mirror of
https://github.com/qemu/qemu.git
synced 2024-11-27 22:03:35 +08:00
96c674bf08
Moving xive2_nvp_pic_print_info() to align with the other "pic_print_info" functions. Signed-off-by: Frederic Barrat <fbarrat@linux.ibm.com> Signed-off-by: Michael Kowal <kowal@linux.vnet.ibm.com> Reviewed-by: Cédric Le Goater <clg@redhat.com> Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
2540 lines
75 KiB
C
2540 lines
75 KiB
C
/*
|
|
* QEMU PowerPC XIVE2 interrupt controller model (POWER10)
|
|
*
|
|
* Copyright (c) 2019-2022, IBM Corporation.
|
|
*
|
|
* This code is licensed under the GPL version 2 or later. See the
|
|
* COPYING file in the top-level directory.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu/log.h"
|
|
#include "qapi/error.h"
|
|
#include "target/ppc/cpu.h"
|
|
#include "sysemu/cpus.h"
|
|
#include "sysemu/dma.h"
|
|
#include "hw/ppc/fdt.h"
|
|
#include "hw/ppc/pnv.h"
|
|
#include "hw/ppc/pnv_chip.h"
|
|
#include "hw/ppc/pnv_core.h"
|
|
#include "hw/ppc/pnv_xscom.h"
|
|
#include "hw/ppc/xive2.h"
|
|
#include "hw/ppc/pnv_xive.h"
|
|
#include "hw/ppc/xive_regs.h"
|
|
#include "hw/ppc/xive2_regs.h"
|
|
#include "hw/ppc/ppc.h"
|
|
#include "hw/qdev-properties.h"
|
|
#include "sysemu/reset.h"
|
|
#include "sysemu/qtest.h"
|
|
|
|
#include <libfdt.h>
|
|
|
|
#include "pnv_xive2_regs.h"
|
|
|
|
#undef XIVE2_DEBUG
|
|
|
|
/* XIVE Sync or Flush Notification Block */
|
|
typedef struct XiveSfnBlock {
|
|
uint8_t bytes[32];
|
|
} XiveSfnBlock;
|
|
|
|
/* XIVE Thread Sync or Flush Notification Area */
|
|
typedef struct XiveThreadNA {
|
|
XiveSfnBlock topo[16];
|
|
} XiveThreadNA;
|
|
|
|
/*
|
|
* Virtual structures table (VST)
|
|
*/
|
|
#define SBE_PER_BYTE 4
|
|
|
|
typedef struct XiveVstInfo {
|
|
const char *name;
|
|
uint32_t size;
|
|
uint32_t max_blocks;
|
|
} XiveVstInfo;
|
|
|
|
static const XiveVstInfo vst_infos[] = {
|
|
|
|
[VST_EAS] = { "EAT", sizeof(Xive2Eas), 16 },
|
|
[VST_ESB] = { "ESB", 1, 16 },
|
|
[VST_END] = { "ENDT", sizeof(Xive2End), 16 },
|
|
|
|
[VST_NVP] = { "NVPT", sizeof(Xive2Nvp), 16 },
|
|
[VST_NVG] = { "NVGT", sizeof(Xive2Nvgc), 16 },
|
|
[VST_NVC] = { "NVCT", sizeof(Xive2Nvgc), 16 },
|
|
|
|
[VST_IC] = { "IC", 1, /* ? */ 16 }, /* Topology # */
|
|
[VST_SYNC] = { "SYNC", sizeof(XiveThreadNA), 16 }, /* Topology # */
|
|
|
|
/*
|
|
* This table contains the backing store pages for the interrupt
|
|
* fifos of the VC sub-engine in case of overflow.
|
|
*
|
|
* 0 - IPI,
|
|
* 1 - HWD,
|
|
* 2 - NxC,
|
|
* 3 - INT,
|
|
* 4 - OS-Queue,
|
|
* 5 - Pool-Queue,
|
|
* 6 - Hard-Queue
|
|
*/
|
|
[VST_ERQ] = { "ERQ", 1, VC_QUEUE_COUNT },
|
|
};
|
|
|
|
#define xive2_error(xive, fmt, ...) \
|
|
qemu_log_mask(LOG_GUEST_ERROR, "XIVE[%x] - " fmt "\n", \
|
|
(xive)->chip->chip_id, ## __VA_ARGS__);
|
|
|
|
/*
|
|
* TODO: Document block id override
|
|
*/
|
|
static uint32_t pnv_xive2_block_id(PnvXive2 *xive)
|
|
{
|
|
uint8_t blk = xive->chip->chip_id;
|
|
uint64_t cfg_val = xive->cq_regs[CQ_XIVE_CFG >> 3];
|
|
|
|
if (cfg_val & CQ_XIVE_CFG_HYP_HARD_BLKID_OVERRIDE) {
|
|
blk = GETFIELD(CQ_XIVE_CFG_HYP_HARD_BLOCK_ID, cfg_val);
|
|
}
|
|
|
|
return blk;
|
|
}
|
|
|
|
/*
|
|
* Remote access to controllers. HW uses MMIOs. For now, a simple scan
|
|
* of the chips is good enough.
|
|
*
|
|
* TODO: Block scope support
|
|
*/
|
|
static PnvXive2 *pnv_xive2_get_remote(uint8_t blk)
|
|
{
|
|
PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
|
|
int i;
|
|
|
|
for (i = 0; i < pnv->num_chips; i++) {
|
|
Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
|
|
PnvXive2 *xive = &chip10->xive;
|
|
|
|
if (pnv_xive2_block_id(xive) == blk) {
|
|
return xive;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* VST accessors for ESB, EAT, ENDT, NVP
|
|
*
|
|
* Indirect VST tables are arrays of VSDs pointing to a page (of same
|
|
* size). Each page is a direct VST table.
|
|
*/
|
|
|
|
#define XIVE_VSD_SIZE 8
|
|
|
|
/* Indirect page size can be 4K, 64K, 2M, 16M. */
|
|
static uint64_t pnv_xive2_vst_page_size_allowed(uint32_t page_shift)
|
|
{
|
|
return page_shift == 12 || page_shift == 16 ||
|
|
page_shift == 21 || page_shift == 24;
|
|
}
|
|
|
|
static uint64_t pnv_xive2_vst_addr_direct(PnvXive2 *xive, uint32_t type,
|
|
uint64_t vsd, uint32_t idx)
|
|
{
|
|
const XiveVstInfo *info = &vst_infos[type];
|
|
uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
|
|
uint64_t vst_tsize = 1ull << (GETFIELD(VSD_TSIZE, vsd) + 12);
|
|
uint32_t idx_max;
|
|
|
|
idx_max = vst_tsize / info->size - 1;
|
|
if (idx > idx_max) {
|
|
#ifdef XIVE2_DEBUG
|
|
xive2_error(xive, "VST: %s entry %x out of range [ 0 .. %x ] !?",
|
|
info->name, idx, idx_max);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
return vst_addr + idx * info->size;
|
|
}
|
|
|
|
static uint64_t pnv_xive2_vst_addr_indirect(PnvXive2 *xive, uint32_t type,
|
|
uint64_t vsd, uint32_t idx)
|
|
{
|
|
const XiveVstInfo *info = &vst_infos[type];
|
|
uint64_t vsd_addr;
|
|
uint32_t vsd_idx;
|
|
uint32_t page_shift;
|
|
uint32_t vst_per_page;
|
|
|
|
/* Get the page size of the indirect table. */
|
|
vsd_addr = vsd & VSD_ADDRESS_MASK;
|
|
ldq_be_dma(&address_space_memory, vsd_addr, &vsd, MEMTXATTRS_UNSPECIFIED);
|
|
|
|
if (!(vsd & VSD_ADDRESS_MASK)) {
|
|
#ifdef XIVE2_DEBUG
|
|
xive2_error(xive, "VST: invalid %s entry %x !?", info->name, idx);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
|
|
|
|
if (!pnv_xive2_vst_page_size_allowed(page_shift)) {
|
|
xive2_error(xive, "VST: invalid %s page shift %d", info->name,
|
|
page_shift);
|
|
return 0;
|
|
}
|
|
|
|
vst_per_page = (1ull << page_shift) / info->size;
|
|
vsd_idx = idx / vst_per_page;
|
|
|
|
/* Load the VSD we are looking for, if not already done */
|
|
if (vsd_idx) {
|
|
vsd_addr = vsd_addr + vsd_idx * XIVE_VSD_SIZE;
|
|
ldq_be_dma(&address_space_memory, vsd_addr, &vsd,
|
|
MEMTXATTRS_UNSPECIFIED);
|
|
|
|
if (!(vsd & VSD_ADDRESS_MASK)) {
|
|
#ifdef XIVE2_DEBUG
|
|
xive2_error(xive, "VST: invalid %s entry %x !?", info->name, idx);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check that the pages have a consistent size across the
|
|
* indirect table
|
|
*/
|
|
if (page_shift != GETFIELD(VSD_TSIZE, vsd) + 12) {
|
|
xive2_error(xive, "VST: %s entry %x indirect page size differ !?",
|
|
info->name, idx);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return pnv_xive2_vst_addr_direct(xive, type, vsd, (idx % vst_per_page));
|
|
}
|
|
|
|
static uint8_t pnv_xive2_nvc_table_compress_shift(PnvXive2 *xive)
|
|
{
|
|
uint8_t shift = GETFIELD(PC_NXC_PROC_CONFIG_NVC_TABLE_COMPRESS,
|
|
xive->pc_regs[PC_NXC_PROC_CONFIG >> 3]);
|
|
return shift > 8 ? 0 : shift;
|
|
}
|
|
|
|
static uint8_t pnv_xive2_nvg_table_compress_shift(PnvXive2 *xive)
|
|
{
|
|
uint8_t shift = GETFIELD(PC_NXC_PROC_CONFIG_NVG_TABLE_COMPRESS,
|
|
xive->pc_regs[PC_NXC_PROC_CONFIG >> 3]);
|
|
return shift > 8 ? 0 : shift;
|
|
}
|
|
|
|
static uint64_t pnv_xive2_vst_addr(PnvXive2 *xive, uint32_t type, uint8_t blk,
|
|
uint32_t idx)
|
|
{
|
|
const XiveVstInfo *info = &vst_infos[type];
|
|
uint64_t vsd;
|
|
|
|
if (blk >= info->max_blocks) {
|
|
xive2_error(xive, "VST: invalid block id %d for VST %s %d !?",
|
|
blk, info->name, idx);
|
|
return 0;
|
|
}
|
|
|
|
vsd = xive->vsds[type][blk];
|
|
if (vsd == 0) {
|
|
xive2_error(xive, "VST: vsd == 0 block id %d for VST %s %d !?",
|
|
blk, info->name, idx);
|
|
return 0;
|
|
}
|
|
|
|
/* Remote VST access */
|
|
if (GETFIELD(VSD_MODE, vsd) == VSD_MODE_FORWARD) {
|
|
xive = pnv_xive2_get_remote(blk);
|
|
|
|
return xive ? pnv_xive2_vst_addr(xive, type, blk, idx) : 0;
|
|
}
|
|
|
|
if (type == VST_NVG) {
|
|
idx >>= pnv_xive2_nvg_table_compress_shift(xive);
|
|
} else if (type == VST_NVC) {
|
|
idx >>= pnv_xive2_nvc_table_compress_shift(xive);
|
|
}
|
|
|
|
if (VSD_INDIRECT & vsd) {
|
|
return pnv_xive2_vst_addr_indirect(xive, type, vsd, idx);
|
|
}
|
|
|
|
return pnv_xive2_vst_addr_direct(xive, type, vsd, idx);
|
|
}
|
|
|
|
static int pnv_xive2_vst_read(PnvXive2 *xive, uint32_t type, uint8_t blk,
|
|
uint32_t idx, void *data)
|
|
{
|
|
const XiveVstInfo *info = &vst_infos[type];
|
|
uint64_t addr = pnv_xive2_vst_addr(xive, type, blk, idx);
|
|
MemTxResult result;
|
|
|
|
if (!addr) {
|
|
return -1;
|
|
}
|
|
|
|
result = address_space_read(&address_space_memory, addr,
|
|
MEMTXATTRS_UNSPECIFIED, data,
|
|
info->size);
|
|
if (result != MEMTX_OK) {
|
|
xive2_error(xive, "VST: read failed at @0x%" HWADDR_PRIx
|
|
" for VST %s %x/%x\n", addr, info->name, blk, idx);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#define XIVE_VST_WORD_ALL -1
|
|
|
|
static int pnv_xive2_vst_write(PnvXive2 *xive, uint32_t type, uint8_t blk,
|
|
uint32_t idx, void *data, uint32_t word_number)
|
|
{
|
|
const XiveVstInfo *info = &vst_infos[type];
|
|
uint64_t addr = pnv_xive2_vst_addr(xive, type, blk, idx);
|
|
MemTxResult result;
|
|
|
|
if (!addr) {
|
|
return -1;
|
|
}
|
|
|
|
if (word_number == XIVE_VST_WORD_ALL) {
|
|
result = address_space_write(&address_space_memory, addr,
|
|
MEMTXATTRS_UNSPECIFIED, data,
|
|
info->size);
|
|
} else {
|
|
result = address_space_write(&address_space_memory,
|
|
addr + word_number * 4,
|
|
MEMTXATTRS_UNSPECIFIED,
|
|
data + word_number * 4, 4);
|
|
}
|
|
|
|
if (result != MEMTX_OK) {
|
|
xive2_error(xive, "VST: write failed at @0x%" HWADDR_PRIx
|
|
"for VST %s %x/%x\n", addr, info->name, blk, idx);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int pnv_xive2_get_pq(Xive2Router *xrtr, uint8_t blk, uint32_t idx,
|
|
uint8_t *pq)
|
|
{
|
|
PnvXive2 *xive = PNV_XIVE2(xrtr);
|
|
|
|
if (pnv_xive2_block_id(xive) != blk) {
|
|
xive2_error(xive, "VST: EAS %x is remote !?", XIVE_EAS(blk, idx));
|
|
return -1;
|
|
}
|
|
|
|
*pq = xive_source_esb_get(&xive->ipi_source, idx);
|
|
return 0;
|
|
}
|
|
|
|
static int pnv_xive2_set_pq(Xive2Router *xrtr, uint8_t blk, uint32_t idx,
|
|
uint8_t *pq)
|
|
{
|
|
PnvXive2 *xive = PNV_XIVE2(xrtr);
|
|
|
|
if (pnv_xive2_block_id(xive) != blk) {
|
|
xive2_error(xive, "VST: EAS %x is remote !?", XIVE_EAS(blk, idx));
|
|
return -1;
|
|
}
|
|
|
|
*pq = xive_source_esb_set(&xive->ipi_source, idx, *pq);
|
|
return 0;
|
|
}
|
|
|
|
static int pnv_xive2_get_end(Xive2Router *xrtr, uint8_t blk, uint32_t idx,
|
|
Xive2End *end)
|
|
{
|
|
return pnv_xive2_vst_read(PNV_XIVE2(xrtr), VST_END, blk, idx, end);
|
|
}
|
|
|
|
static int pnv_xive2_write_end(Xive2Router *xrtr, uint8_t blk, uint32_t idx,
|
|
Xive2End *end, uint8_t word_number)
|
|
{
|
|
return pnv_xive2_vst_write(PNV_XIVE2(xrtr), VST_END, blk, idx, end,
|
|
word_number);
|
|
}
|
|
|
|
static inline int pnv_xive2_get_current_pir(PnvXive2 *xive)
|
|
{
|
|
if (!qtest_enabled()) {
|
|
PowerPCCPU *cpu = POWERPC_CPU(current_cpu);
|
|
return ppc_cpu_pir(cpu);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* After SW injects a Queue Sync or Cache Flush operation, HW will notify
|
|
* SW of the completion of the operation by writing a byte of all 1's (0xff)
|
|
* to a specific memory location. The memory location is calculated by first
|
|
* looking up a base address in the SYNC VSD using the Topology ID of the
|
|
* originating thread as the "block" number. This points to a
|
|
* 64k block of memory that is further divided into 128 512 byte chunks of
|
|
* memory, which is indexed by the thread id of the requesting thread.
