mirror of
https://github.com/qemu/qemu.git
synced 2024-11-25 20:03:37 +08:00
a6e7c18476
Honour float_muladd_negate_c in the case where the product is zero and c is nonzero. Previously we would fail to negate c. Seen in (and tested against) the gfortran testsuite on MIPS. Signed-off-by: Richard Sandiford <rdsandiford@googlemail.com> Reviewed-by: Peter Maydell <peter.maydell@linaro.org> Signed-off-by: Blue Swirl <blauwirbel@gmail.com>
6878 lines
244 KiB
C
6878 lines
244 KiB
C
/*
|
|
* QEMU float support
|
|
*
|
|
* Derived from SoftFloat.
|
|
*/
|
|
|
|
/*============================================================================
|
|
|
|
This C source file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
|
|
Package, Release 2b.
|
|
|
|
Written by John R. Hauser. This work was made possible in part by the
|
|
International Computer Science Institute, located at Suite 600, 1947 Center
|
|
Street, Berkeley, California 94704. Funding was partially provided by the
|
|
National Science Foundation under grant MIP-9311980. The original version
|
|
of this code was written as part of a project to build a fixed-point vector
|
|
processor in collaboration with the University of California at Berkeley,
|
|
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
|
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
|
|
arithmetic/SoftFloat.html'.
|
|
|
|
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
|
|
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
|
|
RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
|
|
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
|
|
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
|
|
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
|
|
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
|
|
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
|
|
|
|
Derivative works are acceptable, even for commercial purposes, so long as
|
|
(1) the source code for the derivative work includes prominent notice that
|
|
the work is derivative, and (2) the source code includes prominent notice with
|
|
these four paragraphs for those parts of this code that are retained.
|
|
|
|
=============================================================================*/
|
|
|
|
/* softfloat (and in particular the code in softfloat-specialize.h) is
|
|
* target-dependent and needs the TARGET_* macros.
|
|
*/
|
|
#include "config.h"
|
|
|
|
#include "fpu/softfloat.h"
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Primitive arithmetic functions, including multi-word arithmetic, and
|
|
| division and square root approximations. (Can be specialized to target if
|
|
| desired.)
|
|
*----------------------------------------------------------------------------*/
|
|
#include "softfloat-macros.h"
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Functions and definitions to determine: (1) whether tininess for underflow
|
|
| is detected before or after rounding by default, (2) what (if anything)
|
|
| happens when exceptions are raised, (3) how signaling NaNs are distinguished
|
|
| from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs
|
|
| are propagated from function inputs to output. These details are target-
|
|
| specific.
|
|
*----------------------------------------------------------------------------*/
|
|
#include "softfloat-specialize.h"
|
|
|
|
void set_float_rounding_mode(int val STATUS_PARAM)
|
|
{
|
|
STATUS(float_rounding_mode) = val;
|
|
}
|
|
|
|
void set_float_exception_flags(int val STATUS_PARAM)
|
|
{
|
|
STATUS(float_exception_flags) = val;
|
|
}
|
|
|
|
void set_floatx80_rounding_precision(int val STATUS_PARAM)
|
|
{
|
|
STATUS(floatx80_rounding_precision) = val;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the fraction bits of the half-precision floating-point value `a'.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
INLINE uint32_t extractFloat16Frac(float16 a)
|
|
{
|
|
return float16_val(a) & 0x3ff;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the exponent bits of the half-precision floating-point value `a'.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
INLINE int_fast16_t extractFloat16Exp(float16 a)
|
|
{
|
|
return (float16_val(a) >> 10) & 0x1f;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the sign bit of the single-precision floating-point value `a'.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
INLINE flag extractFloat16Sign(float16 a)
|
|
{
|
|
return float16_val(a)>>15;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Takes a 64-bit fixed-point value `absZ' with binary point between bits 6
|
|
| and 7, and returns the properly rounded 32-bit integer corresponding to the
|
|
| input. If `zSign' is 1, the input is negated before being converted to an
|
|
| integer. Bit 63 of `absZ' must be zero. Ordinarily, the fixed-point input
|
|
| is simply rounded to an integer, with the inexact exception raised if the
|
|
| input cannot be represented exactly as an integer. However, if the fixed-
|
|
| point input is too large, the invalid exception is raised and the largest
|
|
| positive or negative integer is returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static int32 roundAndPackInt32( flag zSign, uint64_t absZ STATUS_PARAM)
|
|
{
|
|
int8 roundingMode;
|
|
flag roundNearestEven;
|
|
int8 roundIncrement, roundBits;
|
|
int32_t z;
|
|
|
|
roundingMode = STATUS(float_rounding_mode);
|
|
roundNearestEven = ( roundingMode == float_round_nearest_even );
|
|
roundIncrement = 0x40;
|
|
if ( ! roundNearestEven ) {
|
|
if ( roundingMode == float_round_to_zero ) {
|
|
roundIncrement = 0;
|
|
}
|
|
else {
|
|
roundIncrement = 0x7F;
|
|
if ( zSign ) {
|
|
if ( roundingMode == float_round_up ) roundIncrement = 0;
|
|
}
|
|
else {
|
|
if ( roundingMode == float_round_down ) roundIncrement = 0;
|
|
}
|
|
}
|
|
}
|
|
roundBits = absZ & 0x7F;
|
|
absZ = ( absZ + roundIncrement )>>7;
|
|
absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
|
|
z = absZ;
|
|
if ( zSign ) z = - z;
|
|
if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
return zSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
|
|
}
|
|
if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact;
|
|
return z;
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
|
|
| `absZ1', with binary point between bits 63 and 64 (between the input words),
|
|
| and returns the properly rounded 64-bit integer corresponding to the input.
|
|
| If `zSign' is 1, the input is negated before being converted to an integer.
