mirror of
https://github.com/qemu/qemu.git
synced 2024-11-25 20:03:37 +08:00
d5dd696fe3
The address we pick in sparc64.ld is also 0x60000000, so doing a fixed map on top of that is guaranteed to blow up. Choosing 0x40000000 is exactly right for the max of code_gen_buffer_size set below. No need to ever use MAP_FIXED. While getting our desired address helps optimize the generated code, we won't fail if we don't get it. Signed-off-by: Richard Henderson <rth@twiddle.net>
4268 lines
123 KiB
C
4268 lines
123 KiB
C
/*
|
|
* virtual page mapping and translated block handling
|
|
*
|
|
* Copyright (c) 2003 Fabrice Bellard
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include "config.h"
|
|
#ifdef _WIN32
|
|
#include <windows.h>
|
|
#else
|
|
#include <sys/types.h>
|
|
#include <sys/mman.h>
|
|
#endif
|
|
|
|
#include "qemu-common.h"
|
|
#include "cpu.h"
|
|
#include "tcg.h"
|
|
#include "hw/hw.h"
|
|
#include "hw/qdev.h"
|
|
#include "osdep.h"
|
|
#include "kvm.h"
|
|
#include "hw/xen.h"
|
|
#include "qemu-timer.h"
|
|
#include "memory.h"
|
|
#include "exec-memory.h"
|
|
#if defined(CONFIG_USER_ONLY)
|
|
#include <qemu.h>
|
|
#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
|
|
#include <sys/param.h>
|
|
#if __FreeBSD_version >= 700104
|
|
#define HAVE_KINFO_GETVMMAP
|
|
#define sigqueue sigqueue_freebsd /* avoid redefinition */
|
|
#include <sys/time.h>
|
|
#include <sys/proc.h>
|
|
#include <machine/profile.h>
|
|
#define _KERNEL
|
|
#include <sys/user.h>
|
|
#undef _KERNEL
|
|
#undef sigqueue
|
|
#include <libutil.h>
|
|
#endif
|
|
#endif
|
|
#else /* !CONFIG_USER_ONLY */
|
|
#include "xen-mapcache.h"
|
|
#include "trace.h"
|
|
#endif
|
|
|
|
#include "cputlb.h"
|
|
|
|
#define WANT_EXEC_OBSOLETE
|
|
#include "exec-obsolete.h"
|
|
|
|
//#define DEBUG_TB_INVALIDATE
|
|
//#define DEBUG_FLUSH
|
|
//#define DEBUG_UNASSIGNED
|
|
|
|
/* make various TB consistency checks */
|
|
//#define DEBUG_TB_CHECK
|
|
|
|
//#define DEBUG_IOPORT
|
|
//#define DEBUG_SUBPAGE
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
/* TB consistency checks only implemented for usermode emulation. */
|
|
#undef DEBUG_TB_CHECK
|
|
#endif
|
|
|
|
#define SMC_BITMAP_USE_THRESHOLD 10
|
|
|
|
static TranslationBlock *tbs;
|
|
static int code_gen_max_blocks;
|
|
TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
|
|
static int nb_tbs;
|
|
/* any access to the tbs or the page table must use this lock */
|
|
spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
|
|
|
|
#if defined(__arm__) || defined(__sparc_v9__)
|
|
/* The prologue must be reachable with a direct jump. ARM and Sparc64
|
|
have limited branch ranges (possibly also PPC) so place it in a
|
|
section close to code segment. */
|
|
#define code_gen_section \
|
|
__attribute__((__section__(".gen_code"))) \
|
|
__attribute__((aligned (32)))
|
|
#elif defined(_WIN32) && !defined(_WIN64)
|
|
#define code_gen_section \
|
|
__attribute__((aligned (16)))
|
|
#else
|
|
#define code_gen_section \
|
|
__attribute__((aligned (32)))
|
|
#endif
|
|
|
|
uint8_t code_gen_prologue[1024] code_gen_section;
|
|
static uint8_t *code_gen_buffer;
|
|
static unsigned long code_gen_buffer_size;
|
|
/* threshold to flush the translated code buffer */
|
|
static unsigned long code_gen_buffer_max_size;
|
|
static uint8_t *code_gen_ptr;
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
int phys_ram_fd;
|
|
static int in_migration;
|
|
|
|
RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
|
|
|
|
static MemoryRegion *system_memory;
|
|
static MemoryRegion *system_io;
|
|
|
|
MemoryRegion io_mem_ram, io_mem_rom, io_mem_unassigned, io_mem_notdirty;
|
|
static MemoryRegion io_mem_subpage_ram;
|
|
|
|
#endif
|
|
|
|
CPUArchState *first_cpu;
|
|
/* current CPU in the current thread. It is only valid inside
|
|
cpu_exec() */
|
|
DEFINE_TLS(CPUArchState *,cpu_single_env);
|
|
/* 0 = Do not count executed instructions.
|
|
1 = Precise instruction counting.
|
|
2 = Adaptive rate instruction counting. */
|
|
int use_icount = 0;
|
|
|
|
typedef struct PageDesc {
|
|
/* list of TBs intersecting this ram page */
|
|
TranslationBlock *first_tb;
|
|
/* in order to optimize self modifying code, we count the number
|
|
of lookups we do to a given page to use a bitmap */
|
|
unsigned int code_write_count;
|
|
uint8_t *code_bitmap;
|
|
#if defined(CONFIG_USER_ONLY)
|
|
unsigned long flags;
|
|
#endif
|
|
} PageDesc;
|
|
|
|
/* In system mode we want L1_MAP to be based on ram offsets,
|
|
while in user mode we want it to be based on virtual addresses. */
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
|
|
# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
|
|
#else
|
|
# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
|
|
#endif
|
|
#else
|
|
# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
|
|
#endif
|
|
|
|
/* Size of the L2 (and L3, etc) page tables. */
|
|
#define L2_BITS 10
|
|
#define L2_SIZE (1 << L2_BITS)
|
|
|
|
#define P_L2_LEVELS \
|
|
(((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / L2_BITS) + 1)
|
|
|
|
/* The bits remaining after N lower levels of page tables. */
|
|
#define V_L1_BITS_REM \
|
|
((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
|
|
|
|
#if V_L1_BITS_REM < 4
|
|
#define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
|
|
#else
|
|
#define V_L1_BITS V_L1_BITS_REM
|
|
#endif
|
|
|
|
#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
|
|
|
|
#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
|
|
|
|
uintptr_t qemu_real_host_page_size;
|
|
uintptr_t qemu_host_page_size;
|
|
uintptr_t qemu_host_page_mask;
|
|
|
|
/* This is a multi-level map on the virtual address space.
|
|
The bottom level has pointers to PageDesc. */
|
|
static void *l1_map[V_L1_SIZE];
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
typedef struct PhysPageEntry PhysPageEntry;
|
|
|
|
static MemoryRegionSection *phys_sections;
|
|
static unsigned phys_sections_nb, phys_sections_nb_alloc;
|
|
static uint16_t phys_section_unassigned;
|
|
static uint16_t phys_section_notdirty;
|
|
static uint16_t phys_section_rom;
|
|
static uint16_t phys_section_watch;
|
|
|
|
struct PhysPageEntry {
|
|
uint16_t is_leaf : 1;
|
|
/* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
|
|
uint16_t ptr : 15;
|
|
};
|
|
|
|
/* Simple allocator for PhysPageEntry nodes */
|
|
static PhysPageEntry (*phys_map_nodes)[L2_SIZE];
|
|
static unsigned phys_map_nodes_nb, phys_map_nodes_nb_alloc;
|
|
|
|
#define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
|
|
|
|
/* This is a multi-level map on the physical address space.
|
|
The bottom level has pointers to MemoryRegionSections. */
|
|
static PhysPageEntry phys_map = { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
|
|
|
|
static void io_mem_init(void);
|
|
static void memory_map_init(void);
|
|
|
|
static MemoryRegion io_mem_watch;
|
|
#endif
|
|
|
|
/* statistics */
|
|
static int tb_flush_count;
|
|
static int tb_phys_invalidate_count;
|
|
|
|
#ifdef _WIN32
|
|
static void map_exec(void *addr, long size)
|
|
{
|
|
DWORD old_protect;
|
|
VirtualProtect(addr, size,
|
|
PAGE_EXECUTE_READWRITE, &old_protect);
|
|
|
|
}
|
|
#else
|
|
static void map_exec(void *addr, long size)
|
|
{
|
|
unsigned long start, end, page_size;
|
|
|
|
page_size = getpagesize();
|
|
start = (unsigned long)addr;
|
|
start &= ~(page_size - 1);
|
|
|
|
end = (unsigned long)addr + size;
|
|
end += page_size - 1;
|
|
end &= ~(page_size - 1);
|
|
|
|
mprotect((void *)start, end - start,
|
|
PROT_READ | PROT_WRITE | PROT_EXEC);
|
|
}
|
|
#endif
|
|
|
|
static void page_init(void)
|
|
{
|
|
/* NOTE: we can always suppose that qemu_host_page_size >=
|
|
TARGET_PAGE_SIZE */
|
|
#ifdef _WIN32
|
|
{
|
|
SYSTEM_INFO system_info;
|
|
|
|
GetSystemInfo(&system_info);
|
|
qemu_real_host_page_size = system_info.dwPageSize;
|
|
}
|
|
#else
|
|
qemu_real_host_page_size = getpagesize();
|
|
#endif
|
|
if (qemu_host_page_size == 0)
|
|
qemu_host_page_size = qemu_real_host_page_size;
|
|
if (qemu_host_page_size < TARGET_PAGE_SIZE)
|
|
qemu_host_page_size = TARGET_PAGE_SIZE;
|
|
qemu_host_page_mask = ~(qemu_host_page_size - 1);
|
|
|
|
#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
|
|
{
|
|
#ifdef HAVE_KINFO_GETVMMAP
|
|
struct kinfo_vmentry *freep;
|
|
int i, cnt;
|
|
|
|
freep = kinfo_getvmmap(getpid(), &cnt);
|
|
if (freep) {
|
|
mmap_lock();
|
|
for (i = 0; i < cnt; i++) {
|
|
unsigned long startaddr, endaddr;
|
|
|
|
startaddr = freep[i].kve_start;
|
|
endaddr = freep[i].kve_end;
|
|
if (h2g_valid(startaddr)) {
|
|
startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
|
|
|
|
if (h2g_valid(endaddr)) {
|
|
endaddr = h2g(endaddr);
|
|
page_set_flags(startaddr, endaddr, PAGE_RESERVED);
|
|
} else {
|
|
#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
|
|
endaddr = ~0ul;
|
|
page_set_flags(startaddr, endaddr, PAGE_RESERVED);
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
free(freep);
|
|
mmap_unlock();
|
|
}
|
|
#else
|
|
FILE *f;
|
|
|
|
last_brk = (unsigned long)sbrk(0);
|
|
|
|
f = fopen("/compat/linux/proc/self/maps", "r");
|
|
if (f) {
|
|
mmap_lock();
|
|
|
|
do {
|
|
unsigned long startaddr, endaddr;
|
|
int n;
|
|
|
|
n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
|
|
|
|
if (n == 2 && h2g_valid(startaddr)) {
|
|
startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
|
|
|
|
if (h2g_valid(endaddr)) {
|
|
endaddr = h2g(endaddr);
|
|
} else {
|
|
endaddr = ~0ul;
|
|
}
|
|
page_set_flags(startaddr, endaddr, PAGE_RESERVED);
|
|
}
|
|
} while (!feof(f));
|
|
|
|
fclose(f);
|
|
mmap_unlock();
|
|
}
|
|
#endif
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
|
|
{
|
|
PageDesc *pd;
|
|
void **lp;
|
|
int i;
|
|
|
|
#if defined(CONFIG_USER_ONLY)
|
|
/* We can't use g_malloc because it may recurse into a locked mutex. */
|
|
# define ALLOC(P, SIZE) \
|
|
do { \
|
|
P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
|
|
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
|
|
} while (0)
|
|
#else
|
|
# define ALLOC(P, SIZE) \
|
|
do { P = g_malloc0(SIZE); } while (0)
|
|
#endif
|
|
|
|
/* Level 1. Always allocated. */
|
|
lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
|
|
|
|
/* Level 2..N-1. */
|
|
for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
|
|
void **p = *lp;
|
|
|
|
if (p == NULL) {
|
|
if (!alloc) {
|
|
return NULL;
|
|
}
|
|
ALLOC(p, sizeof(void *) * L2_SIZE);
|
|
*lp = p;
|
|
}
|
|
|
|
lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
|
|
}
|
|
|
|
pd = *lp;
|
|
if (pd == NULL) {
|
|
if (!alloc) {
|
|
return NULL;
|
|
}
|
|
ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
|
|
*lp = pd;
|
|
}
|
|
|
|
#undef ALLOC
|
|
|
|
return pd + (index & (L2_SIZE - 1));
|
|
}
|
|
|
|
static inline PageDesc *page_find(tb_page_addr_t index)
|
|
{
|
|
return page_find_alloc(index, 0);
|
|
}
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
|
|
static void phys_map_node_reserve(unsigned nodes)
|
|
{
|
|
if (phys_map_nodes_nb + nodes > phys_map_nodes_nb_alloc) {
|
|
typedef PhysPageEntry Node[L2_SIZE];
|
|
phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc * 2, 16);
|
|
phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc,
|
|
phys_map_nodes_nb + nodes);
|
|
phys_map_nodes = g_renew(Node, phys_map_nodes,
|
|
phys_map_nodes_nb_alloc);
|
|
}
|
|
}
|
|
|
|
static uint16_t phys_map_node_alloc(void)
|
|
{
|
|
unsigned i;
|
|
uint16_t ret;
|
|
|
|
ret = phys_map_nodes_nb++;
|
|
assert(ret != PHYS_MAP_NODE_NIL);
|
|
assert(ret != phys_map_nodes_nb_alloc);
|
|
for (i = 0; i < L2_SIZE; ++i) {
|
|
phys_map_nodes[ret][i].is_leaf = 0;
|
|
phys_map_nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void phys_map_nodes_reset(void)
|
|
{
|
|
phys_map_nodes_nb = 0;
|
|
}
|
|
|
|
|
|
static void phys_page_set_level(PhysPageEntry *lp, target_phys_addr_t *index,
|
|
target_phys_addr_t *nb, uint16_t leaf,
|
|
int level)
|
|
{
|
|
PhysPageEntry *p;
|
|
int i;
|
|
target_phys_addr_t step = (target_phys_addr_t)1 << (level * L2_BITS);
|
|
|
|
if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
|
|
lp->ptr = phys_map_node_alloc();
|
|
p = phys_map_nodes[lp->ptr];
|
|
if (level == 0) {
|
|
for (i = 0; i < L2_SIZE; i++) {
|
|
p[i].is_leaf = 1;
|
|
p[i].ptr = phys_section_unassigned;
|
|
}
|
|
}
|
|
} else {
|
|
p = phys_map_nodes[lp->ptr];
|
|
}
|
|
lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
|
|
|
|
while (*nb && lp < &p[L2_SIZE]) {
|
|
if ((*index & (step - 1)) == 0 && *nb >= step) {
|
|
lp->is_leaf = true;
|
|
lp->ptr = leaf;
|
|
*index += step;
|
|
*nb -= step;
|
|
} else {
|
|
phys_page_set_level(lp, index, nb, leaf, level - 1);
|
|
}
|
|
++lp;
|
|
}
|
|
}
|
|
|
|
static void phys_page_set(target_phys_addr_t index, target_phys_addr_t nb,
|
|
uint16_t leaf)
|
|
{
|
|
/* Wildly overreserve - it doesn't matter much. */
|
|
phys_map_node_reserve(3 * P_L2_LEVELS);
|
|
|
|
phys_page_set_level(&phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
|
|
}
|
|
|
|
MemoryRegionSection *phys_page_find(target_phys_addr_t index)
|
|
{
|
|
PhysPageEntry lp = phys_map;
|
|
PhysPageEntry *p;
|
|
int i;
|
|
uint16_t s_index = phys_section_unassigned;
|
|
|
|
for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
|
|
if (lp.ptr == PHYS_MAP_NODE_NIL) {
|
|
goto not_found;
|
|
}
|
|
p = phys_map_nodes[lp.ptr];
|
|
lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
|
|
}
|
|
|
|
s_index = lp.ptr;
|
|
not_found:
|
|
return &phys_sections[s_index];
|
|
}
|
|
|
|
bool memory_region_is_unassigned(MemoryRegion *mr)
|
|
{
|
|
return mr != &io_mem_ram && mr != &io_mem_rom
|
|
&& mr != &io_mem_notdirty && !mr->rom_device
|
|
&& mr != &io_mem_watch;
|
|
}
|
|
|
|
#define mmap_lock() do { } while(0)
|
|
#define mmap_unlock() do { } while(0)
|
|
#endif
|
|
|
|
#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
|
|
|
|
#if defined(CONFIG_USER_ONLY)
|
|
/* Currently it is not recommended to allocate big chunks of data in
|
|
user mode. It will change when a dedicated libc will be used */
|
|
#define USE_STATIC_CODE_GEN_BUFFER
|
|
#endif
|
|
|
|
#ifdef USE_STATIC_CODE_GEN_BUFFER
|
|
static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
|
|
__attribute__((aligned (CODE_GEN_ALIGN)));
|
|
#endif
|
|
|
|
static void code_gen_alloc(unsigned long tb_size)
|
|
{
|
|
#ifdef USE_STATIC_CODE_GEN_BUFFER
|
|
code_gen_buffer = static_code_gen_buffer;
|
|
code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
|
|
map_exec(code_gen_buffer, code_gen_buffer_size);
|
|
#else
|
|
code_gen_buffer_size = tb_size;
|
|
if (code_gen_buffer_size == 0) {
|
|
#if defined(CONFIG_USER_ONLY)
|
|
code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
|
|
#else
|
|
/* XXX: needs adjustments */
|
|
code_gen_buffer_size = (unsigned long)(ram_size / 4);
|
|
#endif
|
|
}
|
|
if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
|
|
code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
|
|
/* The code gen buffer location may have constraints depending on
|
|
the host cpu and OS */
|
|
#if defined(__linux__)
|
|
{
|
|
int flags;