|
|
* Finally, this 512 byte chunk of memory is divided into 16 32 byte
|
|
* chunks which are indexed by the topology id of the targeted IC's chip.
|
|
* The values below are the offsets into that 32 byte chunk of memory for
|
|
* each type of cache flush or queue sync operation.
|
|
*/
|
|
#define PNV_XIVE2_QUEUE_IPI 0x00
|
|
#define PNV_XIVE2_QUEUE_HW 0x01
|
|
#define PNV_XIVE2_QUEUE_NXC 0x02
|
|
#define PNV_XIVE2_QUEUE_INT 0x03
|
|
#define PNV_XIVE2_QUEUE_OS 0x04
|
|
#define PNV_XIVE2_QUEUE_POOL 0x05
|
|
#define PNV_XIVE2_QUEUE_HARD 0x06
|
|
#define PNV_XIVE2_CACHE_ENDC 0x08
|
|
#define PNV_XIVE2_CACHE_ESBC 0x09
|
|
#define PNV_XIVE2_CACHE_EASC 0x0a
|
|
#define PNV_XIVE2_QUEUE_NXC_LD_LCL_NCO 0x10
|
|
#define PNV_XIVE2_QUEUE_NXC_LD_LCL_CO 0x11
|
|
#define PNV_XIVE2_QUEUE_NXC_ST_LCL_NCI 0x12
|
|
#define PNV_XIVE2_QUEUE_NXC_ST_LCL_CI 0x13
|
|
#define PNV_XIVE2_QUEUE_NXC_ST_RMT_NCI 0x14
|
|
#define PNV_XIVE2_QUEUE_NXC_ST_RMT_CI 0x15
|
|
#define PNV_XIVE2_CACHE_NXC 0x18
|
|
|
|
static int pnv_xive2_inject_notify(PnvXive2 *xive, int type)
|
|
{
|
|
uint64_t addr;
|
|
int pir = pnv_xive2_get_current_pir(xive);
|
|
int thread_nr = PNV10_PIR2THREAD(pir);
|
|
int thread_topo_id = PNV10_PIR2CHIP(pir);
|
|
int ic_topo_id = xive->chip->chip_id;
|
|
uint64_t offset = ic_topo_id * sizeof(XiveSfnBlock);
|
|
uint8_t byte = 0xff;
|
|
MemTxResult result;
|
|
|
|
/* Retrieve the address of requesting thread's notification area */
|
|
addr = pnv_xive2_vst_addr(xive, VST_SYNC, thread_topo_id, thread_nr);
|
|
|
|
if (!addr) {
|
|
xive2_error(xive, "VST: no SYNC entry %x/%x !?",
|
|
thread_topo_id, thread_nr);
|
|
return -1;
|
|
}
|
|
|
|
address_space_stb(&address_space_memory, addr + offset + type, byte,
|
|
MEMTXATTRS_UNSPECIFIED, &result);
|
|
assert(result == MEMTX_OK);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int pnv_xive2_end_update(PnvXive2 *xive, uint8_t watch_engine)
|
|
{
|
|
uint8_t blk;
|
|
uint32_t idx;
|
|
int i, spec_reg, data_reg;
|
|
uint64_t endc_watch[4];
|
|
|
|
assert(watch_engine < ARRAY_SIZE(endc_watch));
|
|
|
|
spec_reg = (VC_ENDC_WATCH0_SPEC + watch_engine * 0x40) >> 3;
|
|
data_reg = (VC_ENDC_WATCH0_DATA0 + watch_engine * 0x40) >> 3;
|
|
blk = GETFIELD(VC_ENDC_WATCH_BLOCK_ID, xive->vc_regs[spec_reg]);
|
|
idx = GETFIELD(VC_ENDC_WATCH_INDEX, xive->vc_regs[spec_reg]);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(endc_watch); i++) {
|
|
endc_watch[i] = cpu_to_be64(xive->vc_regs[data_reg + i]);
|
|
}
|
|
|
|
return pnv_xive2_vst_write(xive, VST_END, blk, idx, endc_watch,
|
|
XIVE_VST_WORD_ALL);
|
|
}
|
|
|
|
static void pnv_xive2_end_cache_load(PnvXive2 *xive, uint8_t watch_engine)
|
|
{
|
|
uint8_t blk;
|
|
uint32_t idx;
|
|
uint64_t endc_watch[4] = { 0 };
|
|
int i, spec_reg, data_reg;
|
|
|
|
assert(watch_engine < ARRAY_SIZE(endc_watch));
|
|
|
|
spec_reg = (VC_ENDC_WATCH0_SPEC + watch_engine * 0x40) >> 3;
|
|
data_reg = (VC_ENDC_WATCH0_DATA0 + watch_engine * 0x40) >> 3;
|
|
blk = GETFIELD(VC_ENDC_WATCH_BLOCK_ID, xive->vc_regs[spec_reg]);
|
|
idx = GETFIELD(VC_ENDC_WATCH_INDEX, xive->vc_regs[spec_reg]);
|
|
|
|
if (pnv_xive2_vst_read(xive, VST_END, blk, idx, endc_watch)) {
|
|
xive2_error(xive, "VST: no END entry %x/%x !?", blk, idx);
|
|
}
|
|
|
|
for (i = 0; i < ARRAY_SIZE(endc_watch); i++) {
|
|
xive->vc_regs[data_reg + i] = be64_to_cpu(endc_watch[i]);
|
|
}
|
|
}
|
|
|
|
static int pnv_xive2_get_nvp(Xive2Router *xrtr, uint8_t blk, uint32_t idx,
|
|
Xive2Nvp *nvp)
|
|
{
|
|
return pnv_xive2_vst_read(PNV_XIVE2(xrtr), VST_NVP, blk, idx, nvp);
|
|
}
|
|
|
|
static int pnv_xive2_write_nvp(Xive2Router *xrtr, uint8_t blk, uint32_t idx,
|
|
Xive2Nvp *nvp, uint8_t word_number)
|
|
{
|
|
return pnv_xive2_vst_write(PNV_XIVE2(xrtr), VST_NVP, blk, idx, nvp,
|
|
word_number);
|
|
}
|
|
|
|
static int pnv_xive2_nxc_to_table_type(uint8_t nxc_type, uint32_t *table_type)
|
|
{
|
|
switch (nxc_type) {
|
|
case PC_NXC_WATCH_NXC_NVP:
|
|
*table_type = VST_NVP;
|
|
break;
|
|
case PC_NXC_WATCH_NXC_NVG:
|
|
*table_type = VST_NVG;
|
|
break;
|
|
case PC_NXC_WATCH_NXC_NVC:
|
|
*table_type = VST_NVC;
|
|
break;
|
|
default:
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"XIVE: invalid table type for nxc operation\n");
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int pnv_xive2_nxc_update(PnvXive2 *xive, uint8_t watch_engine)
|
|
{
|
|
uint8_t blk, nxc_type;
|
|
uint32_t idx, table_type = -1;
|
|
int i, spec_reg, data_reg;
|
|
uint64_t nxc_watch[4];
|
|
|
|
assert(watch_engine < ARRAY_SIZE(nxc_watch));
|
|
|
|
spec_reg = (PC_NXC_WATCH0_SPEC + watch_engine * 0x40) >> 3;
|
|
data_reg = (PC_NXC_WATCH0_DATA0 + watch_engine * 0x40) >> 3;
|
|
nxc_type = GETFIELD(PC_NXC_WATCH_NXC_TYPE, xive->pc_regs[spec_reg]);
|
|
blk = GETFIELD(PC_NXC_WATCH_BLOCK_ID, xive->pc_regs[spec_reg]);
|
|
idx = GETFIELD(PC_NXC_WATCH_INDEX, xive->pc_regs[spec_reg]);
|
|
|
|
assert(!pnv_xive2_nxc_to_table_type(nxc_type, &table_type));
|
|
|
|
for (i = 0; i < ARRAY_SIZE(nxc_watch); i++) {
|
|
nxc_watch[i] = cpu_to_be64(xive->pc_regs[data_reg + i]);
|
|
}
|
|
|
|
return pnv_xive2_vst_write(xive, table_type, blk, idx, nxc_watch,
|
|
XIVE_VST_WORD_ALL);
|
|
}
|
|
|
|
static void pnv_xive2_nxc_cache_load(PnvXive2 *xive, uint8_t watch_engine)
|
|
{
|
|
uint8_t blk, nxc_type;
|
|
uint32_t idx, table_type = -1;
|
|
uint64_t nxc_watch[4] = { 0 };
|
|
int i, spec_reg, data_reg;
|
|
|
|
assert(watch_engine < ARRAY_SIZE(nxc_watch));
|
|
|
|
spec_reg = (PC_NXC_WATCH0_SPEC + watch_engine * 0x40) >> 3;
|
|
data_reg = (PC_NXC_WATCH0_DATA0 + watch_engine * 0x40) >> 3;
|
|
nxc_type = GETFIELD(PC_NXC_WATCH_NXC_TYPE, xive->pc_regs[spec_reg]);
|
|
blk = GETFIELD(PC_NXC_WATCH_BLOCK_ID, xive->pc_regs[spec_reg]);
|
|
idx = GETFIELD(PC_NXC_WATCH_INDEX, xive->pc_regs[spec_reg]);
|
|
|
|
assert(!pnv_xive2_nxc_to_table_type(nxc_type, &table_type));
|
|
|
|
if (pnv_xive2_vst_read(xive, table_type, blk, idx, nxc_watch)) {
|
|
xive2_error(xive, "VST: no NXC entry %x/%x in %s table!?",
|
|
blk, idx, vst_infos[table_type].name);
|
|
}
|
|
|
|
for (i = 0; i < ARRAY_SIZE(nxc_watch); i++) {
|
|
xive->pc_regs[data_reg + i] = be64_to_cpu(nxc_watch[i]);
|
|
}
|
|
}
|
|
|
|
static int pnv_xive2_get_eas(Xive2Router *xrtr, uint8_t blk, uint32_t idx,
|
|
Xive2Eas *eas)
|
|
{
|
|
PnvXive2 *xive = PNV_XIVE2(xrtr);
|
|
|
|
if (pnv_xive2_block_id(xive) != blk) {
|
|
xive2_error(xive, "VST: EAS %x is remote !?", XIVE_EAS(blk, idx));
|
|
return -1;
|
|
}
|
|
|
|
return pnv_xive2_vst_read(xive, VST_EAS, blk, idx, eas);
|
|
}
|
|
|
|
static uint32_t pnv_xive2_get_config(Xive2Router *xrtr)
|
|
{
|
|
PnvXive2 *xive = PNV_XIVE2(xrtr);
|
|
uint32_t cfg = 0;
|
|
|
|
if (xive->cq_regs[CQ_XIVE_CFG >> 3] & CQ_XIVE_CFG_GEN1_TIMA_OS) {
|
|
cfg |= XIVE2_GEN1_TIMA_OS;
|
|
}
|
|
|
|
if (xive->cq_regs[CQ_XIVE_CFG >> 3] & CQ_XIVE_CFG_EN_VP_SAVE_RESTORE) {
|
|
cfg |= XIVE2_VP_SAVE_RESTORE;
|
|
}
|
|
|
|
if (GETFIELD(CQ_XIVE_CFG_HYP_HARD_RANGE,
|
|
xive->cq_regs[CQ_XIVE_CFG >> 3]) == CQ_XIVE_CFG_THREADID_8BITS) {
|
|
cfg |= XIVE2_THREADID_8BITS;
|
|
}
|
|
|
|
return cfg;
|
|
}
|
|
|
|
static bool pnv_xive2_is_cpu_enabled(PnvXive2 *xive, PowerPCCPU *cpu)
|
|
{
|
|
int pir = ppc_cpu_pir(cpu);
|
|
uint32_t fc = PNV10_PIR2FUSEDCORE(pir);
|
|
uint64_t reg = fc < 8 ? TCTXT_EN0 : TCTXT_EN1;
|
|
uint32_t bit = pir & 0x3f;
|
|
|
|
return xive->tctxt_regs[reg >> 3] & PPC_BIT(bit);
|
|
}
|
|
|
|
static int pnv_xive2_match_nvt(XivePresenter *xptr, uint8_t format,
|
|
uint8_t nvt_blk, uint32_t nvt_idx,
|
|
bool cam_ignore, uint8_t priority,
|
|
uint32_t logic_serv, XiveTCTXMatch *match)
|
|
{
|
|
PnvXive2 *xive = PNV_XIVE2(xptr);
|
|
PnvChip *chip = xive->chip;
|
|
int count = 0;
|
|
int i, j;
|
|
bool gen1_tima_os =
|
|
xive->cq_regs[CQ_XIVE_CFG >> 3] & CQ_XIVE_CFG_GEN1_TIMA_OS;
|
|
|
|
for (i = 0; i < chip->nr_cores; i++) {
|
|
PnvCore *pc = chip->cores[i];
|
|
CPUCore *cc = CPU_CORE(pc);
|
|
|
|
for (j = 0; j < cc->nr_threads; j++) {
|
|
PowerPCCPU *cpu = pc->threads[j];
|
|
XiveTCTX *tctx;
|
|
int ring;
|
|
|
|
if (!pnv_xive2_is_cpu_enabled(xive, cpu)) {
|
|
continue;
|
|
}
|
|
|
|
tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc);
|
|
|
|
if (gen1_tima_os) {
|
|
ring = xive_presenter_tctx_match(xptr, tctx, format, nvt_blk,
|
|
nvt_idx, cam_ignore,
|
|
logic_serv);
|
|
} else {
|
|
ring = xive2_presenter_tctx_match(xptr, tctx, format, nvt_blk,
|
|
nvt_idx, cam_ignore,
|
|
logic_serv);
|
|
}
|
|
|
|
/*
|
|
* Save the context and follow on to catch duplicates,
|
|
* that we don't support yet.