|
|
| Ordinarily, the fixed-point input is simply rounded to an integer, with
|
|
| the inexact exception raised if the input cannot be represented exactly as
|
|
| an integer. However, if the fixed-point input is too large, the invalid
|
|
| exception is raised and the largest positive or negative integer is
|
|
| returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static int64 roundAndPackInt64( flag zSign, uint64_t absZ0, uint64_t absZ1 STATUS_PARAM)
|
|
{
|
|
int8 roundingMode;
|
|
flag roundNearestEven, increment;
|
|
int64_t z;
|
|
|
|
roundingMode = STATUS(float_rounding_mode);
|
|
roundNearestEven = ( roundingMode == float_round_nearest_even );
|
|
increment = ( (int64_t) absZ1 < 0 );
|
|
if ( ! roundNearestEven ) {
|
|
if ( roundingMode == float_round_to_zero ) {
|
|
increment = 0;
|
|
}
|
|
else {
|
|
if ( zSign ) {
|
|
increment = ( roundingMode == float_round_down ) && absZ1;
|
|
}
|
|
else {
|
|
increment = ( roundingMode == float_round_up ) && absZ1;
|
|
}
|
|
}
|
|
}
|
|
if ( increment ) {
|
|
++absZ0;
|
|
if ( absZ0 == 0 ) goto overflow;
|
|
absZ0 &= ~ ( ( (uint64_t) ( absZ1<<1 ) == 0 ) & roundNearestEven );
|
|
}
|
|
z = absZ0;
|
|
if ( zSign ) z = - z;
|
|
if ( z && ( ( z < 0 ) ^ zSign ) ) {
|
|
overflow:
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
return
|
|
zSign ? (int64_t) LIT64( 0x8000000000000000 )
|
|
: LIT64( 0x7FFFFFFFFFFFFFFF );
|
|
}
|
|
if ( absZ1 ) STATUS(float_exception_flags) |= float_flag_inexact;
|
|
return z;
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the fraction bits of the single-precision floating-point value `a'.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
INLINE uint32_t extractFloat32Frac( float32 a )
|
|
{
|
|
|
|
return float32_val(a) & 0x007FFFFF;
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the exponent bits of the single-precision floating-point value `a'.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
INLINE int_fast16_t extractFloat32Exp(float32 a)
|
|
{
|
|
|
|
return ( float32_val(a)>>23 ) & 0xFF;
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the sign bit of the single-precision floating-point value `a'.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
INLINE flag extractFloat32Sign( float32 a )
|
|
{
|
|
|
|
return float32_val(a)>>31;
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| If `a' is denormal and we are in flush-to-zero mode then set the
|
|
| input-denormal exception and return zero. Otherwise just return the value.
|
|
*----------------------------------------------------------------------------*/
|
|
static float32 float32_squash_input_denormal(float32 a STATUS_PARAM)
|
|
{
|
|
if (STATUS(flush_inputs_to_zero)) {
|
|
if (extractFloat32Exp(a) == 0 && extractFloat32Frac(a) != 0) {
|
|
float_raise(float_flag_input_denormal STATUS_VAR);
|
|
return make_float32(float32_val(a) & 0x80000000);
|
|
}
|
|
}
|
|
return a;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Normalizes the subnormal single-precision floating-point value represented
|
|
| by the denormalized significand `aSig'. The normalized exponent and
|
|
| significand are stored at the locations pointed to by `zExpPtr' and
|
|
| `zSigPtr', respectively.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static void
|
|
normalizeFloat32Subnormal(uint32_t aSig, int_fast16_t *zExpPtr, uint32_t *zSigPtr)
|
|
{
|
|
int8 shiftCount;
|
|
|
|
shiftCount = countLeadingZeros32( aSig ) - 8;
|
|
*zSigPtr = aSig<<shiftCount;
|
|
*zExpPtr = 1 - shiftCount;
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
|
|
| single-precision floating-point value, returning the result. After being
|
|
| shifted into the proper positions, the three fields are simply added
|
|
| together to form the result. This means that any integer portion of `zSig'
|
|
| will be added into the exponent. Since a properly normalized significand
|
|
| will have an integer portion equal to 1, the `zExp' input should be 1 less
|
|
| than the desired result exponent whenever `zSig' is a complete, normalized
|
|
| significand.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
INLINE float32 packFloat32(flag zSign, int_fast16_t zExp, uint32_t zSig)
|
|
{
|
|
|
|
return make_float32(
|
|
( ( (uint32_t) zSign )<<31 ) + ( ( (uint32_t) zExp )<<23 ) + zSig);
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
|
|
| and significand `zSig', and returns the proper single-precision floating-
|
|
| point value corresponding to the abstract input. Ordinarily, the abstract
|
|
| value is simply rounded and packed into the single-precision format, with
|
|
| the inexact exception raised if the abstract input cannot be represented
|
|
| exactly. However, if the abstract value is too large, the overflow and
|
|
| inexact exceptions are raised and an infinity or maximal finite value is
|
|
| returned. If the abstract value is too small, the input value is rounded to
|
|
| a subnormal number, and the underflow and inexact exceptions are raised if
|
|
| the abstract input cannot be represented exactly as a subnormal single-
|
|
| precision floating-point number.
|
|
| The input significand `zSig' has its binary point between bits 30
|
|
| and 29, which is 7 bits to the left of the usual location. This shifted
|
|
| significand must be normalized or smaller. If `zSig' is not normalized,
|
|
| `zExp' must be 0; in that case, the result returned is a subnormal number,
|
|
| and it must not require rounding. In the usual case that `zSig' is
|
|
| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
|
|
| The handling of underflow and overflow follows the IEC/IEEE Standard for
|
|
| Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static float32 roundAndPackFloat32(flag zSign, int_fast16_t zExp, uint32_t zSig STATUS_PARAM)
|
|
{
|
|
int8 roundingMode;
|
|
flag roundNearestEven;
|
|
int8 roundIncrement, roundBits;
|
|
flag isTiny;
|
|
|
|
roundingMode = STATUS(float_rounding_mode);
|
|
roundNearestEven = ( roundingMode == float_round_nearest_even );
|
|
roundIncrement = 0x40;
|
|
if ( ! roundNearestEven ) {
|
|
if ( roundingMode == float_round_to_zero ) {
|
|
roundIncrement = 0;
|
|
}
|
|
else {
|
|
roundIncrement = 0x7F;
|
|
if ( zSign ) {
|
|
if ( roundingMode == float_round_up ) roundIncrement = 0;
|
|
}
|
|
else {
|
|
if ( roundingMode == float_round_down ) roundIncrement = 0;
|
|
}
|
|
}
|
|
}
|
|
roundBits = zSig & 0x7F;
|
|
if ( 0xFD <= (uint16_t) zExp ) {
|
|
if ( ( 0xFD < zExp )
|
|
|| ( ( zExp == 0xFD )
|
|
&& ( (int32_t) ( zSig + roundIncrement ) < 0 ) )
|
|
) {
|
|
float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR);
|
|
return packFloat32( zSign, 0xFF, - ( roundIncrement == 0 ));
|
|
}
|
|
if ( zExp < 0 ) {
|
|
if (STATUS(flush_to_zero)) {
|
|
float_raise(float_flag_output_denormal STATUS_VAR);
|
|
return packFloat32(zSign, 0, 0);
|
|
}
|
|
isTiny =
|
|
( STATUS(float_detect_tininess) == float_tininess_before_rounding )
|
|
|| ( zExp < -1 )
|
|
|| ( zSig + roundIncrement < 0x80000000 );
|
|
shift32RightJamming( zSig, - zExp, &zSig );
|
|
zExp = 0;
|
|
roundBits = zSig & 0x7F;
|
|
if ( isTiny && roundBits ) float_raise( float_flag_underflow STATUS_VAR);
|
|
}
|
|
}
|
|
if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact;
|
|
zSig = ( zSig + roundIncrement )>>7;
|
|
zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
|
|
if ( zSig == 0 ) zExp = 0;
|
|
return packFloat32( zSign, zExp, zSig );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
|
|
| and significand `zSig', and returns the proper single-precision floating-
|
|
| point value corresponding to the abstract input. This routine is just like
|
|
| `roundAndPackFloat32' except that `zSig' does not have to be normalized.
