mirror of
https://github.com/qemu/qemu.git
synced 2024-12-15 15:33:29 +08:00
b0227cdb00
Signed-off-by: Markus Armbruster <armbru@redhat.com> Message-Id: <20190619201050.19040-14-armbru@redhat.com> Reviewed-by: Daniel P. Berrangé <berrange@redhat.com>
1079 lines
33 KiB
C
1079 lines
33 KiB
C
/*
|
|
* QEMU MC146818 RTC emulation
|
|
*
|
|
* Copyright (c) 2003-2004 Fabrice Bellard
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu-common.h"
|
|
#include "qemu/cutils.h"
|
|
#include "qemu/module.h"
|
|
#include "qemu/bcd.h"
|
|
#include "hw/hw.h"
|
|
#include "qemu/timer.h"
|
|
#include "sysemu/sysemu.h"
|
|
#include "sysemu/replay.h"
|
|
#include "hw/timer/mc146818rtc.h"
|
|
#include "qapi/error.h"
|
|
#include "qapi/qapi-commands-misc-target.h"
|
|
#include "qapi/qapi-events-misc-target.h"
|
|
#include "qapi/visitor.h"
|
|
#include "exec/address-spaces.h"
|
|
|
|
#ifdef TARGET_I386
|
|
#include "hw/i386/apic.h"
|
|
#endif
|
|
|
|
//#define DEBUG_CMOS
|
|
//#define DEBUG_COALESCED
|
|
|
|
#ifdef DEBUG_CMOS
|
|
# define CMOS_DPRINTF(format, ...) printf(format, ## __VA_ARGS__)
|
|
#else
|
|
# define CMOS_DPRINTF(format, ...) do { } while (0)
|
|
#endif
|
|
|
|
#ifdef DEBUG_COALESCED
|
|
# define DPRINTF_C(format, ...) printf(format, ## __VA_ARGS__)
|
|
#else
|
|
# define DPRINTF_C(format, ...) do { } while (0)
|
|
#endif
|
|
|
|
#define SEC_PER_MIN 60
|
|
#define MIN_PER_HOUR 60
|
|
#define SEC_PER_HOUR 3600
|
|
#define HOUR_PER_DAY 24
|
|
#define SEC_PER_DAY 86400
|
|
|
|
#define RTC_REINJECT_ON_ACK_COUNT 20
|
|
#define RTC_CLOCK_RATE 32768
|
|
#define UIP_HOLD_LENGTH (8 * NANOSECONDS_PER_SECOND / 32768)
|
|
|
|
#define MC146818_RTC(obj) OBJECT_CHECK(RTCState, (obj), TYPE_MC146818_RTC)
|
|
|
|
typedef struct RTCState {
|
|
ISADevice parent_obj;
|
|
|
|
MemoryRegion io;
|
|
MemoryRegion coalesced_io;
|
|
uint8_t cmos_data[128];
|
|
uint8_t cmos_index;
|
|
int32_t base_year;
|
|
uint64_t base_rtc;
|
|
uint64_t last_update;
|
|
int64_t offset;
|
|
qemu_irq irq;
|
|
int it_shift;
|
|
/* periodic timer */
|
|
QEMUTimer *periodic_timer;
|
|
int64_t next_periodic_time;
|
|
/* update-ended timer */
|
|
QEMUTimer *update_timer;
|
|
uint64_t next_alarm_time;
|
|
uint16_t irq_reinject_on_ack_count;
|
|
uint32_t irq_coalesced;
|
|
uint32_t period;
|
|
QEMUTimer *coalesced_timer;
|
|
Notifier clock_reset_notifier;
|
|
LostTickPolicy lost_tick_policy;
|
|
Notifier suspend_notifier;
|
|
QLIST_ENTRY(RTCState) link;
|
|
} RTCState;
|
|
|
|
static void rtc_set_time(RTCState *s);
|
|
static void rtc_update_time(RTCState *s);
|
|
static void rtc_set_cmos(RTCState *s, const struct tm *tm);
|
|
static inline int rtc_from_bcd(RTCState *s, int a);
|
|
static uint64_t get_next_alarm(RTCState *s);
|
|
|
|
static inline bool rtc_running(RTCState *s)
|
|
{
|
|
return (!(s->cmos_data[RTC_REG_B] & REG_B_SET) &&
|
|
(s->cmos_data[RTC_REG_A] & 0x70) <= 0x20);
|
|
}
|
|
|
|
static uint64_t get_guest_rtc_ns(RTCState *s)
|
|
{
|
|
uint64_t guest_clock = qemu_clock_get_ns(rtc_clock);
|
|
|
|
return s->base_rtc * NANOSECONDS_PER_SECOND +
|
|
guest_clock - s->last_update + s->offset;
|
|
}
|
|
|
|
static void rtc_coalesced_timer_update(RTCState *s)
|
|
{
|
|
if (s->irq_coalesced == 0) {
|
|
timer_del(s->coalesced_timer);
|
|
} else {
|
|
/* divide each RTC interval to 2 - 8 smaller intervals */
|
|
int c = MIN(s->irq_coalesced, 7) + 1;
|
|
int64_t next_clock = qemu_clock_get_ns(rtc_clock) +
|
|
periodic_clock_to_ns(s->period / c);
|
|
timer_mod(s->coalesced_timer, next_clock);
|
|
}
|
|
}
|
|
|
|