|
|
*/
|
|
if (ring != -1) {
|
|
if (match->tctx) {
|
|
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a "
|
|
"thread context NVT %x/%x\n",
|
|
nvt_blk, nvt_idx);
|
|
return false;
|
|
}
|
|
|
|
match->ring = ring;
|
|
match->tctx = tctx;
|
|
count++;
|
|
}
|
|
}
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
static uint32_t pnv_xive2_presenter_get_config(XivePresenter *xptr)
|
|
{
|
|
PnvXive2 *xive = PNV_XIVE2(xptr);
|
|
uint32_t cfg = 0;
|
|
|
|
if (xive->cq_regs[CQ_XIVE_CFG >> 3] & CQ_XIVE_CFG_GEN1_TIMA_OS) {
|
|
cfg |= XIVE_PRESENTER_GEN1_TIMA_OS;
|
|
}
|
|
return cfg;
|
|
}
|
|
|
|
static uint8_t pnv_xive2_get_block_id(Xive2Router *xrtr)
|
|
{
|
|
return pnv_xive2_block_id(PNV_XIVE2(xrtr));
|
|
}
|
|
|
|
/*
|
|
* The TIMA MMIO space is shared among the chips and to identify the
|
|
* chip from which the access is being done, we extract the chip id
|
|
* from the PIR.
|
|
*/
|
|
static PnvXive2 *pnv_xive2_tm_get_xive(PowerPCCPU *cpu)
|
|
{
|
|
int pir = ppc_cpu_pir(cpu);
|
|
XivePresenter *xptr = XIVE_TCTX(pnv_cpu_state(cpu)->intc)->xptr;
|
|
PnvXive2 *xive = PNV_XIVE2(xptr);
|
|
|
|
if (!pnv_xive2_is_cpu_enabled(xive, cpu)) {
|
|
xive2_error(xive, "IC: CPU %x is not enabled", pir);
|
|
}
|
|
return xive;
|
|
}
|
|
|
|
/*
|
|
* The internal sources of the interrupt controller have no knowledge
|
|
* of the XIVE2 chip on which they reside. Encode the block id in the
|
|
* source interrupt number before forwarding the source event
|
|
* notification to the Router. This is required on a multichip system.
|
|
*/
|
|
static void pnv_xive2_notify(XiveNotifier *xn, uint32_t srcno, bool pq_checked)
|
|
{
|
|
PnvXive2 *xive = PNV_XIVE2(xn);
|
|
uint8_t blk = pnv_xive2_block_id(xive);
|
|
|
|
xive2_router_notify(xn, XIVE_EAS(blk, srcno), pq_checked);
|
|
}
|
|
|
|
/*
|
|
* Set Translation Tables
|
|
*
|
|
* TODO add support for multiple sets
|
|
*/
|
|
static int pnv_xive2_stt_set_data(PnvXive2 *xive, uint64_t val)
|
|
{
|
|
uint8_t tsel = GETFIELD(CQ_TAR_SELECT, xive->cq_regs[CQ_TAR >> 3]);
|
|
uint8_t entry = GETFIELD(CQ_TAR_ENTRY_SELECT,
|
|
xive->cq_regs[CQ_TAR >> 3]);
|
|
|
|
switch (tsel) {
|
|
case CQ_TAR_NVPG:
|
|
case CQ_TAR_ESB:
|
|
case CQ_TAR_END:
|
|
case CQ_TAR_NVC:
|
|
xive->tables[tsel][entry] = val;
|
|
break;
|
|
default:
|
|
xive2_error(xive, "IC: unsupported table %d", tsel);
|
|
return -1;
|
|
}
|
|
|
|
if (xive->cq_regs[CQ_TAR >> 3] & CQ_TAR_AUTOINC) {
|
|
xive->cq_regs[CQ_TAR >> 3] = SETFIELD(CQ_TAR_ENTRY_SELECT,
|
|
xive->cq_regs[CQ_TAR >> 3], ++entry);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
/*
|
|
* Virtual Structure Tables (VST) configuration
|
|
*/
|
|
static void pnv_xive2_vst_set_exclusive(PnvXive2 *xive, uint8_t type,
|
|
uint8_t blk, uint64_t vsd)
|
|
{
|
|
Xive2EndSource *end_xsrc = &xive->end_source;
|
|
XiveSource *xsrc = &xive->ipi_source;
|
|
const XiveVstInfo *info = &vst_infos[type];
|
|
uint32_t page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
|
|
uint64_t vst_tsize = 1ull << page_shift;
|
|
uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
|
|
|
|
/* Basic checks */
|
|
|
|
if (VSD_INDIRECT & vsd) {
|
|
if (!pnv_xive2_vst_page_size_allowed(page_shift)) {
|
|
xive2_error(xive, "VST: invalid %s page shift %d", info->name,
|
|
page_shift);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (!QEMU_IS_ALIGNED(vst_addr, 1ull << page_shift)) {
|
|
xive2_error(xive, "VST: %s table address 0x%"PRIx64
|
|
" is not aligned with page shift %d",
|
|
info->name, vst_addr, page_shift);
|
|
return;
|
|
}
|
|
|
|
/* Record the table configuration (in SRAM on HW) */
|
|
xive->vsds[type][blk] = vsd;
|
|
|
|
/* Now tune the models with the configuration provided by the FW */
|
|
|
|
switch (type) {
|
|
case VST_ESB:
|
|
/*
|
|
* Backing store pages for the source PQ bits. The model does
|
|
* not use these PQ bits backed in RAM because the XiveSource
|
|
* model has its own.
|
|
*
|
|
* If the table is direct, we can compute the number of PQ
|
|
* entries provisioned by FW (such as skiboot) and resize the
|
|
* ESB window accordingly.
|
|
*/
|
|
if (memory_region_is_mapped(&xsrc->esb_mmio)) {
|
|
memory_region_del_subregion(&xive->esb_mmio, &xsrc->esb_mmio);
|
|
}
|
|
if (!(VSD_INDIRECT & vsd)) {
|
|
memory_region_set_size(&xsrc->esb_mmio, vst_tsize * SBE_PER_BYTE
|
|
* (1ull << xsrc->esb_shift));
|
|
}
|
|
|
|
memory_region_add_subregion(&xive->esb_mmio, 0, &xsrc->esb_mmio);
|
|
break;
|
|
|
|
case VST_EAS: /* Nothing to be done */
|
|
break;
|
|
|
|
case VST_END:
|
|
/*
|
|
* Backing store pages for the END.
|
|
*/
|
|
if (memory_region_is_mapped(&end_xsrc->esb_mmio)) {
|
|
memory_region_del_subregion(&xive->end_mmio, &end_xsrc->esb_mmio);
|
|
}
|
|
if (!(VSD_INDIRECT & vsd)) {
|
|
memory_region_set_size(&end_xsrc->esb_mmio, (vst_tsize / info->size)
|
|
* (1ull << end_xsrc->esb_shift));
|
|
}
|
|
memory_region_add_subregion(&xive->end_mmio, 0, &end_xsrc->esb_mmio);
|
|
break;
|
|
|
|
case VST_NVP: /* Not modeled */
|
|
case VST_NVG: /* Not modeled */
|
|
case VST_NVC: /* Not modeled */
|
|
case VST_IC: /* Not modeled */
|
|
case VST_SYNC: /* Not modeled */
|
|
case VST_ERQ: /* Not modeled */
|
|
break;
|
|
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Both PC and VC sub-engines are configured as each use the Virtual
|
|
* Structure Tables
|
|
*/
|
|
static void pnv_xive2_vst_set_data(PnvXive2 *xive, uint64_t vsd,
|
|
uint8_t type, uint8_t blk)
|
|
{
|
|
uint8_t mode = GETFIELD(VSD_MODE, vsd);
|
|
uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
|
|
|
|
if (type > VST_ERQ) {
|
|
xive2_error(xive, "VST: invalid table type %d", type);
|
|
return;
|
|
}
|
|
|
|
if (blk >= vst_infos[type].max_blocks) {
|
|
xive2_error(xive, "VST: invalid block id %d for"
|
|
" %s table", blk, vst_infos[type].name);
|
|
return;
|
|
}
|
|
|
|
if (!vst_addr) {
|
|
xive2_error(xive, "VST: invalid %s table address",
|
|
vst_infos[type].name);
|
|
return;
|
|
}
|
|
|
|
switch (mode) {
|
|
case VSD_MODE_FORWARD:
|
|
xive->vsds[type][blk] = vsd;
|
|
break;
|
|
|
|
case VSD_MODE_EXCLUSIVE:
|
|
pnv_xive2_vst_set_exclusive(xive, type, blk, vsd);
|
|
break;
|
|
|
|
default:
|
|
xive2_error(xive, "VST: unsupported table mode %d", mode);
|
|
return;
|
|
}
|
|
}
|
|
|
|
static void pnv_xive2_vc_vst_set_data(PnvXive2 *xive, uint64_t vsd)
|
|
{
|
|
uint8_t type = GETFIELD(VC_VSD_TABLE_SELECT,
|
|
xive->vc_regs[VC_VSD_TABLE_ADDR >> 3]);
|
|
uint8_t blk = GETFIELD(VC_VSD_TABLE_ADDRESS,
|
|
xive->vc_regs[VC_VSD_TABLE_ADDR >> 3]);
|
|
|
|
pnv_xive2_vst_set_data(xive, vsd, type, blk);
|
|
}
|
|
|
|
/*
|
|
* MMIO handlers
|
|
*/
|
|
|
|
|
|
/*
|
|
* IC BAR layout
|
|
*
|
|
* Page 0: Internal CQ register accesses (reads & writes)
|
|
* Page 1: Internal PC register accesses (reads & writes)
|
|
* Page 2: Internal VC register accesses (reads & writes)
|
|
* Page 3: Internal TCTXT (TIMA) reg accesses (read & writes)
|
|
* Page 4: Notify Port page (writes only, w/data),
|
|
* Page 5: Reserved
|
|
* Page 6: Sync Poll page (writes only, dataless)
|
|
* Page 7: Sync Inject page (writes only, dataless)
|
|
* Page 8: LSI Trigger page (writes only, dataless)
|
|
* Page 9: LSI SB Management page (reads & writes dataless)
|
|
* Pages 10-255: Reserved
|
|
* Pages 256-383: Direct mapped Thread Context Area (reads & writes)
|
|
* covering the 128 threads in P10.
