mirror of
https://github.com/qemu/qemu.git
synced 2024-11-26 04:13:39 +08:00
14e44198ff
Function 6 is used to set Namespace Label Data Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com> Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com> Reviewed-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
1043 lines
35 KiB
C
1043 lines
35 KiB
C
/*
|
|
* NVDIMM ACPI Implementation
|
|
*
|
|
* Copyright(C) 2015 Intel Corporation.
|
|
*
|
|
* Author:
|
|
* Xiao Guangrong <guangrong.xiao@linux.intel.com>
|
|
*
|
|
* NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
|
|
* and the DSM specification can be found at:
|
|
* http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
|
|
*
|
|
* Currently, it only supports PMEM Virtualization.
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "hw/acpi/acpi.h"
|
|
#include "hw/acpi/aml-build.h"
|
|
#include "hw/acpi/bios-linker-loader.h"
|
|
#include "hw/nvram/fw_cfg.h"
|
|
#include "hw/mem/nvdimm.h"
|
|
|
|
static int nvdimm_plugged_device_list(Object *obj, void *opaque)
|
|
{
|
|
GSList **list = opaque;
|
|
|
|
if (object_dynamic_cast(obj, TYPE_NVDIMM)) {
|
|
DeviceState *dev = DEVICE(obj);
|
|
|
|
if (dev->realized) { /* only realized NVDIMMs matter */
|
|
*list = g_slist_append(*list, DEVICE(obj));
|
|
}
|
|
}
|
|
|
|
object_child_foreach(obj, nvdimm_plugged_device_list, opaque);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* inquire plugged NVDIMM devices and link them into the list which is
|
|
* returned to the caller.
|
|
*
|
|
* Note: it is the caller's responsibility to free the list to avoid
|
|
* memory leak.
|
|
*/
|
|
static GSList *nvdimm_get_plugged_device_list(void)
|
|
{
|
|
GSList *list = NULL;
|
|
|
|
object_child_foreach(qdev_get_machine(), nvdimm_plugged_device_list,
|
|
&list);
|
|
return list;
|
|
}
|
|
|
|
#define NVDIMM_UUID_LE(a, b, c, d0, d1, d2, d3, d4, d5, d6, d7) \
|
|
{ (a) & 0xff, ((a) >> 8) & 0xff, ((a) >> 16) & 0xff, ((a) >> 24) & 0xff, \
|
|
(b) & 0xff, ((b) >> 8) & 0xff, (c) & 0xff, ((c) >> 8) & 0xff, \
|
|
(d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7) }
|
|
|
|
/*
|
|
* define Byte Addressable Persistent Memory (PM) Region according to
|
|
* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure.
|
|
*/
|
|
static const uint8_t nvdimm_nfit_spa_uuid[] =
|
|
NVDIMM_UUID_LE(0x66f0d379, 0xb4f3, 0x4074, 0xac, 0x43, 0x0d, 0x33,
|
|
0x18, 0xb7, 0x8c, 0xdb);
|
|
|
|
/*
|
|
* NVDIMM Firmware Interface Table
|
|
* @signature: "NFIT"
|
|
*
|
|
* It provides information that allows OSPM to enumerate NVDIMM present in
|
|
* the platform and associate system physical address ranges created by the
|
|
* NVDIMMs.
|
|
*
|
|
* It is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
|
|
*/
|
|
struct NvdimmNfitHeader {
|
|
ACPI_TABLE_HEADER_DEF
|
|
uint32_t reserved;
|
|
} QEMU_PACKED;
|
|
typedef struct NvdimmNfitHeader NvdimmNfitHeader;
|
|
|
|
/*
|
|
* define NFIT structures according to ACPI 6.0: 5.2.25 NVDIMM Firmware
|
|
* Interface Table (NFIT).
|
|
*/
|
|
|
|
/*
|
|
* System Physical Address Range Structure
|
|
*
|
|
* It describes the system physical address ranges occupied by NVDIMMs and
|
|
* the types of the regions.
|
|
*/
|
|
struct NvdimmNfitSpa {
|
|
uint16_t type;
|
|
uint16_t length;
|
|
uint16_t spa_index;
|
|
uint16_t flags;
|
|
uint32_t reserved;
|
|
uint32_t proximity_domain;
|
|
uint8_t type_guid[16];
|
|
uint64_t spa_base;
|
|
uint64_t spa_length;
|
|
uint64_t mem_attr;
|
|
} QEMU_PACKED;
|
|
typedef struct NvdimmNfitSpa NvdimmNfitSpa;
|
|
|
|
/*
|
|
* Memory Device to System Physical Address Range Mapping Structure
|
|
*
|
|
* It enables identifying each NVDIMM region and the corresponding SPA
|
|
* describing the memory interleave
|
|
*/
|
|
struct NvdimmNfitMemDev {
|
|
uint16_t type;
|
|
uint16_t length;
|
|
uint32_t nfit_handle;
|
|
uint16_t phys_id;
|
|
uint16_t region_id;
|
|
uint16_t spa_index;
|
|
uint16_t dcr_index;
|
|
uint64_t region_len;
|
|
uint64_t region_offset;
|
|
uint64_t region_dpa;
|
|
uint16_t interleave_index;
|
|
uint16_t interleave_ways;
|
|
uint16_t flags;
|
|
uint16_t reserved;
|
|
} QEMU_PACKED;
|
|
typedef struct NvdimmNfitMemDev NvdimmNfitMemDev;
|
|
|
|
/*
|
|
* NVDIMM Control Region Structure
|
|
*
|
|
* It describes the NVDIMM and if applicable, Block Control Window.