static QLIST_HEAD(, RTCState) rtc_devices =
|
|
QLIST_HEAD_INITIALIZER(rtc_devices);
|
|
|
|
#ifdef TARGET_I386
|
|
void qmp_rtc_reset_reinjection(Error **errp)
|
|
{
|
|
RTCState *s;
|
|
|
|
QLIST_FOREACH(s, &rtc_devices, link) {
|
|
s->irq_coalesced = 0;
|
|
}
|
|
}
|
|
|
|
static bool rtc_policy_slew_deliver_irq(RTCState *s)
|
|
{
|
|
apic_reset_irq_delivered();
|
|
qemu_irq_raise(s->irq);
|
|
return apic_get_irq_delivered();
|
|
}
|
|
|
|
static void rtc_coalesced_timer(void *opaque)
|
|
{
|
|
RTCState *s = opaque;
|
|
|
|
if (s->irq_coalesced != 0) {
|
|
s->cmos_data[RTC_REG_C] |= 0xc0;
|
|
DPRINTF_C("cmos: injecting from timer\n");
|
|
if (rtc_policy_slew_deliver_irq(s)) {
|
|
s->irq_coalesced--;
|
|
DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
|
|
s->irq_coalesced);
|
|
}
|
|
}
|
|
|
|
rtc_coalesced_timer_update(s);
|
|
}
|
|
#else
|
|
static bool rtc_policy_slew_deliver_irq(RTCState *s)
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
static uint32_t rtc_periodic_clock_ticks(RTCState *s)
|
|
{
|
|
int period_code;
|
|
|
|
if (!(s->cmos_data[RTC_REG_B] & REG_B_PIE)) {
|
|
return 0;
|
|
}
|
|
|
|
period_code = s->cmos_data[RTC_REG_A] & 0x0f;
|
|
|
|
return periodic_period_to_clock(period_code);
|
|
}
|
|
|
|
/*
|
|
* handle periodic timer. @old_period indicates the periodic timer update
|
|
* is just due to period adjustment.
|
|
*/
|
|
static void
|
|
periodic_timer_update(RTCState *s, int64_t current_time, uint32_t old_period)
|
|
{
|
|
uint32_t period;
|
|
int64_t cur_clock, next_irq_clock, lost_clock = 0;
|
|
|
|
period = rtc_periodic_clock_ticks(s);
|
|
|
|
if (period) {
|
|
/* compute 32 khz clock */
|
|
cur_clock =
|
|
muldiv64(current_time, RTC_CLOCK_RATE, NANOSECONDS_PER_SECOND);
|
|
|
|
/*
|
|
* if the periodic timer's update is due to period re-configuration,
|
|
* we should count the clock since last interrupt.
|
|
*/
|
|
if (old_period) {
|
|
int64_t last_periodic_clock, next_periodic_clock;
|
|
|
|
next_periodic_clock = muldiv64(s->next_periodic_time,
|
|
RTC_CLOCK_RATE, NANOSECONDS_PER_SECOND);
|
|
last_periodic_clock = next_periodic_clock - old_period;
|
|
lost_clock = cur_clock - last_periodic_clock;
|
|
assert(lost_clock >= 0);
|
|
}
|
|
|
|
/*
|
|
* s->irq_coalesced can change for two reasons:
|
|
*
|
|
* a) if one or more periodic timer interrupts have been lost,
|
|
* lost_clock will be more that a period.
|
|
*
|
|
* b) when the period may be reconfigured, we expect the OS to
|
|
* treat delayed tick as the new period. So, when switching
|
|
* from a shorter to a longer period, scale down the missing,
|
|
* because the OS will treat past delayed ticks as longer
|
|
* (leftovers are put back into lost_clock). When switching
|
|
* to a shorter period, scale up the missing ticks since the
|
|
* OS handler will treat past delayed ticks as shorter.
|
|
*/
|
|
if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
|
|
uint32_t old_irq_coalesced = s->irq_coalesced;
|
|
|
|
s->period = period;
|
|
lost_clock += old_irq_coalesced * old_period;
|
|
s->irq_coalesced = lost_clock / s->period;
|
|
lost_clock %= s->period;
|
|
if (old_irq_coalesced != s->irq_coalesced ||
|
|
old_period != s->period) {
|
|
DPRINTF_C("cmos: coalesced irqs scaled from %d to %d, "
|
|
"period scaled from %d to %d\n", old_irq_coalesced,
|
|
s->irq_coalesced, old_period, s->period);
|
|
rtc_coalesced_timer_update(s);
|
|
}
|
|
} else {
|
|
/*
|
|
* no way to compensate the interrupt if LOST_TICK_POLICY_SLEW
|
|
* is not used, we should make the time progress anyway.