|
|
* Pages 384-511: Reserved
|
|
*/
|
|
typedef struct PnvXive2Region {
|
|
const char *name;
|
|
uint32_t pgoff;
|
|
uint32_t pgsize;
|
|
const MemoryRegionOps *ops;
|
|
} PnvXive2Region;
|
|
|
|
static const MemoryRegionOps pnv_xive2_ic_cq_ops;
|
|
static const MemoryRegionOps pnv_xive2_ic_pc_ops;
|
|
static const MemoryRegionOps pnv_xive2_ic_vc_ops;
|
|
static const MemoryRegionOps pnv_xive2_ic_tctxt_ops;
|
|
static const MemoryRegionOps pnv_xive2_ic_notify_ops;
|
|
static const MemoryRegionOps pnv_xive2_ic_sync_ops;
|
|
static const MemoryRegionOps pnv_xive2_ic_lsi_ops;
|
|
static const MemoryRegionOps pnv_xive2_ic_tm_indirect_ops;
|
|
|
|
/* 512 pages. 4K: 2M range, 64K: 32M range */
|
|
static const PnvXive2Region pnv_xive2_ic_regions[] = {
|
|
{ "xive-ic-cq", 0, 1, &pnv_xive2_ic_cq_ops },
|
|
{ "xive-ic-vc", 1, 1, &pnv_xive2_ic_vc_ops },
|
|
{ "xive-ic-pc", 2, 1, &pnv_xive2_ic_pc_ops },
|
|
{ "xive-ic-tctxt", 3, 1, &pnv_xive2_ic_tctxt_ops },
|
|
{ "xive-ic-notify", 4, 1, &pnv_xive2_ic_notify_ops },
|
|
/* page 5 reserved */
|
|
{ "xive-ic-sync", 6, 2, &pnv_xive2_ic_sync_ops },
|
|
{ "xive-ic-lsi", 8, 2, &pnv_xive2_ic_lsi_ops },
|
|
/* pages 10-255 reserved */
|
|
{ "xive-ic-tm-indirect", 256, 128, &pnv_xive2_ic_tm_indirect_ops },
|
|
/* pages 384-511 reserved */
|
|
};
|
|
|
|
/*
|
|
* CQ operations
|
|
*/
|
|
|
|
static uint64_t pnv_xive2_ic_cq_read(void *opaque, hwaddr offset,
|
|
unsigned size)
|
|
{
|
|
PnvXive2 *xive = PNV_XIVE2(opaque);
|
|
uint32_t reg = offset >> 3;
|
|
uint64_t val = 0;
|
|
|
|
switch (offset) {
|
|
case CQ_XIVE_CAP: /* Set at reset */
|
|
case CQ_XIVE_CFG:
|
|
val = xive->cq_regs[reg];
|
|
break;
|
|
case CQ_MSGSND: /* TODO check the #cores of the machine */
|
|
val = 0xffffffff00000000;
|
|
break;
|
|
case CQ_CFG_PB_GEN:
|
|
val = CQ_CFG_PB_GEN_PB_INIT; /* TODO: fix CQ_CFG_PB_GEN default value */
|
|
break;
|
|
default:
|
|
xive2_error(xive, "CQ: invalid read @%"HWADDR_PRIx, offset);
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
static uint64_t pnv_xive2_bar_size(uint64_t val)
|
|
{
|
|
return 1ull << (GETFIELD(CQ_BAR_RANGE, val) + 24);
|
|
}
|
|
|
|
static void pnv_xive2_ic_cq_write(void *opaque, hwaddr offset,
|
|
uint64_t val, unsigned size)
|
|
{
|
|
PnvXive2 *xive = PNV_XIVE2(opaque);
|
|
MemoryRegion *sysmem = get_system_memory();
|
|
uint32_t reg = offset >> 3;
|
|
int i;
|
|
|
|
switch (offset) {
|
|
case CQ_XIVE_CFG:
|
|
case CQ_RST_CTL: /* TODO: reset all BARs */
|
|
break;
|
|
|
|
case CQ_IC_BAR:
|
|
xive->ic_shift = val & CQ_IC_BAR_64K ? 16 : 12;
|
|
if (!(val & CQ_IC_BAR_VALID)) {
|
|
xive->ic_base = 0;
|
|
if (xive->cq_regs[reg] & CQ_IC_BAR_VALID) {
|
|
for (i = 0; i < ARRAY_SIZE(xive->ic_mmios); i++) {
|
|
memory_region_del_subregion(&xive->ic_mmio,
|
|
&xive->ic_mmios[i]);
|
|
}
|
|
memory_region_del_subregion(sysmem, &xive->ic_mmio);
|
|
}
|
|
} else {
|
|
xive->ic_base = val & ~(CQ_IC_BAR_VALID | CQ_IC_BAR_64K);
|
|
if (!(xive->cq_regs[reg] & CQ_IC_BAR_VALID)) {
|
|
for (i = 0; i < ARRAY_SIZE(xive->ic_mmios); i++) {
|
|
memory_region_add_subregion(&xive->ic_mmio,
|
|
pnv_xive2_ic_regions[i].pgoff << xive->ic_shift,
|
|
&xive->ic_mmios[i]);
|
|
}
|
|
memory_region_add_subregion(sysmem, xive->ic_base,
|
|
&xive->ic_mmio);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case CQ_TM_BAR:
|
|
xive->tm_shift = val & CQ_TM_BAR_64K ? 16 : 12;
|
|
if (!(val & CQ_TM_BAR_VALID)) {
|
|
xive->tm_base = 0;
|
|
if (xive->cq_regs[reg] & CQ_TM_BAR_VALID) {
|
|
memory_region_del_subregion(sysmem, &xive->tm_mmio);
|
|
}
|
|
} else {
|
|
xive->tm_base = val & ~(CQ_TM_BAR_VALID | CQ_TM_BAR_64K);
|
|
if (!(xive->cq_regs[reg] & CQ_TM_BAR_VALID)) {
|
|
memory_region_add_subregion(sysmem, xive->tm_base,
|
|
&xive->tm_mmio);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case CQ_ESB_BAR:
|
|
xive->esb_shift = val & CQ_BAR_64K ? 16 : 12;
|
|
if (!(val & CQ_BAR_VALID)) {
|
|
xive->esb_base = 0;
|
|
if (xive->cq_regs[reg] & CQ_BAR_VALID) {
|
|
memory_region_del_subregion(sysmem, &xive->esb_mmio);
|
|
}
|
|
} else {
|
|
xive->esb_base = val & CQ_BAR_ADDR;
|
|
if (!(xive->cq_regs[reg] & CQ_BAR_VALID)) {
|
|
memory_region_set_size(&xive->esb_mmio,
|
|
pnv_xive2_bar_size(val));
|
|
memory_region_add_subregion(sysmem, xive->esb_base,
|
|
&xive->esb_mmio);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case CQ_END_BAR:
|
|
xive->end_shift = val & CQ_BAR_64K ? 16 : 12;
|
|
if (!(val & CQ_BAR_VALID)) {
|
|
xive->end_base = 0;
|
|
if (xive->cq_regs[reg] & CQ_BAR_VALID) {
|
|
memory_region_del_subregion(sysmem, &xive->end_mmio);
|
|
}
|
|
} else {
|
|
xive->end_base = val & CQ_BAR_ADDR;
|
|
if (!(xive->cq_regs[reg] & CQ_BAR_VALID)) {
|
|
memory_region_set_size(&xive->end_mmio,
|
|
pnv_xive2_bar_size(val));
|
|
memory_region_add_subregion(sysmem, xive->end_base,
|
|
&xive->end_mmio);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case CQ_NVC_BAR:
|
|
xive->nvc_shift = val & CQ_BAR_64K ? 16 : 12;
|
|
if (!(val & CQ_BAR_VALID)) {
|
|
xive->nvc_base = 0;
|
|
if (xive->cq_regs[reg] & CQ_BAR_VALID) {
|
|
memory_region_del_subregion(sysmem, &xive->nvc_mmio);
|
|
}
|
|
} else {
|
|
xive->nvc_base = val & CQ_BAR_ADDR;
|
|
if (!(xive->cq_regs[reg] & CQ_BAR_VALID)) {
|
|
memory_region_set_size(&xive->nvc_mmio,
|
|
pnv_xive2_bar_size(val));
|
|
memory_region_add_subregion(sysmem, xive->nvc_base,
|
|
&xive->nvc_mmio);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case CQ_NVPG_BAR:
|
|
xive->nvpg_shift = val & CQ_BAR_64K ? 16 : 12;
|
|
if (!(val & CQ_BAR_VALID)) {
|
|
xive->nvpg_base = 0;
|
|
if (xive->cq_regs[reg] & CQ_BAR_VALID) {
|
|
memory_region_del_subregion(sysmem, &xive->nvpg_mmio);
|
|
}
|
|
} else {
|
|
xive->nvpg_base = val & CQ_BAR_ADDR;
|
|
if (!(xive->cq_regs[reg] & CQ_BAR_VALID)) {
|
|
memory_region_set_size(&xive->nvpg_mmio,
|
|
pnv_xive2_bar_size(val));
|
|
memory_region_add_subregion(sysmem, xive->nvpg_base,
|
|
&xive->nvpg_mmio);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case CQ_TAR: /* Set Translation Table Address */
|
|
break;
|
|
case CQ_TDR: /* Set Translation Table Data */
|
|
pnv_xive2_stt_set_data(xive, val);
|
|
break;
|
|
case CQ_FIRMASK_OR: /* FIR error reporting */
|
|
break;
|
|
default:
|
|
xive2_error(xive, "CQ: invalid write 0x%"HWADDR_PRIx, offset);
|
|
return;
|
|
}
|
|
|
|
xive->cq_regs[reg] = val;
|
|
}
|
|
|
|
static const MemoryRegionOps pnv_xive2_ic_cq_ops = {
|
|
.read = pnv_xive2_ic_cq_read,
|
|
.write = pnv_xive2_ic_cq_write,
|
|
.endianness = DEVICE_BIG_ENDIAN,
|
|
.valid = {
|
|
.min_access_size = 8,
|
|
.max_access_size = 8,
|
|
},
|
|
.impl = {
|
|
.min_access_size = 8,
|
|
.max_access_size = 8,
|
|
},
|
|
};
|
|
|
|
static uint8_t pnv_xive2_cache_watch_assign(uint64_t engine_mask,
|
|
uint64_t *state)
|
|
{
|
|
uint8_t val = 0xFF;
|
|
int i;
|
|
|
|
for (i = 3; i >= 0; i--) {
|
|
if (BIT(i) & engine_mask) {
|
|
if (!(BIT(i) & *state)) {
|
|
*state |= BIT(i);
|
|
val = 3 - i;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return val;
|
|
}
|
|
|
|
static void pnv_xive2_cache_watch_release(uint64_t *state, uint8_t watch_engine)
|
|
{
|
|
uint8_t engine_bit = 3 - watch_engine;
|
|
|
|
if (*state & BIT(engine_bit)) {
|
|
*state &= ~BIT(engine_bit);
|
|
}
|
|
}
|
|
|
|
static uint8_t pnv_xive2_endc_cache_watch_assign(PnvXive2 *xive)
|
|
{
|
|
uint64_t engine_mask = GETFIELD(VC_ENDC_CFG_CACHE_WATCH_ASSIGN,
|
|
xive->vc_regs[VC_ENDC_CFG >> 3]);
|
|
uint64_t state = xive->vc_regs[VC_ENDC_WATCH_ASSIGN >> 3];
|
|
uint8_t val;
|
|
|
|
/*
|
|
* We keep track of which engines are currently busy in the
|
|
* VC_ENDC_WATCH_ASSIGN register directly. When the firmware reads
|
|
* the register, we don't return its value but the ID of an engine
|
|
* it can use.
|
|
* There are 4 engines. 0xFF means no engine is available.
|
|
*/
|
|
val = pnv_xive2_cache_watch_assign(engine_mask, &state);
|
|
if (val != 0xFF) {
|
|
xive->vc_regs[VC_ENDC_WATCH_ASSIGN >> 3] = state;
|
|
}
|
|
return val;
|
|
}
|
|
|
|
static void pnv_xive2_endc_cache_watch_release(PnvXive2 *xive,
|
|
uint8_t watch_engine)
|
|
{
|
|
uint64_t state = xive->vc_regs[VC_ENDC_WATCH_ASSIGN >> 3];
|
|
|
|
pnv_xive2_cache_watch_release(&state, watch_engine);
|
|
xive->vc_regs[VC_ENDC_WATCH_ASSIGN >> 3] = state;
|
|
}
|
|
|
|
static uint64_t pnv_xive2_ic_vc_read(void *opaque, hwaddr offset,
|
|
unsigned size)
|
|
{
|
|
PnvXive2 *xive = PNV_XIVE2(opaque);
|
|
uint64_t val = 0;
|
|
uint32_t reg = offset >> 3;
|
|
uint8_t watch_engine;
|
|
|
|
switch (offset) {
|
|
/*
|
|
* VSD table settings.
|
|
*/
|
|
case VC_VSD_TABLE_ADDR:
|
|
case VC_VSD_TABLE_DATA:
|
|
val = xive->vc_regs[reg];
|
|
break;
|
|
|
|
/*
|
|
* ESB cache updates (not modeled)
|
|
*/
|
|
case VC_ESBC_FLUSH_CTRL:
|
|
xive->vc_regs[reg] &= ~VC_ESBC_FLUSH_CTRL_POLL_VALID;
|
|
val = xive->vc_regs[reg];
|
|
break;
|
|
|
|
case VC_ESBC_CFG:
|
|
val = xive->vc_regs[reg];
|
|
break;
|
|
|
|
/*
|
|
* EAS cache updates (not modeled)
|
|
*/
|
|
case VC_EASC_FLUSH_CTRL:
|
|
xive->vc_regs[reg] &= ~VC_EASC_FLUSH_CTRL_POLL_VALID;
|
|
val = xive->vc_regs[reg];
|
|
break;
|
|
|
|
case VC_ENDC_WATCH_ASSIGN:
|
|
val = pnv_xive2_endc_cache_watch_assign(xive);
|
|
break;
|
|
|
|
case VC_ENDC_CFG:
|
|
val = xive->vc_regs[reg];
|
|
break;
|
|
|
|
/*
|
|
* END cache updates
|
|
*/
|
|
case VC_ENDC_WATCH0_SPEC:
|
|
case VC_ENDC_WATCH1_SPEC:
|
|
case VC_ENDC_WATCH2_SPEC:
|
|
case VC_ENDC_WATCH3_SPEC:
|
|
watch_engine = (offset - VC_ENDC_WATCH0_SPEC) >> 6;
|
|
xive->vc_regs[reg] &= ~(VC_ENDC_WATCH_FULL | VC_ENDC_WATCH_CONFLICT);
|
|
pnv_xive2_endc_cache_watch_release(xive, watch_engine);
|
|
val = xive->vc_regs[reg];
|
|
break;
|
|
|
|
case VC_ENDC_WATCH0_DATA0:
|
|
case VC_ENDC_WATCH1_DATA0:
|
|
case VC_ENDC_WATCH2_DATA0:
|
|
case VC_ENDC_WATCH3_DATA0:
|
|
/*
|
|
* Load DATA registers from cache with data requested by the
|
|
* SPEC register
|
|
*/
|
|
watch_engine = (offset - VC_ENDC_WATCH0_DATA0) >> 6;
|
|
pnv_xive2_end_cache_load(xive, watch_engine);
|
|
val = xive->vc_regs[reg];
|
|
break;
|
|
|
|
case VC_ENDC_WATCH0_DATA1 ... VC_ENDC_WATCH0_DATA3:
|
|
case VC_ENDC_WATCH1_DATA1 ... VC_ENDC_WATCH1_DATA3:
|
|
case VC_ENDC_WATCH2_DATA1 ... VC_ENDC_WATCH2_DATA3:
|
|
case VC_ENDC_WATCH3_DATA1 ... VC_ENDC_WATCH3_DATA3:
|
|
val = xive->vc_regs[reg];
|
|
break;
|
|
|
|
case VC_ENDC_FLUSH_CTRL:
|
|
xive->vc_regs[reg] &= ~VC_ENDC_FLUSH_CTRL_POLL_VALID;
|
|
val = xive->vc_regs[reg];
|
|
break;
|
|
|
|
/*
|
|
* Indirect invalidation
|
|
*/
|
|
case VC_AT_MACRO_KILL_MASK:
|
|
val = xive->vc_regs[reg];
|
|
break;
|
|
|
|
case VC_AT_MACRO_KILL:
|
|
xive->vc_regs[reg] &= ~VC_AT_MACRO_KILL_VALID;
|
|
val = xive->vc_regs[reg];
|
|
break;
|
|
|
|
/*
|
|
* Interrupt fifo overflow in memory backing store (Not modeled)
|
|
*/
|
|
case VC_QUEUES_CFG_REM0 ... VC_QUEUES_CFG_REM6:
|
|
val = xive->vc_regs[reg];
|
|
break;
|
|
|
|
/*
|
|
* Synchronisation
|
|
*/
|
|
case VC_ENDC_SYNC_DONE:
|
|
val = VC_ENDC_SYNC_POLL_DONE;
|
|
break;
|
|
default:
|
|
xive2_error(xive, "VC: invalid read @%"HWADDR_PRIx, offset);
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
static void pnv_xive2_ic_vc_write(void *opaque, hwaddr offset,
|
|
uint64_t val, unsigned size)
|
|
{
|
|
PnvXive2 *xive = PNV_XIVE2(opaque);
|
|
uint32_t reg = offset >> 3;
|
|
uint8_t watch_engine;
|
|
|
|
switch (offset) {
|
|
/*
|
|
* VSD table settings.