|
|
*/
|
|
struct NvdimmNfitControlRegion {
|
|
uint16_t type;
|
|
uint16_t length;
|
|
uint16_t dcr_index;
|
|
uint16_t vendor_id;
|
|
uint16_t device_id;
|
|
uint16_t revision_id;
|
|
uint16_t sub_vendor_id;
|
|
uint16_t sub_device_id;
|
|
uint16_t sub_revision_id;
|
|
uint8_t reserved[6];
|
|
uint32_t serial_number;
|
|
uint16_t fic;
|
|
uint16_t num_bcw;
|
|
uint64_t bcw_size;
|
|
uint64_t cmd_offset;
|
|
uint64_t cmd_size;
|
|
uint64_t status_offset;
|
|
uint64_t status_size;
|
|
uint16_t flags;
|
|
uint8_t reserved2[6];
|
|
} QEMU_PACKED;
|
|
typedef struct NvdimmNfitControlRegion NvdimmNfitControlRegion;
|
|
|
|
/*
|
|
* Module serial number is a unique number for each device. We use the
|
|
* slot id of NVDIMM device to generate this number so that each device
|
|
* associates with a different number.
|
|
*
|
|
* 0x123456 is a magic number we arbitrarily chose.
|
|
*/
|
|
static uint32_t nvdimm_slot_to_sn(int slot)
|
|
{
|
|
return 0x123456 + slot;
|
|
}
|
|
|
|
/*
|
|
* handle is used to uniquely associate nfit_memdev structure with NVDIMM
|
|
* ACPI device - nfit_memdev.nfit_handle matches with the value returned
|
|
* by ACPI device _ADR method.
|
|
*
|
|
* We generate the handle with the slot id of NVDIMM device and reserve
|
|
* 0 for NVDIMM root device.
|
|
*/
|
|
static uint32_t nvdimm_slot_to_handle(int slot)
|
|
{
|
|
return slot + 1;
|
|
}
|
|
|
|
/*
|
|
* index uniquely identifies the structure, 0 is reserved which indicates
|
|
* that the structure is not valid or the associated structure is not
|
|
* present.
|
|
*
|
|
* Each NVDIMM device needs two indexes, one for nfit_spa and another for
|
|
* nfit_dc which are generated by the slot id of NVDIMM device.
|
|
*/
|
|
static uint16_t nvdimm_slot_to_spa_index(int slot)
|
|
{
|
|
return (slot + 1) << 1;
|
|
}
|
|
|
|
/* See the comments of nvdimm_slot_to_spa_index(). */
|
|
static uint32_t nvdimm_slot_to_dcr_index(int slot)
|
|
{
|
|
return nvdimm_slot_to_spa_index(slot) + 1;
|
|
}
|
|
|
|
static NVDIMMDevice *nvdimm_get_device_by_handle(uint32_t handle)
|
|
{
|
|
NVDIMMDevice *nvdimm = NULL;
|
|
GSList *list, *device_list = nvdimm_get_plugged_device_list();
|
|
|
|
for (list = device_list; list; list = list->next) {
|
|
NVDIMMDevice *nvd = list->data;
|
|
int slot = object_property_get_int(OBJECT(nvd), PC_DIMM_SLOT_PROP,
|
|
NULL);
|
|
|
|
if (nvdimm_slot_to_handle(slot) == handle) {
|
|
nvdimm = nvd;
|
|
break;
|
|
}
|
|
}
|
|
|
|
g_slist_free(device_list);
|
|
return nvdimm;
|
|
}
|
|
|
|
/* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure */
|
|
static void
|
|
nvdimm_build_structure_spa(GArray *structures, DeviceState *dev)
|
|
{
|
|
NvdimmNfitSpa *nfit_spa;
|
|
uint64_t addr = object_property_get_int(OBJECT(dev), PC_DIMM_ADDR_PROP,
|
|
NULL);
|
|
uint64_t size = object_property_get_int(OBJECT(dev), PC_DIMM_SIZE_PROP,
|
|
NULL);
|
|
uint32_t node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP,
|
|
NULL);
|
|
int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
|
|
NULL);
|
|
|
|
nfit_spa = acpi_data_push(structures, sizeof(*nfit_spa));
|
|
|
|
nfit_spa->type = cpu_to_le16(0 /* System Physical Address Range
|
|
Structure */);
|
|
nfit_spa->length = cpu_to_le16(sizeof(*nfit_spa));
|
|
nfit_spa->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
|
|
|
|
/*
|
|
* Control region is strict as all the device info, such as SN, index,
|
|
* is associated with slot id.
|
|
*/
|
|
nfit_spa->flags = cpu_to_le16(1 /* Control region is strictly for
|
|
management during hot add/online
|
|
operation */ |
|
|
2 /* Data in Proximity Domain field is
|
|
valid*/);
|
|
|
|
/* NUMA node. */
|
|
nfit_spa->proximity_domain = cpu_to_le32(node);
|
|
/* the region reported as PMEM. */
|
|
memcpy(nfit_spa->type_guid, nvdimm_nfit_spa_uuid,
|
|
sizeof(nvdimm_nfit_spa_uuid));
|
|
|
|
nfit_spa->spa_base = cpu_to_le64(addr);
|
|
nfit_spa->spa_length = cpu_to_le64(size);
|
|
|
|
/* It is the PMEM and can be cached as writeback. */
|
|
nfit_spa->mem_attr = cpu_to_le64(0x8ULL /* EFI_MEMORY_WB */ |
|
|
0x8000ULL /* EFI_MEMORY_NV */);
|
|
}
|
|
|
|
/*
|
|
* ACPI 6.0: 5.2.25.2 Memory Device to System Physical Address Range Mapping
|
|
* Structure
|
|
*/
|
|
static void
|
|
nvdimm_build_structure_memdev(GArray *structures, DeviceState *dev)
|
|
{
|
|
NvdimmNfitMemDev *nfit_memdev;
|
|
uint64_t addr = object_property_get_int(OBJECT(dev), PC_DIMM_ADDR_PROP,
|
|
NULL);
|
|
uint64_t size = object_property_get_int(OBJECT(dev), PC_DIMM_SIZE_PROP,
|
|
NULL);
|
|
int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
|
|
NULL);
|
|
uint32_t handle = nvdimm_slot_to_handle(slot);
|
|
|
|
nfit_memdev = acpi_data_push(structures, sizeof(*nfit_memdev));
|
|
|
|
nfit_memdev->type = cpu_to_le16(1 /* Memory Device to System Address
|
|
Range Map Structure*/);
|
|
nfit_memdev->length = cpu_to_le16(sizeof(*nfit_memdev));
|
|
nfit_memdev->nfit_handle = cpu_to_le32(handle);
|
|
|
|
/*
|
|
* associate memory device with System Physical Address Range
|
|
* Structure.