|
|
| Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
|
|
| floating-point exponent.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static float32
|
|
normalizeRoundAndPackFloat32(flag zSign, int_fast16_t zExp, uint32_t zSig STATUS_PARAM)
|
|
{
|
|
int8 shiftCount;
|
|
|
|
shiftCount = countLeadingZeros32( zSig ) - 1;
|
|
return roundAndPackFloat32( zSign, zExp - shiftCount, zSig<<shiftCount STATUS_VAR);
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the fraction bits of the double-precision floating-point value `a'.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
INLINE uint64_t extractFloat64Frac( float64 a )
|
|
{
|
|
|
|
return float64_val(a) & LIT64( 0x000FFFFFFFFFFFFF );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the exponent bits of the double-precision floating-point value `a'.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
INLINE int_fast16_t extractFloat64Exp(float64 a)
|
|
{
|
|
|
|
return ( float64_val(a)>>52 ) & 0x7FF;
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the sign bit of the double-precision floating-point value `a'.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
INLINE flag extractFloat64Sign( float64 a )
|
|
{
|
|
|
|
return float64_val(a)>>63;
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| If `a' is denormal and we are in flush-to-zero mode then set the
|
|
| input-denormal exception and return zero. Otherwise just return the value.
|
|
*----------------------------------------------------------------------------*/
|
|
static float64 float64_squash_input_denormal(float64 a STATUS_PARAM)
|
|
{
|
|
if (STATUS(flush_inputs_to_zero)) {
|
|
if (extractFloat64Exp(a) == 0 && extractFloat64Frac(a) != 0) {
|
|
float_raise(float_flag_input_denormal STATUS_VAR);
|
|
return make_float64(float64_val(a) & (1ULL << 63));
|
|
}
|
|
}
|
|
return a;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Normalizes the subnormal double-precision floating-point value represented
|
|
| by the denormalized significand `aSig'. The normalized exponent and
|
|
| significand are stored at the locations pointed to by `zExpPtr' and
|
|
| `zSigPtr', respectively.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static void
|
|
normalizeFloat64Subnormal(uint64_t aSig, int_fast16_t *zExpPtr, uint64_t *zSigPtr)
|
|
{
|
|
int8 shiftCount;
|
|
|
|
shiftCount = countLeadingZeros64( aSig ) - 11;
|
|
*zSigPtr = aSig<<shiftCount;
|
|
*zExpPtr = 1 - shiftCount;
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
|
|
| double-precision floating-point value, returning the result. After being
|
|
| shifted into the proper positions, the three fields are simply added
|
|
| together to form the result. This means that any integer portion of `zSig'
|
|
| will be added into the exponent. Since a properly normalized significand
|
|
| will have an integer portion equal to 1, the `zExp' input should be 1 less
|
|
| than the desired result exponent whenever `zSig' is a complete, normalized
|
|
| significand.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
INLINE float64 packFloat64(flag zSign, int_fast16_t zExp, uint64_t zSig)
|
|
{
|
|
|
|
return make_float64(
|
|
( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<52 ) + zSig);
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
|
|
| and significand `zSig', and returns the proper double-precision floating-
|
|
| point value corresponding to the abstract input. Ordinarily, the abstract
|
|
| value is simply rounded and packed into the double-precision format, with
|
|
| the inexact exception raised if the abstract input cannot be represented
|
|
| exactly. However, if the abstract value is too large, the overflow and
|
|
| inexact exceptions are raised and an infinity or maximal finite value is
|
|
| returned. If the abstract value is too small, the input value is rounded
|
|
| to a subnormal number, and the underflow and inexact exceptions are raised
|
|
| if the abstract input cannot be represented exactly as a subnormal double-
|
|
| precision floating-point number.
|
|
| The input significand `zSig' has its binary point between bits 62
|
|
| and 61, which is 10 bits to the left of the usual location. This shifted
|
|
| significand must be normalized or smaller. If `zSig' is not normalized,
|
|
| `zExp' must be 0; in that case, the result returned is a subnormal number,
|
|
| and it must not require rounding. In the usual case that `zSig' is
|
|
| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
|
|
| The handling of underflow and overflow follows the IEC/IEEE Standard for
|
|
| Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static float64 roundAndPackFloat64(flag zSign, int_fast16_t zExp, uint64_t zSig STATUS_PARAM)
|
|
{
|
|
int8 roundingMode;
|
|
flag roundNearestEven;
|
|
int_fast16_t roundIncrement, roundBits;
|
|
flag isTiny;
|
|
|
|
roundingMode = STATUS(float_rounding_mode);
|
|
roundNearestEven = ( roundingMode == float_round_nearest_even );
|
|
roundIncrement = 0x200;
|
|
if ( ! roundNearestEven ) {
|
|
if ( roundingMode == float_round_to_zero ) {
|
|
roundIncrement = 0;
|
|
}
|
|
else {
|
|
roundIncrement = 0x3FF;
|
|
if ( zSign ) {
|
|
if ( roundingMode == float_round_up ) roundIncrement = 0;
|
|
}
|
|
else {
|
|
if ( roundingMode == float_round_down ) roundIncrement = 0;
|
|
}
|
|
}
|
|
}
|
|
roundBits = zSig & 0x3FF;
|
|
if ( 0x7FD <= (uint16_t) zExp ) {
|
|
if ( ( 0x7FD < zExp )
|
|
|| ( ( zExp == 0x7FD )
|
|
&& ( (int64_t) ( zSig + roundIncrement ) < 0 ) )
|
|
) {
|
|
float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR);
|
|
return packFloat64( zSign, 0x7FF, - ( roundIncrement == 0 ));
|
|
}
|
|
if ( zExp < 0 ) {
|
|
if (STATUS(flush_to_zero)) {
|
|
float_raise(float_flag_output_denormal STATUS_VAR);
|
|
return packFloat64(zSign, 0, 0);
|
|
}
|
|
isTiny =
|
|
( STATUS(float_detect_tininess) == float_tininess_before_rounding )
|
|
|| ( zExp < -1 )
|
|
|| ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) );
|
|
shift64RightJamming( zSig, - zExp, &zSig );
|
|
zExp = 0;
|
|
roundBits = zSig & 0x3FF;
|
|
if ( isTiny && roundBits ) float_raise( float_flag_underflow STATUS_VAR);
|
|
}
|
|
}
|
|
if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact;
|
|
zSig = ( zSig + roundIncrement )>>10;
|
|
zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven );
|
|
if ( zSig == 0 ) zExp = 0;
|
|
return packFloat64( zSign, zExp, zSig );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
|
|
| and significand `zSig', and returns the proper double-precision floating-
|
|
| point value corresponding to the abstract input. This routine is just like
|
|
| `roundAndPackFloat64' except that `zSig' does not have to be normalized.