|
|
*/
|
|
case VC_VSD_TABLE_ADDR:
|
|
break;
|
|
case VC_VSD_TABLE_DATA:
|
|
pnv_xive2_vc_vst_set_data(xive, val);
|
|
break;
|
|
|
|
/*
|
|
* ESB cache updates (not modeled)
|
|
*/
|
|
/* case VC_ESBC_FLUSH_CTRL: */
|
|
case VC_ESBC_FLUSH_POLL:
|
|
xive->vc_regs[VC_ESBC_FLUSH_CTRL >> 3] |= VC_ESBC_FLUSH_CTRL_POLL_VALID;
|
|
/* ESB update */
|
|
break;
|
|
|
|
case VC_ESBC_FLUSH_INJECT:
|
|
pnv_xive2_inject_notify(xive, PNV_XIVE2_CACHE_ESBC);
|
|
break;
|
|
|
|
case VC_ESBC_CFG:
|
|
break;
|
|
|
|
/*
|
|
* EAS cache updates (not modeled)
|
|
*/
|
|
/* case VC_EASC_FLUSH_CTRL: */
|
|
case VC_EASC_FLUSH_POLL:
|
|
xive->vc_regs[VC_EASC_FLUSH_CTRL >> 3] |= VC_EASC_FLUSH_CTRL_POLL_VALID;
|
|
/* EAS update */
|
|
break;
|
|
|
|
case VC_EASC_FLUSH_INJECT:
|
|
pnv_xive2_inject_notify(xive, PNV_XIVE2_CACHE_EASC);
|
|
break;
|
|
|
|
case VC_ENDC_CFG:
|
|
break;
|
|
|
|
/*
|
|
* END cache updates
|
|
*/
|
|
case VC_ENDC_WATCH0_SPEC:
|
|
case VC_ENDC_WATCH1_SPEC:
|
|
case VC_ENDC_WATCH2_SPEC:
|
|
case VC_ENDC_WATCH3_SPEC:
|
|
val &= ~VC_ENDC_WATCH_CONFLICT; /* HW will set this bit */
|
|
break;
|
|
|
|
case VC_ENDC_WATCH0_DATA1 ... VC_ENDC_WATCH0_DATA3:
|
|
case VC_ENDC_WATCH1_DATA1 ... VC_ENDC_WATCH1_DATA3:
|
|
case VC_ENDC_WATCH2_DATA1 ... VC_ENDC_WATCH2_DATA3:
|
|
case VC_ENDC_WATCH3_DATA1 ... VC_ENDC_WATCH3_DATA3:
|
|
break;
|
|
case VC_ENDC_WATCH0_DATA0:
|
|
case VC_ENDC_WATCH1_DATA0:
|
|
case VC_ENDC_WATCH2_DATA0:
|
|
case VC_ENDC_WATCH3_DATA0:
|
|
/* writing to DATA0 triggers the cache write */
|
|
watch_engine = (offset - VC_ENDC_WATCH0_DATA0) >> 6;
|
|
xive->vc_regs[reg] = val;
|
|
pnv_xive2_end_update(xive, watch_engine);
|
|
break;
|
|
|
|
|
|
/* case VC_ENDC_FLUSH_CTRL: */
|
|
case VC_ENDC_FLUSH_POLL:
|
|
xive->vc_regs[VC_ENDC_FLUSH_CTRL >> 3] |= VC_ENDC_FLUSH_CTRL_POLL_VALID;
|
|
break;
|
|
|
|
case VC_ENDC_FLUSH_INJECT:
|
|
pnv_xive2_inject_notify(xive, PNV_XIVE2_CACHE_ENDC);
|
|
break;
|
|
|
|
/*
|
|
* Indirect invalidation
|
|
*/
|
|
case VC_AT_MACRO_KILL:
|
|
case VC_AT_MACRO_KILL_MASK:
|
|
break;
|
|
|
|
/*
|
|
* Interrupt fifo overflow in memory backing store (Not modeled)
|
|
*/
|
|
case VC_QUEUES_CFG_REM0 ... VC_QUEUES_CFG_REM6:
|
|
break;
|
|
|
|
/*
|
|
* Synchronisation
|
|
*/
|
|
case VC_ENDC_SYNC_DONE:
|
|
break;
|
|
|
|
default:
|
|
xive2_error(xive, "VC: invalid write @%"HWADDR_PRIx, offset);
|
|
return;
|
|
}
|
|
|
|
xive->vc_regs[reg] = val;
|
|
}
|
|
|
|
static const MemoryRegionOps pnv_xive2_ic_vc_ops = {
|
|
.read = pnv_xive2_ic_vc_read,
|
|
.write = pnv_xive2_ic_vc_write,
|
|
.endianness = DEVICE_BIG_ENDIAN,
|
|
.valid = {
|
|
.min_access_size = 8,
|
|
.max_access_size = 8,
|
|
},
|
|
.impl = {
|
|
.min_access_size = 8,
|
|
.max_access_size = 8,
|
|
},
|
|
};
|
|
|
|
static uint8_t pnv_xive2_nxc_cache_watch_assign(PnvXive2 *xive)
|
|
{
|
|
uint64_t engine_mask = GETFIELD(PC_NXC_PROC_CONFIG_WATCH_ASSIGN,
|
|
xive->pc_regs[PC_NXC_PROC_CONFIG >> 3]);
|
|
uint64_t state = xive->pc_regs[PC_NXC_WATCH_ASSIGN >> 3];
|
|
uint8_t val;
|
|
|
|
/*
|
|
* We keep track of which engines are currently busy in the
|
|
* PC_NXC_WATCH_ASSIGN register directly. When the firmware reads
|
|
* the register, we don't return its value but the ID of an engine
|
|
* it can use.
|
|
* There are 4 engines. 0xFF means no engine is available.
|
|
*/
|
|
val = pnv_xive2_cache_watch_assign(engine_mask, &state);
|
|
if (val != 0xFF) {
|
|
xive->pc_regs[PC_NXC_WATCH_ASSIGN >> 3] = state;
|
|
}
|
|
return val;
|
|
}
|
|
|
|
static void pnv_xive2_nxc_cache_watch_release(PnvXive2 *xive,
|
|
uint8_t watch_engine)
|
|
{
|
|
uint64_t state = xive->pc_regs[PC_NXC_WATCH_ASSIGN >> 3];
|
|
|
|
pnv_xive2_cache_watch_release(&state, watch_engine);
|
|
xive->pc_regs[PC_NXC_WATCH_ASSIGN >> 3] = state;
|
|
}
|
|
|
|
static uint64_t pnv_xive2_ic_pc_read(void *opaque, hwaddr offset,
|
|
unsigned size)
|
|
{
|
|
PnvXive2 *xive = PNV_XIVE2(opaque);
|
|
uint64_t val = -1;
|
|
uint32_t reg = offset >> 3;
|
|
uint8_t watch_engine;
|
|
|
|
switch (offset) {
|
|
/*
|
|
* VSD table settings.
|
|
*/
|
|
case PC_VSD_TABLE_ADDR:
|
|
case PC_VSD_TABLE_DATA:
|
|
val = xive->pc_regs[reg];
|
|
break;
|
|
|
|
case PC_NXC_WATCH_ASSIGN:
|
|
val = pnv_xive2_nxc_cache_watch_assign(xive);
|
|
break;
|
|
|
|
case PC_NXC_PROC_CONFIG:
|
|
val = xive->pc_regs[reg];
|
|
break;
|
|
|
|
/*
|
|
* cache updates
|
|
*/
|
|
case PC_NXC_WATCH0_SPEC:
|
|
case PC_NXC_WATCH1_SPEC:
|
|
case PC_NXC_WATCH2_SPEC:
|
|
case PC_NXC_WATCH3_SPEC:
|
|
watch_engine = (offset - PC_NXC_WATCH0_SPEC) >> 6;
|
|
xive->pc_regs[reg] &= ~(PC_NXC_WATCH_FULL | PC_NXC_WATCH_CONFLICT);
|
|
pnv_xive2_nxc_cache_watch_release(xive, watch_engine);
|
|
val = xive->pc_regs[reg];
|
|
break;
|
|
|
|
case PC_NXC_WATCH0_DATA0:
|
|
case PC_NXC_WATCH1_DATA0:
|
|
case PC_NXC_WATCH2_DATA0:
|
|
case PC_NXC_WATCH3_DATA0:
|
|
/*
|
|
* Load DATA registers from cache with data requested by the
|
|
* SPEC register
|
|
*/
|
|
watch_engine = (offset - PC_NXC_WATCH0_DATA0) >> 6;
|
|
pnv_xive2_nxc_cache_load(xive, watch_engine);
|
|
val = xive->pc_regs[reg];
|
|
break;
|
|
|
|
case PC_NXC_WATCH0_DATA1 ... PC_NXC_WATCH0_DATA3:
|
|
case PC_NXC_WATCH1_DATA1 ... PC_NXC_WATCH1_DATA3:
|
|
case PC_NXC_WATCH2_DATA1 ... PC_NXC_WATCH2_DATA3:
|
|
case PC_NXC_WATCH3_DATA1 ... PC_NXC_WATCH3_DATA3:
|
|
val = xive->pc_regs[reg];
|
|
break;
|
|
|
|
case PC_NXC_FLUSH_CTRL:
|
|
xive->pc_regs[reg] &= ~PC_NXC_FLUSH_CTRL_POLL_VALID;
|
|
val = xive->pc_regs[reg];
|
|
break;
|
|
|
|
/*
|
|
* Indirect invalidation
|
|
*/
|
|
case PC_AT_KILL:
|
|
xive->pc_regs[reg] &= ~PC_AT_KILL_VALID;
|
|
val = xive->pc_regs[reg];
|
|
break;
|
|
|
|
default:
|
|
xive2_error(xive, "PC: invalid read @%"HWADDR_PRIx, offset);
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
static void pnv_xive2_pc_vst_set_data(PnvXive2 *xive, uint64_t vsd)
|
|
{
|
|
uint8_t type = GETFIELD(PC_VSD_TABLE_SELECT,
|
|
xive->pc_regs[PC_VSD_TABLE_ADDR >> 3]);
|
|
uint8_t blk = GETFIELD(PC_VSD_TABLE_ADDRESS,
|
|
xive->pc_regs[PC_VSD_TABLE_ADDR >> 3]);
|
|
|
|
pnv_xive2_vst_set_data(xive, vsd, type, blk);
|
|
}
|
|
|
|
static void pnv_xive2_ic_pc_write(void *opaque, hwaddr offset,
|
|
uint64_t val, unsigned size)
|
|
{
|
|
PnvXive2 *xive = PNV_XIVE2(opaque);
|
|
uint32_t reg = offset >> 3;
|
|
uint8_t watch_engine;
|
|
|
|
switch (offset) {
|
|
|
|
/*
|
|
* VSD table settings.
|
|
* The Xive2Router model combines both VC and PC sub-engines. We
|
|
* allow to configure the tables through both, for the rare cases
|
|
* where a table only really needs to be configured for one of
|
|
* them (e.g. the NVG table for the presenter). It assumes that
|
|
* firmware passes the same address to the VC and PC when tables
|
|
* are defined for both, which seems acceptable.