|
|
void *start = NULL;
|
|
|
|
flags = MAP_PRIVATE | MAP_ANONYMOUS;
|
|
#if defined(__x86_64__)
|
|
flags |= MAP_32BIT;
|
|
/* Cannot map more than that */
|
|
if (code_gen_buffer_size > (800 * 1024 * 1024))
|
|
code_gen_buffer_size = (800 * 1024 * 1024);
|
|
#elif defined(__sparc_v9__)
|
|
// Map the buffer below 2G, so we can use direct calls and branches
|
|
start = (void *) 0x40000000UL;
|
|
if (code_gen_buffer_size > (512 * 1024 * 1024))
|
|
code_gen_buffer_size = (512 * 1024 * 1024);
|
|
#elif defined(__arm__)
|
|
/* Keep the buffer no bigger than 16MB to branch between blocks */
|
|
if (code_gen_buffer_size > 16 * 1024 * 1024)
|
|
code_gen_buffer_size = 16 * 1024 * 1024;
|
|
#elif defined(__s390x__)
|
|
/* Map the buffer so that we can use direct calls and branches. */
|
|
/* We have a +- 4GB range on the branches; leave some slop. */
|
|
if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
|
|
code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
|
|
}
|
|
start = (void *)0x90000000UL;
|
|
#endif
|
|
code_gen_buffer = mmap(start, code_gen_buffer_size,
|
|
PROT_WRITE | PROT_READ | PROT_EXEC,
|
|
flags, -1, 0);
|
|
if (code_gen_buffer == MAP_FAILED) {
|
|
fprintf(stderr, "Could not allocate dynamic translator buffer\n");
|
|
exit(1);
|
|
}
|
|
}
|
|
#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
|
|
|| defined(__DragonFly__) || defined(__OpenBSD__) \
|
|
|| defined(__NetBSD__)
|
|
{
|
|
int flags;
|
|
void *addr = NULL;
|
|
flags = MAP_PRIVATE | MAP_ANONYMOUS;
|
|
#if defined(__x86_64__)
|
|
/* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
|
|
* 0x40000000 is free */
|
|
flags |= MAP_FIXED;
|
|
addr = (void *)0x40000000;
|
|
/* Cannot map more than that */
|
|
if (code_gen_buffer_size > (800 * 1024 * 1024))
|
|
code_gen_buffer_size = (800 * 1024 * 1024);
|
|
#elif defined(__sparc_v9__)
|
|
// Map the buffer below 2G, so we can use direct calls and branches
|
|
addr = (void *) 0x40000000UL;
|
|
if (code_gen_buffer_size > (512 * 1024 * 1024)) {
|
|
code_gen_buffer_size = (512 * 1024 * 1024);
|
|
}
|
|
#endif
|
|
code_gen_buffer = mmap(addr, code_gen_buffer_size,
|
|
PROT_WRITE | PROT_READ | PROT_EXEC,
|
|
flags, -1, 0);
|
|
if (code_gen_buffer == MAP_FAILED) {
|
|
fprintf(stderr, "Could not allocate dynamic translator buffer\n");
|
|
exit(1);
|
|
}
|
|
}
|
|
#else
|
|
code_gen_buffer = g_malloc(code_gen_buffer_size);
|
|
map_exec(code_gen_buffer, code_gen_buffer_size);
|
|
#endif
|
|
#endif /* !USE_STATIC_CODE_GEN_BUFFER */
|
|
map_exec(code_gen_prologue, sizeof(code_gen_prologue));
|
|
code_gen_buffer_max_size = code_gen_buffer_size -
|
|
(TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
|
|
code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
|
|
tbs = g_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
|
|
}
|
|
|
|
/* Must be called before using the QEMU cpus. 'tb_size' is the size
|
|
(in bytes) allocated to the translation buffer. Zero means default
|
|
size. */
|
|
void tcg_exec_init(unsigned long tb_size)
|
|
{
|
|
cpu_gen_init();
|
|
code_gen_alloc(tb_size);
|
|
code_gen_ptr = code_gen_buffer;
|
|
tcg_register_jit(code_gen_buffer, code_gen_buffer_size);
|
|
page_init();
|
|
#if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
|
|
/* There's no guest base to take into account, so go ahead and
|
|
initialize the prologue now. */
|
|
tcg_prologue_init(&tcg_ctx);
|
|
#endif
|
|
}
|
|
|
|
bool tcg_enabled(void)
|
|
{
|
|
return code_gen_buffer != NULL;
|
|
}
|
|
|
|
void cpu_exec_init_all(void)
|
|
{
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
memory_map_init();
|
|
io_mem_init();
|
|
#endif
|
|
}
|
|
|
|
#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
|
|
|
|
static int cpu_common_post_load(void *opaque, int version_id)
|
|
{
|
|
CPUArchState *env = opaque;
|
|
|
|
/* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
|
|
version_id is increased. */
|
|
env->interrupt_request &= ~0x01;
|
|
tlb_flush(env, 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const VMStateDescription vmstate_cpu_common = {
|
|
.name = "cpu_common",
|
|
.version_id = 1,
|
|
.minimum_version_id = 1,
|
|
.minimum_version_id_old = 1,
|
|
.post_load = cpu_common_post_load,
|
|
.fields = (VMStateField []) {
|
|
VMSTATE_UINT32(halted, CPUArchState),
|
|
VMSTATE_UINT32(interrupt_request, CPUArchState),
|
|
VMSTATE_END_OF_LIST()
|
|
}
|
|
};
|
|
#endif
|
|
|
|
CPUArchState *qemu_get_cpu(int cpu)
|
|
{
|
|
CPUArchState *env = first_cpu;
|
|
|
|
while (env) {
|
|
if (env->cpu_index == cpu)
|
|
break;
|
|
env = env->next_cpu;
|
|
}
|
|
|
|
return env;
|
|
}
|
|
|
|
void cpu_exec_init(CPUArchState *env)
|
|
{
|
|
CPUArchState **penv;
|
|
int cpu_index;
|
|
|
|
#if defined(CONFIG_USER_ONLY)
|
|
cpu_list_lock();
|
|
#endif
|
|
env->next_cpu = NULL;
|
|
penv = &first_cpu;
|
|
cpu_index = 0;
|
|
while (*penv != NULL) {
|
|
penv = &(*penv)->next_cpu;
|
|
cpu_index++;
|
|
}
|
|
env->cpu_index = cpu_index;
|
|
env->numa_node = 0;
|
|
QTAILQ_INIT(&env->breakpoints);
|
|
QTAILQ_INIT(&env->watchpoints);
|
|
#ifndef CONFIG_USER_ONLY
|
|
env->thread_id = qemu_get_thread_id();
|
|
#endif
|
|
*penv = env;
|
|
#if defined(CONFIG_USER_ONLY)
|
|
cpu_list_unlock();
|
|
#endif
|
|
#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
|
|
vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
|
|
register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
|
|
cpu_save, cpu_load, env);
|
|
#endif
|
|
}
|
|
|
|
/* Allocate a new translation block. Flush the translation buffer if
|
|
too many translation blocks or too much generated code. */
|
|
static TranslationBlock *tb_alloc(target_ulong pc)
|
|
{
|
|
TranslationBlock *tb;
|
|
|
|
if (nb_tbs >= code_gen_max_blocks ||
|
|
(code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
|
|
return NULL;
|
|
tb = &tbs[nb_tbs++];
|
|
tb->pc = pc;
|
|
tb->cflags = 0;
|
|
return tb;
|
|
}
|
|
|
|
void tb_free(TranslationBlock *tb)
|
|
{
|
|
/* In practice this is mostly used for single use temporary TB
|
|
Ignore the hard cases and just back up if this TB happens to
|
|
be the last one generated. */
|
|
if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
|
|
code_gen_ptr = tb->tc_ptr;
|
|
nb_tbs--;
|
|
}
|
|
}
|
|
|
|
static inline void invalidate_page_bitmap(PageDesc *p)
|
|
{
|
|
if (p->code_bitmap) {
|
|
g_free(p->code_bitmap);
|
|
p->code_bitmap = NULL;
|
|
}
|
|
p->code_write_count = 0;
|
|
}
|
|
|
|
/* Set to NULL all the 'first_tb' fields in all PageDescs. */
|
|
|
|
static void page_flush_tb_1 (int level, void **lp)
|
|
{
|
|
int i;
|
|
|
|
if (*lp == NULL) {
|
|
return;
|
|
}
|
|
if (level == 0) {
|
|
PageDesc *pd = *lp;
|
|
for (i = 0; i < L2_SIZE; ++i) {
|
|
pd[i].first_tb = NULL;
|
|
invalidate_page_bitmap(pd + i);
|
|
}
|
|
} else {
|
|
void **pp = *lp;
|
|
for (i = 0; i < L2_SIZE; ++i) {
|
|
page_flush_tb_1 (level - 1, pp + i);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void page_flush_tb(void)
|
|
{
|
|
int i;
|
|
for (i = 0; i < V_L1_SIZE; i++) {
|
|
page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
|
|
}
|
|
}
|
|
|
|
/* flush all the translation blocks */
|
|
/* XXX: tb_flush is currently not thread safe */
|
|
void tb_flush(CPUArchState *env1)
|
|
{
|
|
CPUArchState *env;
|
|
#if defined(DEBUG_FLUSH)
|
|
printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
|
|
(unsigned long)(code_gen_ptr - code_gen_buffer),
|
|
nb_tbs, nb_tbs > 0 ?
|
|
((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
|
|
#endif
|
|
if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
|
|
cpu_abort(env1, "Internal error: code buffer overflow\n");
|
|
|
|
nb_tbs = 0;
|
|
|
|
for(env = first_cpu; env != NULL; env = env->next_cpu) {
|
|
memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
|
|
}
|
|
|
|
memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
|
|
page_flush_tb();
|
|
|
|
code_gen_ptr = code_gen_buffer;
|
|
/* XXX: flush processor icache at this point if cache flush is
|
|
expensive */
|
|
tb_flush_count++;
|
|
}
|
|
|
|
#ifdef DEBUG_TB_CHECK
|
|
|
|
static void tb_invalidate_check(target_ulong address)
|
|
{
|
|
TranslationBlock *tb;
|
|
int i;
|
|
address &= TARGET_PAGE_MASK;
|
|
for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
|
|
for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
|
|
if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
|
|
address >= tb->pc + tb->size)) {
|
|
printf("ERROR invalidate: address=" TARGET_FMT_lx
|
|
" PC=%08lx size=%04x\n",
|
|
address, (long)tb->pc, tb->size);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* verify that all the pages have correct rights for code */
|
|
static void tb_page_check(void)
|
|
{
|
|
TranslationBlock *tb;
|
|
int i, flags1, flags2;
|
|
|
|
for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
|
|
for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
|
|
flags1 = page_get_flags(tb->pc);
|
|
flags2 = page_get_flags(tb->pc + tb->size - 1);
|
|
if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
|
|
printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
|
|
(long)tb->pc, tb->size, flags1, flags2);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
/* invalidate one TB */
|
|
static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
|
|
int next_offset)
|
|
{
|
|
TranslationBlock *tb1;
|
|
for(;;) {
|
|
tb1 = *ptb;
|
|
if (tb1 == tb) {
|
|
*ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
|
|
break;
|
|
}
|
|
ptb = (TranslationBlock **)((char *)tb1 + next_offset);
|
|
}
|
|
}
|
|
|
|
static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
|
|
{
|
|
TranslationBlock *tb1;
|
|
unsigned int n1;
|
|
|
|
for(;;) {
|
|
tb1 = *ptb;
|
|
n1 = (uintptr_t)tb1 & 3;
|
|
tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
|
|
if (tb1 == tb) {
|
|
*ptb = tb1->page_next[n1];
|
|
break;
|
|
}
|
|
ptb = &tb1->page_next[n1];
|
|
}
|
|
}
|
|
|
|
static inline void tb_jmp_remove(TranslationBlock *tb, int n)
|
|
{
|
|
TranslationBlock *tb1, **ptb;
|
|
unsigned int n1;
|
|
|
|
ptb = &tb->jmp_next[n];
|
|
tb1 = *ptb;
|
|
if (tb1) {
|
|
/* find tb(n) in circular list */
|
|
for(;;) {
|
|
tb1 = *ptb;
|
|
n1 = (uintptr_t)tb1 & 3;
|
|
tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
|
|
if (n1 == n && tb1 == tb)
|
|
break;
|
|
if (n1 == 2) {
|
|
ptb = &tb1->jmp_first;
|
|
} else {
|
|
ptb = &tb1->jmp_next[n1];
|
|
}
|
|
}
|
|
/* now we can suppress tb(n) from the list */
|
|
*ptb = tb->jmp_next[n];
|
|
|
|
tb->jmp_next[n] = NULL;
|
|
}
|
|
}
|
|
|
|
/* reset the jump entry 'n' of a TB so that it is not chained to
|
|
another TB */
|
|
static inline void tb_reset_jump(TranslationBlock *tb, int n)
|
|
{
|
|
tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
|
|
}
|
|
|
|
void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
|
|
{
|
|
CPUArchState *env;
|
|
PageDesc *p;
|
|
unsigned int h, n1;
|
|
tb_page_addr_t phys_pc;
|
|
TranslationBlock *tb1, *tb2;
|
|
|
|
/* remove the TB from the hash list */
|
|
phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
|
|
h = tb_phys_hash_func(phys_pc);
|
|
tb_remove(&tb_phys_hash[h], tb,
|
|
offsetof(TranslationBlock, phys_hash_next));
|
|
|
|
/* remove the TB from the page list */
|
|
if (tb->page_addr[0] != page_addr) {
|
|
p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
|
|
tb_page_remove(&p->first_tb, tb);
|
|
invalidate_page_bitmap(p);
|
|
}
|
|
if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
|
|
p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
|
|
tb_page_remove(&p->first_tb, tb);
|
|
invalidate_page_bitmap(p);
|
|
}
|
|
|
|
tb_invalidated_flag = 1;
|
|
|
|
/* remove the TB from the hash list */
|
|
h = tb_jmp_cache_hash_func(tb->pc);
|
|
for(env = first_cpu; env != NULL; env = env->next_cpu) {
|
|
if (env->tb_jmp_cache[h] == tb)
|
|
env->tb_jmp_cache[h] = NULL;
|
|
}
|
|
|
|
/* suppress this TB from the two jump lists */
|
|
tb_jmp_remove(tb, 0);
|
|
tb_jmp_remove(tb, 1);
|
|
|
|
/* suppress any remaining jumps to this TB */
|
|
tb1 = tb->jmp_first;
|
|
for(;;) {
|
|
n1 = (uintptr_t)tb1 & 3;
|
|
if (n1 == 2)
|
|
break;
|
|
tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
|
|
tb2 = tb1->jmp_next[n1];
|
|
tb_reset_jump(tb1, n1);
|
|
tb1->jmp_next[n1] = NULL;
|
|
tb1 = tb2;
|
|
}
|
|
tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
|
|
|
|
tb_phys_invalidate_count++;
|
|
}
|
|
|
|
static inline void set_bits(uint8_t *tab, int start, int len)
|
|
{
|
|
int end, mask, end1;
|
|
|
|
end = start + len;
|
|
tab += start >> 3;
|
|
mask = 0xff << (start & 7);
|
|
if ((start & ~7) == (end & ~7)) {
|
|
if (start < end) {
|
|
mask &= ~(0xff << (end & 7));
|
|
*tab |= mask;
|
|
}
|
|
} else {
|
|
*tab++ |= mask;
|
|
start = (start + 8) & ~7;
|
|
end1 = end & ~7;
|
|
while (start < end1) {
|
|
*tab++ = 0xff;
|
|
start += 8;
|
|
}
|
|
if (start < end) {
|
|
mask = ~(0xff << (end & 7));
|
|
*tab |= mask;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void build_page_bitmap(PageDesc *p)
|
|
{
|
|
int n, tb_start, tb_end;
|
|
TranslationBlock *tb;
|
|
|
|
p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE / 8);
|
|
|
|
tb = p->first_tb;
|
|
while (tb != NULL) {
|
|
n = (uintptr_t)tb & 3;
|
|
tb = (TranslationBlock *)((uintptr_t)tb & ~3);
|
|
/* NOTE: this is subtle as a TB may span two physical pages */
|
|
if (n == 0) {
|
|
/* NOTE: tb_end may be after the end of the page, but
|
|
it is not a problem */
|
|
tb_start = tb->pc & ~TARGET_PAGE_MASK;
|
|
tb_end = tb_start + tb->size;
|
|
if (tb_end > TARGET_PAGE_SIZE)
|
|
tb_end = TARGET_PAGE_SIZE;
|
|
} else {
|
|
tb_start = 0;
|
|
tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
|
|
}
|
|
set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
|
|
tb = tb->page_next[n];
|
|
}
|
|
}
|
|
|
|
TranslationBlock *tb_gen_code(CPUArchState *env,
|
|
target_ulong pc, target_ulong cs_base,
|
|
int flags, int cflags)
|
|
{
|
|
TranslationBlock *tb;
|
|
uint8_t *tc_ptr;
|
|
tb_page_addr_t phys_pc, phys_page2;
|
|
target_ulong virt_page2;
|
|
int code_gen_size;
|
|
|
|
phys_pc = get_page_addr_code(env, pc);
|
|
tb = tb_alloc(pc);
|
|
if (!tb) {
|
|
/* flush must be done */
|
|
tb_flush(env);
|
|
/* cannot fail at this point */
|
|
tb = tb_alloc(pc);
|
|
/* Don't forget to invalidate previous TB info. */
|
|
tb_invalidated_flag = 1;
|
|
}
|
|
tc_ptr = code_gen_ptr;
|
|
tb->tc_ptr = tc_ptr;
|
|
tb->cs_base = cs_base;
|
|
tb->flags = flags;
|
|
tb->cflags = cflags;
|
|
cpu_gen_code(env, tb, &code_gen_size);
|
|
code_gen_ptr = (void *)(((uintptr_t)code_gen_ptr + code_gen_size +
|
|
CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
|
|
|
|
/* check next page if needed */
|
|
virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
|
|
phys_page2 = -1;
|
|
if ((pc & TARGET_PAGE_MASK) != virt_page2) {
|
|
phys_page2 = get_page_addr_code(env, virt_page2);
|
|
}
|
|
tb_link_page(tb, phys_pc, phys_page2);
|
|
return tb;
|
|
}
|
|
|
|
/*
|
|
* Invalidate all TBs which intersect with the target physical address range
|
|
* [start;end[. NOTE: start and end may refer to *different* physical pages.