|
|
| Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
|
|
| floating-point exponent.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static float64
|
|
normalizeRoundAndPackFloat64(flag zSign, int_fast16_t zExp, uint64_t zSig STATUS_PARAM)
|
|
{
|
|
int8 shiftCount;
|
|
|
|
shiftCount = countLeadingZeros64( zSig ) - 1;
|
|
return roundAndPackFloat64( zSign, zExp - shiftCount, zSig<<shiftCount STATUS_VAR);
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the fraction bits of the extended double-precision floating-point
|
|
| value `a'.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
INLINE uint64_t extractFloatx80Frac( floatx80 a )
|
|
{
|
|
|
|
return a.low;
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the exponent bits of the extended double-precision floating-point
|
|
| value `a'.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
INLINE int32 extractFloatx80Exp( floatx80 a )
|
|
{
|
|
|
|
return a.high & 0x7FFF;
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the sign bit of the extended double-precision floating-point value
|
|
| `a'.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
INLINE flag extractFloatx80Sign( floatx80 a )
|
|
{
|
|
|
|
return a.high>>15;
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Normalizes the subnormal extended double-precision floating-point value
|
|
| represented by the denormalized significand `aSig'. The normalized exponent
|
|
| and significand are stored at the locations pointed to by `zExpPtr' and
|
|
| `zSigPtr', respectively.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static void
|
|
normalizeFloatx80Subnormal( uint64_t aSig, int32 *zExpPtr, uint64_t *zSigPtr )
|
|
{
|
|
int8 shiftCount;
|
|
|
|
shiftCount = countLeadingZeros64( aSig );
|
|
*zSigPtr = aSig<<shiftCount;
|
|
*zExpPtr = 1 - shiftCount;
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Packs the sign `zSign', exponent `zExp', and significand `zSig' into an
|
|
| extended double-precision floating-point value, returning the result.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
INLINE floatx80 packFloatx80( flag zSign, int32 zExp, uint64_t zSig )
|
|
{
|
|
floatx80 z;
|
|
|
|
z.low = zSig;
|
|
z.high = ( ( (uint16_t) zSign )<<15 ) + zExp;
|
|
return z;
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
|
|
| and extended significand formed by the concatenation of `zSig0' and `zSig1',
|
|
| and returns the proper extended double-precision floating-point value
|
|
| corresponding to the abstract input. Ordinarily, the abstract value is
|
|
| rounded and packed into the extended double-precision format, with the
|
|
| inexact exception raised if the abstract input cannot be represented
|
|
| exactly. However, if the abstract value is too large, the overflow and
|
|
| inexact exceptions are raised and an infinity or maximal finite value is
|
|
| returned. If the abstract value is too small, the input value is rounded to
|
|
| a subnormal number, and the underflow and inexact exceptions are raised if
|
|
| the abstract input cannot be represented exactly as a subnormal extended
|
|
| double-precision floating-point number.
|
|
| If `roundingPrecision' is 32 or 64, the result is rounded to the same
|
|
| number of bits as single or double precision, respectively. Otherwise, the
|
|
| result is rounded to the full precision of the extended double-precision
|
|
| format.
|
|
| The input significand must be normalized or smaller. If the input
|
|
| significand is not normalized, `zExp' must be 0; in that case, the result
|
|
| returned is a subnormal number, and it must not require rounding. The
|
|
| handling of underflow and overflow follows the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static floatx80
|
|
roundAndPackFloatx80(
|
|
int8 roundingPrecision, flag zSign, int32 zExp, uint64_t zSig0, uint64_t zSig1
|
|
STATUS_PARAM)
|
|
{
|
|
int8 roundingMode;
|
|
flag roundNearestEven, increment, isTiny;
|
|
int64 roundIncrement, roundMask, roundBits;
|
|
|
|
roundingMode = STATUS(float_rounding_mode);
|
|
roundNearestEven = ( roundingMode == float_round_nearest_even );
|
|
if ( roundingPrecision == 80 ) goto precision80;
|
|
if ( roundingPrecision == 64 ) {
|
|
roundIncrement = LIT64( 0x0000000000000400 );
|
|
roundMask = LIT64( 0x00000000000007FF );
|
|
}
|
|
else if ( roundingPrecision == 32 ) {
|
|
roundIncrement = LIT64( 0x0000008000000000 );
|
|
roundMask = LIT64( 0x000000FFFFFFFFFF );
|
|
}
|
|
else {
|
|
goto precision80;
|
|
}
|
|
zSig0 |= ( zSig1 != 0 );
|
|
if ( ! roundNearestEven ) {
|
|
if ( roundingMode == float_round_to_zero ) {
|
|
roundIncrement = 0;
|
|
}
|
|
else {
|
|
roundIncrement = roundMask;
|
|
if ( zSign ) {
|
|
if ( roundingMode == float_round_up ) roundIncrement = 0;
|
|
}
|
|
else {
|
|
if ( roundingMode == float_round_down ) roundIncrement = 0;
|
|
}
|
|
}
|
|
}
|
|
roundBits = zSig0 & roundMask;
|
|
if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) {
|
|
if ( ( 0x7FFE < zExp )
|
|
|| ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) )
|
|
) {
|
|
goto overflow;
|
|
}
|
|
if ( zExp <= 0 ) {
|
|
if (STATUS(flush_to_zero)) {
|
|
float_raise(float_flag_output_denormal STATUS_VAR);
|
|
return packFloatx80(zSign, 0, 0);
|
|
}
|
|
isTiny =
|
|
( STATUS(float_detect_tininess) == float_tininess_before_rounding )
|
|
|| ( zExp < 0 )
|
|
|| ( zSig0 <= zSig0 + roundIncrement );
|
|
shift64RightJamming( zSig0, 1 - zExp, &zSig0 );
|
|
zExp = 0;
|
|
roundBits = zSig0 & roundMask;
|
|
if ( isTiny && roundBits ) float_raise( float_flag_underflow STATUS_VAR);
|
|
if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact;
|
|
zSig0 += roundIncrement;
|
|
if ( (int64_t) zSig0 < 0 ) zExp = 1;
|
|
roundIncrement = roundMask + 1;
|
|
if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
|
|
roundMask |= roundIncrement;
|
|
}
|
|
zSig0 &= ~ roundMask;
|
|
return packFloatx80( zSign, zExp, zSig0 );
|
|
}
|
|
}
|
|
if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact;
|
|
zSig0 += roundIncrement;
|
|
if ( zSig0 < roundIncrement ) {
|
|
++zExp;
|
|
zSig0 = LIT64( 0x8000000000000000 );
|
|
}
|
|
roundIncrement = roundMask + 1;
|
|
if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
|
|
roundMask |= roundIncrement;
|
|
}
|
|
zSig0 &= ~ roundMask;