|
|
*/
|
|
case PC_VSD_TABLE_ADDR:
|
|
break;
|
|
case PC_VSD_TABLE_DATA:
|
|
pnv_xive2_pc_vst_set_data(xive, val);
|
|
break;
|
|
|
|
case PC_NXC_PROC_CONFIG:
|
|
break;
|
|
|
|
/*
|
|
* cache updates
|
|
*/
|
|
case PC_NXC_WATCH0_SPEC:
|
|
case PC_NXC_WATCH1_SPEC:
|
|
case PC_NXC_WATCH2_SPEC:
|
|
case PC_NXC_WATCH3_SPEC:
|
|
val &= ~PC_NXC_WATCH_CONFLICT; /* HW will set this bit */
|
|
break;
|
|
|
|
case PC_NXC_WATCH0_DATA1 ... PC_NXC_WATCH0_DATA3:
|
|
case PC_NXC_WATCH1_DATA1 ... PC_NXC_WATCH1_DATA3:
|
|
case PC_NXC_WATCH2_DATA1 ... PC_NXC_WATCH2_DATA3:
|
|
case PC_NXC_WATCH3_DATA1 ... PC_NXC_WATCH3_DATA3:
|
|
break;
|
|
case PC_NXC_WATCH0_DATA0:
|
|
case PC_NXC_WATCH1_DATA0:
|
|
case PC_NXC_WATCH2_DATA0:
|
|
case PC_NXC_WATCH3_DATA0:
|
|
/* writing to DATA0 triggers the cache write */
|
|
watch_engine = (offset - PC_NXC_WATCH0_DATA0) >> 6;
|
|
xive->pc_regs[reg] = val;
|
|
pnv_xive2_nxc_update(xive, watch_engine);
|
|
break;
|
|
|
|
/* case PC_NXC_FLUSH_CTRL: */
|
|
case PC_NXC_FLUSH_POLL:
|
|
xive->pc_regs[PC_NXC_FLUSH_CTRL >> 3] |= PC_NXC_FLUSH_CTRL_POLL_VALID;
|
|
break;
|
|
|
|
case PC_NXC_FLUSH_INJECT:
|
|
pnv_xive2_inject_notify(xive, PNV_XIVE2_CACHE_NXC);
|
|
break;
|
|
|
|
/*
|
|
* Indirect invalidation
|
|
*/
|
|
case PC_AT_KILL:
|
|
case PC_AT_KILL_MASK:
|
|
break;
|
|
|
|
default:
|
|
xive2_error(xive, "PC: invalid write @%"HWADDR_PRIx, offset);
|
|
return;
|
|
}
|
|
|
|
xive->pc_regs[reg] = val;
|
|
}
|
|
|
|
static const MemoryRegionOps pnv_xive2_ic_pc_ops = {
|
|
.read = pnv_xive2_ic_pc_read,
|
|
.write = pnv_xive2_ic_pc_write,
|
|
.endianness = DEVICE_BIG_ENDIAN,
|
|
.valid = {
|
|
.min_access_size = 8,
|
|
.max_access_size = 8,
|
|
},
|
|
.impl = {
|
|
.min_access_size = 8,
|
|
.max_access_size = 8,
|
|
},
|
|
};
|
|
|
|
|
|
static uint64_t pnv_xive2_ic_tctxt_read(void *opaque, hwaddr offset,
|
|
unsigned size)
|
|
{
|
|
PnvXive2 *xive = PNV_XIVE2(opaque);
|
|
uint64_t val = -1;
|
|
uint32_t reg = offset >> 3;
|
|
|
|
switch (offset) {
|
|
/*
|
|
* XIVE2 hardware thread enablement
|
|
*/
|
|
case TCTXT_EN0:
|
|
case TCTXT_EN1:
|
|
val = xive->tctxt_regs[reg];
|
|
break;
|
|
|
|
case TCTXT_EN0_SET:
|
|
case TCTXT_EN0_RESET:
|
|
val = xive->tctxt_regs[TCTXT_EN0 >> 3];
|
|
break;
|
|
case TCTXT_EN1_SET:
|
|
case TCTXT_EN1_RESET:
|
|
val = xive->tctxt_regs[TCTXT_EN1 >> 3];
|
|
break;
|
|
case TCTXT_CFG:
|
|
val = xive->tctxt_regs[reg];
|
|
break;
|
|
default:
|
|
xive2_error(xive, "TCTXT: invalid read @%"HWADDR_PRIx, offset);
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
static void pnv_xive2_ic_tctxt_write(void *opaque, hwaddr offset,
|
|
uint64_t val, unsigned size)
|
|
{
|
|
PnvXive2 *xive = PNV_XIVE2(opaque);
|
|
uint32_t reg = offset >> 3;
|
|
|
|
switch (offset) {
|
|
/*
|
|
* XIVE2 hardware thread enablement
|
|
*/
|
|
case TCTXT_EN0: /* Physical Thread Enable */
|
|
case TCTXT_EN1: /* Physical Thread Enable (fused core) */
|
|
xive->tctxt_regs[reg] = val;
|
|
break;
|
|
|
|
case TCTXT_EN0_SET:
|
|
xive->tctxt_regs[TCTXT_EN0 >> 3] |= val;
|
|
break;
|
|
case TCTXT_EN1_SET:
|
|
xive->tctxt_regs[TCTXT_EN1 >> 3] |= val;
|
|
break;
|
|
case TCTXT_EN0_RESET:
|
|
xive->tctxt_regs[TCTXT_EN0 >> 3] &= ~val;
|
|
break;
|
|
case TCTXT_EN1_RESET:
|
|
xive->tctxt_regs[TCTXT_EN1 >> 3] &= ~val;
|
|
break;
|
|
case TCTXT_CFG:
|
|
xive->tctxt_regs[reg] = val;
|
|
break;
|
|
default:
|
|
xive2_error(xive, "TCTXT: invalid write @%"HWADDR_PRIx, offset);
|
|
return;
|
|
}
|
|
}
|
|
|
|
static const MemoryRegionOps pnv_xive2_ic_tctxt_ops = {
|
|
.read = pnv_xive2_ic_tctxt_read,
|
|
.write = pnv_xive2_ic_tctxt_write,
|
|
.endianness = DEVICE_BIG_ENDIAN,
|
|
.valid = {
|
|
.min_access_size = 8,
|
|
.max_access_size = 8,
|
|
},
|
|
.impl = {
|
|
.min_access_size = 8,
|
|
.max_access_size = 8,
|
|
},
|
|
};
|
|
|
|
/*
|
|
* Redirect XSCOM to MMIO handlers
|
|
*/
|
|
static uint64_t pnv_xive2_xscom_read(void *opaque, hwaddr offset,
|
|
unsigned size)
|
|
{
|
|
PnvXive2 *xive = PNV_XIVE2(opaque);
|
|
uint64_t val = -1;
|
|
uint32_t xscom_reg = offset >> 3;
|
|
uint32_t mmio_offset = (xscom_reg & 0xFF) << 3;
|
|
|
|
switch (xscom_reg) {
|
|
case 0x000 ... 0x0FF:
|
|
val = pnv_xive2_ic_cq_read(opaque, mmio_offset, size);
|
|
break;
|
|
case 0x100 ... 0x1FF:
|
|
val = pnv_xive2_ic_vc_read(opaque, mmio_offset, size);
|
|
break;
|
|
case 0x200 ... 0x2FF:
|
|
val = pnv_xive2_ic_pc_read(opaque, mmio_offset, size);
|
|
break;
|
|
case 0x300 ... 0x3FF:
|
|
val = pnv_xive2_ic_tctxt_read(opaque, mmio_offset, size);
|
|
break;
|
|
default:
|
|
xive2_error(xive, "XSCOM: invalid read @%"HWADDR_PRIx, offset);
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
static void pnv_xive2_xscom_write(void *opaque, hwaddr offset,
|
|
uint64_t val, unsigned size)
|
|
{
|
|
PnvXive2 *xive = PNV_XIVE2(opaque);
|
|
uint32_t xscom_reg = offset >> 3;
|
|
uint32_t mmio_offset = (xscom_reg & 0xFF) << 3;
|
|
|
|
switch (xscom_reg) {
|
|
case 0x000 ... 0x0FF:
|
|
pnv_xive2_ic_cq_write(opaque, mmio_offset, val, size);
|
|
break;
|
|
case 0x100 ... 0x1FF:
|
|
pnv_xive2_ic_vc_write(opaque, mmio_offset, val, size);
|
|
break;
|
|
case 0x200 ... 0x2FF:
|
|
pnv_xive2_ic_pc_write(opaque, mmio_offset, val, size);
|
|
break;
|
|
case 0x300 ... 0x3FF:
|
|
pnv_xive2_ic_tctxt_write(opaque, mmio_offset, val, size);
|
|
break;
|
|
default:
|
|
xive2_error(xive, "XSCOM: invalid write @%"HWADDR_PRIx, offset);
|
|
}
|
|
}
|
|
|
|
static const MemoryRegionOps pnv_xive2_xscom_ops = {
|
|
.read = pnv_xive2_xscom_read,
|
|
.write = pnv_xive2_xscom_write,
|
|
.endianness = DEVICE_BIG_ENDIAN,
|
|
.valid = {
|
|
.min_access_size = 8,
|
|
.max_access_size = 8,
|
|
},
|
|
.impl = {
|
|
.min_access_size = 8,
|
|
.max_access_size = 8,
|
|
},
|
|
};
|
|
|
|
/*
|
|
* Notify port page. The layout is compatible between 4K and 64K pages :
|
|
*
|
|
* Page 1 Notify page (writes only)
|
|
* 0x000 - 0x7FF IPI interrupt (NPU)
|
|
* 0x800 - 0xFFF HW interrupt triggers (PSI, PHB)
|
|
*/
|
|
|
|
static void pnv_xive2_ic_hw_trigger(PnvXive2 *xive, hwaddr addr,
|
|
uint64_t val)
|
|
{
|
|
uint8_t blk;
|
|
uint32_t idx;
|
|
|
|
if (val & XIVE_TRIGGER_END) {
|
|
xive2_error(xive, "IC: END trigger at @0x%"HWADDR_PRIx" data 0x%"PRIx64,
|
|
addr, val);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Forward the source event notification directly to the Router.
|
|
* The source interrupt number should already be correctly encoded
|
|
* with the chip block id by the sending device (PHB, PSI).
|
|
*/
|
|
blk = XIVE_EAS_BLOCK(val);
|
|
idx = XIVE_EAS_INDEX(val);
|
|
|
|
xive2_router_notify(XIVE_NOTIFIER(xive), XIVE_EAS(blk, idx),
|
|
!!(val & XIVE_TRIGGER_PQ));
|
|
}
|
|
|
|
static void pnv_xive2_ic_notify_write(void *opaque, hwaddr offset,
|
|
uint64_t val, unsigned size)
|
|
{
|
|
PnvXive2 *xive = PNV_XIVE2(opaque);
|
|
|
|
/* VC: IPI triggers */
|
|
switch (offset) {
|
|
case 0x000 ... 0x7FF:
|
|
/* TODO: check IPI notify sub-page routing */
|
|
pnv_xive2_ic_hw_trigger(opaque, offset, val);
|
|
break;
|
|
|
|
/* VC: HW triggers */
|
|
case 0x800 ... 0xFFF:
|
|
pnv_xive2_ic_hw_trigger(opaque, offset, val);
|
|
break;
|
|
|
|
default:
|
|
xive2_error(xive, "NOTIFY: invalid write @%"HWADDR_PRIx, offset);
|
|
}
|
|
}
|
|
|
|
static uint64_t pnv_xive2_ic_notify_read(void *opaque, hwaddr offset,
|
|
unsigned size)
|
|
{
|
|
PnvXive2 *xive = PNV_XIVE2(opaque);
|
|
|
|
/* loads are invalid */
|
|
xive2_error(xive, "NOTIFY: invalid read @%"HWADDR_PRIx, offset);
|
|
return -1;
|
|
}
|
|
|
|
static const MemoryRegionOps pnv_xive2_ic_notify_ops = {
|
|
.read = pnv_xive2_ic_notify_read,
|
|
.write = pnv_xive2_ic_notify_write,
|
|
.endianness = DEVICE_BIG_ENDIAN,
|
|
.valid = {
|
|
.min_access_size = 8,
|
|
.max_access_size = 8,
|
|
},
|
|
.impl = {
|
|
.min_access_size = 8,
|
|
.max_access_size = 8,
|
|
},
|
|
};
|
|
|
|
static uint64_t pnv_xive2_ic_lsi_read(void *opaque, hwaddr offset,
|
|
unsigned size)
|
|
{
|
|
PnvXive2 *xive = PNV_XIVE2(opaque);
|
|
|
|
xive2_error(xive, "LSI: invalid read @%"HWADDR_PRIx, offset);
|
|
return -1;
|
|
}
|
|
|
|
static void pnv_xive2_ic_lsi_write(void *opaque, hwaddr offset,
|
|
uint64_t val, unsigned size)
|
|
{
|
|
PnvXive2 *xive = PNV_XIVE2(opaque);
|
|
|
|
xive2_error(xive, "LSI: invalid write @%"HWADDR_PRIx, offset);
|
|
}
|
|
|
|
static const MemoryRegionOps pnv_xive2_ic_lsi_ops = {
|
|
.read = pnv_xive2_ic_lsi_read,
|
|
.write = pnv_xive2_ic_lsi_write,
|
|
.endianness = DEVICE_BIG_ENDIAN,
|
|
.valid = {
|
|
.min_access_size = 8,
|
|
.max_access_size = 8,
|
|
},
|
|
.impl = {
|
|
.min_access_size = 8,
|
|
.max_access_size = 8,
|
|
},
|
|
};
|
|
|
|
/*
|
|
* Sync MMIO page (write only)
|
|
*/
|
|
#define PNV_XIVE2_SYNC_IPI 0x000
|
|
#define PNV_XIVE2_SYNC_HW 0x080
|
|
#define PNV_XIVE2_SYNC_NxC 0x100
|
|
#define PNV_XIVE2_SYNC_INT 0x180
|
|
#define PNV_XIVE2_SYNC_OS_ESC 0x200
|
|
#define PNV_XIVE2_SYNC_POOL_ESC 0x280
|
|
#define PNV_XIVE2_SYNC_HARD_ESC 0x300
|
|
#define PNV_XIVE2_SYNC_NXC_LD_LCL_NCO 0x800
|
|
#define PNV_XIVE2_SYNC_NXC_LD_LCL_CO 0x880
|
|
#define PNV_XIVE2_SYNC_NXC_ST_LCL_NCI 0x900
|
|
#define PNV_XIVE2_SYNC_NXC_ST_LCL_CI 0x980
|
|
#define PNV_XIVE2_SYNC_NXC_ST_RMT_NCI 0xA00
|
|
#define PNV_XIVE2_SYNC_NXC_ST_RMT_CI 0xA80
|
|
|
|
static uint64_t pnv_xive2_ic_sync_read(void *opaque, hwaddr offset,
|
|
unsigned size)
|
|
{
|
|
PnvXive2 *xive = PNV_XIVE2(opaque);
|
|
|
|
/* loads are invalid */
|
|
xive2_error(xive, "SYNC: invalid read @%"HWADDR_PRIx, offset);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* The sync MMIO space spans two pages. The lower page is use for
|
|
* queue sync "poll" requests while the upper page is used for queue
|
|
* sync "inject" requests. Inject requests require the HW to write
|
|
* a byte of all 1's to a predetermined location in memory in order
|
|
* to signal completion of the request. Both pages have the same
|
|
* layout, so it is easiest to handle both with a single function.