|
|
*/
|
|
nfit_memdev->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
|
|
/* associate memory device with Control Region Structure. */
|
|
nfit_memdev->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
|
|
|
|
/* The memory region on the device. */
|
|
nfit_memdev->region_len = cpu_to_le64(size);
|
|
nfit_memdev->region_dpa = cpu_to_le64(addr);
|
|
|
|
/* Only one interleave for PMEM. */
|
|
nfit_memdev->interleave_ways = cpu_to_le16(1);
|
|
}
|
|
|
|
/*
|
|
* ACPI 6.0: 5.2.25.5 NVDIMM Control Region Structure.
|
|
*/
|
|
static void nvdimm_build_structure_dcr(GArray *structures, DeviceState *dev)
|
|
{
|
|
NvdimmNfitControlRegion *nfit_dcr;
|
|
int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
|
|
NULL);
|
|
uint32_t sn = nvdimm_slot_to_sn(slot);
|
|
|
|
nfit_dcr = acpi_data_push(structures, sizeof(*nfit_dcr));
|
|
|
|
nfit_dcr->type = cpu_to_le16(4 /* NVDIMM Control Region Structure */);
|
|
nfit_dcr->length = cpu_to_le16(sizeof(*nfit_dcr));
|
|
nfit_dcr->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
|
|
|
|
/* vendor: Intel. */
|
|
nfit_dcr->vendor_id = cpu_to_le16(0x8086);
|
|
nfit_dcr->device_id = cpu_to_le16(1);
|
|
|
|
/* The _DSM method is following Intel's DSM specification. */
|
|
nfit_dcr->revision_id = cpu_to_le16(1 /* Current Revision supported
|
|
in ACPI 6.0 is 1. */);
|
|
nfit_dcr->serial_number = cpu_to_le32(sn);
|
|
nfit_dcr->fic = cpu_to_le16(0x201 /* Format Interface Code. See Chapter
|
|
2: NVDIMM Device Specific Method
|
|
(DSM) in DSM Spec Rev1.*/);
|
|
}
|
|
|
|
static GArray *nvdimm_build_device_structure(GSList *device_list)
|
|
{
|
|
GArray *structures = g_array_new(false, true /* clear */, 1);
|
|
|
|
for (; device_list; device_list = device_list->next) {
|
|
DeviceState *dev = device_list->data;
|
|
|
|
/* build System Physical Address Range Structure. */
|
|
nvdimm_build_structure_spa(structures, dev);
|
|
|
|
/*
|
|
* build Memory Device to System Physical Address Range Mapping
|
|
* Structure.
|
|
*/
|
|
nvdimm_build_structure_memdev(structures, dev);
|
|
|
|
/* build NVDIMM Control Region Structure. */
|
|
nvdimm_build_structure_dcr(structures, dev);
|
|
}
|
|
|
|
return structures;
|
|
}
|
|
|
|
static void nvdimm_build_nfit(GSList *device_list, GArray *table_offsets,
|
|
GArray *table_data, BIOSLinker *linker)
|
|
{
|
|
GArray *structures = nvdimm_build_device_structure(device_list);
|
|
unsigned int header;
|
|
|
|
acpi_add_table(table_offsets, table_data);
|
|
|
|
/* NFIT header. */
|
|
header = table_data->len;
|
|
acpi_data_push(table_data, sizeof(NvdimmNfitHeader));
|
|
/* NVDIMM device structures. */
|
|
g_array_append_vals(table_data, structures->data, structures->len);
|
|
|
|
build_header(linker, table_data,
|
|
(void *)(table_data->data + header), "NFIT",
|
|
sizeof(NvdimmNfitHeader) + structures->len, 1, NULL, NULL);
|
|
g_array_free(structures, true);
|
|
}
|
|
|
|
struct NvdimmDsmIn {
|
|
uint32_t handle;
|
|
uint32_t revision;
|
|
uint32_t function;
|
|
/* the remaining size in the page is used by arg3. */
|
|
union {
|
|
uint8_t arg3[4084];
|
|
};
|
|
} QEMU_PACKED;
|
|
typedef struct NvdimmDsmIn NvdimmDsmIn;
|
|
QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmIn) != 4096);
|
|
|
|
struct NvdimmDsmOut {
|
|
/* the size of buffer filled by QEMU. */
|
|
uint32_t len;
|
|
uint8_t data[4092];
|
|
} QEMU_PACKED;
|
|
typedef struct NvdimmDsmOut NvdimmDsmOut;
|
|
QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmOut) != 4096);
|
|
|
|
struct NvdimmDsmFunc0Out {
|
|
/* the size of buffer filled by QEMU. */
|
|
uint32_t len;
|
|
uint32_t supported_func;
|
|
} QEMU_PACKED;
|
|
typedef struct NvdimmDsmFunc0Out NvdimmDsmFunc0Out;
|
|
|
|
struct NvdimmDsmFuncNoPayloadOut {
|
|
/* the size of buffer filled by QEMU. */
|
|
uint32_t len;
|
|
uint32_t func_ret_status;
|
|
} QEMU_PACKED;
|
|
typedef struct NvdimmDsmFuncNoPayloadOut NvdimmDsmFuncNoPayloadOut;
|
|
|
|
struct NvdimmFuncGetLabelSizeOut {
|
|
/* the size of buffer filled by QEMU. */
|
|
uint32_t len;
|
|
uint32_t func_ret_status; /* return status code. */
|
|
uint32_t label_size; /* the size of label data area. */
|
|
/*
|
|
* Maximum size of the namespace label data length supported by
|
|
* the platform in Get/Set Namespace Label Data functions.