|
|
if ( zSig0 == 0 ) zExp = 0;
|
|
return packFloatx80( zSign, zExp, zSig0 );
|
|
precision80:
|
|
increment = ( (int64_t) zSig1 < 0 );
|
|
if ( ! roundNearestEven ) {
|
|
if ( roundingMode == float_round_to_zero ) {
|
|
increment = 0;
|
|
}
|
|
else {
|
|
if ( zSign ) {
|
|
increment = ( roundingMode == float_round_down ) && zSig1;
|
|
}
|
|
else {
|
|
increment = ( roundingMode == float_round_up ) && zSig1;
|
|
}
|
|
}
|
|
}
|
|
if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) {
|
|
if ( ( 0x7FFE < zExp )
|
|
|| ( ( zExp == 0x7FFE )
|
|
&& ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) )
|
|
&& increment
|
|
)
|
|
) {
|
|
roundMask = 0;
|
|
overflow:
|
|
float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR);
|
|
if ( ( roundingMode == float_round_to_zero )
|
|
|| ( zSign && ( roundingMode == float_round_up ) )
|
|
|| ( ! zSign && ( roundingMode == float_round_down ) )
|
|
) {
|
|
return packFloatx80( zSign, 0x7FFE, ~ roundMask );
|
|
}
|
|
return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
|
|
}
|
|
if ( zExp <= 0 ) {
|
|
isTiny =
|
|
( STATUS(float_detect_tininess) == float_tininess_before_rounding )
|
|
|| ( zExp < 0 )
|
|
|| ! increment
|
|
|| ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) );
|
|
shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 );
|
|
zExp = 0;
|
|
if ( isTiny && zSig1 ) float_raise( float_flag_underflow STATUS_VAR);
|
|
if ( zSig1 ) STATUS(float_exception_flags) |= float_flag_inexact;
|
|
if ( roundNearestEven ) {
|
|
increment = ( (int64_t) zSig1 < 0 );
|
|
}
|
|
else {
|
|
if ( zSign ) {
|
|
increment = ( roundingMode == float_round_down ) && zSig1;
|
|
}
|
|
else {
|
|
increment = ( roundingMode == float_round_up ) && zSig1;
|
|
}
|
|
}
|
|
if ( increment ) {
|
|
++zSig0;
|
|
zSig0 &=
|
|
~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven );
|
|
if ( (int64_t) zSig0 < 0 ) zExp = 1;
|
|
}
|
|
return packFloatx80( zSign, zExp, zSig0 );
|
|
}
|
|
}
|
|
if ( zSig1 ) STATUS(float_exception_flags) |= float_flag_inexact;
|
|
if ( increment ) {
|
|
++zSig0;
|
|
if ( zSig0 == 0 ) {
|
|
++zExp;
|
|
zSig0 = LIT64( 0x8000000000000000 );
|
|
}
|
|
else {
|
|
zSig0 &= ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven );
|
|
}
|
|
}
|
|
else {
|
|
if ( zSig0 == 0 ) zExp = 0;
|
|
}
|
|
return packFloatx80( zSign, zExp, zSig0 );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Takes an abstract floating-point value having sign `zSign', exponent
|
|
| `zExp', and significand formed by the concatenation of `zSig0' and `zSig1',
|
|
| and returns the proper extended double-precision floating-point value
|
|
| corresponding to the abstract input. This routine is just like
|
|
| `roundAndPackFloatx80' except that the input significand does not have to be
|
|
| normalized.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static floatx80
|
|
normalizeRoundAndPackFloatx80(
|
|
int8 roundingPrecision, flag zSign, int32 zExp, uint64_t zSig0, uint64_t zSig1
|
|
STATUS_PARAM)
|
|
{
|
|
int8 shiftCount;
|
|
|
|
if ( zSig0 == 0 ) {
|
|
zSig0 = zSig1;
|
|
zSig1 = 0;
|
|
zExp -= 64;
|
|
}
|
|
shiftCount = countLeadingZeros64( zSig0 );
|
|
shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
|
|
zExp -= shiftCount;
|
|
return
|
|
roundAndPackFloatx80( roundingPrecision, zSign, zExp, zSig0, zSig1 STATUS_VAR);
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the least-significant 64 fraction bits of the quadruple-precision
|
|
| floating-point value `a'.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
INLINE uint64_t extractFloat128Frac1( float128 a )
|
|
{
|
|
|
|
return a.low;
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the most-significant 48 fraction bits of the quadruple-precision
|
|
| floating-point value `a'.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
INLINE uint64_t extractFloat128Frac0( float128 a )
|
|
{
|
|
|
|
return a.high & LIT64( 0x0000FFFFFFFFFFFF );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the exponent bits of the quadruple-precision floating-point value
|
|
| `a'.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
INLINE int32 extractFloat128Exp( float128 a )
|
|
{
|
|
|
|
return ( a.high>>48 ) & 0x7FFF;
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the sign bit of the quadruple-precision floating-point value `a'.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
INLINE flag extractFloat128Sign( float128 a )
|
|
{
|
|
|
|
return a.high>>63;
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Normalizes the subnormal quadruple-precision floating-point value
|
|
| represented by the denormalized significand formed by the concatenation of
|
|
| `aSig0' and `aSig1'. The normalized exponent is stored at the location
|
|
| pointed to by `zExpPtr'. The most significant 49 bits of the normalized
|
|
| significand are stored at the location pointed to by `zSig0Ptr', and the
|
|
| least significant 64 bits of the normalized significand are stored at the
|
|
| location pointed to by `zSig1Ptr'.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static void
|
|
normalizeFloat128Subnormal(
|
|
uint64_t aSig0,
|
|
uint64_t aSig1,
|
|
int32 *zExpPtr,
|
|
uint64_t *zSig0Ptr,
|
|
uint64_t *zSig1Ptr
|
|
)
|
|
{
|
|
int8 shiftCount;
|
|
|
|
if ( aSig0 == 0 ) {
|
|
shiftCount = countLeadingZeros64( aSig1 ) - 15;
|
|
if ( shiftCount < 0 ) {
|
|
*zSig0Ptr = aSig1>>( - shiftCount );
|
|
*zSig1Ptr = aSig1<<( shiftCount & 63 );
|
|
}
|
|
else {
|
|
*zSig0Ptr = aSig1<<shiftCount;
|
|
*zSig1Ptr = 0;
|
|
}
|
|
*zExpPtr = - shiftCount - 63;
|
|
}
|
|
else {
|
|
shiftCount = countLeadingZeros64( aSig0 ) - 15;
|
|
shortShift128Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr );
|
|
*zExpPtr = 1 - shiftCount;
|
|
}
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Packs the sign `zSign', the exponent `zExp', and the significand formed
|
|
| by the concatenation of `zSig0' and `zSig1' into a quadruple-precision
|
|
| floating-point value, returning the result. After being shifted into the
|
|
| proper positions, the three fields `zSign', `zExp', and `zSig0' are simply
|
|
| added together to form the most significant 32 bits of the result. This
|
|
| means that any integer portion of `zSig0' will be added into the exponent.