|
|
*/
|
|
static void pnv_xive2_ic_sync_write(void *opaque, hwaddr offset,
|
|
uint64_t val, unsigned size)
|
|
{
|
|
PnvXive2 *xive = PNV_XIVE2(opaque);
|
|
int inject_type;
|
|
hwaddr pg_offset_mask = (1ull << xive->ic_shift) - 1;
|
|
|
|
/* adjust offset for inject page */
|
|
hwaddr adj_offset = offset & pg_offset_mask;
|
|
|
|
switch (adj_offset) {
|
|
case PNV_XIVE2_SYNC_IPI:
|
|
inject_type = PNV_XIVE2_QUEUE_IPI;
|
|
break;
|
|
case PNV_XIVE2_SYNC_HW:
|
|
inject_type = PNV_XIVE2_QUEUE_HW;
|
|
break;
|
|
case PNV_XIVE2_SYNC_NxC:
|
|
inject_type = PNV_XIVE2_QUEUE_NXC;
|
|
break;
|
|
case PNV_XIVE2_SYNC_INT:
|
|
inject_type = PNV_XIVE2_QUEUE_INT;
|
|
break;
|
|
case PNV_XIVE2_SYNC_OS_ESC:
|
|
inject_type = PNV_XIVE2_QUEUE_OS;
|
|
break;
|
|
case PNV_XIVE2_SYNC_POOL_ESC:
|
|
inject_type = PNV_XIVE2_QUEUE_POOL;
|
|
break;
|
|
case PNV_XIVE2_SYNC_HARD_ESC:
|
|
inject_type = PNV_XIVE2_QUEUE_HARD;
|
|
break;
|
|
case PNV_XIVE2_SYNC_NXC_LD_LCL_NCO:
|
|
inject_type = PNV_XIVE2_QUEUE_NXC_LD_LCL_NCO;
|
|
break;
|
|
case PNV_XIVE2_SYNC_NXC_LD_LCL_CO:
|
|
inject_type = PNV_XIVE2_QUEUE_NXC_LD_LCL_CO;
|
|
break;
|
|
case PNV_XIVE2_SYNC_NXC_ST_LCL_NCI:
|
|
inject_type = PNV_XIVE2_QUEUE_NXC_ST_LCL_NCI;
|
|
break;
|
|
case PNV_XIVE2_SYNC_NXC_ST_LCL_CI:
|
|
inject_type = PNV_XIVE2_QUEUE_NXC_ST_LCL_CI;
|
|
break;
|
|
case PNV_XIVE2_SYNC_NXC_ST_RMT_NCI:
|
|
inject_type = PNV_XIVE2_QUEUE_NXC_ST_RMT_NCI;
|
|
break;
|
|
case PNV_XIVE2_SYNC_NXC_ST_RMT_CI:
|
|
inject_type = PNV_XIVE2_QUEUE_NXC_ST_RMT_CI;
|
|
break;
|
|
default:
|
|
xive2_error(xive, "SYNC: invalid write @%"HWADDR_PRIx, offset);
|
|
return;
|
|
}
|
|
|
|
/* Write Queue Sync notification byte if writing to sync inject page */
|
|
if ((offset & ~pg_offset_mask) != 0) {
|
|
pnv_xive2_inject_notify(xive, inject_type);
|
|
}
|
|
}
|
|
|
|
static const MemoryRegionOps pnv_xive2_ic_sync_ops = {
|
|
.read = pnv_xive2_ic_sync_read,
|
|
.write = pnv_xive2_ic_sync_write,
|
|
.endianness = DEVICE_BIG_ENDIAN,
|
|
.valid = {
|
|
.min_access_size = 8,
|
|
.max_access_size = 8,
|
|
},
|
|
.impl = {
|
|
.min_access_size = 8,
|
|
.max_access_size = 8,
|
|
},
|
|
};
|
|
|
|
/*
|
|
* When the TM direct pages of the IC controller are accessed, the
|
|
* target HW thread is deduced from the page offset.
|
|
*/
|
|
static uint32_t pnv_xive2_ic_tm_get_pir(PnvXive2 *xive, hwaddr offset)
|
|
{
|
|
/* On P10, the node ID shift in the PIR register is 8 bits */
|
|
return xive->chip->chip_id << 8 | offset >> xive->ic_shift;
|
|
}
|
|
|
|
static uint32_t pnv_xive2_ic_tm_get_hw_page_offset(PnvXive2 *xive,
|
|
hwaddr offset)
|
|
{
|
|
/*
|
|
* Indirect TIMA accesses are similar to direct accesses for
|
|
* privilege ring 0. So remove any traces of the hw thread ID from
|
|
* the offset in the IC BAR as it could be interpreted as the ring
|
|
* privilege when calling the underlying direct access functions.
|
|
*/
|
|
return offset & ((1ull << xive->ic_shift) - 1);
|
|
}
|
|
|
|
static XiveTCTX *pnv_xive2_get_indirect_tctx(PnvXive2 *xive, uint32_t pir)
|
|
{
|
|
PnvChip *chip = xive->chip;
|
|
PowerPCCPU *cpu = NULL;
|
|
|
|
cpu = pnv_chip_find_cpu(chip, pir);
|
|
if (!cpu) {
|
|
xive2_error(xive, "IC: invalid PIR %x for indirect access", pir);
|
|
return NULL;
|
|
}
|
|
|
|
if (!pnv_xive2_is_cpu_enabled(xive, cpu)) {
|
|
xive2_error(xive, "IC: CPU %x is not enabled", pir);
|
|
}
|
|
|
|
return XIVE_TCTX(pnv_cpu_state(cpu)->intc);
|
|
}
|
|
|
|
static uint64_t pnv_xive2_ic_tm_indirect_read(void *opaque, hwaddr offset,
|
|
unsigned size)
|
|
{
|
|
PnvXive2 *xive = PNV_XIVE2(opaque);
|
|
XivePresenter *xptr = XIVE_PRESENTER(xive);
|
|
hwaddr hw_page_offset;
|
|
uint32_t pir;
|
|
XiveTCTX *tctx;
|
|
uint64_t val = -1;
|
|
|
|
pir = pnv_xive2_ic_tm_get_pir(xive, offset);
|
|
hw_page_offset = pnv_xive2_ic_tm_get_hw_page_offset(xive, offset);
|
|
tctx = pnv_xive2_get_indirect_tctx(xive, pir);
|
|
if (tctx) {
|
|
val = xive_tctx_tm_read(xptr, tctx, hw_page_offset, size);
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
static void pnv_xive2_ic_tm_indirect_write(void *opaque, hwaddr offset,
|
|
uint64_t val, unsigned size)
|
|
{
|
|
PnvXive2 *xive = PNV_XIVE2(opaque);
|
|
XivePresenter *xptr = XIVE_PRESENTER(xive);
|
|
hwaddr hw_page_offset;
|
|
uint32_t pir;
|
|
XiveTCTX *tctx;
|
|
|
|
pir = pnv_xive2_ic_tm_get_pir(xive, offset);
|
|
hw_page_offset = pnv_xive2_ic_tm_get_hw_page_offset(xive, offset);
|
|
tctx = pnv_xive2_get_indirect_tctx(xive, pir);
|
|
if (tctx) {
|
|
xive_tctx_tm_write(xptr, tctx, hw_page_offset, val, size);
|
|
}
|
|
}
|
|
|
|
static const MemoryRegionOps pnv_xive2_ic_tm_indirect_ops = {
|
|
.read = pnv_xive2_ic_tm_indirect_read,
|
|
.write = pnv_xive2_ic_tm_indirect_write,
|
|
.endianness = DEVICE_BIG_ENDIAN,
|
|
.valid = {
|
|
.min_access_size = 1,
|
|
.max_access_size = 8,
|
|
},
|
|
.impl = {
|
|
.min_access_size = 1,
|
|
.max_access_size = 8,
|
|
},
|
|
};
|
|
|
|
/*
|
|
* TIMA ops
|
|
*/
|
|
static void pnv_xive2_tm_write(void *opaque, hwaddr offset,
|
|
uint64_t value, unsigned size)
|
|
{
|
|
PowerPCCPU *cpu = POWERPC_CPU(current_cpu);
|
|
PnvXive2 *xive = pnv_xive2_tm_get_xive(cpu);
|
|
XiveTCTX *tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc);
|
|
XivePresenter *xptr = XIVE_PRESENTER(xive);
|
|
|
|
xive_tctx_tm_write(xptr, tctx, offset, value, size);
|
|
}
|
|
|
|
static uint64_t pnv_xive2_tm_read(void *opaque, hwaddr offset, unsigned size)
|
|
{
|
|
PowerPCCPU *cpu = POWERPC_CPU(current_cpu);
|
|
PnvXive2 *xive = pnv_xive2_tm_get_xive(cpu);
|
|
XiveTCTX *tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc);
|
|
XivePresenter *xptr = XIVE_PRESENTER(xive);
|
|
|
|
return xive_tctx_tm_read(xptr, tctx, offset, size);
|
|
}
|
|
|
|
static const MemoryRegionOps pnv_xive2_tm_ops = {
|
|
.read = pnv_xive2_tm_read,
|
|
.write = pnv_xive2_tm_write,
|
|
.endianness = DEVICE_BIG_ENDIAN,
|
|
.valid = {
|
|
.min_access_size = 1,
|
|
.max_access_size = 8,
|
|
},
|
|
.impl = {
|
|
.min_access_size = 1,
|
|
.max_access_size = 8,
|
|
},
|
|
};
|
|
|
|
static uint64_t pnv_xive2_nvc_read(void *opaque, hwaddr offset,
|
|
unsigned size)
|
|
{
|
|
PnvXive2 *xive = PNV_XIVE2(opaque);
|
|
|
|
xive2_error(xive, "NVC: invalid read @%"HWADDR_PRIx, offset);
|
|
return -1;
|
|
}
|
|
|
|
static void pnv_xive2_nvc_write(void *opaque, hwaddr offset,
|
|
uint64_t val, unsigned size)
|
|
{
|
|
PnvXive2 *xive = PNV_XIVE2(opaque);
|
|
|
|
xive2_error(xive, "NVC: invalid write @%"HWADDR_PRIx, offset);
|
|
}
|
|
|
|
static const MemoryRegionOps pnv_xive2_nvc_ops = {
|
|
.read = pnv_xive2_nvc_read,
|
|
.write = pnv_xive2_nvc_write,
|
|
.endianness = DEVICE_BIG_ENDIAN,
|
|
.valid = {
|
|
.min_access_size = 8,
|
|
.max_access_size = 8,
|
|
},
|
|
.impl = {
|
|
.min_access_size = 8,
|
|
.max_access_size = 8,
|
|
},
|
|
};
|
|
|
|
static uint64_t pnv_xive2_nvpg_read(void *opaque, hwaddr offset,
|
|
unsigned size)
|
|
{
|
|
PnvXive2 *xive = PNV_XIVE2(opaque);
|
|
|
|
xive2_error(xive, "NVPG: invalid read @%"HWADDR_PRIx, offset);
|
|
return -1;
|
|
}
|
|
|
|
static void pnv_xive2_nvpg_write(void *opaque, hwaddr offset,
|
|
uint64_t val, unsigned size)
|
|
{
|
|
PnvXive2 *xive = PNV_XIVE2(opaque);
|
|
|
|
xive2_error(xive, "NVPG: invalid write @%"HWADDR_PRIx, offset);
|
|
}
|
|
|
|
static const MemoryRegionOps pnv_xive2_nvpg_ops = {
|
|
.read = pnv_xive2_nvpg_read,
|
|
.write = pnv_xive2_nvpg_write,
|
|
.endianness = DEVICE_BIG_ENDIAN,
|
|
.valid = {
|
|
.min_access_size = 8,
|
|
.max_access_size = 8,
|
|
},
|
|
.impl = {
|
|
.min_access_size = 8,
|
|
.max_access_size = 8,
|
|
},
|
|
};
|
|
|
|
/*
|
|
* POWER10 default capabilities: 0x2000120076f000FC
|
|
*/
|
|
#define PNV_XIVE2_CAPABILITIES 0x2000120076f000FC
|
|
|
|
/*
|
|
* POWER10 default configuration: 0x0030000033000000
|
|
*
|
|
* 8bits thread id was dropped for P10
|
|
*/
|
|
#define PNV_XIVE2_CONFIGURATION 0x0030000033000000
|
|
|
|
static void pnv_xive2_reset(void *dev)
|
|
{
|
|
PnvXive2 *xive = PNV_XIVE2(dev);
|
|
XiveSource *xsrc = &xive->ipi_source;
|
|
Xive2EndSource *end_xsrc = &xive->end_source;
|
|
|
|
xive->cq_regs[CQ_XIVE_CAP >> 3] = xive->capabilities;
|
|
xive->cq_regs[CQ_XIVE_CFG >> 3] = xive->config;
|
|
|
|
/* HW hardwires the #Topology of the chip in the block field */
|
|
xive->cq_regs[CQ_XIVE_CFG >> 3] |=
|
|
SETFIELD(CQ_XIVE_CFG_HYP_HARD_BLOCK_ID, 0ull, xive->chip->chip_id);
|
|
|
|
/* VC and PC cache watch assign mechanism */
|
|
xive->vc_regs[VC_ENDC_CFG >> 3] =
|
|
SETFIELD(VC_ENDC_CFG_CACHE_WATCH_ASSIGN, 0ull, 0b0111);
|
|
xive->pc_regs[PC_NXC_PROC_CONFIG >> 3] =
|
|
SETFIELD(PC_NXC_PROC_CONFIG_WATCH_ASSIGN, 0ull, 0b0111);
|
|
|
|
/* Set default page size to 64k */
|
|
xive->ic_shift = xive->esb_shift = xive->end_shift = 16;
|
|
xive->nvc_shift = xive->nvpg_shift = xive->tm_shift = 16;
|
|
|
|
/* Clear source MMIOs */
|
|
if (memory_region_is_mapped(&xsrc->esb_mmio)) {
|
|
memory_region_del_subregion(&xive->esb_mmio, &xsrc->esb_mmio);
|
|
}
|
|
|
|
if (memory_region_is_mapped(&end_xsrc->esb_mmio)) {
|
|
memory_region_del_subregion(&xive->end_mmio, &end_xsrc->esb_mmio);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Maximum number of IRQs and ENDs supported by HW. Will be tuned by
|
|
* software.