|
|
*/
|
|
uint32_t max_xfer;
|
|
} QEMU_PACKED;
|
|
typedef struct NvdimmFuncGetLabelSizeOut NvdimmFuncGetLabelSizeOut;
|
|
QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelSizeOut) > 4096);
|
|
|
|
struct NvdimmFuncGetLabelDataIn {
|
|
uint32_t offset; /* the offset in the namespace label data area. */
|
|
uint32_t length; /* the size of data is to be read via the function. */
|
|
} QEMU_PACKED;
|
|
typedef struct NvdimmFuncGetLabelDataIn NvdimmFuncGetLabelDataIn;
|
|
QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataIn) +
|
|
offsetof(NvdimmDsmIn, arg3) > 4096);
|
|
|
|
struct NvdimmFuncGetLabelDataOut {
|
|
/* the size of buffer filled by QEMU. */
|
|
uint32_t len;
|
|
uint32_t func_ret_status; /* return status code. */
|
|
uint8_t out_buf[0]; /* the data got via Get Namesapce Label function. */
|
|
} QEMU_PACKED;
|
|
typedef struct NvdimmFuncGetLabelDataOut NvdimmFuncGetLabelDataOut;
|
|
QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataOut) > 4096);
|
|
|
|
struct NvdimmFuncSetLabelDataIn {
|
|
uint32_t offset; /* the offset in the namespace label data area. */
|
|
uint32_t length; /* the size of data is to be written via the function. */
|
|
uint8_t in_buf[0]; /* the data written to label data area. */
|
|
} QEMU_PACKED;
|
|
typedef struct NvdimmFuncSetLabelDataIn NvdimmFuncSetLabelDataIn;
|
|
QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncSetLabelDataIn) +
|
|
offsetof(NvdimmDsmIn, arg3) > 4096);
|
|
|
|
static void
|
|
nvdimm_dsm_function0(uint32_t supported_func, hwaddr dsm_mem_addr)
|
|
{
|
|
NvdimmDsmFunc0Out func0 = {
|
|
.len = cpu_to_le32(sizeof(func0)),
|
|
.supported_func = cpu_to_le32(supported_func),
|
|
};
|
|
cpu_physical_memory_write(dsm_mem_addr, &func0, sizeof(func0));
|
|
}
|
|
|
|
static void
|
|
nvdimm_dsm_no_payload(uint32_t func_ret_status, hwaddr dsm_mem_addr)
|
|
{
|
|
NvdimmDsmFuncNoPayloadOut out = {
|
|
.len = cpu_to_le32(sizeof(out)),
|
|
.func_ret_status = cpu_to_le32(func_ret_status),
|
|
};
|
|
cpu_physical_memory_write(dsm_mem_addr, &out, sizeof(out));
|
|
}
|
|
|
|
static void nvdimm_dsm_root(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
|
|
{
|
|
/*
|
|
* function 0 is called to inquire which functions are supported by
|
|
* OSPM
|
|
*/
|
|
if (!in->function) {
|
|
nvdimm_dsm_function0(0 /* No function supported other than
|
|
function 0 */, dsm_mem_addr);
|
|
return;
|
|
}
|
|
|
|
/* No function except function 0 is supported yet. */
|
|
nvdimm_dsm_no_payload(1 /* Not Supported */, dsm_mem_addr);
|
|
}
|
|
|
|
/*
|
|
* the max transfer size is the max size transferred by both a
|
|
* 'Get Namespace Label Data' function and a 'Set Namespace Label Data'
|
|
* function.
|
|
*/
|
|
static uint32_t nvdimm_get_max_xfer_label_size(void)
|
|
{
|
|
uint32_t max_get_size, max_set_size, dsm_memory_size = 4096;
|
|
|
|
/*
|
|
* the max data ACPI can read one time which is transferred by
|
|
* the response of 'Get Namespace Label Data' function.
|
|
*/
|
|
max_get_size = dsm_memory_size - sizeof(NvdimmFuncGetLabelDataOut);
|
|
|
|
/*
|
|
* the max data ACPI can write one time which is transferred by
|
|
* 'Set Namespace Label Data' function.
|
|
*/
|
|
max_set_size = dsm_memory_size - offsetof(NvdimmDsmIn, arg3) -
|
|
sizeof(NvdimmFuncSetLabelDataIn);
|
|
|
|
return MIN(max_get_size, max_set_size);
|
|
}
|
|
|
|
/*
|
|
* DSM Spec Rev1 4.4 Get Namespace Label Size (Function Index 4).
|
|
*
|
|
* It gets the size of Namespace Label data area and the max data size
|
|
* that Get/Set Namespace Label Data functions can transfer.