|
|
*/
|
|
lost_clock = MIN(lost_clock, period);
|
|
}
|
|
|
|
assert(lost_clock >= 0 && lost_clock <= period);
|
|
|
|
next_irq_clock = cur_clock + period - lost_clock;
|
|
s->next_periodic_time = periodic_clock_to_ns(next_irq_clock) + 1;
|
|
timer_mod(s->periodic_timer, s->next_periodic_time);
|
|
} else {
|
|
s->irq_coalesced = 0;
|
|
timer_del(s->periodic_timer);
|
|
}
|
|
}
|
|
|
|
static void rtc_periodic_timer(void *opaque)
|
|
{
|
|
RTCState *s = opaque;
|
|
|
|
periodic_timer_update(s, s->next_periodic_time, 0);
|
|
s->cmos_data[RTC_REG_C] |= REG_C_PF;
|
|
if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
|
|
s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
|
|
if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
|
|
if (s->irq_reinject_on_ack_count >= RTC_REINJECT_ON_ACK_COUNT)
|
|
s->irq_reinject_on_ack_count = 0;
|
|
if (!rtc_policy_slew_deliver_irq(s)) {
|
|
s->irq_coalesced++;
|
|
rtc_coalesced_timer_update(s);
|
|
DPRINTF_C("cmos: coalesced irqs increased to %d\n",
|
|
s->irq_coalesced);
|
|
}
|
|
} else
|
|
qemu_irq_raise(s->irq);
|
|
}
|
|
}
|
|
|
|
/* handle update-ended timer */
|
|
static void check_update_timer(RTCState *s)
|
|
{
|
|
uint64_t next_update_time;
|
|
uint64_t guest_nsec;
|
|
int next_alarm_sec;
|
|
|
|
/* From the data sheet: "Holding the dividers in reset prevents
|
|
* interrupts from operating, while setting the SET bit allows"
|
|
* them to occur.
|
|
*/
|
|
if ((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) {
|
|
assert((s->cmos_data[RTC_REG_A] & REG_A_UIP) == 0);
|
|
timer_del(s->update_timer);
|
|
return;
|
|
}
|
|
|
|
guest_nsec = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND;
|
|
next_update_time = qemu_clock_get_ns(rtc_clock)
|
|
+ NANOSECONDS_PER_SECOND - guest_nsec;
|
|
|
|
/* Compute time of next alarm. One second is already accounted
|
|
* for in next_update_time.
|
|
*/
|
|
next_alarm_sec = get_next_alarm(s);
|
|
s->next_alarm_time = next_update_time +
|
|
(next_alarm_sec - 1) * NANOSECONDS_PER_SECOND;
|
|
|
|
/* If update_in_progress latched the UIP bit, we must keep the timer
|
|
* programmed to the next second, so that UIP is cleared. Otherwise,
|
|
* if UF is already set, we might be able to optimize.
|
|
*/
|
|
if (!(s->cmos_data[RTC_REG_A] & REG_A_UIP) &&
|
|
(s->cmos_data[RTC_REG_C] & REG_C_UF)) {
|
|
/* If AF cannot change (i.e. either it is set already, or
|
|
* SET=1 and then the time is not updated), nothing to do.
|
|
*/
|
|
if ((s->cmos_data[RTC_REG_B] & REG_B_SET) ||
|
|
(s->cmos_data[RTC_REG_C] & REG_C_AF)) {
|
|
timer_del(s->update_timer);
|
|
return;
|
|
}
|
|
|
|
/* UF is set, but AF is clear. Program the timer to target
|
|
* the alarm time. */
|
|
next_update_time = s->next_alarm_time;
|
|
}
|
|
if (next_update_time != timer_expire_time_ns(s->update_timer)) {
|
|
timer_mod(s->update_timer, next_update_time);
|
|
}
|
|
}
|
|
|
|
static inline uint8_t convert_hour(RTCState *s, uint8_t hour)
|
|
{
|
|
if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
|
|
hour %= 12;
|
|
if (s->cmos_data[RTC_HOURS] & 0x80) {
|
|
hour += 12;
|
|
}
|
|
}
|
|
return hour;
|
|
}
|
|
|
|
static uint64_t get_next_alarm(RTCState *s)
|
|
{
|
|
int32_t alarm_sec, alarm_min, alarm_hour, cur_hour, cur_min, cur_sec;
|
|
int32_t hour, min, sec;
|
|
|
|
rtc_update_time(s);
|
|
|
|
alarm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS_ALARM]);
|
|
alarm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES_ALARM]);
|
|
alarm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS_ALARM]);
|
|
alarm_hour = alarm_hour == -1 ? -1 : convert_hour(s, alarm_hour);
|
|
|
|
cur_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
|
|
cur_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
|
|
cur_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS]);
|
|
cur_hour = convert_hour(s, cur_hour);
|
|
|
|
if (alarm_hour == -1) {
|
|
alarm_hour = cur_hour;
|
|
if (alarm_min == -1) {