|
|
| Since a properly normalized significand will have an integer portion equal
|
|
| to 1, the `zExp' input should be 1 less than the desired result exponent
|
|
| whenever `zSig0' and `zSig1' concatenated form a complete, normalized
|
|
| significand.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
INLINE float128
|
|
packFloat128( flag zSign, int32 zExp, uint64_t zSig0, uint64_t zSig1 )
|
|
{
|
|
float128 z;
|
|
|
|
z.low = zSig1;
|
|
z.high = ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<48 ) + zSig0;
|
|
return z;
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
|
|
| and extended significand formed by the concatenation of `zSig0', `zSig1',
|
|
| and `zSig2', and returns the proper quadruple-precision floating-point value
|
|
| corresponding to the abstract input. Ordinarily, the abstract value is
|
|
| simply rounded and packed into the quadruple-precision format, with the
|
|
| inexact exception raised if the abstract input cannot be represented
|
|
| exactly. However, if the abstract value is too large, the overflow and
|
|
| inexact exceptions are raised and an infinity or maximal finite value is
|
|
| returned. If the abstract value is too small, the input value is rounded to
|
|
| a subnormal number, and the underflow and inexact exceptions are raised if
|
|
| the abstract input cannot be represented exactly as a subnormal quadruple-
|
|
| precision floating-point number.
|
|
| The input significand must be normalized or smaller. If the input
|
|
| significand is not normalized, `zExp' must be 0; in that case, the result
|
|
| returned is a subnormal number, and it must not require rounding. In the
|
|
| usual case that the input significand is normalized, `zExp' must be 1 less
|
|
| than the ``true'' floating-point exponent. The handling of underflow and
|
|
| overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static float128
|
|
roundAndPackFloat128(
|
|
flag zSign, int32 zExp, uint64_t zSig0, uint64_t zSig1, uint64_t zSig2 STATUS_PARAM)
|
|
{
|
|
int8 roundingMode;
|
|
flag roundNearestEven, increment, isTiny;
|
|
|
|
roundingMode = STATUS(float_rounding_mode);
|
|
roundNearestEven = ( roundingMode == float_round_nearest_even );
|
|
increment = ( (int64_t) zSig2 < 0 );
|
|
if ( ! roundNearestEven ) {
|
|
if ( roundingMode == float_round_to_zero ) {
|
|
increment = 0;
|
|
}
|
|
else {
|
|
if ( zSign ) {
|
|
increment = ( roundingMode == float_round_down ) && zSig2;
|
|
}
|
|
else {
|
|
increment = ( roundingMode == float_round_up ) && zSig2;
|
|
}
|
|
}
|
|
}
|
|
if ( 0x7FFD <= (uint32_t) zExp ) {
|
|
if ( ( 0x7FFD < zExp )
|
|
|| ( ( zExp == 0x7FFD )
|
|
&& eq128(
|
|
LIT64( 0x0001FFFFFFFFFFFF ),
|
|
LIT64( 0xFFFFFFFFFFFFFFFF ),
|
|
zSig0,
|
|
zSig1
|
|
)
|
|
&& increment
|
|
)
|
|
) {
|
|
float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR);
|
|
if ( ( roundingMode == float_round_to_zero )
|
|
|| ( zSign && ( roundingMode == float_round_up ) )
|
|
|| ( ! zSign && ( roundingMode == float_round_down ) )
|
|
) {
|
|
return
|
|
packFloat128(
|
|
zSign,
|
|
0x7FFE,
|
|
LIT64( 0x0000FFFFFFFFFFFF ),
|
|
LIT64( 0xFFFFFFFFFFFFFFFF )
|
|
);
|
|
}
|
|
return packFloat128( zSign, 0x7FFF, 0, 0 );
|
|
}
|
|
if ( zExp < 0 ) {
|
|
if (STATUS(flush_to_zero)) {
|
|
float_raise(float_flag_output_denormal STATUS_VAR);
|
|
return packFloat128(zSign, 0, 0, 0);
|
|
}
|
|
isTiny =
|
|
( STATUS(float_detect_tininess) == float_tininess_before_rounding )
|
|
|| ( zExp < -1 )
|
|
|| ! increment
|
|
|| lt128(
|
|
zSig0,
|
|
zSig1,
|
|
LIT64( 0x0001FFFFFFFFFFFF ),
|
|
LIT64( 0xFFFFFFFFFFFFFFFF )
|
|
);
|
|
shift128ExtraRightJamming(
|
|
zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 );
|
|
zExp = 0;
|
|
if ( isTiny && zSig2 ) float_raise( float_flag_underflow STATUS_VAR);
|
|
if ( roundNearestEven ) {
|
|
increment = ( (int64_t) zSig2 < 0 );
|
|
}
|
|
else {
|
|
if ( zSign ) {
|
|
increment = ( roundingMode == float_round_down ) && zSig2;
|
|
}
|
|
else {
|
|
increment = ( roundingMode == float_round_up ) && zSig2;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if ( zSig2 ) STATUS(float_exception_flags) |= float_flag_inexact;
|
|
if ( increment ) {
|
|
add128( zSig0, zSig1, 0, 1, &zSig0, &zSig1 );
|
|
zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven );
|
|
}
|
|
else {
|
|
if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0;
|
|
}
|
|
return packFloat128( zSign, zExp, zSig0, zSig1 );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
|
|
| and significand formed by the concatenation of `zSig0' and `zSig1', and
|
|
| returns the proper quadruple-precision floating-point value corresponding
|
|
| to the abstract input. This routine is just like `roundAndPackFloat128'
|
|
| except that the input significand has fewer bits and does not have to be
|
|
| normalized. In all cases, `zExp' must be 1 less than the ``true'' floating-
|
|
| point exponent.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static float128
|
|
normalizeRoundAndPackFloat128(
|
|
flag zSign, int32 zExp, uint64_t zSig0, uint64_t zSig1 STATUS_PARAM)
|
|
{
|
|
int8 shiftCount;
|
|
uint64_t zSig2;
|
|
|
|
if ( zSig0 == 0 ) {
|
|
zSig0 = zSig1;
|
|
zSig1 = 0;
|
|
zExp -= 64;
|
|
}
|
|
shiftCount = countLeadingZeros64( zSig0 ) - 15;
|
|
if ( 0 <= shiftCount ) {
|
|
zSig2 = 0;
|
|
shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
|
|
}
|
|
else {
|
|
shift128ExtraRightJamming(
|
|
zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 );
|
|
}
|
|
zExp -= shiftCount;
|
|
return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR);
