mirror of
https://github.com/qemu/qemu.git
synced 2024-12-15 07:23:52 +08:00
2152e48b50
Move some macros out of `vector_helper` and into `vector_internals`. This ensures they can be used by both vector and vector-crypto helpers (latter implemented in proceeding commits). Signed-off-by: Kiran Ostrolenk <kiran.ostrolenk@codethink.co.uk> Reviewed-by: Weiwei Li <liweiwei@iscas.ac.cn> Signed-off-by: Max Chou <max.chou@sifive.com> Message-ID: <20230711165917.2629866-8-max.chou@sifive.com> Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
229 lines
8.1 KiB
C
229 lines
8.1 KiB
C
/*
|
|
* RISC-V Vector Extension Internals
|
|
*
|
|
* Copyright (c) 2020 T-Head Semiconductor Co., Ltd. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2 or later, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef TARGET_RISCV_VECTOR_INTERNALS_H
|
|
#define TARGET_RISCV_VECTOR_INTERNALS_H
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu/bitops.h"
|
|
#include "cpu.h"
|
|
#include "tcg/tcg-gvec-desc.h"
|
|
#include "internals.h"
|
|
|
|
static inline uint32_t vext_nf(uint32_t desc)
|
|
{
|
|
return FIELD_EX32(simd_data(desc), VDATA, NF);
|
|
}
|
|
|
|
/*
|
|
* Note that vector data is stored in host-endian 64-bit chunks,
|
|
* so addressing units smaller than that needs a host-endian fixup.
|
|
*/
|
|
#if HOST_BIG_ENDIAN
|
|
#define H1(x) ((x) ^ 7)
|
|
#define H1_2(x) ((x) ^ 6)
|
|
#define H1_4(x) ((x) ^ 4)
|
|
#define H2(x) ((x) ^ 3)
|
|
#define H4(x) ((x) ^ 1)
|
|
#define H8(x) ((x))
|
|
#else
|
|
#define H1(x) (x)
|
|
#define H1_2(x) (x)
|
|
#define H1_4(x) (x)
|
|
#define H2(x) (x)
|
|
#define H4(x) (x)
|
|
#define H8(x) (x)
|
|
#endif
|
|
|
|
/*
|
|
* Encode LMUL to lmul as following:
|
|
* LMUL vlmul lmul
|
|
* 1 000 0
|
|
* 2 001 1
|
|
* 4 010 2
|
|
* 8 011 3
|
|
* - 100 -
|
|
* 1/8 101 -3
|
|
* 1/4 110 -2
|
|
* 1/2 111 -1
|
|
*/
|
|
static inline int32_t vext_lmul(uint32_t desc)
|
|
{
|
|
return sextract32(FIELD_EX32(simd_data(desc), VDATA, LMUL), 0, 3);
|
|
}
|
|
|
|
static inline uint32_t vext_vm(uint32_t desc)
|
|
{
|
|
return FIELD_EX32(simd_data(desc), VDATA, VM);
|
|
}
|
|
|
|
static inline uint32_t vext_vma(uint32_t desc)
|
|
{
|
|
return FIELD_EX32(simd_data(desc), VDATA, VMA);
|
|
}
|
|
|
|
static inline uint32_t vext_vta(uint32_t desc)
|
|
{
|
|
return FIELD_EX32(simd_data(desc), VDATA, VTA);
|
|
}
|
|
|
|
static inline uint32_t vext_vta_all_1s(uint32_t desc)
|
|
{
|
|
return FIELD_EX32(simd_data(desc), VDATA, VTA_ALL_1S);
|
|
}
|
|
|
|
/*
|
|
* Earlier designs (pre-0.9) had a varying number of bits
|
|
* per mask value (MLEN). In the 0.9 design, MLEN=1.
|
|
* (Section 4.5)
|
|
*/
|
|
static inline int vext_elem_mask(void *v0, int index)
|
|
{
|
|
int idx = index / 64;
|
|
int pos = index % 64;
|
|
return (((uint64_t *)v0)[idx] >> pos) & 1;
|
|
}
|
|
|
|
/*
|
|
* Get number of total elements, including prestart, body and tail elements.
|
|
* Note that when LMUL < 1, the tail includes the elements past VLMAX that
|
|
* are held in the same vector register.
