t t0, uint64_t t1)
{
CPU_DoubleU d0, d1;
d0.ll = t0;
d1.ll = t1;
d0.d = float64_mul(d0.d, d1.d, &env->fp_status);
return d0.ll;
}
uint32_t helper_fneg_T(uint32_t t0)
{
CPU_FloatU f;
f.l = t0;
f.f = float32_chs(f.f);
return f.l;
}
uint32_t helper_fsqrt_FT(uint32_t t0)
{
CPU_FloatU f;
f.l = t0;
f.f = float32_sqrt(f.f, &env->fp_status);
return f.l;
}
uint64_t helper_fsqrt_DT(uint64_t t0)
{
CPU_DoubleU d;
d.ll = t0;
d.d = float64_sqrt(d.d, &env->fp_status);
return d.ll;
}
uint32_t helper_fsub_FT(uint32_t t0, uint32_t t1)
{
CPU_FloatU f0, f1;
f0.l = t0;
f1.l = t1;
f0.f = float32_sub(f0.f, f1.f, &env->fp_status);
return f0.l;
}
uint64_t helper_fsub_DT(uint64_t t0, uint64_t t1)
{
CPU_DoubleU d0, d1;
d0.ll = t0;
d1.ll = t1;
d0.d = float64_sub(d0.d, d1.d, &env->fp_status);
return d0.ll;
}
uint32_t helper_ftrc_FT(uint32_t t0)
{
CPU_FloatU f;
f.l = t0;
return float32_to_int32_round_to_zero(f.f, &env->fp_status);
}
uint32_t helper_ftrc_DT(uint64_t t0)
{
CPU_DoubleU d;
d.ll = t0;
return float64_to_int32_round_to_zero(d.d, &env->fp_status);
}