|
|
alarm_min = cur_min;
|
|
if (alarm_sec == -1) {
|
|
alarm_sec = cur_sec + 1;
|
|
} else if (cur_sec > alarm_sec) {
|
|
alarm_min++;
|
|
}
|
|
} else if (cur_min == alarm_min) {
|
|
if (alarm_sec == -1) {
|
|
alarm_sec = cur_sec + 1;
|
|
} else {
|
|
if (cur_sec > alarm_sec) {
|
|
alarm_hour++;
|
|
}
|
|
}
|
|
if (alarm_sec == SEC_PER_MIN) {
|
|
/* wrap to next hour, minutes is not in don't care mode */
|
|
alarm_sec = 0;
|
|
alarm_hour++;
|
|
}
|
|
} else if (cur_min > alarm_min) {
|
|
alarm_hour++;
|
|
}
|
|
} else if (cur_hour == alarm_hour) {
|
|
if (alarm_min == -1) {
|
|
alarm_min = cur_min;
|
|
if (alarm_sec == -1) {
|
|
alarm_sec = cur_sec + 1;
|
|
} else if (cur_sec > alarm_sec) {
|
|
alarm_min++;
|
|
}
|
|
|
|
if (alarm_sec == SEC_PER_MIN) {
|
|
alarm_sec = 0;
|
|
alarm_min++;
|
|
}
|
|
/* wrap to next day, hour is not in don't care mode */
|
|
alarm_min %= MIN_PER_HOUR;
|
|
} else if (cur_min == alarm_min) {
|
|
if (alarm_sec == -1) {
|
|
alarm_sec = cur_sec + 1;
|
|
}
|
|
/* wrap to next day, hours+minutes not in don't care mode */
|
|
alarm_sec %= SEC_PER_MIN;
|
|
}
|
|
}
|
|
|
|
/* values that are still don't care fire at the next min/sec */
|
|
if (alarm_min == -1) {
|
|
alarm_min = 0;
|
|
}
|
|
if (alarm_sec == -1) {
|
|
alarm_sec = 0;
|
|
}
|
|
|
|
/* keep values in range */
|
|
if (alarm_sec == SEC_PER_MIN) {
|
|
alarm_sec = 0;
|
|
alarm_min++;
|
|
}
|
|
if (alarm_min == MIN_PER_HOUR) {
|
|
alarm_min = 0;
|
|
alarm_hour++;
|
|
}
|
|
alarm_hour %= HOUR_PER_DAY;
|
|
|
|
hour = alarm_hour - cur_hour;
|
|
min = hour * MIN_PER_HOUR + alarm_min - cur_min;
|
|
sec = min * SEC_PER_MIN + alarm_sec - cur_sec;
|
|
return sec <= 0 ? sec + SEC_PER_DAY : sec;
|
|
}
|
|
|
|
static void rtc_update_timer(void *opaque)
|
|
{
|
|
RTCState *s = opaque;
|
|
int32_t irqs = REG_C_UF;
|
|
int32_t new_irqs;
|
|
|
|
assert((s->cmos_data[RTC_REG_A] & 0x60) != 0x60);
|
|
|
|
/* UIP might have been latched, update time and clear it. */
|
|
rtc_update_time(s);
|
|
s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
|
|
|
|
if (qemu_clock_get_ns(rtc_clock) >= s->next_alarm_time) {
|
|
irqs |= REG_C_AF;
|
|
if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
|
|
qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC, NULL);
|
|
}
|
|
}
|
|
|
|
new_irqs = irqs & ~s->cmos_data[RTC_REG_C];
|
|
s->cmos_data[RTC_REG_C] |= irqs;
|
|
if ((new_irqs & s->cmos_data[RTC_REG_B]) != 0) {
|
|
s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
|
|
qemu_irq_raise(s->irq);
|
|
}
|
|
check_update_timer(s);
|
|
}
|
|
|
|
static void cmos_ioport_write(void *opaque, hwaddr addr,
|
|
uint64_t data, unsigned size)
|
|
{
|
|
RTCState *s = opaque;
|
|
uint32_t old_period;
|
|
bool update_periodic_timer;
|
|
|
|
if ((addr & 1) == 0) {
|
|
s->cmos_index = data & 0x7f;
|
|
} else {
|
|
CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02" PRIx64 "\n",
|
|
s->cmos_index, data);
|
|
switch(s->cmos_index) {
|
|
case RTC_SECONDS_ALARM:
|
|
case RTC_MINUTES_ALARM:
|
|
case RTC_HOURS_ALARM:
|
|
s->cmos_data[s->cmos_index] = data;
|
|
check_update_timer(s);
|
|
break;
|
|
case RTC_IBM_PS2_CENTURY_BYTE:
|
|
s->cmos_index = RTC_CENTURY;
|
|
/* fall through */
|
|
case RTC_CENTURY:
|
|
case RTC_SECONDS:
|
|
case RTC_MINUTES:
|
|
case RTC_HOURS:
|
|
case RTC_DAY_OF_WEEK:
|
|
case RTC_DAY_OF_MONTH:
|
|
case RTC_MONTH:
|
|
case RTC_YEAR:
|
|
s->cmos_data[s->cmos_index] = data;
|
|
/* if in set mode, do not update the time */
|
|
if (rtc_running(s)) {
|
|
rtc_set_time(s);
|
|
check_update_timer(s);
|
|
}
|
|
break;
|
|
case RTC_REG_A:
|
|
update_periodic_timer = (s->cmos_data[RTC_REG_A] ^ data) & 0x0f;
|
|
old_period = rtc_periodic_clock_ticks(s);
|
|
|
|
if ((data & 0x60) == 0x60) {
|
|
if (rtc_running(s)) {
|
|
rtc_update_time(s);
|
|
}
|
|
/* What happens to UIP when divider reset is enabled is
|
|
* unclear from the datasheet. Shouldn't matter much
|
|
* though.