|
|
*/
|
|
static void nvdimm_dsm_label_size(NVDIMMDevice *nvdimm, hwaddr dsm_mem_addr)
|
|
{
|
|
NvdimmFuncGetLabelSizeOut label_size_out = {
|
|
.len = cpu_to_le32(sizeof(label_size_out)),
|
|
};
|
|
uint32_t label_size, mxfer;
|
|
|
|
label_size = nvdimm->label_size;
|
|
mxfer = nvdimm_get_max_xfer_label_size();
|
|
|
|
nvdimm_debug("label_size %#x, max_xfer %#x.\n", label_size, mxfer);
|
|
|
|
label_size_out.func_ret_status = cpu_to_le32(0 /* Success */);
|
|
label_size_out.label_size = cpu_to_le32(label_size);
|
|
label_size_out.max_xfer = cpu_to_le32(mxfer);
|
|
|
|
cpu_physical_memory_write(dsm_mem_addr, &label_size_out,
|
|
sizeof(label_size_out));
|
|
}
|
|
|
|
static uint32_t nvdimm_rw_label_data_check(NVDIMMDevice *nvdimm,
|
|
uint32_t offset, uint32_t length)
|
|
{
|
|
uint32_t ret = 3 /* Invalid Input Parameters */;
|
|
|
|
if (offset + length < offset) {
|
|
nvdimm_debug("offset %#x + length %#x is overflow.\n", offset,
|
|
length);
|
|
return ret;
|
|
}
|
|
|
|
if (nvdimm->label_size < offset + length) {
|
|
nvdimm_debug("position %#x is beyond label data (len = %" PRIx64 ").\n",
|
|
offset + length, nvdimm->label_size);
|
|
return ret;
|
|
}
|
|
|
|
if (length > nvdimm_get_max_xfer_label_size()) {
|
|
nvdimm_debug("length (%#x) is larger than max_xfer (%#x).\n",
|
|
length, nvdimm_get_max_xfer_label_size());
|
|
return ret;
|
|
}
|
|
|
|
return 0 /* Success */;
|
|
}
|
|
|
|
/*
|
|
* DSM Spec Rev1 4.5 Get Namespace Label Data (Function Index 5).
|
|
*/
|
|
static void nvdimm_dsm_get_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
|
|
hwaddr dsm_mem_addr)
|
|
{
|
|
NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
|
|
NvdimmFuncGetLabelDataIn *get_label_data;
|
|
NvdimmFuncGetLabelDataOut *get_label_data_out;
|
|
uint32_t status;
|
|
int size;
|
|
|
|
get_label_data = (NvdimmFuncGetLabelDataIn *)in->arg3;
|
|
le32_to_cpus(&get_label_data->offset);
|
|
le32_to_cpus(&get_label_data->length);
|
|
|
|
nvdimm_debug("Read Label Data: offset %#x length %#x.\n",
|
|
get_label_data->offset, get_label_data->length);
|
|
|
|
status = nvdimm_rw_label_data_check(nvdimm, get_label_data->offset,
|
|
get_label_data->length);
|
|
if (status != 0 /* Success */) {
|
|
nvdimm_dsm_no_payload(status, dsm_mem_addr);
|
|
return;
|
|
}
|
|
|
|
size = sizeof(*get_label_data_out) + get_label_data->length;
|
|
assert(size <= 4096);
|
|
get_label_data_out = g_malloc(size);
|
|
|
|
get_label_data_out->len = cpu_to_le32(size);
|
|
get_label_data_out->func_ret_status = cpu_to_le32(0 /* Success */);
|
|
nvc->read_label_data(nvdimm, get_label_data_out->out_buf,
|
|
get_label_data->length, get_label_data->offset);
|
|
|
|
cpu_physical_memory_write(dsm_mem_addr, get_label_data_out, size);
|
|
g_free(get_label_data_out);
|
|
}
|
|
|
|
/*
|
|
* DSM Spec Rev1 4.6 Set Namespace Label Data (Function Index 6).
|
|
*/
|
|
static void nvdimm_dsm_set_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
|
|
hwaddr dsm_mem_addr)
|
|
{
|
|
NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
|
|
NvdimmFuncSetLabelDataIn *set_label_data;
|
|
uint32_t status;
|
|
|
|
set_label_data = (NvdimmFuncSetLabelDataIn *)in->arg3;
|
|
|
|
le32_to_cpus(&set_label_data->offset);
|
|
le32_to_cpus(&set_label_data->length);
|
|
|
|
nvdimm_debug("Write Label Data: offset %#x length %#x.\n",
|
|
set_label_data->offset, set_label_data->length);
|
|
|
|
status = nvdimm_rw_label_data_check(nvdimm, set_label_data->offset,
|
|
set_label_data->length);
|
|
if (status != 0 /* Success */) {
|
|
nvdimm_dsm_no_payload(status, dsm_mem_addr);
|
|
return;
|
|
}
|
|
|
|
assert(sizeof(*in) + sizeof(*set_label_data) + set_label_data->length <=
|
|
4096);
|
|
|
|
nvc->write_label_data(nvdimm, set_label_data->in_buf,
|
|
set_label_data->length, set_label_data->offset);
|
|
nvdimm_dsm_no_payload(0 /* Success */, dsm_mem_addr);
|
|
}
|
|
|
|
static void nvdimm_dsm_device(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
|
|
{
|
|
NVDIMMDevice *nvdimm = nvdimm_get_device_by_handle(in->handle);
|
|
|
|
/* See the comments in nvdimm_dsm_root(). */
|
|
if (!in->function) {
|
|
uint32_t supported_func = 0;
|
|
|
|
if (nvdimm && nvdimm->label_size) {
|
|
supported_func |= 0x1 /* Bit 0 indicates whether there is
|
|
support for any functions other
|
|
than function 0. */ |
|
|
1 << 4 /* Get Namespace Label Size */ |
|
|
1 << 5 /* Get Namespace Label Data */ |
|
|
1 << 6 /* Set Namespace Label Data */;
|
|
}
|
|
nvdimm_dsm_function0(supported_func, dsm_mem_addr);
|
|
return;
|
|
}
|
|
|
|
if (!nvdimm) {
|
|
nvdimm_dsm_no_payload(2 /* Non-Existing Memory Device */,
|
|
dsm_mem_addr);
|
|
return;
|
|
}
|
|
|
|
/* Encode DSM function according to DSM Spec Rev1. */
|
|
switch (in->function) {
|
|
case 4 /* Get Namespace Label Size */:
|
|
if (nvdimm->label_size) {
|
|
nvdimm_dsm_label_size(nvdimm, dsm_mem_addr);
|
|
return;
|
|
}
|
|
break;
|
|
case 5 /* Get Namespace Label Data */:
|
|
if (nvdimm->label_size) {
|
|
nvdimm_dsm_get_label_data(nvdimm, in, dsm_mem_addr);
|
|
return;
|
|
}
|
|
break;
|
|
case 0x6 /* Set Namespace Label Data */:
|
|
if (nvdimm->label_size) {
|
|
nvdimm_dsm_set_label_data(nvdimm, in, dsm_mem_addr);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
|
|
nvdimm_dsm_no_payload(1 /* Not Supported */, dsm_mem_addr);
|
|
}
|
|
|
|
static uint64_t
|
|
nvdimm_dsm_read(void *opaque, hwaddr addr, unsigned size)
|
|
{
|
|
nvdimm_debug("BUG: we never read _DSM IO Port.\n");
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
nvdimm_dsm_write(void *opaque, hwaddr addr, uint64_t val, unsigned size)
|
|
{
|
|
NvdimmDsmIn *in;
|
|
hwaddr dsm_mem_addr = val;
|
|
|
|
nvdimm_debug("dsm memory address %#" HWADDR_PRIx ".\n", dsm_mem_addr);
|
|
|
|
/*
|
|
* The DSM memory is mapped to guest address space so an evil guest
|
|
* can change its content while we are doing DSM emulation. Avoid
|
|
* this by copying DSM memory to QEMU local memory.