|
|
*/
|
|
#define PNV_XIVE2_NR_IRQS (PNV10_XIVE2_ESB_SIZE / (1ull << XIVE_ESB_64K_2PAGE))
|
|
#define PNV_XIVE2_NR_ENDS (PNV10_XIVE2_END_SIZE / (1ull << XIVE_ESB_64K_2PAGE))
|
|
|
|
static void pnv_xive2_realize(DeviceState *dev, Error **errp)
|
|
{
|
|
PnvXive2 *xive = PNV_XIVE2(dev);
|
|
PnvXive2Class *pxc = PNV_XIVE2_GET_CLASS(dev);
|
|
XiveSource *xsrc = &xive->ipi_source;
|
|
Xive2EndSource *end_xsrc = &xive->end_source;
|
|
Error *local_err = NULL;
|
|
int i;
|
|
|
|
pxc->parent_realize(dev, &local_err);
|
|
if (local_err) {
|
|
error_propagate(errp, local_err);
|
|
return;
|
|
}
|
|
|
|
assert(xive->chip);
|
|
|
|
/*
|
|
* The XiveSource and Xive2EndSource objects are realized with the
|
|
* maximum allowed HW configuration. The ESB MMIO regions will be
|
|
* resized dynamically when the controller is configured by the FW
|
|
* to limit accesses to resources not provisioned.
|
|
*/
|
|
object_property_set_int(OBJECT(xsrc), "flags", XIVE_SRC_STORE_EOI,
|
|
&error_fatal);
|
|
object_property_set_int(OBJECT(xsrc), "nr-irqs", PNV_XIVE2_NR_IRQS,
|
|
&error_fatal);
|
|
object_property_set_link(OBJECT(xsrc), "xive", OBJECT(xive),
|
|
&error_fatal);
|
|
qdev_realize(DEVICE(xsrc), NULL, &local_err);
|
|
if (local_err) {
|
|
error_propagate(errp, local_err);
|
|
return;
|
|
}
|
|
|
|
object_property_set_int(OBJECT(end_xsrc), "nr-ends", PNV_XIVE2_NR_ENDS,
|
|
&error_fatal);
|
|
object_property_set_link(OBJECT(end_xsrc), "xive", OBJECT(xive),
|
|
&error_abort);
|
|
qdev_realize(DEVICE(end_xsrc), NULL, &local_err);
|
|
if (local_err) {
|
|
error_propagate(errp, local_err);
|
|
return;
|
|
}
|
|
|
|
/* XSCOM region, used for initial configuration of the BARs */
|
|
memory_region_init_io(&xive->xscom_regs, OBJECT(dev),
|
|
&pnv_xive2_xscom_ops, xive, "xscom-xive",
|
|
PNV10_XSCOM_XIVE2_SIZE << 3);
|
|
|
|
/* Interrupt controller MMIO regions */
|
|
xive->ic_shift = 16;
|
|
memory_region_init(&xive->ic_mmio, OBJECT(dev), "xive-ic",
|
|
PNV10_XIVE2_IC_SIZE);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(xive->ic_mmios); i++) {
|
|
memory_region_init_io(&xive->ic_mmios[i], OBJECT(dev),
|
|
pnv_xive2_ic_regions[i].ops, xive,
|
|
pnv_xive2_ic_regions[i].name,
|
|
pnv_xive2_ic_regions[i].pgsize << xive->ic_shift);
|
|
}
|
|
|
|
/*
|
|
* VC MMIO regions.
|
|
*/
|
|
xive->esb_shift = 16;
|
|
xive->end_shift = 16;
|
|
memory_region_init(&xive->esb_mmio, OBJECT(xive), "xive-esb",
|
|
PNV10_XIVE2_ESB_SIZE);
|
|
memory_region_init(&xive->end_mmio, OBJECT(xive), "xive-end",
|
|
PNV10_XIVE2_END_SIZE);
|
|
|
|
/* Presenter Controller MMIO region (not modeled) */
|
|
xive->nvc_shift = 16;
|
|
xive->nvpg_shift = 16;
|
|
memory_region_init_io(&xive->nvc_mmio, OBJECT(dev),
|
|
&pnv_xive2_nvc_ops, xive,
|
|
"xive-nvc", PNV10_XIVE2_NVC_SIZE);
|
|
|
|
memory_region_init_io(&xive->nvpg_mmio, OBJECT(dev),
|
|
&pnv_xive2_nvpg_ops, xive,
|
|
"xive-nvpg", PNV10_XIVE2_NVPG_SIZE);
|
|
|
|
/* Thread Interrupt Management Area (Direct) */
|
|
xive->tm_shift = 16;
|
|
memory_region_init_io(&xive->tm_mmio, OBJECT(dev), &pnv_xive2_tm_ops,
|
|
xive, "xive-tima", PNV10_XIVE2_TM_SIZE);
|
|
|
|
qemu_register_reset(pnv_xive2_reset, dev);
|
|
}
|
|
|
|
static Property pnv_xive2_properties[] = {
|
|
DEFINE_PROP_UINT64("ic-bar", PnvXive2, ic_base, 0),
|
|
DEFINE_PROP_UINT64("esb-bar", PnvXive2, esb_base, 0),
|
|
DEFINE_PROP_UINT64("end-bar", PnvXive2, end_base, 0),
|
|
DEFINE_PROP_UINT64("nvc-bar", PnvXive2, nvc_base, 0),
|
|
DEFINE_PROP_UINT64("nvpg-bar", PnvXive2, nvpg_base, 0),
|
|
DEFINE_PROP_UINT64("tm-bar", PnvXive2, tm_base, 0),
|
|
DEFINE_PROP_UINT64("capabilities", PnvXive2, capabilities,
|
|
PNV_XIVE2_CAPABILITIES),
|
|
DEFINE_PROP_UINT64("config", PnvXive2, config,
|
|
PNV_XIVE2_CONFIGURATION),
|
|
DEFINE_PROP_LINK("chip", PnvXive2, chip, TYPE_PNV_CHIP, PnvChip *),
|
|
DEFINE_PROP_END_OF_LIST(),
|
|
};
|
|
|
|
static void pnv_xive2_instance_init(Object *obj)
|
|
{
|
|
PnvXive2 *xive = PNV_XIVE2(obj);
|
|
|
|
object_initialize_child(obj, "ipi_source", &xive->ipi_source,
|
|
TYPE_XIVE_SOURCE);
|
|
object_initialize_child(obj, "end_source", &xive->end_source,
|
|
TYPE_XIVE2_END_SOURCE);
|
|
}
|
|
|
|
static int pnv_xive2_dt_xscom(PnvXScomInterface *dev, void *fdt,
|
|
int xscom_offset)
|
|
{
|
|
const char compat_p10[] = "ibm,power10-xive-x";
|
|
char *name;
|
|
int offset;
|
|
uint32_t reg[] = {
|
|
cpu_to_be32(PNV10_XSCOM_XIVE2_BASE),
|
|
cpu_to_be32(PNV10_XSCOM_XIVE2_SIZE)
|
|
};
|
|
|
|
name = g_strdup_printf("xive@%x", PNV10_XSCOM_XIVE2_BASE);
|
|
offset = fdt_add_subnode(fdt, xscom_offset, name);
|
|
_FDT(offset);
|
|
g_free(name);
|
|
|
|
_FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
|
|
_FDT(fdt_setprop(fdt, offset, "compatible", compat_p10,
|
|
sizeof(compat_p10)));
|
|
return 0;
|
|
}
|
|
|
|
static void pnv_xive2_class_init(ObjectClass *klass, void *data)
|
|
{
|
|
DeviceClass *dc = DEVICE_CLASS(klass);
|
|
PnvXScomInterfaceClass *xdc = PNV_XSCOM_INTERFACE_CLASS(klass);
|
|
Xive2RouterClass *xrc = XIVE2_ROUTER_CLASS(klass);
|
|
XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
|
|
XivePresenterClass *xpc = XIVE_PRESENTER_CLASS(klass);
|
|
PnvXive2Class *pxc = PNV_XIVE2_CLASS(klass);
|
|
|
|
xdc->dt_xscom = pnv_xive2_dt_xscom;
|
|
|
|
dc->desc = "PowerNV XIVE2 Interrupt Controller (POWER10)";
|
|
device_class_set_parent_realize(dc, pnv_xive2_realize,
|
|
&pxc->parent_realize);
|
|
device_class_set_props(dc, pnv_xive2_properties);
|
|
|
|
xrc->get_eas = pnv_xive2_get_eas;
|
|
xrc->get_pq = pnv_xive2_get_pq;
|
|
xrc->set_pq = pnv_xive2_set_pq;
|
|
xrc->get_end = pnv_xive2_get_end;
|
|
xrc->write_end = pnv_xive2_write_end;
|
|
xrc->get_nvp = pnv_xive2_get_nvp;
|
|
xrc->write_nvp = pnv_xive2_write_nvp;
|
|
xrc->get_config = pnv_xive2_get_config;
|
|
xrc->get_block_id = pnv_xive2_get_block_id;
|
|
|
|
xnc->notify = pnv_xive2_notify;
|
|
|
|
xpc->match_nvt = pnv_xive2_match_nvt;
|
|
xpc->get_config = pnv_xive2_presenter_get_config;
|
|
};
|
|
|
|
static const TypeInfo pnv_xive2_info = {
|
|
.name = TYPE_PNV_XIVE2,
|
|
.parent = TYPE_XIVE2_ROUTER,
|
|
.instance_init = pnv_xive2_instance_init,
|
|
.instance_size = sizeof(PnvXive2),
|
|
.class_init = pnv_xive2_class_init,
|
|
.class_size = sizeof(PnvXive2Class),
|
|
.interfaces = (InterfaceInfo[]) {
|
|
{ TYPE_PNV_XSCOM_INTERFACE },
|
|
{ }
|
|
}
|
|
};
|
|
|
|
static void pnv_xive2_register_types(void)
|
|
{
|
|
type_register_static(&pnv_xive2_info);
|
|
}
|
|
|
|
type_init(pnv_xive2_register_types)
|
|
|
|
/*
|
|
* If the table is direct, we can compute the number of PQ entries
|
|
* provisioned by FW.
|
|
*/
|
|
static uint32_t pnv_xive2_nr_esbs(PnvXive2 *xive)
|
|
{
|
|
uint8_t blk = pnv_xive2_block_id(xive);
|
|
uint64_t vsd = xive->vsds[VST_ESB][blk];
|
|
uint64_t vst_tsize = 1ull << (GETFIELD(VSD_TSIZE, vsd) + 12);
|
|
|
|
return VSD_INDIRECT & vsd ? 0 : vst_tsize * SBE_PER_BYTE;
|
|
}
|
|
|
|
/*
|
|
* Compute the number of entries per indirect subpage.
|
|
*/
|
|
static uint64_t pnv_xive2_vst_per_subpage(PnvXive2 *xive, uint32_t type)
|
|
{
|
|
uint8_t blk = pnv_xive2_block_id(xive);
|
|
uint64_t vsd = xive->vsds[type][blk];
|
|
const XiveVstInfo *info = &vst_infos[type];
|
|
uint64_t vsd_addr;
|
|
uint32_t page_shift;
|
|
|
|
/* For direct tables, fake a valid value */
|
|
if (!(VSD_INDIRECT & vsd)) {
|
|
return 1;
|
|
}
|
|
|
|
/* Get the page size of the indirect table. */
|
|
vsd_addr = vsd & VSD_ADDRESS_MASK;
|
|
ldq_be_dma(&address_space_memory, vsd_addr, &vsd, MEMTXATTRS_UNSPECIFIED);
|
|
|
|
if (!(vsd & VSD_ADDRESS_MASK)) {
|
|
#ifdef XIVE2_DEBUG
|
|
xive2_error(xive, "VST: invalid %s entry!?", info->name);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
|
|
|
|
if (!pnv_xive2_vst_page_size_allowed(page_shift)) {
|
|
xive2_error(xive, "VST: invalid %s page shift %d", info->name,
|
|
page_shift);
|
|
return 0;
|
|
}
|
|
|
|
return (1ull << page_shift) / info->size;
|
|
}
|
|
|
|
void pnv_xive2_pic_print_info(PnvXive2 *xive, GString *buf)
|
|
{
|
|
Xive2Router *xrtr = XIVE2_ROUTER(xive);
|
|
uint8_t blk = pnv_xive2_block_id(xive);
|
|
uint8_t chip_id = xive->chip->chip_id;
|
|
uint32_t srcno0 = XIVE_EAS(blk, 0);
|
|
uint32_t nr_esbs = pnv_xive2_nr_esbs(xive);
|
|
Xive2Eas eas;
|
|
Xive2End end;
|
|
Xive2Nvp nvp;
|
|
int i;
|
|
uint64_t xive_nvp_per_subpage;
|
|
|
|
g_string_append_printf(buf, "XIVE[%x] Source %08x .. %08x\n",
|
|
blk, srcno0, srcno0 + nr_esbs - 1);
|
|
xive_source_pic_print_info(&xive->ipi_source, srcno0, buf);
|
|
|
|
g_string_append_printf(buf, "XIVE[%x] EAT %08x .. %08x\n",
|
|
blk, srcno0, srcno0 + nr_esbs - 1);
|
|
for (i = 0; i < nr_esbs; i++) {
|
|
if (xive2_router_get_eas(xrtr, blk, i, &eas)) {
|
|
break;
|
|
}
|
|
if (!xive2_eas_is_masked(&eas)) {
|
|
xive2_eas_pic_print_info(&eas, i, buf);
|
|
}
|
|
}
|
|
|
|
g_string_append_printf(buf, "XIVE[%x] #%d END Escalation EAT\n",
|
|
chip_id, blk);
|
|
i = 0;
|
|
while (!xive2_router_get_end(xrtr, blk, i, &end)) {
|
|
xive2_end_eas_pic_print_info(&end, i++, buf);
|
|
}
|
|
|
|
g_string_append_printf(buf, "XIVE[%x] #%d ENDT\n", chip_id, blk);
|
|
i = 0;
|
|
while (!xive2_router_get_end(xrtr, blk, i, &end)) {
|
|
xive2_end_pic_print_info(&end, i++, buf);
|
|
}
|
|
|
|
g_string_append_printf(buf, "XIVE[%x] #%d NVPT %08x .. %08x\n",
|
|
chip_id, blk, 0, XIVE2_NVP_COUNT - 1);
|
|
xive_nvp_per_subpage = pnv_xive2_vst_per_subpage(xive, VST_NVP);
|
|
for (i = 0; i < XIVE2_NVP_COUNT; i += xive_nvp_per_subpage) {
|
|
while (!xive2_router_get_nvp(xrtr, blk, i, &nvp)) {
|
|
xive2_nvp_pic_print_info(&nvp, i++, buf);
|
|
}
|
|
}
|
|
}
|