|
|
*/
|
|
s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
|
|
} else if (((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) &&
|
|
(data & 0x70) <= 0x20) {
|
|
/* when the divider reset is removed, the first update cycle
|
|
* begins one-half second later*/
|
|
if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
|
|
s->offset = 500000000;
|
|
rtc_set_time(s);
|
|
}
|
|
s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
|
|
}
|
|
/* UIP bit is read only */
|
|
s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
|
|
(s->cmos_data[RTC_REG_A] & REG_A_UIP);
|
|
|
|
if (update_periodic_timer) {
|
|
periodic_timer_update(s, qemu_clock_get_ns(rtc_clock),
|
|
old_period);
|
|
}
|
|
|
|
check_update_timer(s);
|
|
break;
|
|
case RTC_REG_B:
|
|
update_periodic_timer = (s->cmos_data[RTC_REG_B] ^ data)
|
|
& REG_B_PIE;
|
|
old_period = rtc_periodic_clock_ticks(s);
|
|
|
|
if (data & REG_B_SET) {
|
|
/* update cmos to when the rtc was stopping */
|
|
if (rtc_running(s)) {
|
|
rtc_update_time(s);
|
|
}
|
|
/* set mode: reset UIP mode */
|
|
s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
|
|
data &= ~REG_B_UIE;
|
|
} else {
|
|
/* if disabling set mode, update the time */
|
|
if ((s->cmos_data[RTC_REG_B] & REG_B_SET) &&
|
|
(s->cmos_data[RTC_REG_A] & 0x70) <= 0x20) {
|
|
s->offset = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND;
|
|
rtc_set_time(s);
|
|
}
|
|
}
|
|
/* if an interrupt flag is already set when the interrupt
|
|
* becomes enabled, raise an interrupt immediately. */
|
|
if (data & s->cmos_data[RTC_REG_C] & REG_C_MASK) {
|
|
s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
|
|
qemu_irq_raise(s->irq);
|
|
} else {
|
|
s->cmos_data[RTC_REG_C] &= ~REG_C_IRQF;
|
|
qemu_irq_lower(s->irq);
|
|
}
|
|
s->cmos_data[RTC_REG_B] = data;
|
|
|
|
if (update_periodic_timer) {
|
|
periodic_timer_update(s, qemu_clock_get_ns(rtc_clock),
|
|
old_period);
|
|
}
|
|
|
|
check_update_timer(s);
|
|
break;
|
|
case RTC_REG_C:
|
|
case RTC_REG_D:
|
|
/* cannot write to them */
|
|
break;
|
|
default:
|
|
s->cmos_data[s->cmos_index] = data;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline int rtc_to_bcd(RTCState *s, int a)
|
|
{
|
|
if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
|
|
return a;
|
|
} else {
|
|
return ((a / 10) << 4) | (a % 10);
|
|
}
|
|
}
|
|
|
|
static inline int rtc_from_bcd(RTCState *s, int a)
|
|
{
|
|
if ((a & 0xc0) == 0xc0) {
|
|
return -1;
|
|
}
|
|
if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
|
|
return a;
|
|
} else {
|
|
return ((a >> 4) * 10) + (a & 0x0f);
|
|
}
|
|
}
|
|
|
|
static void rtc_get_time(RTCState *s, struct tm *tm)
|
|
{
|
|
tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
|
|
tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
|
|
tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
|
|
if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
|
|
tm->tm_hour %= 12;
|
|
if (s->cmos_data[RTC_HOURS] & 0x80) {
|
|
tm->tm_hour += 12;
|
|
}
|
|
}
|
|
tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
|
|
tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
|
|
tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
|
|
tm->tm_year =
|
|
rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year +
|
|
rtc_from_bcd(s, s->cmos_data[RTC_CENTURY]) * 100 - 1900;
|
|
}
|
|
|
|
static void rtc_set_time(RTCState *s)
|
|
{
|
|
struct tm tm;
|
|
|
|
rtc_get_time(s, &tm);
|
|
s->base_rtc = mktimegm(&tm);
|
|
s->last_update = qemu_clock_get_ns(rtc_clock);
|
|
|
|
qapi_event_send_rtc_change(qemu_timedate_diff(&tm));
|
|
}
|
|
|
|
static void rtc_set_cmos(RTCState *s, const struct tm *tm)
|
|
{
|
|
int year;
|
|
|
|
s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec);
|
|
s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min);
|
|
if (s->cmos_data[RTC_REG_B] & REG_B_24H) {
|
|
/* 24 hour format */
|
|
s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour);
|
|
} else {
|
|
/* 12 hour format */
|
|
int h = (tm->tm_hour % 12) ? tm->tm_hour % 12 : 12;
|
|
s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, h);
|
|
if (tm->tm_hour >= 12)
|
|
s->cmos_data[RTC_HOURS] |= 0x80;
|
|
}
|
|
s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1);
|
|
s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday);