|
|
* 'is_cpu_write_access' should be true if called from a real cpu write
|
|
* access: the virtual CPU will exit the current TB if code is modified inside
|
|
* this TB.
|
|
*/
|
|
void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end,
|
|
int is_cpu_write_access)
|
|
{
|
|
while (start < end) {
|
|
tb_invalidate_phys_page_range(start, end, is_cpu_write_access);
|
|
start &= TARGET_PAGE_MASK;
|
|
start += TARGET_PAGE_SIZE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Invalidate all TBs which intersect with the target physical address range
|
|
* [start;end[. NOTE: start and end must refer to the *same* physical page.
|
|
* 'is_cpu_write_access' should be true if called from a real cpu write
|
|
* access: the virtual CPU will exit the current TB if code is modified inside
|
|
* this TB.
|
|
*/
|
|
void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
|
|
int is_cpu_write_access)
|
|
{
|
|
TranslationBlock *tb, *tb_next, *saved_tb;
|
|
CPUArchState *env = cpu_single_env;
|
|
tb_page_addr_t tb_start, tb_end;
|
|
PageDesc *p;
|
|
int n;
|
|
#ifdef TARGET_HAS_PRECISE_SMC
|
|
int current_tb_not_found = is_cpu_write_access;
|
|
TranslationBlock *current_tb = NULL;
|
|
int current_tb_modified = 0;
|
|
target_ulong current_pc = 0;
|
|
target_ulong current_cs_base = 0;
|
|
int current_flags = 0;
|
|
#endif /* TARGET_HAS_PRECISE_SMC */
|
|
|
|
p = page_find(start >> TARGET_PAGE_BITS);
|
|
if (!p)
|
|
return;
|
|
if (!p->code_bitmap &&
|
|
++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
|
|
is_cpu_write_access) {
|
|
/* build code bitmap */
|
|
build_page_bitmap(p);
|
|
}
|
|
|
|
/* we remove all the TBs in the range [start, end[ */
|
|
/* XXX: see if in some cases it could be faster to invalidate all the code */
|
|
tb = p->first_tb;
|
|
while (tb != NULL) {
|
|
n = (uintptr_t)tb & 3;
|
|
tb = (TranslationBlock *)((uintptr_t)tb & ~3);
|
|
tb_next = tb->page_next[n];
|
|
/* NOTE: this is subtle as a TB may span two physical pages */
|
|
if (n == 0) {
|
|
/* NOTE: tb_end may be after the end of the page, but
|
|
it is not a problem */
|
|
tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
|
|
tb_end = tb_start + tb->size;
|
|
} else {
|
|
tb_start = tb->page_addr[1];
|
|
tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
|
|
}
|
|
if (!(tb_end <= start || tb_start >= end)) {
|
|
#ifdef TARGET_HAS_PRECISE_SMC
|
|
if (current_tb_not_found) {
|
|
current_tb_not_found = 0;
|
|
current_tb = NULL;
|
|
if (env->mem_io_pc) {
|
|
/* now we have a real cpu fault */
|
|
current_tb = tb_find_pc(env->mem_io_pc);
|
|
}
|
|
}
|
|
if (current_tb == tb &&
|
|
(current_tb->cflags & CF_COUNT_MASK) != 1) {
|
|
/* If we are modifying the current TB, we must stop
|
|
its execution. We could be more precise by checking
|
|
that the modification is after the current PC, but it
|
|
would require a specialized function to partially
|
|
restore the CPU state */
|
|
|
|
current_tb_modified = 1;
|
|
cpu_restore_state(current_tb, env, env->mem_io_pc);
|
|
cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base,
|
|
¤t_flags);
|
|
}
|
|
#endif /* TARGET_HAS_PRECISE_SMC */
|
|
/* we need to do that to handle the case where a signal
|
|
occurs while doing tb_phys_invalidate() */
|
|
saved_tb = NULL;
|
|
if (env) {
|
|
saved_tb = env->current_tb;
|
|
env->current_tb = NULL;
|
|
}
|
|
tb_phys_invalidate(tb, -1);
|
|
if (env) {
|
|
env->current_tb = saved_tb;
|
|
if (env->interrupt_request && env->current_tb)
|
|
cpu_interrupt(env, env->interrupt_request);
|
|
}
|
|
}
|
|
tb = tb_next;
|
|
}
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
/* if no code remaining, no need to continue to use slow writes */
|
|
if (!p->first_tb) {
|
|
invalidate_page_bitmap(p);
|
|
if (is_cpu_write_access) {
|
|
tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
|
|
}
|
|
}
|
|
#endif
|
|
#ifdef TARGET_HAS_PRECISE_SMC
|
|
if (current_tb_modified) {
|
|
/* we generate a block containing just the instruction
|
|
modifying the memory. It will ensure that it cannot modify
|
|
itself */
|
|
env->current_tb = NULL;
|
|
tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
|
|
cpu_resume_from_signal(env, NULL);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* len must be <= 8 and start must be a multiple of len */
|
|
static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
|
|
{
|
|
PageDesc *p;
|
|
int offset, b;
|
|
#if 0
|
|
if (1) {
|
|
qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
|
|
cpu_single_env->mem_io_vaddr, len,
|
|
cpu_single_env->eip,
|
|
cpu_single_env->eip +
|
|
(intptr_t)cpu_single_env->segs[R_CS].base);
|
|
}
|
|
#endif
|
|
p = page_find(start >> TARGET_PAGE_BITS);
|
|
if (!p)
|
|
return;
|
|
if (p->code_bitmap) {
|
|
offset = start & ~TARGET_PAGE_MASK;
|
|
b = p->code_bitmap[offset >> 3] >> (offset & 7);
|
|
if (b & ((1 << len) - 1))
|
|
goto do_invalidate;
|
|
} else {
|
|
do_invalidate:
|
|
tb_invalidate_phys_page_range(start, start + len, 1);
|
|
}
|
|
}
|
|
|
|
#if !defined(CONFIG_SOFTMMU)
|
|
static void tb_invalidate_phys_page(tb_page_addr_t addr,
|
|
uintptr_t pc, void *puc)
|
|
{
|
|
TranslationBlock *tb;
|
|
PageDesc *p;
|
|
int n;
|
|
#ifdef TARGET_HAS_PRECISE_SMC
|
|
TranslationBlock *current_tb = NULL;
|
|
CPUArchState *env = cpu_single_env;
|
|
int current_tb_modified = 0;
|
|
target_ulong current_pc = 0;
|
|
target_ulong current_cs_base = 0;
|
|
int current_flags = 0;
|
|
#endif
|
|
|
|
addr &= TARGET_PAGE_MASK;
|
|
p = page_find(addr >> TARGET_PAGE_BITS);
|
|
if (!p)
|
|
return;
|
|
tb = p->first_tb;
|
|
#ifdef TARGET_HAS_PRECISE_SMC
|
|
if (tb && pc != 0) {
|
|
current_tb = tb_find_pc(pc);
|
|
}
|
|
#endif
|
|
while (tb != NULL) {
|
|
n = (uintptr_t)tb & 3;
|
|
tb = (TranslationBlock *)((uintptr_t)tb & ~3);
|
|
#ifdef TARGET_HAS_PRECISE_SMC
|
|
if (current_tb == tb &&
|
|
(current_tb->cflags & CF_COUNT_MASK) != 1) {
|
|
/* If we are modifying the current TB, we must stop
|
|
its execution. We could be more precise by checking
|
|
that the modification is after the current PC, but it
|
|
would require a specialized function to partially
|
|
restore the CPU state */
|
|
|
|
current_tb_modified = 1;
|
|
cpu_restore_state(current_tb, env, pc);
|
|
cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base,
|
|
¤t_flags);
|
|
}
|
|
#endif /* TARGET_HAS_PRECISE_SMC */
|
|
tb_phys_invalidate(tb, addr);
|
|
tb = tb->page_next[n];
|
|
}
|
|
p->first_tb = NULL;
|
|
#ifdef TARGET_HAS_PRECISE_SMC
|
|
if (current_tb_modified) {
|
|
/* we generate a block containing just the instruction
|
|
modifying the memory. It will ensure that it cannot modify
|
|
itself */
|
|
env->current_tb = NULL;
|
|
tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
|
|
cpu_resume_from_signal(env, puc);
|
|
}
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
/* add the tb in the target page and protect it if necessary */
|
|
static inline void tb_alloc_page(TranslationBlock *tb,
|
|
unsigned int n, tb_page_addr_t page_addr)
|
|
{
|
|
PageDesc *p;
|
|
#ifndef CONFIG_USER_ONLY
|
|
bool page_already_protected;
|
|
#endif
|
|
|
|
tb->page_addr[n] = page_addr;
|
|
p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
|
|
tb->page_next[n] = p->first_tb;
|
|
#ifndef CONFIG_USER_ONLY
|
|
page_already_protected = p->first_tb != NULL;
|
|
#endif
|
|
p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
|
|
invalidate_page_bitmap(p);
|
|
|
|
#if defined(TARGET_HAS_SMC) || 1
|
|
|
|
#if defined(CONFIG_USER_ONLY)
|
|
if (p->flags & PAGE_WRITE) {
|
|
target_ulong addr;
|
|
PageDesc *p2;
|
|
int prot;
|
|
|
|
/* force the host page as non writable (writes will have a
|
|
page fault + mprotect overhead) */
|
|
page_addr &= qemu_host_page_mask;
|
|
prot = 0;
|
|
for(addr = page_addr; addr < page_addr + qemu_host_page_size;
|
|
addr += TARGET_PAGE_SIZE) {
|
|
|
|
p2 = page_find (addr >> TARGET_PAGE_BITS);
|
|
if (!p2)
|
|
continue;
|
|
prot |= p2->flags;
|
|
p2->flags &= ~PAGE_WRITE;
|
|
}
|
|
mprotect(g2h(page_addr), qemu_host_page_size,
|
|
(prot & PAGE_BITS) & ~PAGE_WRITE);
|
|
#ifdef DEBUG_TB_INVALIDATE
|
|
printf("protecting code page: 0x" TARGET_FMT_lx "\n",
|
|
page_addr);
|
|
#endif
|
|
}
|
|
#else
|
|
/* if some code is already present, then the pages are already
|
|
protected. So we handle the case where only the first TB is
|
|
allocated in a physical page */
|
|
if (!page_already_protected) {
|
|
tlb_protect_code(page_addr);
|
|
}
|
|
#endif
|
|
|
|
#endif /* TARGET_HAS_SMC */
|
|
}
|
|
|
|
/* add a new TB and link it to the physical page tables. phys_page2 is
|
|
(-1) to indicate that only one page contains the TB. */
|
|
void tb_link_page(TranslationBlock *tb,
|
|
tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
|
|
{
|
|
unsigned int h;
|
|
TranslationBlock **ptb;
|
|
|
|
/* Grab the mmap lock to stop another thread invalidating this TB
|
|
before we are done. */
|
|
mmap_lock();
|
|
/* add in the physical hash table */
|
|
h = tb_phys_hash_func(phys_pc);
|
|
ptb = &tb_phys_hash[h];
|
|
tb->phys_hash_next = *ptb;
|
|
*ptb = tb;
|
|
|
|
/* add in the page list */
|
|
tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
|
|
if (phys_page2 != -1)
|
|
tb_alloc_page(tb, 1, phys_page2);
|
|
else
|
|
tb->page_addr[1] = -1;
|
|
|
|
tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
|
|
tb->jmp_next[0] = NULL;
|
|
tb->jmp_next[1] = NULL;
|
|
|
|
/* init original jump addresses */
|
|
if (tb->tb_next_offset[0] != 0xffff)
|
|
tb_reset_jump(tb, 0);
|
|
if (tb->tb_next_offset[1] != 0xffff)
|
|
tb_reset_jump(tb, 1);
|
|
|
|
#ifdef DEBUG_TB_CHECK
|
|
tb_page_check();
|
|
#endif
|
|
mmap_unlock();
|
|
}
|
|
|
|
/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
|
|
tb[1].tc_ptr. Return NULL if not found */
|
|
TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
|
|
{
|
|
int m_min, m_max, m;
|
|
uintptr_t v;
|
|
TranslationBlock *tb;
|
|
|
|
if (nb_tbs <= 0)
|
|
return NULL;
|
|
if (tc_ptr < (uintptr_t)code_gen_buffer ||
|
|
tc_ptr >= (uintptr_t)code_gen_ptr) {
|
|
return NULL;
|
|
}
|
|
/* binary search (cf Knuth) */
|
|
m_min = 0;
|
|
m_max = nb_tbs - 1;
|
|
while (m_min <= m_max) {
|
|
m = (m_min + m_max) >> 1;
|
|
tb = &tbs[m];
|
|
v = (uintptr_t)tb->tc_ptr;
|
|
if (v == tc_ptr)
|
|
return tb;
|
|
else if (tc_ptr < v) {
|
|
m_max = m - 1;
|
|
} else {
|
|
m_min = m + 1;
|
|
}
|
|
}
|
|
return &tbs[m_max];
|
|
}
|
|
|
|
static void tb_reset_jump_recursive(TranslationBlock *tb);
|
|
|
|
static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
|
|
{
|
|
TranslationBlock *tb1, *tb_next, **ptb;
|
|
unsigned int n1;
|
|
|
|
tb1 = tb->jmp_next[n];
|
|
if (tb1 != NULL) {
|
|
/* find head of list */
|
|
for(;;) {
|
|
n1 = (uintptr_t)tb1 & 3;
|
|
tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
|
|
if (n1 == 2)
|
|
break;
|
|
tb1 = tb1->jmp_next[n1];
|
|
}
|
|
/* we are now sure now that tb jumps to tb1 */
|
|
tb_next = tb1;
|
|
|
|
/* remove tb from the jmp_first list */
|
|
ptb = &tb_next->jmp_first;
|
|
for(;;) {
|
|
tb1 = *ptb;
|
|
n1 = (uintptr_t)tb1 & 3;
|
|
tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
|
|
if (n1 == n && tb1 == tb)
|
|
break;
|
|
ptb = &tb1->jmp_next[n1];
|
|
}
|
|
*ptb = tb->jmp_next[n];
|
|
tb->jmp_next[n] = NULL;
|
|
|
|
/* suppress the jump to next tb in generated code */
|
|
tb_reset_jump(tb, n);
|
|
|
|
/* suppress jumps in the tb on which we could have jumped */
|
|
tb_reset_jump_recursive(tb_next);
|
|
}
|
|
}
|
|
|
|
static void tb_reset_jump_recursive(TranslationBlock *tb)
|
|
{
|
|
tb_reset_jump_recursive2(tb, 0);
|
|
tb_reset_jump_recursive2(tb, 1);
|
|
}
|
|
|
|
#if defined(TARGET_HAS_ICE)
|
|
#if defined(CONFIG_USER_ONLY)
|
|
static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
|
|
{
|
|
tb_invalidate_phys_page_range(pc, pc + 1, 0);
|
|
}
|
|
#else
|
|
void tb_invalidate_phys_addr(target_phys_addr_t addr)
|
|
{
|
|
ram_addr_t ram_addr;
|
|
MemoryRegionSection *section;
|
|
|
|
section = phys_page_find(addr >> TARGET_PAGE_BITS);
|
|
if (!(memory_region_is_ram(section->mr)
|
|
|| (section->mr->rom_device && section->mr->readable))) {
|
|
return;
|
|
}
|
|
ram_addr = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
|
|
+ memory_region_section_addr(section, addr);
|
|
tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
|
|
}
|
|
|
|
static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
|
|
{
|
|
tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc) |
|
|
(pc & ~TARGET_PAGE_MASK));
|
|
}
|
|
#endif
|
|
#endif /* TARGET_HAS_ICE */
|
|
|
|
#if defined(CONFIG_USER_ONLY)
|
|
void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
|
|
|
|
{
|
|
}
|
|
|
|
int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
|
|
int flags, CPUWatchpoint **watchpoint)
|
|
{
|
|
return -ENOSYS;
|
|
}
|
|
#else
|
|
/* Add a watchpoint. */
|
|
int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
|
|
int flags, CPUWatchpoint **watchpoint)
|
|
{
|
|
target_ulong len_mask = ~(len - 1);
|
|
CPUWatchpoint *wp;
|
|
|
|
/* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
|
|
if ((len & (len - 1)) || (addr & ~len_mask) ||
|
|
len == 0 || len > TARGET_PAGE_SIZE) {
|
|
fprintf(stderr, "qemu: tried to set invalid watchpoint at "
|
|
TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
|
|
return -EINVAL;
|
|
}
|
|
wp = g_malloc(sizeof(*wp));
|
|
|
|
wp->vaddr = addr;
|
|
wp->len_mask = len_mask;
|
|
wp->flags = flags;
|
|
|
|
/* keep all GDB-injected watchpoints in front */
|
|
if (flags & BP_GDB)
|
|
QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
|
|
else
|
|
QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
|
|
|
|
tlb_flush_page(env, addr);
|
|
|
|
if (watchpoint)
|
|
*watchpoint = wp;
|
|
return 0;
|
|
}
|
|
|
|
/* Remove a specific watchpoint. */
|
|
int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
|
|
int flags)
|
|
{
|
|
target_ulong len_mask = ~(len - 1);
|
|
CPUWatchpoint *wp;
|
|
|
|
QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
|
|
if (addr == wp->vaddr && len_mask == wp->len_mask
|
|
&& flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
|
|
cpu_watchpoint_remove_by_ref(env, wp);
|
|
return 0;
|
|
}
|
|
}
|
|
return -ENOENT;
|
|
}
|
|
|
|
/* Remove a specific watchpoint by reference. */
|
|
void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
|
|
{
|
|
QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
|
|
|
|
tlb_flush_page(env, watchpoint->vaddr);
|
|
|
|
g_free(watchpoint);
|
|
}
|
|
|
|
/* Remove all matching watchpoints. */
|
|
void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
|
|
{
|
|
CPUWatchpoint *wp, *next;
|
|
|
|
QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
|
|
if (wp->flags & mask)
|
|
cpu_watchpoint_remove_by_ref(env, wp);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Add a breakpoint. */
|
|
int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
|
|
CPUBreakpoint **breakpoint)
|
|
{
|
|
#if defined(TARGET_HAS_ICE)
|
|
CPUBreakpoint *bp;
|
|
|
|
bp = g_malloc(sizeof(*bp));
|
|
|
|
bp->pc = pc;
|
|
bp->flags = flags;
|
|
|
|
/* keep all GDB-injected breakpoints in front */
|
|
if (flags & BP_GDB)
|
|
QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
|
|
else
|
|
QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
|
|
|
|
breakpoint_invalidate(env, pc);
|
|
|
|
if (breakpoint)
|
|
*breakpoint = bp;
|
|
return 0;
|
|
#else
|
|
return -ENOSYS;
|
|
#endif
|
|
}
|
|
|
|
/* Remove a specific breakpoint. */
|
|
int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
|
|
{
|
|
#if defined(TARGET_HAS_ICE)
|
|
CPUBreakpoint *bp;
|
|
|
|
QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
|
|
if (bp->pc == pc && bp->flags == flags) {
|
|
cpu_breakpoint_remove_by_ref(env, bp);
|
|
return 0;
|
|
}
|
|
}
|
|
return -ENOENT;
|
|
#else
|
|
return -ENOSYS;
|
|
#endif
|
|
}
|
|
|
|
/* Remove a specific breakpoint by reference. */
|
|
void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
|
|
{
|
|
#if defined(TARGET_HAS_ICE)
|
|
QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
|
|
|
|
breakpoint_invalidate(env, breakpoint->pc);
|
|
|
|
g_free(breakpoint);
|
|
#endif
|
|
}
|
|
|
|
/* Remove all matching breakpoints. */
|
|
void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
|
|
{
|
|
#if defined(TARGET_HAS_ICE)
|
|
CPUBreakpoint *bp, *next;
|
|
|
|
QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
|
|
if (bp->flags & mask)
|
|
cpu_breakpoint_remove_by_ref(env, bp);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* enable or disable single step mode. EXCP_DEBUG is returned by the
|
|
CPU loop after each instruction */
|
|
void cpu_single_step(CPUArchState *env, int enabled)
|
|
{
|
|
#if defined(TARGET_HAS_ICE)
|
|
if (env->singlestep_enabled != enabled) {
|
|
env->singlestep_enabled = enabled;
|
|
if (kvm_enabled())
|
|
kvm_update_guest_debug(env, 0);
|
|
else {
|
|
/* must flush all the translated code to avoid inconsistencies */
|
|
/* XXX: only flush what is necessary */
|
|
tb_flush(env);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void cpu_unlink_tb(CPUArchState *env)
|
|
{
|
|
/* FIXME: TB unchaining isn't SMP safe. For now just ignore the
|
|
problem and hope the cpu will stop of its own accord. For userspace
|
|
emulation this often isn't actually as bad as it sounds. Often
|
|
signals are used primarily to interrupt blocking syscalls. */
|
|
TranslationBlock *tb;
|
|
static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
|
|
|
|
spin_lock(&interrupt_lock);
|
|
tb = env->current_tb;
|
|
/* if the cpu is currently executing code, we must unlink it and
|
|
all the potentially executing TB */
|
|
if (tb) {
|
|
env->current_tb = NULL;
|
|
tb_reset_jump_recursive(tb);
|
|
}
|
|
spin_unlock(&interrupt_lock);
|
|
}
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
/* mask must never be zero, except for A20 change call */
|
|
static void tcg_handle_interrupt(CPUArchState *env, int mask)
|
|
{
|
|
int old_mask;
|
|
|
|
old_mask = env->interrupt_request;
|
|
env->interrupt_request |= mask;
|
|
|
|
/*
|
|
* If called from iothread context, wake the target cpu in
|
|
* case its halted.