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the 32-bit two's complement integer `a'
|
|
| to the single-precision floating-point format. The conversion is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float32 int32_to_float32( int32 a STATUS_PARAM )
|
|
{
|
|
flag zSign;
|
|
|
|
if ( a == 0 ) return float32_zero;
|
|
if ( a == (int32_t) 0x80000000 ) return packFloat32( 1, 0x9E, 0 );
|
|
zSign = ( a < 0 );
|
|
return normalizeRoundAndPackFloat32( zSign, 0x9C, zSign ? - a : a STATUS_VAR );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the 32-bit two's complement integer `a'
|
|
| to the double-precision floating-point format. The conversion is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float64 int32_to_float64( int32 a STATUS_PARAM )
|
|
{
|
|
flag zSign;
|
|
uint32 absA;
|
|
int8 shiftCount;
|
|
uint64_t zSig;
|
|
|
|
if ( a == 0 ) return float64_zero;
|
|
zSign = ( a < 0 );
|
|
absA = zSign ? - a : a;
|
|
shiftCount = countLeadingZeros32( absA ) + 21;
|
|
zSig = absA;
|
|
return packFloat64( zSign, 0x432 - shiftCount, zSig<<shiftCount );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the 32-bit two's complement integer `a'
|
|
| to the extended double-precision floating-point format. The conversion
|
|
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 int32_to_floatx80( int32 a STATUS_PARAM )
|
|
{
|
|
flag zSign;
|
|
uint32 absA;
|
|
int8 shiftCount;
|
|
uint64_t zSig;
|
|
|
|
if ( a == 0 ) return packFloatx80( 0, 0, 0 );
|
|
zSign = ( a < 0 );
|
|
absA = zSign ? - a : a;
|
|
shiftCount = countLeadingZeros32( absA ) + 32;
|
|
zSig = absA;
|
|
return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the 32-bit two's complement integer `a' to
|
|
| the quadruple-precision floating-point format. The conversion is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float128 int32_to_float128( int32 a STATUS_PARAM )
|
|
{
|
|
flag zSign;
|
|
uint32 absA;
|
|
int8 shiftCount;
|
|
uint64_t zSig0;
|
|
|
|
if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
|
|
zSign = ( a < 0 );
|
|
absA = zSign ? - a : a;
|
|
shiftCount = countLeadingZeros32( absA ) + 17;
|
|
zSig0 = absA;
|
|
return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the 64-bit two's complement integer `a'
|
|
| to the single-precision floating-point format. The conversion is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float32 int64_to_float32( int64 a STATUS_PARAM )
|
|
{
|
|
flag zSign;
|
|
uint64 absA;
|
|
int8 shiftCount;
|
|
|
|
if ( a == 0 ) return float32_zero;
|
|
zSign = ( a < 0 );
|
|
absA = zSign ? - a : a;
|
|
shiftCount = countLeadingZeros64( absA ) - 40;
|
|
if ( 0 <= shiftCount ) {
|
|
return packFloat32( zSign, 0x95 - shiftCount, absA<<shiftCount );
|
|
}
|
|
else {
|
|
shiftCount += 7;
|
|
if ( shiftCount < 0 ) {
|
|
shift64RightJamming( absA, - shiftCount, &absA );
|
|
}
|
|
else {
|
|
absA <<= shiftCount;
|
|
}
|
|
return roundAndPackFloat32( zSign, 0x9C - shiftCount, absA STATUS_VAR );
|
|
}
|
|
|
|
}
|
|
|
|
float32 uint64_to_float32( uint64 a STATUS_PARAM )
|
|
{
|
|
int8 shiftCount;
|
|
|
|
if ( a == 0 ) return float32_zero;
|
|
shiftCount = countLeadingZeros64( a ) - 40;
|
|
if ( 0 <= shiftCount ) {
|
|
return packFloat32(0, 0x95 - shiftCount, a<<shiftCount);
|
|
}
|
|
else {
|
|
shiftCount += 7;
|
|
if ( shiftCount < 0 ) {
|
|
shift64RightJamming( a, - shiftCount, &a );
|
|
}
|
|
else {
|
|
a <<= shiftCount;
|
|
}
|
|
return roundAndPackFloat32(0, 0x9C - shiftCount, a STATUS_VAR);
|
|
}
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the 64-bit two's complement integer `a'
|
|
| to the double-precision floating-point format. The conversion is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float64 int64_to_float64( int64 a STATUS_PARAM )
|
|
{
|
|
flag zSign;
|
|
|
|
if ( a == 0 ) return float64_zero;
|
|
if ( a == (int64_t) LIT64( 0x8000000000000000 ) ) {
|
|
return packFloat64( 1, 0x43E, 0 );
|
|
}
|
|
zSign = ( a < 0 );
|
|
return normalizeRoundAndPackFloat64( zSign, 0x43C, zSign ? - a : a STATUS_VAR );
|
|
|
|
}
|
|
|
|
float64 uint64_to_float64(uint64 a STATUS_PARAM)
|
|
{
|
|
int exp = 0x43C;
|
|
|
|
if (a == 0) {
|
|
return float64_zero;
|
|
}
|
|
if ((int64_t)a < 0) {
|
|
shift64RightJamming(a, 1, &a);
|
|
exp += 1;
|
|
}
|
|
return normalizeRoundAndPackFloat64(0, exp, a STATUS_VAR);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the 64-bit two's complement integer `a'
|
|
| to the extended double-precision floating-point format. The conversion
|
|
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 int64_to_floatx80( int64 a STATUS_PARAM )
|
|
{
|
|
flag zSign;
|
|
uint64 absA;
|
|
int8 shiftCount;
|
|
|
|
if ( a == 0 ) return packFloatx80( 0, 0, 0 );
|
|
zSign = ( a < 0 );
|
|
absA = zSign ? - a : a;
|
|
shiftCount = countLeadingZeros64( absA );
|
|
return packFloatx80( zSign, 0x403E - shiftCount, absA<<shiftCount );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the 64-bit two's complement integer `a' to
|
|
| the quadruple-precision floating-point format. The conversion is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float128 int64_to_float128( int64 a STATUS_PARAM )
|
|
{
|
|
flag zSign;
|
|
uint64 absA;
|
|
int8 shiftCount;
|
|
int32 zExp;
|
|
uint64_t zSig0, zSig1;
|
|
|
|
if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
|
|
zSign = ( a < 0 );
|
|
absA = zSign ? - a : a;
|
|
shiftCount = countLeadingZeros64( absA ) + 49;
|
|
zExp = 0x406E - shiftCount;
|
|
if ( 64 <= shiftCount ) {
|
|
zSig1 = 0;
|
|
zSig0 = absA;
|
|
shiftCount -= 64;
|
|
}
|
|
else {
|
|
zSig1 = absA;