|
|
s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1);
|
|
year = tm->tm_year + 1900 - s->base_year;
|
|
s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year % 100);
|
|
s->cmos_data[RTC_CENTURY] = rtc_to_bcd(s, year / 100);
|
|
}
|
|
|
|
static void rtc_update_time(RTCState *s)
|
|
{
|
|
struct tm ret;
|
|
time_t guest_sec;
|
|
int64_t guest_nsec;
|
|
|
|
guest_nsec = get_guest_rtc_ns(s);
|
|
guest_sec = guest_nsec / NANOSECONDS_PER_SECOND;
|
|
gmtime_r(&guest_sec, &ret);
|
|
|
|
/* Is SET flag of Register B disabled? */
|
|
if ((s->cmos_data[RTC_REG_B] & REG_B_SET) == 0) {
|
|
rtc_set_cmos(s, &ret);
|
|
}
|
|
}
|
|
|
|
static int update_in_progress(RTCState *s)
|
|
{
|
|
int64_t guest_nsec;
|
|
|
|
if (!rtc_running(s)) {
|
|
return 0;
|
|
}
|
|
if (timer_pending(s->update_timer)) {
|
|
int64_t next_update_time = timer_expire_time_ns(s->update_timer);
|
|
/* Latch UIP until the timer expires. */
|
|
if (qemu_clock_get_ns(rtc_clock) >=
|
|
(next_update_time - UIP_HOLD_LENGTH)) {
|
|
s->cmos_data[RTC_REG_A] |= REG_A_UIP;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
guest_nsec = get_guest_rtc_ns(s);
|
|
/* UIP bit will be set at last 244us of every second. */
|
|
if ((guest_nsec % NANOSECONDS_PER_SECOND) >=
|
|
(NANOSECONDS_PER_SECOND - UIP_HOLD_LENGTH)) {
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static uint64_t cmos_ioport_read(void *opaque, hwaddr addr,
|
|
unsigned size)
|
|
{
|
|
RTCState *s = opaque;
|
|
int ret;
|
|
if ((addr & 1) == 0) {
|
|
return 0xff;
|
|
} else {
|
|
switch(s->cmos_index) {
|
|
case RTC_IBM_PS2_CENTURY_BYTE:
|
|
s->cmos_index = RTC_CENTURY;
|
|
/* fall through */
|
|
case RTC_CENTURY:
|
|
case RTC_SECONDS:
|
|
case RTC_MINUTES:
|
|
case RTC_HOURS:
|
|
case RTC_DAY_OF_WEEK:
|
|
case RTC_DAY_OF_MONTH:
|
|
case RTC_MONTH:
|
|
case RTC_YEAR:
|
|
/* if not in set mode, calibrate cmos before
|
|
* reading*/
|
|
if (rtc_running(s)) {
|
|
rtc_update_time(s);
|
|
}
|
|
ret = s->cmos_data[s->cmos_index];
|
|
break;
|
|
case RTC_REG_A:
|
|
ret = s->cmos_data[s->cmos_index];
|
|
if (update_in_progress(s)) {
|
|
ret |= REG_A_UIP;
|
|
}
|
|
break;
|
|
case RTC_REG_C:
|
|
ret = s->cmos_data[s->cmos_index];
|
|
qemu_irq_lower(s->irq);
|
|
s->cmos_data[RTC_REG_C] = 0x00;
|
|
if (ret & (REG_C_UF | REG_C_AF)) {
|
|
check_update_timer(s);
|
|
}
|
|
|
|
if(s->irq_coalesced &&
|
|
(s->cmos_data[RTC_REG_B] & REG_B_PIE) &&
|
|
s->irq_reinject_on_ack_count < RTC_REINJECT_ON_ACK_COUNT) {
|
|
s->irq_reinject_on_ack_count++;
|
|
s->cmos_data[RTC_REG_C] |= REG_C_IRQF | REG_C_PF;
|
|
DPRINTF_C("cmos: injecting on ack\n");
|
|
if (rtc_policy_slew_deliver_irq(s)) {
|
|
s->irq_coalesced--;
|
|
DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
|
|
s->irq_coalesced);
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
ret = s->cmos_data[s->cmos_index];
|
|
break;
|
|
}
|
|
CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
|
|
s->cmos_index, ret);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
void rtc_set_memory(ISADevice *dev, int addr, int val)
|
|
{
|
|
RTCState *s = MC146818_RTC(dev);
|
|
if (addr >= 0 && addr <= 127)
|
|
s->cmos_data[addr] = val;
|
|
}
|
|
|
|
int rtc_get_memory(ISADevice *dev, int addr)
|
|
{
|
|
RTCState *s = MC146818_RTC(dev);
|
|
assert(addr >= 0 && addr <= 127);
|
|
return s->cmos_data[addr];
|
|
}
|
|
|
|
static void rtc_set_date_from_host(ISADevice *dev)
|
|
{
|
|
RTCState *s = MC146818_RTC(dev);
|
|
struct tm tm;
|
|
|
|
qemu_get_timedate(&tm, 0);
|
|
|
|
s->base_rtc = mktimegm(&tm);
|
|
s->last_update = qemu_clock_get_ns(rtc_clock);
|
|
s->offset = 0;
|
|
|
|
/* set the CMOS date */
|
|
rtc_set_cmos(s, &tm);
|
|
}
|
|
|
|
static int rtc_pre_save(void *opaque)
|
|
{
|
|
RTCState *s = opaque;
|
|
|
|
rtc_update_time(s);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int rtc_post_load(void *opaque, int version_id)
|
|
{
|
|
RTCState *s = opaque;
|
|
|
|
if (version_id <= 2 || rtc_clock == QEMU_CLOCK_REALTIME) {
|
|
rtc_set_time(s);
|
|
s->offset = 0;
|
|
check_update_timer(s);
|
|
}
|
|
|
|
/* The periodic timer is deterministic in record/replay mode,
|
|
* so there is no need to update it after loading the vmstate.
|
|
* Reading RTC here would misalign record and replay.