|
|
*/
|
|
if (!qemu_cpu_is_self(env)) {
|
|
qemu_cpu_kick(env);
|
|
return;
|
|
}
|
|
|
|
if (use_icount) {
|
|
env->icount_decr.u16.high = 0xffff;
|
|
if (!can_do_io(env)
|
|
&& (mask & ~old_mask) != 0) {
|
|
cpu_abort(env, "Raised interrupt while not in I/O function");
|
|
}
|
|
} else {
|
|
cpu_unlink_tb(env);
|
|
}
|
|
}
|
|
|
|
CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
|
|
|
|
#else /* CONFIG_USER_ONLY */
|
|
|
|
void cpu_interrupt(CPUArchState *env, int mask)
|
|
{
|
|
env->interrupt_request |= mask;
|
|
cpu_unlink_tb(env);
|
|
}
|
|
#endif /* CONFIG_USER_ONLY */
|
|
|
|
void cpu_reset_interrupt(CPUArchState *env, int mask)
|
|
{
|
|
env->interrupt_request &= ~mask;
|
|
}
|
|
|
|
void cpu_exit(CPUArchState *env)
|
|
{
|
|
env->exit_request = 1;
|
|
cpu_unlink_tb(env);
|
|
}
|
|
|
|
void cpu_abort(CPUArchState *env, const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
va_list ap2;
|
|
|
|
va_start(ap, fmt);
|
|
va_copy(ap2, ap);
|
|
fprintf(stderr, "qemu: fatal: ");
|
|
vfprintf(stderr, fmt, ap);
|
|
fprintf(stderr, "\n");
|
|
#ifdef TARGET_I386
|
|
cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
|
|
#else
|
|
cpu_dump_state(env, stderr, fprintf, 0);
|
|
#endif
|
|
if (qemu_log_enabled()) {
|
|
qemu_log("qemu: fatal: ");
|
|
qemu_log_vprintf(fmt, ap2);
|
|
qemu_log("\n");
|
|
#ifdef TARGET_I386
|
|
log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
|
|
#else
|
|
log_cpu_state(env, 0);
|
|
#endif
|
|
qemu_log_flush();
|
|
qemu_log_close();
|
|
}
|
|
va_end(ap2);
|
|
va_end(ap);
|
|
#if defined(CONFIG_USER_ONLY)
|
|
{
|
|
struct sigaction act;
|
|
sigfillset(&act.sa_mask);
|
|
act.sa_handler = SIG_DFL;
|
|
sigaction(SIGABRT, &act, NULL);
|
|
}
|
|
#endif
|
|
abort();
|
|
}
|
|
|
|
CPUArchState *cpu_copy(CPUArchState *env)
|
|
{
|
|
CPUArchState *new_env = cpu_init(env->cpu_model_str);
|
|
CPUArchState *next_cpu = new_env->next_cpu;
|
|
int cpu_index = new_env->cpu_index;
|
|
#if defined(TARGET_HAS_ICE)
|
|
CPUBreakpoint *bp;
|
|
CPUWatchpoint *wp;
|
|
#endif
|
|
|
|
memcpy(new_env, env, sizeof(CPUArchState));
|
|
|
|
/* Preserve chaining and index. */
|
|
new_env->next_cpu = next_cpu;
|
|
new_env->cpu_index = cpu_index;
|
|
|
|
/* Clone all break/watchpoints.
|
|
Note: Once we support ptrace with hw-debug register access, make sure
|
|
BP_CPU break/watchpoints are handled correctly on clone. */
|
|
QTAILQ_INIT(&env->breakpoints);
|
|
QTAILQ_INIT(&env->watchpoints);
|
|
#if defined(TARGET_HAS_ICE)
|
|
QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
|
|
cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
|
|
}
|
|
QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
|
|
cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
|
|
wp->flags, NULL);
|
|
}
|
|
#endif
|
|
|
|
return new_env;
|
|
}
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
void tb_flush_jmp_cache(CPUArchState *env, target_ulong addr)
|
|
{
|
|
unsigned int i;
|
|
|
|
/* Discard jump cache entries for any tb which might potentially
|
|
overlap the flushed page. */
|
|
i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
|
|
memset (&env->tb_jmp_cache[i], 0,
|
|
TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
|
|
|
|
i = tb_jmp_cache_hash_page(addr);
|
|
memset (&env->tb_jmp_cache[i], 0,
|
|
TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
|
|
}
|
|
|
|
static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
|
|
uintptr_t length)
|
|
{
|
|
uintptr_t start1;
|
|
|
|
/* we modify the TLB cache so that the dirty bit will be set again
|
|
when accessing the range */
|
|
start1 = (uintptr_t)qemu_safe_ram_ptr(start);
|
|
/* Check that we don't span multiple blocks - this breaks the
|
|
address comparisons below. */
|
|
if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
|
|
!= (end - 1) - start) {
|
|
abort();
|
|
}
|
|
cpu_tlb_reset_dirty_all(start1, length);
|
|
|
|
}
|
|
|
|
/* Note: start and end must be within the same ram block. */
|
|
void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
|
|
int dirty_flags)
|
|
{
|
|
uintptr_t length;
|
|
|
|
start &= TARGET_PAGE_MASK;
|
|
end = TARGET_PAGE_ALIGN(end);
|
|
|
|
length = end - start;
|
|
if (length == 0)
|
|
return;
|
|
cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
|
|
|
|
if (tcg_enabled()) {
|
|
tlb_reset_dirty_range_all(start, end, length);
|
|
}
|
|
}
|
|
|
|
int cpu_physical_memory_set_dirty_tracking(int enable)
|
|
{
|
|
int ret = 0;
|
|
in_migration = enable;
|
|
return ret;
|
|
}
|
|
|
|
target_phys_addr_t memory_region_section_get_iotlb(CPUArchState *env,
|
|
MemoryRegionSection *section,
|
|
target_ulong vaddr,
|
|
target_phys_addr_t paddr,
|
|
int prot,
|
|
target_ulong *address)
|
|
{
|
|
target_phys_addr_t iotlb;
|
|
CPUWatchpoint *wp;
|
|
|
|
if (memory_region_is_ram(section->mr)) {
|
|
/* Normal RAM. */
|
|
iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
|
|
+ memory_region_section_addr(section, paddr);
|
|
if (!section->readonly) {
|
|
iotlb |= phys_section_notdirty;
|
|
} else {
|
|
iotlb |= phys_section_rom;
|
|
}
|
|
} else {
|
|
/* IO handlers are currently passed a physical address.
|
|
It would be nice to pass an offset from the base address
|
|
of that region. This would avoid having to special case RAM,
|
|
and avoid full address decoding in every device.
|
|
We can't use the high bits of pd for this because
|
|
IO_MEM_ROMD uses these as a ram address. */
|
|
iotlb = section - phys_sections;
|
|
iotlb += memory_region_section_addr(section, paddr);
|
|
}
|
|
|
|
/* Make accesses to pages with watchpoints go via the
|
|
watchpoint trap routines. */
|
|
QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
|
|
if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
|
|
/* Avoid trapping reads of pages with a write breakpoint. */
|
|
if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
|
|
iotlb = phys_section_watch + paddr;
|
|
*address |= TLB_MMIO;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return iotlb;
|
|
}
|
|
|
|
#else
|
|
/*
|
|
* Walks guest process memory "regions" one by one
|
|
* and calls callback function 'fn' for each region.
|
|
*/
|
|
|
|
struct walk_memory_regions_data
|
|
{
|
|
walk_memory_regions_fn fn;
|
|
void *priv;
|
|
uintptr_t start;
|
|
int prot;
|
|
};
|
|
|
|
static int walk_memory_regions_end(struct walk_memory_regions_data *data,
|
|
abi_ulong end, int new_prot)
|
|
{
|
|
if (data->start != -1ul) {
|
|
int rc = data->fn(data->priv, data->start, end, data->prot);
|
|
if (rc != 0) {
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
data->start = (new_prot ? end : -1ul);
|
|
data->prot = new_prot;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int walk_memory_regions_1(struct walk_memory_regions_data *data,
|
|
abi_ulong base, int level, void **lp)
|
|
{
|
|
abi_ulong pa;
|
|
int i, rc;
|
|
|
|
if (*lp == NULL) {
|
|
return walk_memory_regions_end(data, base, 0);
|
|
}
|
|
|
|
if (level == 0) {
|
|
PageDesc *pd = *lp;
|
|
for (i = 0; i < L2_SIZE; ++i) {
|
|
int prot = pd[i].flags;
|
|
|
|
pa = base | (i << TARGET_PAGE_BITS);
|
|
if (prot != data->prot) {
|
|
rc = walk_memory_regions_end(data, pa, prot);
|
|
if (rc != 0) {
|
|
return rc;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
void **pp = *lp;
|
|
for (i = 0; i < L2_SIZE; ++i) {
|
|
pa = base | ((abi_ulong)i <<
|
|
(TARGET_PAGE_BITS + L2_BITS * level));
|
|
rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
|
|
if (rc != 0) {
|
|
return rc;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
|
|
{
|
|
struct walk_memory_regions_data data;
|
|
uintptr_t i;
|
|
|
|
data.fn = fn;
|
|
data.priv = priv;
|
|
data.start = -1ul;
|
|
data.prot = 0;
|
|
|
|
for (i = 0; i < V_L1_SIZE; i++) {
|
|
int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
|
|
V_L1_SHIFT / L2_BITS - 1, l1_map + i);
|
|
if (rc != 0) {
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
return walk_memory_regions_end(&data, 0, 0);
|
|
}
|
|
|
|
static int dump_region(void *priv, abi_ulong start,
|
|
abi_ulong end, unsigned long prot)
|
|
{
|
|
FILE *f = (FILE *)priv;
|
|
|
|
(void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
|
|
" "TARGET_ABI_FMT_lx" %c%c%c\n",
|
|
start, end, end - start,
|
|
((prot & PAGE_READ) ? 'r' : '-'),
|
|
((prot & PAGE_WRITE) ? 'w' : '-'),
|
|
((prot & PAGE_EXEC) ? 'x' : '-'));
|
|
|
|
return (0);
|
|
}
|
|
|
|
/* dump memory mappings */
|
|
void page_dump(FILE *f)
|
|
{
|
|
(void) fprintf(f, "%-8s %-8s %-8s %s\n",
|
|
"start", "end", "size", "prot");
|
|
walk_memory_regions(f, dump_region);
|
|
}
|
|
|
|
int page_get_flags(target_ulong address)
|
|
{
|
|
PageDesc *p;
|
|
|
|
p = page_find(address >> TARGET_PAGE_BITS);
|
|
if (!p)
|
|
return 0;
|
|
return p->flags;
|
|
}
|
|
|
|
/* Modify the flags of a page and invalidate the code if necessary.