|
|
*/
|
|
in = g_new(NvdimmDsmIn, 1);
|
|
cpu_physical_memory_read(dsm_mem_addr, in, sizeof(*in));
|
|
|
|
le32_to_cpus(&in->revision);
|
|
le32_to_cpus(&in->function);
|
|
le32_to_cpus(&in->handle);
|
|
|
|
nvdimm_debug("Revision %#x Handler %#x Function %#x.\n", in->revision,
|
|
in->handle, in->function);
|
|
|
|
if (in->revision != 0x1 /* Currently we only support DSM Spec Rev1. */) {
|
|
nvdimm_debug("Revision %#x is not supported, expect %#x.\n",
|
|
in->revision, 0x1);
|
|
nvdimm_dsm_no_payload(1 /* Not Supported */, dsm_mem_addr);
|
|
goto exit;
|
|
}
|
|
|
|
/* Handle 0 is reserved for NVDIMM Root Device. */
|
|
if (!in->handle) {
|
|
nvdimm_dsm_root(in, dsm_mem_addr);
|
|
goto exit;
|
|
}
|
|
|
|
nvdimm_dsm_device(in, dsm_mem_addr);
|
|
|
|
exit:
|
|
g_free(in);
|
|
}
|
|
|
|
static const MemoryRegionOps nvdimm_dsm_ops = {
|
|
.read = nvdimm_dsm_read,
|
|
.write = nvdimm_dsm_write,
|
|
.endianness = DEVICE_LITTLE_ENDIAN,
|
|
.valid = {
|
|
.min_access_size = 4,
|
|
.max_access_size = 4,
|
|
},
|
|
};
|
|
|
|
void nvdimm_init_acpi_state(AcpiNVDIMMState *state, MemoryRegion *io,
|
|
FWCfgState *fw_cfg, Object *owner)
|
|
{
|
|
memory_region_init_io(&state->io_mr, owner, &nvdimm_dsm_ops, state,
|
|
"nvdimm-acpi-io", NVDIMM_ACPI_IO_LEN);
|
|
memory_region_add_subregion(io, NVDIMM_ACPI_IO_BASE, &state->io_mr);
|
|
|
|
state->dsm_mem = g_array_new(false, true /* clear */, 1);
|
|
acpi_data_push(state->dsm_mem, sizeof(NvdimmDsmIn));
|
|
fw_cfg_add_file(fw_cfg, NVDIMM_DSM_MEM_FILE, state->dsm_mem->data,
|
|
state->dsm_mem->len);
|
|
}
|
|
|
|
#define NVDIMM_COMMON_DSM "NCAL"
|
|
#define NVDIMM_ACPI_MEM_ADDR "MEMA"
|
|
|
|
static void nvdimm_build_common_dsm(Aml *dev)
|
|
{
|
|
Aml *method, *ifctx, *function, *handle, *uuid, *dsm_mem, *result_size;
|
|
Aml *elsectx, *unsupport, *unpatched, *expected_uuid, *uuid_invalid;
|
|
Aml *pckg, *pckg_index, *pckg_buf;
|
|
uint8_t byte_list[1];
|
|
|
|
method = aml_method(NVDIMM_COMMON_DSM, 5, AML_SERIALIZED);
|
|
uuid = aml_arg(0);
|
|
function = aml_arg(2);
|
|
handle = aml_arg(4);
|
|
dsm_mem = aml_name(NVDIMM_ACPI_MEM_ADDR);
|
|
|
|
/*
|
|
* do not support any method if DSM memory address has not been
|
|
* patched.