|
|
*/
|
|
if (replay_mode == REPLAY_MODE_NONE) {
|
|
uint64_t now = qemu_clock_get_ns(rtc_clock);
|
|
if (now < s->next_periodic_time ||
|
|
now > (s->next_periodic_time + get_max_clock_jump())) {
|
|
periodic_timer_update(s, qemu_clock_get_ns(rtc_clock), 0);
|
|
}
|
|
}
|
|
|
|
if (version_id >= 2) {
|
|
if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
|
|
rtc_coalesced_timer_update(s);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static bool rtc_irq_reinject_on_ack_count_needed(void *opaque)
|
|
{
|
|
RTCState *s = (RTCState *)opaque;
|
|
return s->irq_reinject_on_ack_count != 0;
|
|
}
|
|
|
|
static const VMStateDescription vmstate_rtc_irq_reinject_on_ack_count = {
|
|
.name = "mc146818rtc/irq_reinject_on_ack_count",
|
|
.version_id = 1,
|
|
.minimum_version_id = 1,
|
|
.needed = rtc_irq_reinject_on_ack_count_needed,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_UINT16(irq_reinject_on_ack_count, RTCState),
|
|
VMSTATE_END_OF_LIST()
|
|
}
|
|
};
|
|
|
|
static const VMStateDescription vmstate_rtc = {
|
|
.name = "mc146818rtc",
|
|
.version_id = 3,
|
|
.minimum_version_id = 1,
|
|
.pre_save = rtc_pre_save,
|
|
.post_load = rtc_post_load,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_BUFFER(cmos_data, RTCState),
|
|
VMSTATE_UINT8(cmos_index, RTCState),
|
|
VMSTATE_UNUSED(7*4),
|
|
VMSTATE_TIMER_PTR(periodic_timer, RTCState),
|
|
VMSTATE_INT64(next_periodic_time, RTCState),
|
|
VMSTATE_UNUSED(3*8),
|
|
VMSTATE_UINT32_V(irq_coalesced, RTCState, 2),
|
|
VMSTATE_UINT32_V(period, RTCState, 2),
|
|
VMSTATE_UINT64_V(base_rtc, RTCState, 3),
|
|
VMSTATE_UINT64_V(last_update, RTCState, 3),
|
|
VMSTATE_INT64_V(offset, RTCState, 3),
|
|
VMSTATE_TIMER_PTR_V(update_timer, RTCState, 3),
|
|
VMSTATE_UINT64_V(next_alarm_time, RTCState, 3),
|
|
VMSTATE_END_OF_LIST()
|
|
},
|
|
.subsections = (const VMStateDescription*[]) {
|
|
&vmstate_rtc_irq_reinject_on_ack_count,
|
|
NULL
|
|
}
|
|
};
|
|
|
|
static void rtc_notify_clock_reset(Notifier *notifier, void *data)
|
|
{
|
|
RTCState *s = container_of(notifier, RTCState, clock_reset_notifier);
|
|
int64_t now = *(int64_t *)data;
|
|
|
|
rtc_set_date_from_host(ISA_DEVICE(s));
|
|
periodic_timer_update(s, now, 0);
|
|
check_update_timer(s);
|
|
|
|
if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
|
|
rtc_coalesced_timer_update(s);
|
|
}
|
|
}
|
|
|
|
/* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
|
|
BIOS will read it and start S3 resume at POST Entry */
|
|
static void rtc_notify_suspend(Notifier *notifier, void *data)
|
|
{
|
|
RTCState *s = container_of(notifier, RTCState, suspend_notifier);
|
|
rtc_set_memory(ISA_DEVICE(s), 0xF, 0xFE);
|
|
}
|
|
|
|
static void rtc_reset(void *opaque)
|
|
{
|
|
RTCState *s = opaque;
|
|
|
|
s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE);
|
|
s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF);
|
|
check_update_timer(s);
|
|
|
|
qemu_irq_lower(s->irq);
|
|
|
|
if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
|
|
s->irq_coalesced = 0;
|
|
s->irq_reinject_on_ack_count = 0;
|
|
}
|
|
}
|
|
|
|
static const MemoryRegionOps cmos_ops = {
|
|
.read = cmos_ioport_read,
|
|
.write = cmos_ioport_write,
|
|
.impl = {
|
|
.min_access_size = 1,
|
|
.max_access_size = 1,
|
|
},
|
|
.endianness = DEVICE_LITTLE_ENDIAN,
|
|
};
|
|
|
|
static void rtc_get_date(Object *obj, struct tm *current_tm, Error **errp)
|
|
{
|
|
RTCState *s = MC146818_RTC(obj);
|
|
|
|
rtc_update_time(s);
|
|
rtc_get_time(s, current_tm);
|
|
}
|
|
|
|
static void rtc_realizefn(DeviceState *dev, Error **errp)
|
|
{
|
|
ISADevice *isadev = ISA_DEVICE(dev);
|
|
RTCState *s = MC146818_RTC(dev);
|
|
int base = 0x70;
|
|
|
|
s->cmos_data[RTC_REG_A] = 0x26;
|
|
s->cmos_data[RTC_REG_B] = 0x02;
|
|
s->cmos_data[RTC_REG_C] = 0x00;
|
|
s->cmos_data[RTC_REG_D] = 0x80;
|
|
|
|
/* This is for historical reasons. The default base year qdev property
|
|
* was set to 2000 for most machine types before the century byte was
|
|
* implemented.