|
|
The flag PAGE_WRITE_ORG is positioned automatically depending
|
|
on PAGE_WRITE. The mmap_lock should already be held. */
|
|
void page_set_flags(target_ulong start, target_ulong end, int flags)
|
|
{
|
|
target_ulong addr, len;
|
|
|
|
/* This function should never be called with addresses outside the
|
|
guest address space. If this assert fires, it probably indicates
|
|
a missing call to h2g_valid. */
|
|
#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
|
|
assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
|
|
#endif
|
|
assert(start < end);
|
|
|
|
start = start & TARGET_PAGE_MASK;
|
|
end = TARGET_PAGE_ALIGN(end);
|
|
|
|
if (flags & PAGE_WRITE) {
|
|
flags |= PAGE_WRITE_ORG;
|
|
}
|
|
|
|
for (addr = start, len = end - start;
|
|
len != 0;
|
|
len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
|
|
PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
|
|
|
|
/* If the write protection bit is set, then we invalidate
|
|
the code inside. */
|
|
if (!(p->flags & PAGE_WRITE) &&
|
|
(flags & PAGE_WRITE) &&
|
|
p->first_tb) {
|
|
tb_invalidate_phys_page(addr, 0, NULL);
|
|
}
|
|
p->flags = flags;
|
|
}
|
|
}
|
|
|
|
int page_check_range(target_ulong start, target_ulong len, int flags)
|
|
{
|
|
PageDesc *p;
|
|
target_ulong end;
|
|
target_ulong addr;
|
|
|
|
/* This function should never be called with addresses outside the
|
|
guest address space. If this assert fires, it probably indicates
|
|
a missing call to h2g_valid. */
|
|
#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
|
|
assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
|
|
#endif
|
|
|
|
if (len == 0) {
|
|
return 0;
|
|
}
|
|
if (start + len - 1 < start) {
|
|
/* We've wrapped around. */
|
|
return -1;
|
|
}
|
|
|
|
end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
|
|
start = start & TARGET_PAGE_MASK;
|
|
|
|
for (addr = start, len = end - start;
|
|
len != 0;
|
|
len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
|
|
p = page_find(addr >> TARGET_PAGE_BITS);
|
|
if( !p )
|
|
return -1;
|
|
if( !(p->flags & PAGE_VALID) )
|
|
return -1;
|
|
|
|
if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
|
|
return -1;
|
|
if (flags & PAGE_WRITE) {
|
|
if (!(p->flags & PAGE_WRITE_ORG))
|
|
return -1;
|
|
/* unprotect the page if it was put read-only because it
|
|
contains translated code */
|
|
if (!(p->flags & PAGE_WRITE)) {
|
|
if (!page_unprotect(addr, 0, NULL))
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* called from signal handler: invalidate the code and unprotect the
|
|
page. Return TRUE if the fault was successfully handled. */
|
|
int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
|
|
{
|
|
unsigned int prot;
|
|
PageDesc *p;
|
|
target_ulong host_start, host_end, addr;
|
|
|
|
/* Technically this isn't safe inside a signal handler. However we
|
|
know this only ever happens in a synchronous SEGV handler, so in
|
|
practice it seems to be ok. */
|
|
mmap_lock();
|
|
|
|
p = page_find(address >> TARGET_PAGE_BITS);
|
|
if (!p) {
|
|
mmap_unlock();
|
|
return 0;
|
|
}
|
|
|
|
/* if the page was really writable, then we change its
|
|
protection back to writable */
|
|
if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
|
|
host_start = address & qemu_host_page_mask;
|
|
host_end = host_start + qemu_host_page_size;
|
|
|
|
prot = 0;
|
|
for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
|
|
p = page_find(addr >> TARGET_PAGE_BITS);
|
|
p->flags |= PAGE_WRITE;
|
|
prot |= p->flags;
|
|
|
|
/* and since the content will be modified, we must invalidate
|
|
the corresponding translated code. */
|
|
tb_invalidate_phys_page(addr, pc, puc);
|
|
#ifdef DEBUG_TB_CHECK
|
|
tb_invalidate_check(addr);
|
|
#endif
|
|
}
|
|
mprotect((void *)g2h(host_start), qemu_host_page_size,
|
|
prot & PAGE_BITS);
|
|
|
|
mmap_unlock();
|
|
return 1;
|
|
}
|
|
mmap_unlock();
|
|
return 0;
|
|
}
|
|
#endif /* defined(CONFIG_USER_ONLY) */
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
|
|
#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
|
|
typedef struct subpage_t {
|
|
MemoryRegion iomem;
|
|
target_phys_addr_t base;
|
|
uint16_t sub_section[TARGET_PAGE_SIZE];
|
|
} subpage_t;
|
|
|
|
static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
|
|
uint16_t section);
|
|
static subpage_t *subpage_init(target_phys_addr_t base);
|
|
static void destroy_page_desc(uint16_t section_index)
|
|
{
|
|
MemoryRegionSection *section = &phys_sections[section_index];
|
|
MemoryRegion *mr = section->mr;
|
|
|
|
if (mr->subpage) {
|
|
subpage_t *subpage = container_of(mr, subpage_t, iomem);
|
|
memory_region_destroy(&subpage->iomem);
|
|
g_free(subpage);
|
|
}
|
|
}
|
|
|
|
static void destroy_l2_mapping(PhysPageEntry *lp, unsigned level)
|
|
{
|
|
unsigned i;
|
|
PhysPageEntry *p;
|
|
|
|
if (lp->ptr == PHYS_MAP_NODE_NIL) {
|
|
return;
|
|
}
|
|
|
|
p = phys_map_nodes[lp->ptr];
|
|
for (i = 0; i < L2_SIZE; ++i) {
|
|
if (!p[i].is_leaf) {
|
|
destroy_l2_mapping(&p[i], level - 1);
|
|
} else {
|
|
destroy_page_desc(p[i].ptr);
|
|
}
|
|
}
|
|
lp->is_leaf = 0;
|
|
lp->ptr = PHYS_MAP_NODE_NIL;
|
|
}
|
|
|
|
static void destroy_all_mappings(void)
|
|
{
|
|
destroy_l2_mapping(&phys_map, P_L2_LEVELS - 1);
|
|
phys_map_nodes_reset();
|
|
}
|
|
|
|
static uint16_t phys_section_add(MemoryRegionSection *section)
|
|
{
|
|
if (phys_sections_nb == phys_sections_nb_alloc) {
|
|
phys_sections_nb_alloc = MAX(phys_sections_nb_alloc * 2, 16);
|
|
phys_sections = g_renew(MemoryRegionSection, phys_sections,
|
|
phys_sections_nb_alloc);
|
|
}
|
|
phys_sections[phys_sections_nb] = *section;
|
|
return phys_sections_nb++;
|
|
}
|
|
|
|
static void phys_sections_clear(void)
|
|
{
|
|
phys_sections_nb = 0;
|
|
}
|
|
|
|
static void register_subpage(MemoryRegionSection *section)
|
|
{
|
|
subpage_t *subpage;
|
|
target_phys_addr_t base = section->offset_within_address_space
|
|
& TARGET_PAGE_MASK;
|
|
MemoryRegionSection *existing = phys_page_find(base >> TARGET_PAGE_BITS);
|
|
MemoryRegionSection subsection = {
|
|
.offset_within_address_space = base,
|
|
.size = TARGET_PAGE_SIZE,
|
|
};
|
|
target_phys_addr_t start, end;
|
|
|
|
assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
|
|
|
|
if (!(existing->mr->subpage)) {
|
|
subpage = subpage_init(base);
|
|
subsection.mr = &subpage->iomem;
|
|
phys_page_set(base >> TARGET_PAGE_BITS, 1,
|
|
phys_section_add(&subsection));
|
|
} else {
|
|
subpage = container_of(existing->mr, subpage_t, iomem);
|
|
}
|
|
start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
|
|
end = start + section->size - 1;
|
|
subpage_register(subpage, start, end, phys_section_add(section));
|
|
}
|
|
|
|
|
|
static void register_multipage(MemoryRegionSection *section)
|
|
{
|
|
target_phys_addr_t start_addr = section->offset_within_address_space;
|
|
ram_addr_t size = section->size;
|
|
target_phys_addr_t addr;
|
|
uint16_t section_index = phys_section_add(section);
|
|
|
|
assert(size);
|
|
|
|
addr = start_addr;
|
|
phys_page_set(addr >> TARGET_PAGE_BITS, size >> TARGET_PAGE_BITS,
|
|
section_index);
|
|
}
|
|
|
|
void cpu_register_physical_memory_log(MemoryRegionSection *section,
|
|
bool readonly)
|
|
{
|
|
MemoryRegionSection now = *section, remain = *section;
|
|
|
|
if ((now.offset_within_address_space & ~TARGET_PAGE_MASK)
|
|
|| (now.size < TARGET_PAGE_SIZE)) {
|
|
now.size = MIN(TARGET_PAGE_ALIGN(now.offset_within_address_space)
|
|
- now.offset_within_address_space,
|
|
now.size);
|
|
register_subpage(&now);
|
|
remain.size -= now.size;
|
|
remain.offset_within_address_space += now.size;
|
|
remain.offset_within_region += now.size;
|
|
}
|
|
while (remain.size >= TARGET_PAGE_SIZE) {
|
|
now = remain;
|
|
if (remain.offset_within_region & ~TARGET_PAGE_MASK) {
|
|
now.size = TARGET_PAGE_SIZE;
|
|
register_subpage(&now);
|
|
} else {
|
|
now.size &= TARGET_PAGE_MASK;
|
|
register_multipage(&now);
|
|
}
|
|
remain.size -= now.size;
|
|
remain.offset_within_address_space += now.size;
|
|
remain.offset_within_region += now.size;
|
|
}
|
|
now = remain;
|
|
if (now.size) {
|
|
register_subpage(&now);
|
|
}
|
|
}
|
|
|
|
|
|
void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
|
|
{
|
|
if (kvm_enabled())
|
|
kvm_coalesce_mmio_region(addr, size);
|
|
}
|
|
|
|
void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
|
|
{
|
|
if (kvm_enabled())
|
|
kvm_uncoalesce_mmio_region(addr, size);
|
|
}
|
|
|
|
void qemu_flush_coalesced_mmio_buffer(void)
|
|
{
|
|
if (kvm_enabled())
|
|
kvm_flush_coalesced_mmio_buffer();
|
|
}
|
|
|
|
#if defined(__linux__) && !defined(TARGET_S390X)
|
|
|
|
#include <sys/vfs.h>
|
|
|
|
#define HUGETLBFS_MAGIC 0x958458f6
|
|
|
|
static long gethugepagesize(const char *path)
|
|
{
|
|
struct statfs fs;
|
|
int ret;
|
|
|
|
do {
|
|
ret = statfs(path, &fs);
|
|
} while (ret != 0 && errno == EINTR);
|
|
|
|
if (ret != 0) {
|
|
perror(path);
|
|
return 0;
|
|
}
|
|
|
|
if (fs.f_type != HUGETLBFS_MAGIC)
|
|
fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
|
|
|
|
return fs.f_bsize;
|
|
}
|
|
|
|
static void *file_ram_alloc(RAMBlock *block,
|
|
ram_addr_t memory,
|
|
const char *path)
|
|
{
|
|
char *filename;
|
|
void *area;
|
|
int fd;
|
|
#ifdef MAP_POPULATE
|
|
int flags;
|
|
#endif
|
|
unsigned long hpagesize;
|
|
|
|
hpagesize = gethugepagesize(path);
|
|
if (!hpagesize) {
|
|
return NULL;
|
|
}
|
|
|
|
if (memory < hpagesize) {
|
|
return NULL;
|
|
}
|
|
|
|
if (kvm_enabled() && !kvm_has_sync_mmu()) {
|
|
fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
|
|
return NULL;
|
|
}
|
|
|
|
if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
|
|
return NULL;
|
|
}
|
|
|
|
fd = mkstemp(filename);
|
|
if (fd < 0) {
|
|
perror("unable to create backing store for hugepages");
|
|
free(filename);
|
|
return NULL;
|
|
}
|
|
unlink(filename);
|
|
free(filename);
|
|
|
|
memory = (memory+hpagesize-1) & ~(hpagesize-1);
|
|
|
|
/*
|
|
* ftruncate is not supported by hugetlbfs in older
|
|
* hosts, so don't bother bailing out on errors.
|
|
* If anything goes wrong with it under other filesystems,
|
|
* mmap will fail.
|
|
*/
|
|
if (ftruncate(fd, memory))
|
|
perror("ftruncate");
|
|
|
|
#ifdef MAP_POPULATE
|
|
/* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
|
|
* MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
|
|
* to sidestep this quirk.
|
|
*/
|
|
flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
|
|
area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
|
|
#else
|
|
area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
|
|
#endif
|
|
if (area == MAP_FAILED) {
|
|
perror("file_ram_alloc: can't mmap RAM pages");
|
|
close(fd);
|
|
return (NULL);
|
|
}
|
|
block->fd = fd;
|
|
return area;
|
|
}
|
|
#endif
|
|
|
|
static ram_addr_t find_ram_offset(ram_addr_t size)
|
|
{
|
|
RAMBlock *block, *next_block;
|
|
ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
|
|
|
|
if (QLIST_EMPTY(&ram_list.blocks))
|
|
return 0;
|
|
|
|
QLIST_FOREACH(block, &ram_list.blocks, next) {
|
|
ram_addr_t end, next = RAM_ADDR_MAX;
|
|
|
|
end = block->offset + block->length;
|
|
|
|
QLIST_FOREACH(next_block, &ram_list.blocks, next) {
|
|
if (next_block->offset >= end) {
|
|
next = MIN(next, next_block->offset);
|
|
}
|
|
}
|
|
if (next - end >= size && next - end < mingap) {
|
|
offset = end;
|
|
mingap = next - end;
|
|
}
|
|
}
|
|
|
|
if (offset == RAM_ADDR_MAX) {
|
|
fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
|
|
(uint64_t)size);
|
|
abort();
|
|
}
|
|
|
|
return offset;
|
|
}
|
|
|
|
static ram_addr_t last_ram_offset(void)
|
|
{
|
|
RAMBlock *block;
|
|
ram_addr_t last = 0;
|
|
|
|
QLIST_FOREACH(block, &ram_list.blocks, next)
|
|
last = MAX(last, block->offset + block->length);
|
|
|
|
return last;
|
|
}
|
|
|
|
static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
|
|
{
|
|
int ret;
|
|
QemuOpts *machine_opts;
|
|
|
|
/* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
|
|
machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0);
|
|
if (machine_opts &&
|
|
!qemu_opt_get_bool(machine_opts, "dump-guest-core", true)) {
|
|
ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
|
|
if (ret) {
|
|
perror("qemu_madvise");
|
|
fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
|
|
"but dump_guest_core=off specified\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
|
|
{
|
|
RAMBlock *new_block, *block;
|
|
|
|
new_block = NULL;
|
|
QLIST_FOREACH(block, &ram_list.blocks, next) {
|
|
if (block->offset == addr) {
|
|
new_block = block;
|
|
break;
|
|
}
|
|
}
|
|
assert(new_block);
|
|
assert(!new_block->idstr[0]);
|
|
|
|
if (dev) {
|
|
char *id = qdev_get_dev_path(dev);
|
|
if (id) {
|
|
snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
|
|
g_free(id);
|
|
}
|
|
}
|
|
pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
|
|
|
|
QLIST_FOREACH(block, &ram_list.blocks, next) {
|
|
if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
|
|
fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
|
|
new_block->idstr);
|
|
abort();
|
|
}
|
|
}
|
|
}
|
|
|
|
static int memory_try_enable_merging(void *addr, size_t len)
|
|
{
|
|
QemuOpts *opts;
|
|
|
|
opts = qemu_opts_find(qemu_find_opts("machine"), 0);
|
|
if (opts && !qemu_opt_get_bool(opts, "mem-merge", true)) {
|
|
/* disabled by the user */
|
|
return 0;
|
|
}
|
|
|
|
return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
|
|
}
|
|
|
|
ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
|
|
MemoryRegion *mr)
|
|
{
|
|
RAMBlock *new_block;
|
|
|
|
size = TARGET_PAGE_ALIGN(size);
|
|
new_block = g_malloc0(sizeof(*new_block));
|
|
|
|
new_block->mr = mr;
|
|
new_block->offset = find_ram_offset(size);
|
|
if (host) {
|
|
new_block->host = host;
|
|
new_block->flags |= RAM_PREALLOC_MASK;
|
|
} else {
|
|
if (mem_path) {
|
|
#if defined (__linux__) && !defined(TARGET_S390X)
|
|
new_block->host = file_ram_alloc(new_block, size, mem_path);
|
|
if (!new_block->host) {
|
|
new_block->host = qemu_vmalloc(size);
|
|
memory_try_enable_merging(new_block->host, size);
|
|
}
|
|
#else
|
|
fprintf(stderr, "-mem-path option unsupported\n");
|
|
exit(1);
|
|
#endif
|
|
} else {
|
|
if (xen_enabled()) {
|
|
xen_ram_alloc(new_block->offset, size, mr);
|
|
} else if (kvm_enabled()) {
|
|
/* some s390/kvm configurations have special constraints */
|
|
new_block->host = kvm_vmalloc(size);
|
|
} else {
|
|
new_block->host = qemu_vmalloc(size);
|
|
}
|
|
memory_try_enable_merging(new_block->host, size);
|
|
}
|
|
}
|
|
new_block->length = size;
|
|
|
|
QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
|
|
|
|
ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
|
|
last_ram_offset() >> TARGET_PAGE_BITS);
|
|
memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
|
|
0, size >> TARGET_PAGE_BITS);
|
|
cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
|
|
|
|
qemu_ram_setup_dump(new_block->host, size);
|
|
|
|
if (kvm_enabled())
|
|
kvm_setup_guest_memory(new_block->host, size);
|
|
|
|
return new_block->offset;
|
|
}
|
|
|
|
ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
|
|
{
|
|
return qemu_ram_alloc_from_ptr(size, NULL, mr);
|
|
}
|
|
|
|
void qemu_ram_free_from_ptr(ram_addr_t addr)
|
|
{
|
|
RAMBlock *block;
|
|
|
|
QLIST_FOREACH(block, &ram_list.blocks, next) {
|
|
if (addr == block->offset) {
|
|
QLIST_REMOVE(block, next);
|
|
g_free(block);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
void qemu_ram_free(ram_addr_t addr)
|
|
{
|
|
RAMBlock *block;
|
|
|
|
QLIST_FOREACH(block, &ram_list.blocks, next) {
|
|
if (addr == block->offset) {
|
|
QLIST_REMOVE(block, next);
|
|
if (block->flags & RAM_PREALLOC_MASK) {
|
|
;
|
|
} else if (mem_path) {
|
|
#if defined (__linux__) && !defined(TARGET_S390X)
|
|
if (block->fd) {
|
|
munmap(block->host, block->length);
|
|
close(block->fd);
|
|
} else {
|
|
qemu_vfree(block->host);
|
|
}
|
|
#else
|
|
abort();
|
|
#endif
|
|
} else {
|
|
#if defined(TARGET_S390X) && defined(CONFIG_KVM)
|
|
munmap(block->host, block->length);
|
|
#else
|
|
if (xen_enabled()) {
|
|
xen_invalidate_map_cache_entry(block->host);
|
|
} else {
|
|
qemu_vfree(block->host);
|
|
}
|
|
#endif
|
|
}
|
|
g_free(block);
|
|
return;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
#ifndef _WIN32
|
|
void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
|
|
{
|
|
RAMBlock *block;
|
|
ram_addr_t offset;
|
|
int flags;
|
|
void *area, *vaddr;
|
|
|
|
QLIST_FOREACH(block, &ram_list.blocks, next) {
|
|
offset = addr - block->offset;
|
|
if (offset < block->length) {
|
|
vaddr = block->host + offset;
|
|
if (block->flags & RAM_PREALLOC_MASK) {
|
|
;
|
|
} else {
|
|
flags = MAP_FIXED;
|
|
munmap(vaddr, length);
|
|
if (mem_path) {
|
|
#if defined(__linux__) && !defined(TARGET_S390X)
|
|
if (block->fd) {
|
|
#ifdef MAP_POPULATE
|
|
flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
|
|
MAP_PRIVATE;
|
|
#else
|
|
flags |= MAP_PRIVATE;
|
|
#endif
|
|
area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
|
|
flags, block->fd, offset);
|
|
} else {
|
|
flags |= MAP_PRIVATE | MAP_ANONYMOUS;
|
|
area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
|
|
flags, -1, 0);
|
|
}
|
|
#else
|
|
abort();
|
|
#endif
|
|
} else {
|
|
#if defined(TARGET_S390X) && defined(CONFIG_KVM)
|
|
flags |= MAP_SHARED | MAP_ANONYMOUS;
|
|
area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
|
|
flags, -1, 0);
|
|
#else
|
|
flags |= MAP_PRIVATE | MAP_ANONYMOUS;
|
|
area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
|
|
flags, -1, 0);
|
|
#endif
|
|
}
|
|
if (area != vaddr) {
|
|
fprintf(stderr, "Could not remap addr: "
|
|
RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
|
|
length, addr);
|
|
exit(1);
|
|
}
|
|
memory_try_enable_merging(vaddr, length);
|
|
qemu_ram_setup_dump(vaddr, length);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
#endif /* !_WIN32 */
|
|
|
|
/* Return a host pointer to ram allocated with qemu_ram_alloc.