|
|
*/
|
|
unpatched = aml_equal(dsm_mem, aml_int(0x0));
|
|
|
|
expected_uuid = aml_local(0);
|
|
|
|
ifctx = aml_if(aml_equal(handle, aml_int(0x0)));
|
|
aml_append(ifctx, aml_store(
|
|
aml_touuid("2F10E7A4-9E91-11E4-89D3-123B93F75CBA")
|
|
/* UUID for NVDIMM Root Device */, expected_uuid));
|
|
aml_append(method, ifctx);
|
|
elsectx = aml_else();
|
|
aml_append(elsectx, aml_store(
|
|
aml_touuid("4309AC30-0D11-11E4-9191-0800200C9A66")
|
|
/* UUID for NVDIMM Devices */, expected_uuid));
|
|
aml_append(method, elsectx);
|
|
|
|
uuid_invalid = aml_lnot(aml_equal(uuid, expected_uuid));
|
|
|
|
unsupport = aml_if(aml_or(unpatched, uuid_invalid, NULL));
|
|
|
|
/*
|
|
* function 0 is called to inquire what functions are supported by
|
|
* OSPM
|
|
*/
|
|
ifctx = aml_if(aml_equal(function, aml_int(0)));
|
|
byte_list[0] = 0 /* No function Supported */;
|
|
aml_append(ifctx, aml_return(aml_buffer(1, byte_list)));
|
|
aml_append(unsupport, ifctx);
|
|
|
|
/* No function is supported yet. */
|
|
byte_list[0] = 1 /* Not Supported */;
|
|
aml_append(unsupport, aml_return(aml_buffer(1, byte_list)));
|
|
aml_append(method, unsupport);
|
|
|
|
/*
|
|
* The HDLE indicates the DSM function is issued from which device,
|
|
* it reserves 0 for root device and is the handle for NVDIMM devices.
|
|
* See the comments in nvdimm_slot_to_handle().
|
|
*/
|
|
aml_append(method, aml_store(handle, aml_name("HDLE")));
|
|
aml_append(method, aml_store(aml_arg(1), aml_name("REVS")));
|
|
aml_append(method, aml_store(aml_arg(2), aml_name("FUNC")));
|
|
|
|
/*
|
|
* The fourth parameter (Arg3) of _DSM is a package which contains
|
|
* a buffer, the layout of the buffer is specified by UUID (Arg0),
|
|
* Revision ID (Arg1) and Function Index (Arg2) which are documented
|
|
* in the DSM Spec.
|
|
*/
|
|
pckg = aml_arg(3);
|
|
ifctx = aml_if(aml_and(aml_equal(aml_object_type(pckg),
|
|
aml_int(4 /* Package */)) /* It is a Package? */,
|
|
aml_equal(aml_sizeof(pckg), aml_int(1)) /* 1 element? */,
|
|
NULL));
|
|
|
|
pckg_index = aml_local(2);
|
|
pckg_buf = aml_local(3);
|
|
aml_append(ifctx, aml_store(aml_index(pckg, aml_int(0)), pckg_index));
|
|
aml_append(ifctx, aml_store(aml_derefof(pckg_index), pckg_buf));
|
|
aml_append(ifctx, aml_store(pckg_buf, aml_name("ARG3")));
|
|
aml_append(method, ifctx);
|
|
|
|
/*
|
|
* tell QEMU about the real address of DSM memory, then QEMU
|
|
* gets the control and fills the result in DSM memory.
|
|
*/
|
|
aml_append(method, aml_store(dsm_mem, aml_name("NTFI")));
|
|
|
|
result_size = aml_local(1);
|
|
aml_append(method, aml_store(aml_name("RLEN"), result_size));
|
|
aml_append(method, aml_store(aml_shiftleft(result_size, aml_int(3)),
|
|
result_size));
|
|
aml_append(method, aml_create_field(aml_name("ODAT"), aml_int(0),
|
|
result_size, "OBUF"));
|
|
aml_append(method, aml_concatenate(aml_buffer(0, NULL), aml_name("OBUF"),
|
|
aml_arg(6)));
|
|
aml_append(method, aml_return(aml_arg(6)));
|
|
aml_append(dev, method);
|
|
}
|
|
|
|
static void nvdimm_build_device_dsm(Aml *dev, uint32_t handle)
|
|
{
|
|
Aml *method;
|
|
|
|
method = aml_method("_DSM", 4, AML_NOTSERIALIZED);
|
|
aml_append(method, aml_return(aml_call5(NVDIMM_COMMON_DSM, aml_arg(0),
|
|
aml_arg(1), aml_arg(2), aml_arg(3),
|
|
aml_int(handle))));
|
|
aml_append(dev, method);
|
|
}
|
|
|
|
static void nvdimm_build_nvdimm_devices(GSList *device_list, Aml *root_dev)
|
|
{
|
|
for (; device_list; device_list = device_list->next) {
|
|
DeviceState *dev = device_list->data;
|
|
int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
|
|
NULL);
|
|
uint32_t handle = nvdimm_slot_to_handle(slot);
|
|
Aml *nvdimm_dev;
|
|
|
|
nvdimm_dev = aml_device("NV%02X", slot);
|
|
|
|
/*
|
|
* ACPI 6.0: 9.20 NVDIMM Devices:
|
|
*
|
|
* _ADR object that is used to supply OSPM with unique address
|
|
* of the NVDIMM device. This is done by returning the NFIT Device
|
|
* handle that is used to identify the associated entries in ACPI
|
|
* table NFIT or _FIT.
|
|
*/
|
|
aml_append(nvdimm_dev, aml_name_decl("_ADR", aml_int(handle)));
|
|
|
|
nvdimm_build_device_dsm(nvdimm_dev, handle);
|
|
aml_append(root_dev, nvdimm_dev);
|
|
}
|
|
}
|
|
|
|
static void nvdimm_build_ssdt(GSList *device_list, GArray *table_offsets,
|
|
GArray *table_data, BIOSLinker *linker,
|
|
GArray *dsm_dma_arrea)
|
|
{
|
|
Aml *ssdt, *sb_scope, *dev, *field;
|
|
int mem_addr_offset, nvdimm_ssdt;
|
|
|
|
acpi_add_table(table_offsets, table_data);
|
|
|
|
ssdt = init_aml_allocator();
|
|
acpi_data_push(ssdt->buf, sizeof(AcpiTableHeader));
|
|
|
|
sb_scope = aml_scope("\\_SB");
|
|
|
|
dev = aml_device("NVDR");
|
|
|
|
/*
|
|
* ACPI 6.0: 9.20 NVDIMM Devices:
|
|
*
|
|
* The ACPI Name Space device uses _HID of ACPI0012 to identify the root
|
|
* NVDIMM interface device. Platform firmware is required to contain one
|
|
* such device in _SB scope if NVDIMMs support is exposed by platform to
|
|
* OSPM.