|
|
*/
|
|
static inline uint32_t vext_get_total_elems(CPURISCVState *env, uint32_t desc,
|
|
uint32_t esz)
|
|
{
|
|
uint32_t vlenb = simd_maxsz(desc);
|
|
uint32_t sew = 1 << FIELD_EX64(env->vtype, VTYPE, VSEW);
|
|
int8_t emul = ctzl(esz) - ctzl(sew) + vext_lmul(desc) < 0 ? 0 :
|
|
ctzl(esz) - ctzl(sew) + vext_lmul(desc);
|
|
return (vlenb << emul) / esz;
|
|
}
|
|
|
|
/* set agnostic elements to 1s */
|
|
void vext_set_elems_1s(void *base, uint32_t is_agnostic, uint32_t cnt,
|
|
uint32_t tot);
|
|
|
|
/* expand macro args before macro */
|
|
#define RVVCALL(macro, ...) macro(__VA_ARGS__)
|
|
|
|
/* (TD, T2, TX2) */
|
|
#define OP_UU_B uint8_t, uint8_t, uint8_t
|
|
#define OP_UU_H uint16_t, uint16_t, uint16_t
|
|
#define OP_UU_W uint32_t, uint32_t, uint32_t
|
|
#define OP_UU_D uint64_t, uint64_t, uint64_t
|
|
|
|
/* (TD, T1, T2, TX1, TX2) */
|
|
#define OP_UUU_B uint8_t, uint8_t, uint8_t, uint8_t, uint8_t
|
|
#define OP_UUU_H uint16_t, uint16_t, uint16_t, uint16_t, uint16_t
|
|
#define OP_UUU_W uint32_t, uint32_t, uint32_t, uint32_t, uint32_t
|
|
#define OP_UUU_D uint64_t, uint64_t, uint64_t, uint64_t, uint64_t
|
|
|
|
#define OPIVV1(NAME, TD, T2, TX2, HD, HS2, OP) \
|
|
static void do_##NAME(void *vd, void *vs2, int i) \
|
|
{ \
|
|
TX2 s2 = *((T2 *)vs2 + HS2(i)); \
|
|
*((TD *)vd + HD(i)) = OP(s2); \
|
|
}
|
|
|
|
#define GEN_VEXT_V(NAME, ESZ) \
|
|
void HELPER(NAME)(void *vd, void *v0, void *vs2, \
|
|
CPURISCVState *env, uint32_t desc) \
|
|
{ \
|
|
uint32_t vm = vext_vm(desc); \
|
|
uint32_t vl = env->vl; \
|
|
uint32_t total_elems = \
|
|
vext_get_total_elems(env, desc, ESZ); \
|
|
uint32_t vta = vext_vta(desc); \
|
|
uint32_t vma = vext_vma(desc); \
|
|
uint32_t i; \
|
|
\
|
|
for (i = env->vstart; i < vl; i++) { \
|
|
if (!vm && !vext_elem_mask(v0, i)) { \
|
|
/* set masked-off elements to 1s */ \
|
|
vext_set_elems_1s(vd, vma, i * ESZ, \
|
|
(i + 1) * ESZ); \
|
|
continue; \
|
|
} \
|
|
do_##NAME(vd, vs2, i); \
|
|
} \
|
|
env->vstart = 0; \
|
|
/* set tail elements to 1s */ \
|
|
vext_set_elems_1s(vd, vta, vl * ESZ, \
|
|
total_elems * ESZ); \
|
|
}
|
|
|
|
/* operation of two vector elements */
|
|
typedef void opivv2_fn(void *vd, void *vs1, void *vs2, int i);
|
|
|
|
#define OPIVV2(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP) \
|
|
static void do_##NAME(void *vd, void *vs1, void *vs2, int i) \
|
|
{ \
|
|
TX1 s1 = *((T1 *)vs1 + HS1(i)); \
|
|
TX2 s2 = *((T2 *)vs2 + HS2(i)); \
|
|
*((TD *)vd + HD(i)) = OP(s2, s1); \
|
|
}
|
|
|
|
void do_vext_vv(void *vd, void *v0, void *vs1, void *vs2,
|
|
CPURISCVState *env, uint32_t desc,
|
|
opivv2_fn *fn, uint32_t esz);
|
|
|
|
/* generate the helpers for OPIVV */
|
|
#define GEN_VEXT_VV(NAME, ESZ) \
|
|
void HELPER(NAME)(void *vd, void *v0, void *vs1, \
|
|
void *vs2, CPURISCVState *env, \
|
|
uint32_t desc) \
|
|
{ \
|
|
do_vext_vv(vd, v0, vs1, vs2, env, desc, \
|
|
do_##NAME, ESZ); \
|
|
}
|
|
|
|
typedef void opivx2_fn(void *vd, target_long s1, void *vs2, int i);
|
|
|
|
/*
|
|
* (T1)s1 gives the real operator type.
|
|
* (TX1)(T1)s1 expands the operator type of widen or narrow operations.
|
|
*/
|
|
#define OPIVX2(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP) \
|
|
static void do_##NAME(void *vd, target_long s1, void *vs2, int i) \
|
|
{ \
|
|
TX2 s2 = *((T2 *)vs2 + HS2(i)); \
|
|
*((TD *)vd + HD(i)) = OP(s2, (TX1)(T1)s1); \
|
|
}
|
|
|
|
void do_vext_vx(void *vd, void *v0, target_long s1, void *vs2,
|
|
CPURISCVState *env, uint32_t desc,
|
|
opivx2_fn fn, uint32_t esz);
|
|
|
|
/* generate the helpers for OPIVX */
|
|
#define GEN_VEXT_VX(NAME, ESZ) \
|
|
void HELPER(NAME)(void *vd, void *v0, target_ulong s1, \
|
|
void *vs2, CPURISCVState *env, \
|
|
uint32_t desc) \
|
|
{ \
|
|
do_vext_vx(vd, v0, s1, vs2, env, desc, \
|
|
do_##NAME, ESZ); \
|
|
}
|
|
|
|
/* Three of the widening shortening macros: */
|
|
/* (TD, T1, T2, TX1, TX2) */
|
|
#define WOP_UUU_B uint16_t, uint8_t, uint8_t, uint16_t, uint16_t
|
|
#define WOP_UUU_H uint32_t, uint16_t, uint16_t, uint32_t, uint32_t
|
|
#define WOP_UUU_W uint64_t, uint32_t, uint32_t, uint64_t, uint64_t
|
|
|
|
#endif /* TARGET_RISCV_VECTOR_INTERNALS_H */
|