|
|
With the exception of the softmmu code in this file, this should
|
|
only be used for local memory (e.g. video ram) that the device owns,
|
|
and knows it isn't going to access beyond the end of the block.
|
|
|
|
It should not be used for general purpose DMA.
|
|
Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
|
|
*/
|
|
void *qemu_get_ram_ptr(ram_addr_t addr)
|
|
{
|
|
RAMBlock *block;
|
|
|
|
QLIST_FOREACH(block, &ram_list.blocks, next) {
|
|
if (addr - block->offset < block->length) {
|
|
/* Move this entry to to start of the list. */
|
|
if (block != QLIST_FIRST(&ram_list.blocks)) {
|
|
QLIST_REMOVE(block, next);
|
|
QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
|
|
}
|
|
if (xen_enabled()) {
|
|
/* We need to check if the requested address is in the RAM
|
|
* because we don't want to map the entire memory in QEMU.
|
|
* In that case just map until the end of the page.
|
|
*/
|
|
if (block->offset == 0) {
|
|
return xen_map_cache(addr, 0, 0);
|
|
} else if (block->host == NULL) {
|
|
block->host =
|
|
xen_map_cache(block->offset, block->length, 1);
|
|
}
|
|
}
|
|
return block->host + (addr - block->offset);
|
|
}
|
|
}
|
|
|
|
fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
|
|
abort();
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Return a host pointer to ram allocated with qemu_ram_alloc.
|
|
* Same as qemu_get_ram_ptr but avoid reordering ramblocks.
|
|
*/
|
|
void *qemu_safe_ram_ptr(ram_addr_t addr)
|
|
{
|
|
RAMBlock *block;
|
|
|
|
QLIST_FOREACH(block, &ram_list.blocks, next) {
|
|
if (addr - block->offset < block->length) {
|
|
if (xen_enabled()) {
|
|
/* We need to check if the requested address is in the RAM
|
|
* because we don't want to map the entire memory in QEMU.
|
|
* In that case just map until the end of the page.
|
|
*/
|
|
if (block->offset == 0) {
|
|
return xen_map_cache(addr, 0, 0);
|
|
} else if (block->host == NULL) {
|
|
block->host =
|
|
xen_map_cache(block->offset, block->length, 1);
|
|
}
|
|
}
|
|
return block->host + (addr - block->offset);
|
|
}
|
|
}
|
|
|
|
fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
|
|
abort();
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
|
|
* but takes a size argument */
|
|
void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
|
|
{
|
|
if (*size == 0) {
|
|
return NULL;
|
|
}
|
|
if (xen_enabled()) {
|
|
return xen_map_cache(addr, *size, 1);
|
|
} else {
|
|
RAMBlock *block;
|
|
|
|
QLIST_FOREACH(block, &ram_list.blocks, next) {
|
|
if (addr - block->offset < block->length) {
|
|
if (addr - block->offset + *size > block->length)
|
|
*size = block->length - addr + block->offset;
|
|
return block->host + (addr - block->offset);
|
|
}
|
|
}
|
|
|
|
fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
|
|
abort();
|
|
}
|
|
}
|
|
|
|
void qemu_put_ram_ptr(void *addr)
|
|
{
|
|
trace_qemu_put_ram_ptr(addr);
|
|
}
|
|
|
|
int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
|
|
{
|
|
RAMBlock *block;
|
|
uint8_t *host = ptr;
|
|
|
|
if (xen_enabled()) {
|
|
*ram_addr = xen_ram_addr_from_mapcache(ptr);
|
|
return 0;
|
|
}
|
|
|
|
QLIST_FOREACH(block, &ram_list.blocks, next) {
|
|
/* This case append when the block is not mapped. */
|
|
if (block->host == NULL) {
|
|
continue;
|
|
}
|
|
if (host - block->host < block->length) {
|
|
*ram_addr = block->offset + (host - block->host);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
/* Some of the softmmu routines need to translate from a host pointer
|
|
(typically a TLB entry) back to a ram offset. */
|
|
ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
|
|
{
|
|
ram_addr_t ram_addr;
|
|
|
|
if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
|
|
fprintf(stderr, "Bad ram pointer %p\n", ptr);
|
|
abort();
|
|
}
|
|
return ram_addr;
|
|
}
|
|
|
|
static uint64_t unassigned_mem_read(void *opaque, target_phys_addr_t addr,
|
|
unsigned size)
|
|
{
|
|
#ifdef DEBUG_UNASSIGNED
|
|
printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
|
|
#endif
|
|
#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
|
|
cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, size);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
static void unassigned_mem_write(void *opaque, target_phys_addr_t addr,
|
|
uint64_t val, unsigned size)
|
|
{
|
|
#ifdef DEBUG_UNASSIGNED
|
|
printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
|
|
#endif
|
|
#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
|
|
cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, size);
|
|
#endif
|
|
}
|
|
|
|
static const MemoryRegionOps unassigned_mem_ops = {
|
|
.read = unassigned_mem_read,
|
|
.write = unassigned_mem_write,
|
|
.endianness = DEVICE_NATIVE_ENDIAN,
|
|
};
|
|
|
|
static uint64_t error_mem_read(void *opaque, target_phys_addr_t addr,
|
|
unsigned size)
|
|
{
|
|
abort();
|
|
}
|
|
|
|
static void error_mem_write(void *opaque, target_phys_addr_t addr,
|
|
uint64_t value, unsigned size)
|
|
{
|
|
abort();
|
|
}
|
|
|
|
static const MemoryRegionOps error_mem_ops = {
|
|
.read = error_mem_read,
|
|
.write = error_mem_write,
|
|
.endianness = DEVICE_NATIVE_ENDIAN,
|
|
};
|
|
|
|
static const MemoryRegionOps rom_mem_ops = {
|
|
.read = error_mem_read,
|
|
.write = unassigned_mem_write,
|
|
.endianness = DEVICE_NATIVE_ENDIAN,
|
|
};
|
|
|
|
static void notdirty_mem_write(void *opaque, target_phys_addr_t ram_addr,
|
|
uint64_t val, unsigned size)
|
|
{
|
|
int dirty_flags;
|
|
dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
|
|
if (!(dirty_flags & CODE_DIRTY_FLAG)) {
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
tb_invalidate_phys_page_fast(ram_addr, size);
|
|
dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
|
|
#endif
|
|
}
|
|
switch (size) {
|
|
case 1:
|
|
stb_p(qemu_get_ram_ptr(ram_addr), val);
|
|
break;
|
|
case 2:
|
|
stw_p(qemu_get_ram_ptr(ram_addr), val);
|
|
break;
|
|
case 4:
|
|
stl_p(qemu_get_ram_ptr(ram_addr), val);
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
|
|
cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
|
|
/* we remove the notdirty callback only if the code has been
|
|
flushed */
|
|
if (dirty_flags == 0xff)
|
|
tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
|
|
}
|
|
|
|
static const MemoryRegionOps notdirty_mem_ops = {
|
|
.read = error_mem_read,
|
|
.write = notdirty_mem_write,
|
|
.endianness = DEVICE_NATIVE_ENDIAN,
|
|
};
|
|
|
|
/* Generate a debug exception if a watchpoint has been hit. */
|
|
static void check_watchpoint(int offset, int len_mask, int flags)
|
|
{
|
|
CPUArchState *env = cpu_single_env;
|
|
target_ulong pc, cs_base;
|
|
TranslationBlock *tb;
|
|
target_ulong vaddr;
|
|
CPUWatchpoint *wp;
|
|
int cpu_flags;
|
|
|
|
if (env->watchpoint_hit) {
|
|
/* We re-entered the check after replacing the TB. Now raise
|
|
* the debug interrupt so that is will trigger after the
|
|
* current instruction. */
|
|
cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
|
|
return;
|
|
}
|
|
vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
|
|
QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
|
|
if ((vaddr == (wp->vaddr & len_mask) ||
|
|
(vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
|
|
wp->flags |= BP_WATCHPOINT_HIT;
|
|
if (!env->watchpoint_hit) {
|
|
env->watchpoint_hit = wp;
|
|
tb = tb_find_pc(env->mem_io_pc);
|
|
if (!tb) {
|
|
cpu_abort(env, "check_watchpoint: could not find TB for "
|
|
"pc=%p", (void *)env->mem_io_pc);
|
|
}
|
|
cpu_restore_state(tb, env, env->mem_io_pc);
|
|
tb_phys_invalidate(tb, -1);
|
|
if (wp->flags & BP_STOP_BEFORE_ACCESS) {
|
|
env->exception_index = EXCP_DEBUG;
|
|
cpu_loop_exit(env);
|
|
} else {
|
|
cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
|
|
tb_gen_code(env, pc, cs_base, cpu_flags, 1);
|
|
cpu_resume_from_signal(env, NULL);
|
|
}
|
|
}
|
|
} else {
|
|
wp->flags &= ~BP_WATCHPOINT_HIT;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
|
|
so these check for a hit then pass through to the normal out-of-line
|
|
phys routines. */
|
|
static uint64_t watch_mem_read(void *opaque, target_phys_addr_t addr,
|
|
unsigned size)
|
|
{
|
|
check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
|
|
switch (size) {
|
|
case 1: return ldub_phys(addr);
|
|
case 2: return lduw_phys(addr);
|
|
case 4: return ldl_phys(addr);
|
|
default: abort();
|
|
}
|
|
}
|
|
|
|
static void watch_mem_write(void *opaque, target_phys_addr_t addr,
|
|
uint64_t val, unsigned size)
|
|
{
|
|
check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
|
|
switch (size) {
|
|
case 1:
|
|
stb_phys(addr, val);
|
|
break;
|
|
case 2:
|
|
stw_phys(addr, val);
|
|
break;
|
|
case 4:
|
|
stl_phys(addr, val);
|
|
break;
|
|
default: abort();
|
|
}
|
|
}
|
|
|
|
static const MemoryRegionOps watch_mem_ops = {
|
|
.read = watch_mem_read,
|
|
.write = watch_mem_write,
|
|
.endianness = DEVICE_NATIVE_ENDIAN,
|
|
};
|
|
|
|
static uint64_t subpage_read(void *opaque, target_phys_addr_t addr,
|
|
unsigned len)
|
|
{
|
|
subpage_t *mmio = opaque;
|
|
unsigned int idx = SUBPAGE_IDX(addr);
|
|
MemoryRegionSection *section;
|
|
#if defined(DEBUG_SUBPAGE)
|
|
printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
|
|
mmio, len, addr, idx);
|
|
#endif
|
|
|
|
section = &phys_sections[mmio->sub_section[idx]];
|
|
addr += mmio->base;
|
|
addr -= section->offset_within_address_space;
|
|
addr += section->offset_within_region;
|
|
return io_mem_read(section->mr, addr, len);
|
|
}
|
|
|
|
static void subpage_write(void *opaque, target_phys_addr_t addr,
|
|
uint64_t value, unsigned len)
|
|
{
|
|
subpage_t *mmio = opaque;
|
|
unsigned int idx = SUBPAGE_IDX(addr);
|
|
MemoryRegionSection *section;
|
|
#if defined(DEBUG_SUBPAGE)
|
|
printf("%s: subpage %p len %d addr " TARGET_FMT_plx
|
|
" idx %d value %"PRIx64"\n",
|
|
__func__, mmio, len, addr, idx, value);
|
|
#endif
|
|
|
|
section = &phys_sections[mmio->sub_section[idx]];
|
|
addr += mmio->base;
|
|
addr -= section->offset_within_address_space;
|
|
addr += section->offset_within_region;
|
|
io_mem_write(section->mr, addr, value, len);
|
|
}
|
|
|
|
static const MemoryRegionOps subpage_ops = {
|
|
.read = subpage_read,
|
|
.write = subpage_write,
|
|
.endianness = DEVICE_NATIVE_ENDIAN,
|
|
};
|
|
|
|
static uint64_t subpage_ram_read(void *opaque, target_phys_addr_t addr,
|
|
unsigned size)
|
|
{
|
|
ram_addr_t raddr = addr;
|
|
void *ptr = qemu_get_ram_ptr(raddr);
|
|
switch (size) {
|
|
case 1: return ldub_p(ptr);
|
|
case 2: return lduw_p(ptr);
|
|
case 4: return ldl_p(ptr);
|
|
default: abort();
|
|
}
|
|
}
|
|
|
|
static void subpage_ram_write(void *opaque, target_phys_addr_t addr,
|
|
uint64_t value, unsigned size)
|
|
{
|
|
ram_addr_t raddr = addr;
|
|
void *ptr = qemu_get_ram_ptr(raddr);
|
|
switch (size) {
|
|
case 1: return stb_p(ptr, value);
|
|
case 2: return stw_p(ptr, value);
|
|
case 4: return stl_p(ptr, value);
|
|
default: abort();
|
|
}
|
|
}
|
|
|
|
static const MemoryRegionOps subpage_ram_ops = {
|
|
.read = subpage_ram_read,
|
|
.write = subpage_ram_write,
|
|
.endianness = DEVICE_NATIVE_ENDIAN,
|
|
};
|
|
|
|
static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
|
|
uint16_t section)
|
|
{
|
|
int idx, eidx;
|
|
|
|
if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
|
|
return -1;
|
|
idx = SUBPAGE_IDX(start);
|
|
eidx = SUBPAGE_IDX(end);
|
|
#if defined(DEBUG_SUBPAGE)
|
|
printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
|
|
mmio, start, end, idx, eidx, memory);
|
|
#endif
|
|
if (memory_region_is_ram(phys_sections[section].mr)) {
|
|
MemoryRegionSection new_section = phys_sections[section];
|
|
new_section.mr = &io_mem_subpage_ram;
|
|
section = phys_section_add(&new_section);
|
|
}
|
|
for (; idx <= eidx; idx++) {
|
|
mmio->sub_section[idx] = section;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static subpage_t *subpage_init(target_phys_addr_t base)
|
|
{
|
|
subpage_t *mmio;
|
|
|
|
mmio = g_malloc0(sizeof(subpage_t));
|
|
|
|
mmio->base = base;
|
|
memory_region_init_io(&mmio->iomem, &subpage_ops, mmio,
|
|
"subpage", TARGET_PAGE_SIZE);
|
|
mmio->iomem.subpage = true;
|
|
#if defined(DEBUG_SUBPAGE)
|
|
printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
|
|
mmio, base, TARGET_PAGE_SIZE, subpage_memory);
|
|
#endif
|
|
subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, phys_section_unassigned);
|
|
|
|
return mmio;
|
|
}
|
|
|
|
static uint16_t dummy_section(MemoryRegion *mr)
|
|
{
|
|
MemoryRegionSection section = {
|
|
.mr = mr,
|
|
.offset_within_address_space = 0,
|
|
.offset_within_region = 0,
|
|
.size = UINT64_MAX,
|
|
};
|
|
|
|
return phys_section_add(§ion);
|
|
}
|
|
|
|
MemoryRegion *iotlb_to_region(target_phys_addr_t index)
|
|
{
|
|
return phys_sections[index & ~TARGET_PAGE_MASK].mr;
|
|
}
|
|
|
|
static void io_mem_init(void)
|
|
{
|
|
memory_region_init_io(&io_mem_ram, &error_mem_ops, NULL, "ram", UINT64_MAX);
|
|
memory_region_init_io(&io_mem_rom, &rom_mem_ops, NULL, "rom", UINT64_MAX);
|
|
memory_region_init_io(&io_mem_unassigned, &unassigned_mem_ops, NULL,
|
|
"unassigned", UINT64_MAX);
|
|
memory_region_init_io(&io_mem_notdirty, ¬dirty_mem_ops, NULL,
|
|
"notdirty", UINT64_MAX);
|
|
memory_region_init_io(&io_mem_subpage_ram, &subpage_ram_ops, NULL,
|
|
"subpage-ram", UINT64_MAX);
|
|
memory_region_init_io(&io_mem_watch, &watch_mem_ops, NULL,
|
|
"watch", UINT64_MAX);
|
|
}
|
|
|
|
static void core_begin(MemoryListener *listener)
|
|
{
|
|
destroy_all_mappings();
|
|
phys_sections_clear();
|
|
phys_map.ptr = PHYS_MAP_NODE_NIL;
|
|
phys_section_unassigned = dummy_section(&io_mem_unassigned);
|
|
phys_section_notdirty = dummy_section(&io_mem_notdirty);
|
|
phys_section_rom = dummy_section(&io_mem_rom);
|
|
phys_section_watch = dummy_section(&io_mem_watch);
|
|
}
|
|
|
|
static void core_commit(MemoryListener *listener)
|
|
{
|
|
CPUArchState *env;
|
|
|
|
/* since each CPU stores ram addresses in its TLB cache, we must
|
|
reset the modified entries */
|
|
/* XXX: slow ! */
|
|
for(env = first_cpu; env != NULL; env = env->next_cpu) {
|
|
tlb_flush(env, 1);
|
|
}
|
|
}
|
|
|
|
static void core_region_add(MemoryListener *listener,
|
|
MemoryRegionSection *section)
|
|
{
|
|
cpu_register_physical_memory_log(section, section->readonly);
|
|
}
|
|
|
|
static void core_region_del(MemoryListener *listener,
|
|
MemoryRegionSection *section)
|
|
{
|
|
}
|
|
|
|
static void core_region_nop(MemoryListener *listener,
|
|
MemoryRegionSection *section)
|
|
{
|
|
cpu_register_physical_memory_log(section, section->readonly);
|
|
}
|
|
|
|
static void core_log_start(MemoryListener *listener,
|
|
MemoryRegionSection *section)