|
|
* For each NVDIMM present or intended to be supported by platform,
|
|
* platform firmware also exposes an ACPI Namespace Device under the
|
|
* root device.
|
|
*/
|
|
aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0012")));
|
|
|
|
/* map DSM memory and IO into ACPI namespace. */
|
|
aml_append(dev, aml_operation_region("NPIO", AML_SYSTEM_IO,
|
|
aml_int(NVDIMM_ACPI_IO_BASE), NVDIMM_ACPI_IO_LEN));
|
|
aml_append(dev, aml_operation_region("NRAM", AML_SYSTEM_MEMORY,
|
|
aml_name(NVDIMM_ACPI_MEM_ADDR), sizeof(NvdimmDsmIn)));
|
|
|
|
/*
|
|
* DSM notifier:
|
|
* NTFI: write the address of DSM memory and notify QEMU to emulate
|
|
* the access.
|
|
*
|
|
* It is the IO port so that accessing them will cause VM-exit, the
|
|
* control will be transferred to QEMU.
|
|
*/
|
|
field = aml_field("NPIO", AML_DWORD_ACC, AML_NOLOCK, AML_PRESERVE);
|
|
aml_append(field, aml_named_field("NTFI",
|
|
sizeof(uint32_t) * BITS_PER_BYTE));
|
|
aml_append(dev, field);
|
|
|
|
/*
|
|
* DSM input:
|
|
* HDLE: store device's handle, it's zero if the _DSM call happens
|
|
* on NVDIMM Root Device.
|
|
* REVS: store the Arg1 of _DSM call.
|
|
* FUNC: store the Arg2 of _DSM call.
|
|
* ARG3: store the Arg3 of _DSM call.
|
|
*
|
|
* They are RAM mapping on host so that these accesses never cause
|
|
* VM-EXIT.
|
|
*/
|
|
field = aml_field("NRAM", AML_DWORD_ACC, AML_NOLOCK, AML_PRESERVE);
|
|
aml_append(field, aml_named_field("HDLE",
|
|
sizeof(typeof_field(NvdimmDsmIn, handle)) * BITS_PER_BYTE));
|
|
aml_append(field, aml_named_field("REVS",
|
|
sizeof(typeof_field(NvdimmDsmIn, revision)) * BITS_PER_BYTE));
|
|
aml_append(field, aml_named_field("FUNC",
|
|
sizeof(typeof_field(NvdimmDsmIn, function)) * BITS_PER_BYTE));
|
|
aml_append(field, aml_named_field("ARG3",
|
|
(sizeof(NvdimmDsmIn) - offsetof(NvdimmDsmIn, arg3)) * BITS_PER_BYTE));
|
|
aml_append(dev, field);
|
|
|
|
/*
|
|
* DSM output:
|
|
* RLEN: the size of the buffer filled by QEMU.
|
|
* ODAT: the buffer QEMU uses to store the result.
|
|
*
|
|
* Since the page is reused by both input and out, the input data
|
|
* will be lost after storing new result into ODAT so we should fetch
|
|
* all the input data before writing the result.
|
|
*/
|
|
field = aml_field("NRAM", AML_DWORD_ACC, AML_NOLOCK, AML_PRESERVE);
|
|
aml_append(field, aml_named_field("RLEN",
|
|
sizeof(typeof_field(NvdimmDsmOut, len)) * BITS_PER_BYTE));
|
|
aml_append(field, aml_named_field("ODAT",
|
|
(sizeof(NvdimmDsmOut) - offsetof(NvdimmDsmOut, data)) * BITS_PER_BYTE));
|
|
aml_append(dev, field);
|
|
|
|
nvdimm_build_common_dsm(dev);
|
|
|
|
/* 0 is reserved for root device. */
|
|
nvdimm_build_device_dsm(dev, 0);
|
|
|
|
nvdimm_build_nvdimm_devices(device_list, dev);
|
|
|
|
aml_append(sb_scope, dev);
|
|
aml_append(ssdt, sb_scope);
|
|
|
|
nvdimm_ssdt = table_data->len;
|
|
|
|
/* copy AML table into ACPI tables blob and patch header there */
|
|
g_array_append_vals(table_data, ssdt->buf->data, ssdt->buf->len);
|
|
mem_addr_offset = build_append_named_dword(table_data,
|
|
NVDIMM_ACPI_MEM_ADDR);
|
|
|
|
bios_linker_loader_alloc(linker,
|
|
NVDIMM_DSM_MEM_FILE, dsm_dma_arrea,
|
|
sizeof(NvdimmDsmIn), false /* high memory */);
|
|
bios_linker_loader_add_pointer(linker,
|
|
ACPI_BUILD_TABLE_FILE, mem_addr_offset, sizeof(uint32_t),
|
|
NVDIMM_DSM_MEM_FILE, 0);
|
|
build_header(linker, table_data,
|
|
(void *)(table_data->data + nvdimm_ssdt),
|
|
"SSDT", table_data->len - nvdimm_ssdt, 1, NULL, "NVDIMM");
|
|
free_aml_allocator();
|
|
}
|
|
|
|
void nvdimm_build_acpi(GArray *table_offsets, GArray *table_data,
|
|
BIOSLinker *linker, GArray *dsm_dma_arrea)
|
|
{
|
|
GSList *device_list;
|
|
|
|
/* no NVDIMM device is plugged. */
|
|
device_list = nvdimm_get_plugged_device_list();
|
|
if (!device_list) {
|
|
return;
|
|
}
|
|
nvdimm_build_nfit(device_list, table_offsets, table_data, linker);
|
|
nvdimm_build_ssdt(device_list, table_offsets, table_data, linker,
|
|
dsm_dma_arrea);
|
|
g_slist_free(device_list);
|
|
}
|