|
|
*
|
|
* This if statement means that the century byte will be always 0
|
|
* (at least until 2079...) for base_year = 1980, but will be set
|
|
* correctly for base_year = 2000.
|
|
*/
|
|
if (s->base_year == 2000) {
|
|
s->base_year = 0;
|
|
}
|
|
|
|
rtc_set_date_from_host(isadev);
|
|
|
|
switch (s->lost_tick_policy) {
|
|
#ifdef TARGET_I386
|
|
case LOST_TICK_POLICY_SLEW:
|
|
s->coalesced_timer =
|
|
timer_new_ns(rtc_clock, rtc_coalesced_timer, s);
|
|
break;
|
|
#endif
|
|
case LOST_TICK_POLICY_DISCARD:
|
|
break;
|
|
default:
|
|
error_setg(errp, "Invalid lost tick policy.");
|
|
return;
|
|
}
|
|
|
|
s->periodic_timer = timer_new_ns(rtc_clock, rtc_periodic_timer, s);
|
|
s->update_timer = timer_new_ns(rtc_clock, rtc_update_timer, s);
|
|
check_update_timer(s);
|
|
|
|
s->clock_reset_notifier.notify = rtc_notify_clock_reset;
|
|
qemu_clock_register_reset_notifier(rtc_clock,
|
|
&s->clock_reset_notifier);
|
|
|
|
s->suspend_notifier.notify = rtc_notify_suspend;
|
|
qemu_register_suspend_notifier(&s->suspend_notifier);
|
|
|
|
memory_region_init_io(&s->io, OBJECT(s), &cmos_ops, s, "rtc", 2);
|
|
isa_register_ioport(isadev, &s->io, base);
|
|
|
|
/* register rtc 0x70 port for coalesced_pio */
|
|
memory_region_set_flush_coalesced(&s->io);
|
|
memory_region_init_io(&s->coalesced_io, OBJECT(s), &cmos_ops,
|
|
s, "rtc-index", 1);
|
|
memory_region_add_subregion(&s->io, 0, &s->coalesced_io);
|
|
memory_region_add_coalescing(&s->coalesced_io, 0, 1);
|
|
|
|
qdev_set_legacy_instance_id(dev, base, 3);
|
|
qemu_register_reset(rtc_reset, s);
|
|
|
|
object_property_add_tm(OBJECT(s), "date", rtc_get_date, NULL);
|
|
|
|
qdev_init_gpio_out(dev, &s->irq, 1);
|
|
}
|
|
|
|
ISADevice *mc146818_rtc_init(ISABus *bus, int base_year, qemu_irq intercept_irq)
|
|
{
|
|
DeviceState *dev;
|
|
ISADevice *isadev;
|
|
RTCState *s;
|
|
|
|
isadev = isa_create(bus, TYPE_MC146818_RTC);
|
|
dev = DEVICE(isadev);
|
|
s = MC146818_RTC(isadev);
|
|
qdev_prop_set_int32(dev, "base_year", base_year);
|
|
qdev_init_nofail(dev);
|
|
if (intercept_irq) {
|
|
qdev_connect_gpio_out(dev, 0, intercept_irq);
|
|
} else {
|
|
isa_connect_gpio_out(isadev, 0, RTC_ISA_IRQ);
|
|
}
|
|
QLIST_INSERT_HEAD(&rtc_devices, s, link);
|
|
|
|
object_property_add_alias(qdev_get_machine(), "rtc-time", OBJECT(s),
|
|
"date", NULL);
|
|
|
|
return isadev;
|
|
}
|
|
|
|
static Property mc146818rtc_properties[] = {
|
|
DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980),
|
|
DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", RTCState,
|
|
lost_tick_policy, LOST_TICK_POLICY_DISCARD),
|
|
DEFINE_PROP_END_OF_LIST(),
|
|
};
|
|
|
|
static void rtc_resetdev(DeviceState *d)
|
|
{
|
|
RTCState *s = MC146818_RTC(d);
|
|
|
|
/* Reason: VM do suspend self will set 0xfe
|
|
* Reset any values other than 0xfe(Guest suspend case) */
|
|
if (s->cmos_data[0x0f] != 0xfe) {
|
|
s->cmos_data[0x0f] = 0x00;
|
|
}
|
|
}
|
|
|
|
static void rtc_class_initfn(ObjectClass *klass, void *data)
|
|
{
|
|
DeviceClass *dc = DEVICE_CLASS(klass);
|
|
|
|
dc->realize = rtc_realizefn;
|
|
dc->reset = rtc_resetdev;
|
|
dc->vmsd = &vmstate_rtc;
|
|
dc->props = mc146818rtc_properties;
|
|
/* Reason: needs to be wired up by rtc_init() */
|
|
dc->user_creatable = false;
|
|
}
|
|
|
|
static const TypeInfo mc146818rtc_info = {
|
|
.name = TYPE_MC146818_RTC,
|
|
.parent = TYPE_ISA_DEVICE,
|
|
.instance_size = sizeof(RTCState),
|
|
.class_init = rtc_class_initfn,
|
|
};
|
|
|
|
static void mc146818rtc_register_types(void)
|
|
{
|
|
type_register_static(&mc146818rtc_info);
|
|
}
|
|
|
|
type_init(mc146818rtc_register_types)
|