|
|
{
|
|
}
|
|
|
|
static void core_log_stop(MemoryListener *listener,
|
|
MemoryRegionSection *section)
|
|
{
|
|
}
|
|
|
|
static void core_log_sync(MemoryListener *listener,
|
|
MemoryRegionSection *section)
|
|
{
|
|
}
|
|
|
|
static void core_log_global_start(MemoryListener *listener)
|
|
{
|
|
cpu_physical_memory_set_dirty_tracking(1);
|
|
}
|
|
|
|
static void core_log_global_stop(MemoryListener *listener)
|
|
{
|
|
cpu_physical_memory_set_dirty_tracking(0);
|
|
}
|
|
|
|
static void core_eventfd_add(MemoryListener *listener,
|
|
MemoryRegionSection *section,
|
|
bool match_data, uint64_t data, EventNotifier *e)
|
|
{
|
|
}
|
|
|
|
static void core_eventfd_del(MemoryListener *listener,
|
|
MemoryRegionSection *section,
|
|
bool match_data, uint64_t data, EventNotifier *e)
|
|
{
|
|
}
|
|
|
|
static void io_begin(MemoryListener *listener)
|
|
{
|
|
}
|
|
|
|
static void io_commit(MemoryListener *listener)
|
|
{
|
|
}
|
|
|
|
static void io_region_add(MemoryListener *listener,
|
|
MemoryRegionSection *section)
|
|
{
|
|
MemoryRegionIORange *mrio = g_new(MemoryRegionIORange, 1);
|
|
|
|
mrio->mr = section->mr;
|
|
mrio->offset = section->offset_within_region;
|
|
iorange_init(&mrio->iorange, &memory_region_iorange_ops,
|
|
section->offset_within_address_space, section->size);
|
|
ioport_register(&mrio->iorange);
|
|
}
|
|
|
|
static void io_region_del(MemoryListener *listener,
|
|
MemoryRegionSection *section)
|
|
{
|
|
isa_unassign_ioport(section->offset_within_address_space, section->size);
|
|
}
|
|
|
|
static void io_region_nop(MemoryListener *listener,
|
|
MemoryRegionSection *section)
|
|
{
|
|
}
|
|
|
|
static void io_log_start(MemoryListener *listener,
|
|
MemoryRegionSection *section)
|
|
{
|
|
}
|
|
|
|
static void io_log_stop(MemoryListener *listener,
|
|
MemoryRegionSection *section)
|
|
{
|
|
}
|
|
|
|
static void io_log_sync(MemoryListener *listener,
|
|
MemoryRegionSection *section)
|
|
{
|
|
}
|
|
|
|
static void io_log_global_start(MemoryListener *listener)
|
|
{
|
|
}
|
|
|
|
static void io_log_global_stop(MemoryListener *listener)
|
|
{
|
|
}
|
|
|
|
static void io_eventfd_add(MemoryListener *listener,
|
|
MemoryRegionSection *section,
|
|
bool match_data, uint64_t data, EventNotifier *e)
|
|
{
|
|
}
|
|
|
|
static void io_eventfd_del(MemoryListener *listener,
|
|
MemoryRegionSection *section,
|
|
bool match_data, uint64_t data, EventNotifier *e)
|
|
{
|
|
}
|
|
|
|
static MemoryListener core_memory_listener = {
|
|
.begin = core_begin,
|
|
.commit = core_commit,
|
|
.region_add = core_region_add,
|
|
.region_del = core_region_del,
|
|
.region_nop = core_region_nop,
|
|
.log_start = core_log_start,
|
|
.log_stop = core_log_stop,
|
|
.log_sync = core_log_sync,
|
|
.log_global_start = core_log_global_start,
|
|
.log_global_stop = core_log_global_stop,
|
|
.eventfd_add = core_eventfd_add,
|
|
.eventfd_del = core_eventfd_del,
|
|
.priority = 0,
|
|
};
|
|
|
|
static MemoryListener io_memory_listener = {
|
|
.begin = io_begin,
|
|
.commit = io_commit,
|
|
.region_add = io_region_add,
|
|
.region_del = io_region_del,
|
|
.region_nop = io_region_nop,
|
|
.log_start = io_log_start,
|
|
.log_stop = io_log_stop,
|
|
.log_sync = io_log_sync,
|
|
.log_global_start = io_log_global_start,
|
|
.log_global_stop = io_log_global_stop,
|
|
.eventfd_add = io_eventfd_add,
|
|
.eventfd_del = io_eventfd_del,
|
|
.priority = 0,
|
|
};
|
|
|
|
static void memory_map_init(void)
|
|
{
|
|
system_memory = g_malloc(sizeof(*system_memory));
|
|
memory_region_init(system_memory, "system", INT64_MAX);
|
|
set_system_memory_map(system_memory);
|
|
|
|
system_io = g_malloc(sizeof(*system_io));
|
|
memory_region_init(system_io, "io", 65536);
|
|
set_system_io_map(system_io);
|
|
|
|
memory_listener_register(&core_memory_listener, system_memory);
|
|
memory_listener_register(&io_memory_listener, system_io);
|
|
}
|
|
|
|
MemoryRegion *get_system_memory(void)
|
|
{
|
|
return system_memory;
|
|
}
|
|
|
|
MemoryRegion *get_system_io(void)
|
|
{
|
|
return system_io;
|
|
}
|
|
|
|
#endif /* !defined(CONFIG_USER_ONLY) */
|
|
|
|
/* physical memory access (slow version, mainly for debug) */
|
|
#if defined(CONFIG_USER_ONLY)
|
|
int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
|
|
uint8_t *buf, int len, int is_write)
|
|
{
|
|
int l, flags;
|
|
target_ulong page;
|
|
void * p;
|
|
|
|
while (len > 0) {
|
|
page = addr & TARGET_PAGE_MASK;
|
|
l = (page + TARGET_PAGE_SIZE) - addr;
|
|
if (l > len)
|
|
l = len;
|
|
flags = page_get_flags(page);
|
|
if (!(flags & PAGE_VALID))
|
|
return -1;
|
|
if (is_write) {
|
|
if (!(flags & PAGE_WRITE))
|
|
return -1;
|
|
/* XXX: this code should not depend on lock_user */
|
|
if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
|
|
return -1;
|
|
memcpy(p, buf, l);
|
|
unlock_user(p, addr, l);
|
|
} else {
|
|
if (!(flags & PAGE_READ))
|
|
return -1;
|
|
/* XXX: this code should not depend on lock_user */
|
|
if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
|
|
return -1;
|
|
memcpy(buf, p, l);
|
|
unlock_user(p, addr, 0);
|
|
}
|
|
len -= l;
|
|
buf += l;
|
|
addr += l;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#else
|
|
void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
|
|
int len, int is_write)
|
|
{
|
|
int l;
|
|
uint8_t *ptr;
|
|
uint32_t val;
|
|
target_phys_addr_t page;
|
|
MemoryRegionSection *section;
|
|
|
|
while (len > 0) {
|
|
page = addr & TARGET_PAGE_MASK;
|
|
l = (page + TARGET_PAGE_SIZE) - addr;
|
|
if (l > len)
|
|
l = len;
|
|
section = phys_page_find(page >> TARGET_PAGE_BITS);
|
|
|
|
if (is_write) {
|
|
if (!memory_region_is_ram(section->mr)) {
|
|
target_phys_addr_t addr1;
|
|
addr1 = memory_region_section_addr(section, addr);
|
|
/* XXX: could force cpu_single_env to NULL to avoid
|
|
potential bugs */
|
|
if (l >= 4 && ((addr1 & 3) == 0)) {
|
|
/* 32 bit write access */
|
|
val = ldl_p(buf);
|
|
io_mem_write(section->mr, addr1, val, 4);
|
|
l = 4;
|
|
} else if (l >= 2 && ((addr1 & 1) == 0)) {
|
|
/* 16 bit write access */
|
|
val = lduw_p(buf);
|
|
io_mem_write(section->mr, addr1, val, 2);
|
|
l = 2;
|
|
} else {
|
|
/* 8 bit write access */
|
|
val = ldub_p(buf);
|
|
io_mem_write(section->mr, addr1, val, 1);
|
|
l = 1;
|
|
}
|
|
} else if (!section->readonly) {
|
|
ram_addr_t addr1;
|
|
addr1 = memory_region_get_ram_addr(section->mr)
|
|
+ memory_region_section_addr(section, addr);
|
|
/* RAM case */
|
|
ptr = qemu_get_ram_ptr(addr1);
|
|
memcpy(ptr, buf, l);
|
|
if (!cpu_physical_memory_is_dirty(addr1)) {
|
|
/* invalidate code */
|
|
tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
|
|
/* set dirty bit */
|
|
cpu_physical_memory_set_dirty_flags(
|
|
addr1, (0xff & ~CODE_DIRTY_FLAG));
|
|
}
|
|
qemu_put_ram_ptr(ptr);
|
|
}
|
|
} else {
|
|
if (!(memory_region_is_ram(section->mr) ||
|
|
memory_region_is_romd(section->mr))) {
|
|
target_phys_addr_t addr1;
|
|
/* I/O case */
|
|
addr1 = memory_region_section_addr(section, addr);
|
|
if (l >= 4 && ((addr1 & 3) == 0)) {
|
|
/* 32 bit read access */
|
|
val = io_mem_read(section->mr, addr1, 4);
|
|
stl_p(buf, val);
|
|
l = 4;
|
|
} else if (l >= 2 && ((addr1 & 1) == 0)) {
|
|
/* 16 bit read access */
|
|
val = io_mem_read(section->mr, addr1, 2);
|
|
stw_p(buf, val);
|
|
l = 2;
|
|
} else {
|
|
/* 8 bit read access */
|
|
val = io_mem_read(section->mr, addr1, 1);
|
|
stb_p(buf, val);
|
|
l = 1;
|
|
}
|
|
} else {
|
|
/* RAM case */
|
|
ptr = qemu_get_ram_ptr(section->mr->ram_addr
|
|
+ memory_region_section_addr(section,
|
|
addr));
|
|
memcpy(buf, ptr, l);
|
|
qemu_put_ram_ptr(ptr);
|
|
}
|
|
}
|
|
len -= l;
|
|
buf += l;
|
|
addr += l;
|
|
}
|
|
}
|
|
|
|
/* used for ROM loading : can write in RAM and ROM */
|
|
void cpu_physical_memory_write_rom(target_phys_addr_t addr,
|
|
const uint8_t *buf, int len)
|
|
{
|
|
int l;
|
|
uint8_t *ptr;
|
|
target_phys_addr_t page;
|
|
MemoryRegionSection *section;
|
|
|
|
while (len > 0) {
|
|
page = addr & TARGET_PAGE_MASK;
|
|
l = (page + TARGET_PAGE_SIZE) - addr;
|
|
if (l > len)
|
|
l = len;
|
|
section = phys_page_find(page >> TARGET_PAGE_BITS);
|
|
|
|
if (!(memory_region_is_ram(section->mr) ||
|
|
memory_region_is_romd(section->mr))) {
|
|
/* do nothing */
|
|
} else {
|
|
unsigned long addr1;
|
|
addr1 = memory_region_get_ram_addr(section->mr)
|
|
+ memory_region_section_addr(section, addr);
|
|
/* ROM/RAM case */
|
|
ptr = qemu_get_ram_ptr(addr1);
|
|
memcpy(ptr, buf, l);
|
|
if (!cpu_physical_memory_is_dirty(addr1)) {
|
|
/* invalidate code */
|
|
tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
|
|
/* set dirty bit */
|
|
cpu_physical_memory_set_dirty_flags(
|
|
addr1, (0xff & ~CODE_DIRTY_FLAG));
|
|
}
|
|
qemu_put_ram_ptr(ptr);
|
|
}
|
|
len -= l;
|
|
buf += l;
|
|
addr += l;
|
|
}
|
|
}
|
|
|
|
typedef struct {
|
|
void *buffer;
|
|
target_phys_addr_t addr;
|
|
target_phys_addr_t len;
|
|
} BounceBuffer;
|
|
|
|
static BounceBuffer bounce;
|
|
|
|
typedef struct MapClient {
|
|
void *opaque;
|
|
void (*callback)(void *opaque);
|
|
QLIST_ENTRY(MapClient) link;
|
|
} MapClient;
|
|
|
|
static QLIST_HEAD(map_client_list, MapClient) map_client_list
|
|
= QLIST_HEAD_INITIALIZER(map_client_list);
|
|
|
|
void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
|
|
{
|
|
MapClient *client = g_malloc(sizeof(*client));
|
|
|
|
client->opaque = opaque;
|
|
client->callback = callback;
|
|
QLIST_INSERT_HEAD(&map_client_list, client, link);
|
|
return client;
|
|
}
|
|
|
|
void cpu_unregister_map_client(void *_client)
|
|
{
|
|
MapClient *client = (MapClient *)_client;
|
|
|
|
QLIST_REMOVE(client, link);
|
|
g_free(client);
|
|
}
|
|
|
|
static void cpu_notify_map_clients(void)
|
|
{
|
|
MapClient *client;
|
|
|
|
while (!QLIST_EMPTY(&map_client_list)) {
|
|
client = QLIST_FIRST(&map_client_list);
|
|
client->callback(client->opaque);
|
|
cpu_unregister_map_client(client);
|
|
}
|
|
}
|
|
|
|
/* Map a physical memory region into a host virtual address.
|
|
* May map a subset of the requested range, given by and returned in *plen.
|
|
* May return NULL if resources needed to perform the mapping are exhausted.
|
|
* Use only for reads OR writes - not for read-modify-write operations.
|
|
* Use cpu_register_map_client() to know when retrying the map operation is
|
|
* likely to succeed.
|
|
*/
|
|
void *cpu_physical_memory_map(target_phys_addr_t addr,
|
|
target_phys_addr_t *plen,
|
|
int is_write)
|
|
{
|
|
target_phys_addr_t len = *plen;
|
|
target_phys_addr_t todo = 0;
|
|
int l;
|
|
target_phys_addr_t page;
|
|
MemoryRegionSection *section;
|
|
ram_addr_t raddr = RAM_ADDR_MAX;
|
|
ram_addr_t rlen;
|
|
void *ret;
|
|
|
|
while (len > 0) {
|
|
page = addr & TARGET_PAGE_MASK;
|
|
l = (page + TARGET_PAGE_SIZE) - addr;
|
|
if (l > len)
|
|
l = len;
|
|
section = phys_page_find(page >> TARGET_PAGE_BITS);
|
|
|
|
if (!(memory_region_is_ram(section->mr) && !section->readonly)) {
|
|
if (todo || bounce.buffer) {
|
|
break;
|
|
}
|
|
bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
|
|
bounce.addr = addr;
|
|
bounce.len = l;
|
|
if (!is_write) {
|
|
cpu_physical_memory_read(addr, bounce.buffer, l);
|
|
}
|
|
|
|
*plen = l;
|
|
return bounce.buffer;
|
|
}
|
|
if (!todo) {
|
|
raddr = memory_region_get_ram_addr(section->mr)
|
|
+ memory_region_section_addr(section, addr);
|
|
}
|
|
|
|
len -= l;
|
|
addr += l;
|
|
todo += l;
|
|
}
|
|
rlen = todo;
|
|
ret = qemu_ram_ptr_length(raddr, &rlen);
|
|
*plen = rlen;
|
|
return ret;
|
|
}
|
|
|
|
/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
|
|
* Will also mark the memory as dirty if is_write == 1. access_len gives
|
|
* the amount of memory that was actually read or written by the caller.
|
|
*/
|
|
void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
|
|
int is_write, target_phys_addr_t access_len)
|
|
{
|
|
if (buffer != bounce.buffer) {
|
|
if (is_write) {
|
|
ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
|
|
while (access_len) {
|
|
unsigned l;
|
|
l = TARGET_PAGE_SIZE;
|
|
if (l > access_len)
|
|
l = access_len;
|
|
if (!cpu_physical_memory_is_dirty(addr1)) {
|
|
/* invalidate code */
|
|
tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
|
|
/* set dirty bit */
|
|
cpu_physical_memory_set_dirty_flags(
|
|
addr1, (0xff & ~CODE_DIRTY_FLAG));
|
|
}
|
|
addr1 += l;
|
|
access_len -= l;
|
|
}
|
|
}
|
|
if (xen_enabled()) {
|
|
xen_invalidate_map_cache_entry(buffer);
|
|
}
|
|
return;
|
|
}
|
|
if (is_write) {
|
|
cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
|
|
}
|
|
qemu_vfree(bounce.buffer);
|
|
bounce.buffer = NULL;
|
|
cpu_notify_map_clients();
|
|
}
|
|
|
|
/* warning: addr must be aligned */
|
|
static inline uint32_t ldl_phys_internal(target_phys_addr_t addr,
|
|
enum device_endian endian)
|
|
{
|
|
uint8_t *ptr;
|
|
uint32_t val;
|
|
MemoryRegionSection *section;
|
|
|
|
section = phys_page_find(addr >> TARGET_PAGE_BITS);
|
|
|
|
if (!(memory_region_is_ram(section->mr) ||
|
|
memory_region_is_romd(section->mr))) {
|
|
/* I/O case */
|
|
addr = memory_region_section_addr(section, addr);
|
|
val = io_mem_read(section->mr, addr, 4);
|
|
#if defined(TARGET_WORDS_BIGENDIAN)
|
|
if (endian == DEVICE_LITTLE_ENDIAN) {
|
|
val = bswap32(val);
|
|
}
|
|
#else
|
|
if (endian == DEVICE_BIG_ENDIAN) {
|
|
val = bswap32(val);
|
|
}
|
|
#endif
|
|
} else {
|
|
/* RAM case */
|
|
ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
|
|
& TARGET_PAGE_MASK)
|
|
+ memory_region_section_addr(section, addr));
|
|
switch (endian) {
|
|
case DEVICE_LITTLE_ENDIAN:
|
|
val = ldl_le_p(ptr);
|
|
break;
|
|
case DEVICE_BIG_ENDIAN:
|
|
val = ldl_be_p(ptr);
|
|
break;
|
|
default:
|
|
val = ldl_p(ptr);
|
|
break;
|
|
}
|
|
}
|
|
return val;
|
|
}
|
|
|
|
uint32_t ldl_phys(target_phys_addr_t addr)
|
|
{
|
|
return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
|
|
}
|
|
|
|
uint32_t ldl_le_phys(target_phys_addr_t addr)
|
|
{
|
|
return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
|
|
}
|
|
|
|
uint32_t ldl_be_phys(target_phys_addr_t addr)
|
|
{
|
|
return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
|
|
}
|
|
|
|
/* warning: addr must be aligned */
|
|
static inline uint64_t ldq_phys_internal(target_phys_addr_t addr,
|
|
enum device_endian endian)
|
|
{
|
|
uint8_t *ptr;
|
|
uint64_t val;
|
|
MemoryRegionSection *section;
|
|
|
|
section = phys_page_find(addr >> TARGET_PAGE_BITS);
|
|
|
|
if (!(memory_region_is_ram(section->mr) ||
|
|
memory_region_is_romd(section->mr))) {
|
|
/* I/O case */
|
|
addr = memory_region_section_addr(section, addr);
|
|
|
|
/* XXX This is broken when device endian != cpu endian.
|
|
Fix and add "endian" variable check */
|
|
#ifdef TARGET_WORDS_BIGENDIAN
|
|
val = io_mem_read(section->mr, addr, 4) << 32;
|
|
val |= io_mem_read(section->mr, addr + 4, 4);
|
|
#else
|
|
val = io_mem_read(section->mr, addr, 4);
|
|
val |= io_mem_read(section->mr, addr + 4, 4) << 32;
|
|
#endif
|
|
} else {
|
|
/* RAM case */
|
|
ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
|
|
& TARGET_PAGE_MASK)
|
|
+ memory_region_section_addr(section, addr));
|
|
switch (endian) {
|
|
case DEVICE_LITTLE_ENDIAN:
|
|
val = ldq_le_p(ptr);
|
|
break;
|
|
case DEVICE_BIG_ENDIAN:
|
|
val = ldq_be_p(ptr);
|
|
break;
|
|
default:
|
|
val = ldq_p(ptr);
|
|
break;
|
|
}
|
|
}
|
|
return val;
|
|
}
|
|
|
|
uint64_t ldq_phys(target_phys_addr_t addr)
|
|
{
|
|
return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
|
|
}
|
|
|
|
uint64_t ldq_le_phys(target_phys_addr_t addr)
|
|
{
|
|
return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
|
|
}
|
|
|
|
uint64_t ldq_be_phys(target_phys_addr_t addr)
|
|
{
|
|
return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
|
|
}
|
|
|
|
/* XXX: optimize */
|
|
uint32_t ldub_phys(target_phys_addr_t addr)
|
|
{
|
|
uint8_t val;
|
|
cpu_physical_memory_read(addr, &val, 1);
|
|
return val;
|
|
}
|
|
|
|
/* warning: addr must be aligned */
|
|
static inline uint32_t lduw_phys_internal(target_phys_addr_t addr,
|
|
enum device_endian endian)
|
|
{
|
|
uint8_t *ptr;
|
|
uint64_t val;
|
|
MemoryRegionSection *section;
|
|
|
|
section = phys_page_find(addr >> TARGET_PAGE_BITS);
|
|
|
|
if (!(memory_region_is_ram(section->mr) ||
|
|
memory_region_is_romd(section->mr))) {
|
|
/* I/O case */
|
|
addr = memory_region_section_addr(section, addr);
|
|
val = io_mem_read(section->mr, addr, 2);
|
|
#if defined(TARGET_WORDS_BIGENDIAN)
|
|
if (endian == DEVICE_LITTLE_ENDIAN) {
|
|
val = bswap16(val);
|
|
}
|
|
#else
|
|
if (endian == DEVICE_BIG_ENDIAN) {
|
|
val = bswap16(val);
|
|
}
|
|
#endif
|
|
} else {
|
|
/* RAM case */
|
|
ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
|
|
& TARGET_PAGE_MASK)
|
|
+ memory_region_section_addr(section, addr));
|
|
switch (endian) {
|
|
case DEVICE_LITTLE_ENDIAN:
|
|
val = lduw_le_p(ptr);
|
|
break;
|
|
case DEVICE_BIG_ENDIAN:
|
|
val = lduw_be_p(ptr);
|
|
break;
|
|
default:
|
|
val = lduw_p(ptr);
|
|
break;
|
|
}
|
|
}
|
|
return val;
|
|
}
|
|
|
|
uint32_t lduw_phys(target_phys_addr_t addr)
|
|
{
|
|
return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
|
|
}
|
|
|
|
uint32_t lduw_le_phys(target_phys_addr_t addr)
|
|
{
|
|
return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
|
|
}
|
|
|
|
uint32_t lduw_be_phys(target_phys_addr_t addr)
|
|
{
|
|
return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
|
|
}
|
|
|
|
/* warning: addr must be aligned. The ram page is not masked as dirty
|
|
and the code inside is not invalidated. It is useful if the dirty
|
|
bits are used to track modified PTEs */
|
|
void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
|
|
{
|
|
uint8_t *ptr;
|
|
MemoryRegionSection *section;
|
|
|
|
section = phys_page_find(addr >> TARGET_PAGE_BITS);
|
|
|
|
if (!memory_region_is_ram(section->mr) || section->readonly) {
|
|
addr = memory_region_section_addr(section, addr);
|
|
if (memory_region_is_ram(section->mr)) {
|
|
section = &phys_sections[phys_section_rom];
|
|
}
|
|
io_mem_write(section->mr, addr, val, 4);
|
|
} else {
|
|
unsigned long addr1 = (memory_region_get_ram_addr(section->mr)
|
|
& TARGET_PAGE_MASK)
|
|
+ memory_region_section_addr(section, addr);
|
|
ptr = qemu_get_ram_ptr(addr1);
|
|
stl_p(ptr, val);
|
|
|
|
if (unlikely(in_migration)) {
|
|
if (!cpu_physical_memory_is_dirty(addr1)) {
|
|
/* invalidate code */
|
|
tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
|
|
/* set dirty bit */
|
|
cpu_physical_memory_set_dirty_flags(
|
|
addr1, (0xff & ~CODE_DIRTY_FLAG));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
|
|
{
|
|
uint8_t *ptr;
|
|
MemoryRegionSection *section;
|
|
|
|
section = phys_page_find(addr >> TARGET_PAGE_BITS);
|
|
|
|
if (!memory_region_is_ram(section->mr) || section->readonly) {
|
|
addr = memory_region_section_addr(section, addr);
|
|
if (memory_region_is_ram(section->mr)) {
|
|
section = &phys_sections[phys_section_rom];
|
|
}
|
|
#ifdef TARGET_WORDS_BIGENDIAN
|
|
io_mem_write(section->mr, addr, val >> 32, 4);
|
|
io_mem_write(section->mr, addr + 4, (uint32_t)val, 4);
|
|
#else
|
|
io_mem_write(section->mr, addr, (uint32_t)val, 4);
|
|
io_mem_write(section->mr, addr + 4, val >> 32, 4);
|
|
#endif
|
|
} else {
|
|
ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
|
|
& TARGET_PAGE_MASK)
|
|
+ memory_region_section_addr(section, addr));
|
|
stq_p(ptr, val);
|
|
}
|
|
}
|
|
|
|
/* warning: addr must be aligned */
|
|
static inline void stl_phys_internal(target_phys_addr_t addr, uint32_t val,
|
|
enum device_endian endian)
|
|
{
|
|
uint8_t *ptr;
|
|
MemoryRegionSection *section;
|
|
|
|
section = phys_page_find(addr >> TARGET_PAGE_BITS);
|
|
|
|
if (!memory_region_is_ram(section->mr) || section->readonly) {
|
|
addr = memory_region_section_addr(section, addr);
|
|
if (memory_region_is_ram(section->mr)) {
|
|
section = &phys_sections[phys_section_rom];
|
|
}
|
|
#if defined(TARGET_WORDS_BIGENDIAN)
|
|
if (endian == DEVICE_LITTLE_ENDIAN) {
|
|
val = bswap32(val);
|
|
}
|
|
#else
|
|
if (endian == DEVICE_BIG_ENDIAN) {
|
|
val = bswap32(val);
|
|
}
|
|
#endif
|
|
io_mem_write(section->mr, addr, val, 4);
|
|
} else {
|
|
unsigned long addr1;
|
|
addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
|
|
+ memory_region_section_addr(section, addr);
|
|
/* RAM case */
|
|
ptr = qemu_get_ram_ptr(addr1);
|
|
switch (endian) {
|
|
case DEVICE_LITTLE_ENDIAN:
|
|
stl_le_p(ptr, val);
|
|
break;
|
|
case DEVICE_BIG_ENDIAN:
|
|
stl_be_p(ptr, val);
|
|
break;
|
|
default:
|
|
stl_p(ptr, val);
|
|
break;
|
|
}
|
|
if (!cpu_physical_memory_is_dirty(addr1)) {
|
|
/* invalidate code */
|
|
tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
|
|
/* set dirty bit */
|
|
cpu_physical_memory_set_dirty_flags(addr1,
|
|
(0xff & ~CODE_DIRTY_FLAG));
|
|
}
|
|
}
|
|
}
|
|
|
|
void stl_phys(target_phys_addr_t addr, uint32_t val)
|
|
{
|
|
stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
|
|
}
|
|
|
|
void stl_le_phys(target_phys_addr_t addr, uint32_t val)
|
|
{
|
|
stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
|
|
}
|
|
|
|
void stl_be_phys(target_phys_addr_t addr, uint32_t val)
|
|
{
|
|
stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
|
|
}
|
|
|
|
/* XXX: optimize */
|
|
void stb_phys(target_phys_addr_t addr, uint32_t val)
|
|
{
|
|
uint8_t v = val;
|
|
cpu_physical_memory_write(addr, &v, 1);
|
|
}
|
|
|
|
/* warning: addr must be aligned */
|
|
static inline void stw_phys_internal(target_phys_addr_t addr, uint32_t val,
|
|
enum device_endian endian)
|
|
{
|
|
uint8_t *ptr;
|
|
MemoryRegionSection *section;
|
|
|
|
section = phys_page_find(addr >> TARGET_PAGE_BITS);
|
|
|
|
if (!memory_region_is_ram(section->mr) || section->readonly) {
|
|
addr = memory_region_section_addr(section, addr);
|
|
if (memory_region_is_ram(section->mr)) {
|
|
section = &phys_sections[phys_section_rom];
|
|
}
|
|
#if defined(TARGET_WORDS_BIGENDIAN)
|
|
if (endian == DEVICE_LITTLE_ENDIAN) {
|
|
val = bswap16(val);
|
|
}
|
|
#else
|
|
if (endian == DEVICE_BIG_ENDIAN) {
|
|
val = bswap16(val);
|
|
}
|
|
#endif
|
|
io_mem_write(section->mr, addr, val, 2);
|
|
} else {
|
|
unsigned long addr1;
|
|
addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
|
|
+ memory_region_section_addr(section, addr);
|
|
/* RAM case */
|
|
ptr = qemu_get_ram_ptr(addr1);
|
|
switch (endian) {
|
|
case DEVICE_LITTLE_ENDIAN:
|
|
stw_le_p(ptr, val);
|
|
break;
|
|
case DEVICE_BIG_ENDIAN:
|
|
stw_be_p(ptr, val);
|
|
break;
|
|
default:
|
|
stw_p(ptr, val);
|
|
break;
|
|
}
|
|
if (!cpu_physical_memory_is_dirty(addr1)) {
|
|
/* invalidate code */
|
|
tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
|
|
/* set dirty bit */
|
|
cpu_physical_memory_set_dirty_flags(addr1,
|
|
(0xff & ~CODE_DIRTY_FLAG));
|
|
}
|
|
}
|
|
}
|
|
|
|
void stw_phys(target_phys_addr_t addr, uint32_t val)
|
|
{
|
|
stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
|
|
}
|
|
|
|
void stw_le_phys(target_phys_addr_t addr, uint32_t val)
|
|
{
|
|
stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
|
|
}
|
|
|
|
void stw_be_phys(target_phys_addr_t addr, uint32_t val)
|
|
{
|
|
stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
|
|
}
|
|
|
|
/* XXX: optimize */
|
|
void stq_phys(target_phys_addr_t addr, uint64_t val)
|
|
{
|
|
val = tswap64(val);
|
|
cpu_physical_memory_write(addr, &val, 8);
|
|
}
|
|
|
|
void stq_le_phys(target_phys_addr_t addr, uint64_t val)
|
|
{
|
|
val = cpu_to_le64(val);
|
|
cpu_physical_memory_write(addr, &val, 8);
|
|
}
|
|
|
|
void stq_be_phys(target_phys_addr_t addr, uint64_t val)
|
|
{
|
|
val = cpu_to_be64(val);
|
|
cpu_physical_memory_write(addr, &val, 8);
|
|
}
|
|
|
|
/* virtual memory access for debug (includes writing to ROM) */
|
|
int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
|
|
uint8_t *buf, int len, int is_write)
|
|
{
|
|
int l;
|
|
target_phys_addr_t phys_addr;
|
|
target_ulong page;
|
|
|
|
while (len > 0) {
|
|
page = addr & TARGET_PAGE_MASK;
|
|
phys_addr = cpu_get_phys_page_debug(env, page);
|
|
/* if no physical page mapped, return an error */
|
|
if (phys_addr == -1)
|
|
return -1;
|
|
l = (page + TARGET_PAGE_SIZE) - addr;
|
|
if (l > len)
|
|
l = len;
|
|
phys_addr += (addr & ~TARGET_PAGE_MASK);
|
|
if (is_write)
|
|
cpu_physical_memory_write_rom(phys_addr, buf, l);
|
|
else
|
|
cpu_physical_memory_rw(phys_addr, buf, l, is_write);
|
|
len -= l;
|
|
buf += l;
|
|
addr += l;
|
|
}
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/* in deterministic execution mode, instructions doing device I/Os
|
|
must be at the end of the TB */
|
|
void cpu_io_recompile(CPUArchState *env, uintptr_t retaddr)
|
|
{
|
|
TranslationBlock *tb;
|
|
uint32_t n, cflags;
|
|
target_ulong pc, cs_base;
|
|
uint64_t flags;
|
|
|
|
tb = tb_find_pc(retaddr);
|
|
if (!tb) {
|
|
cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
|
|
(void *)retaddr);
|
|
}
|
|
n = env->icount_decr.u16.low + tb->icount;
|
|
cpu_restore_state(tb, env, retaddr);
|
|
/* Calculate how many instructions had been executed before the fault
|
|
occurred. */
|
|
n = n - env->icount_decr.u16.low;
|
|
/* Generate a new TB ending on the I/O insn. */
|
|
n++;
|
|
/* On MIPS and SH, delay slot instructions can only be restarted if
|
|
they were already the first instruction in the TB. If this is not
|
|
the first instruction in a TB then re-execute the preceding
|
|
branch. */
|
|
#if defined(TARGET_MIPS)
|
|
if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
|
|
env->active_tc.PC -= 4;
|
|
env->icount_decr.u16.low++;
|
|
env->hflags &= ~MIPS_HFLAG_BMASK;
|
|
}
|
|
#elif defined(TARGET_SH4)
|
|
if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
|
|
&& n > 1) {
|
|
env->pc -= 2;
|
|
env->icount_decr.u16.low++;
|
|
env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
|
|
}
|
|
#endif
|
|
/* This should never happen. */
|
|
if (n > CF_COUNT_MASK)
|
|
cpu_abort(env, "TB too big during recompile");
|
|
|
|
cflags = n | CF_LAST_IO;
|
|
pc = tb->pc;
|
|
cs_base = tb->cs_base;
|
|
flags = tb->flags;
|
|
tb_phys_invalidate(tb, -1);
|
|
/* FIXME: In theory this could raise an exception. In practice
|
|
we have already translated the block once so it's probably ok. */
|
|
tb_gen_code(env, pc, cs_base, flags, cflags);
|
|
/* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
|
|
the first in the TB) then we end up generating a whole new TB and
|
|
repeating the fault, which is horribly inefficient.
|
|
Better would be to execute just this insn uncached, or generate a
|
|
second new TB. */
|
|
cpu_resume_from_signal(env, NULL);
|
|
}
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
|
|
void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
|
|
{
|
|
int i, target_code_size, max_target_code_size;
|
|
int direct_jmp_count, direct_jmp2_count, cross_page;
|
|
TranslationBlock *tb;
|
|
|
|
target_code_size = 0;
|
|
max_target_code_size = 0;
|
|
cross_page = 0;
|
|
direct_jmp_count = 0;
|
|
direct_jmp2_count = 0;
|
|
for(i = 0; i < nb_tbs; i++) {
|
|
tb = &tbs[i];
|
|
target_code_size += tb->size;
|
|
if (tb->size > max_target_code_size)
|
|
max_target_code_size = tb->size;
|
|
if (tb->page_addr[1] != -1)
|
|
cross_page++;
|
|
if (tb->tb_next_offset[0] != 0xffff) {
|
|
direct_jmp_count++;
|
|
if (tb->tb_next_offset[1] != 0xffff) {
|
|
direct_jmp2_count++;
|
|
}
|
|
}
|
|
}
|
|
/* XXX: avoid using doubles ? */
|
|
cpu_fprintf(f, "Translation buffer state:\n");
|
|
cpu_fprintf(f, "gen code size %td/%ld\n",
|
|
code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
|
|
cpu_fprintf(f, "TB count %d/%d\n",
|
|
nb_tbs, code_gen_max_blocks);
|
|
cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
|
|
nb_tbs ? target_code_size / nb_tbs : 0,
|
|
max_target_code_size);
|
|
cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
|
|
nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
|
|
target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
|
|
cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
|
|
cross_page,
|
|
nb_tbs ? (cross_page * 100) / nb_tbs : 0);
|
|
cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
|
|
direct_jmp_count,
|
|
nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
|
|
direct_jmp2_count,
|
|
nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
|
|
cpu_fprintf(f, "\nStatistics:\n");
|
|
cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
|
|
cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
|
|
cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
|
|
tcg_dump_info(f, cpu_fprintf);
|
|
}
|
|
|
|
/*
|
|
* A helper function for the _utterly broken_ virtio device model to find out if
|
|
* it's running on a big endian machine. Don't do this at home kids!
|
|
*/
|
|
bool virtio_is_big_endian(void);
|
|
bool virtio_is_big_endian(void)
|
|
{
|
|
#if defined(TARGET_WORDS_BIGENDIAN)
|
|
return true;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
bool cpu_physical_memory_is_io(target_phys_addr_t phys_addr)
|
|
{
|
|
MemoryRegionSection *section;
|
|
|
|
section = phys_page_find(phys_addr >> TARGET_PAGE_BITS);
|
|
|
|
return !(memory_region_is_ram(section->mr) ||
|
|
memory_region_is_romd(section->mr));
|
|
}
|
|
#endif
|