|
|
zSig0 = 0;
|
|
}
|
|
shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
|
|
return packFloat128( zSign, zExp, zSig0, zSig1 );
|
|
|
|
}
|
|
|
|
float128 uint64_to_float128(uint64 a STATUS_PARAM)
|
|
{
|
|
if (a == 0) {
|
|
return float128_zero;
|
|
}
|
|
return normalizeRoundAndPackFloat128(0, 0x406E, a, 0 STATUS_VAR);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the single-precision floating-point value
|
|
| `a' to the 32-bit two's complement integer format. The conversion is
|
|
| performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic---which means in particular that the conversion is rounded
|
|
| according to the current rounding mode. If `a' is a NaN, the largest
|
|
| positive integer is returned. Otherwise, if the conversion overflows, the
|
|
| largest integer with the same sign as `a' is returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int32 float32_to_int32( float32 a STATUS_PARAM )
|
|
{
|
|
flag aSign;
|
|
int_fast16_t aExp, shiftCount;
|
|
uint32_t aSig;
|
|
uint64_t aSig64;
|
|
|
|
a = float32_squash_input_denormal(a STATUS_VAR);
|
|
aSig = extractFloat32Frac( a );
|
|
aExp = extractFloat32Exp( a );
|
|
aSign = extractFloat32Sign( a );
|
|
if ( ( aExp == 0xFF ) && aSig ) aSign = 0;
|
|
if ( aExp ) aSig |= 0x00800000;
|
|
shiftCount = 0xAF - aExp;
|
|
aSig64 = aSig;
|
|
aSig64 <<= 32;
|
|
if ( 0 < shiftCount ) shift64RightJamming( aSig64, shiftCount, &aSig64 );
|
|
return roundAndPackInt32( aSign, aSig64 STATUS_VAR );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the single-precision floating-point value
|
|
| `a' to the 32-bit two's complement integer format. The conversion is
|
|
| performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic, except that the conversion is always rounded toward zero.
|
|
| If `a' is a NaN, the largest positive integer is returned. Otherwise, if
|
|
| the conversion overflows, the largest integer with the same sign as `a' is
|
|
| returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int32 float32_to_int32_round_to_zero( float32 a STATUS_PARAM )
|
|
{
|
|
flag aSign;
|
|
int_fast16_t aExp, shiftCount;
|
|
uint32_t aSig;
|
|
int32_t z;
|
|
a = float32_squash_input_denormal(a STATUS_VAR);
|
|
|
|
aSig = extractFloat32Frac( a );
|
|
aExp = extractFloat32Exp( a );
|
|
aSign = extractFloat32Sign( a );
|
|
shiftCount = aExp - 0x9E;
|
|
if ( 0 <= shiftCount ) {
|
|
if ( float32_val(a) != 0xCF000000 ) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF;
|
|
}
|
|
return (int32_t) 0x80000000;
|
|
}
|
|
else if ( aExp <= 0x7E ) {
|
|
if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact;
|
|
return 0;
|
|
}
|
|
aSig = ( aSig | 0x00800000 )<<8;
|
|
z = aSig>>( - shiftCount );
|
|
if ( (uint32_t) ( aSig<<( shiftCount & 31 ) ) ) {
|
|
STATUS(float_exception_flags) |= float_flag_inexact;
|
|
}
|
|
if ( aSign ) z = - z;
|
|
return z;
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the single-precision floating-point value
|
|
| `a' to the 16-bit two's complement integer format. The conversion is
|
|
| performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic, except that the conversion is always rounded toward zero.
|
|
| If `a' is a NaN, the largest positive integer is returned. Otherwise, if
|
|
| the conversion overflows, the largest integer with the same sign as `a' is
|
|
| returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int_fast16_t float32_to_int16_round_to_zero(float32 a STATUS_PARAM)
|
|
{
|
|
flag aSign;
|
|
int_fast16_t aExp, shiftCount;
|
|
uint32_t aSig;
|
|
int32 z;
|
|
|
|
aSig = extractFloat32Frac( a );
|
|
aExp = extractFloat32Exp( a );
|
|
aSign = extractFloat32Sign( a );
|
|
shiftCount = aExp - 0x8E;
|
|
if ( 0 <= shiftCount ) {
|
|
if ( float32_val(a) != 0xC7000000 ) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
|
|
return 0x7FFF;
|
|
}
|
|
}
|
|
return (int32_t) 0xffff8000;
|
|
}
|
|
else if ( aExp <= 0x7E ) {
|
|
if ( aExp | aSig ) {
|
|
STATUS(float_exception_flags) |= float_flag_inexact;
|
|
}
|
|
return 0;
|
|
}
|
|
shiftCount -= 0x10;
|
|
aSig = ( aSig | 0x00800000 )<<8;
|
|
z = aSig>>( - shiftCount );
|
|
if ( (uint32_t) ( aSig<<( shiftCount & 31 ) ) ) {
|
|
STATUS(float_exception_flags) |= float_flag_inexact;
|
|
}
|
|
if ( aSign ) {
|
|
z = - z;
|
|
}
|
|
return z;
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the single-precision floating-point value
|
|
| `a' to the 64-bit two's complement integer format. The conversion is
|
|
| performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic---which means in particular that the conversion is rounded
|
|
| according to the current rounding mode. If `a' is a NaN, the largest
|
|
| positive integer is returned. Otherwise, if the conversion overflows, the
|
|
| largest integer with the same sign as `a' is returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int64 float32_to_int64( float32 a STATUS_PARAM )
|
|
{
|
|
flag aSign;
|
|
int_fast16_t aExp, shiftCount;
|
|
uint32_t aSig;
|
|
uint64_t aSig64, aSigExtra;
|
|
a = float32_squash_input_denormal(a STATUS_VAR);
|
|
|
|
aSig = extractFloat32Frac( a );
|
|
aExp = extractFloat32Exp( a );
|
|
aSign = extractFloat32Sign( a );
|
|
shiftCount = 0xBE - aExp;
|
|
if ( shiftCount < 0 ) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
|
|
return LIT64( 0x7FFFFFFFFFFFFFFF );
|
|
}
|
|
return (int64_t) LIT64( 0x8000000000000000 );
|
|
}
|
|
if ( aExp ) aSig |= 0x00800000;
|
|
aSig64 = aSig;
|
|
aSig64 <<= 40;
|
|
shift64ExtraRightJamming( aSig64, 0, shiftCount, &aSig64, &aSigExtra );
|
|
return roundAndPackInt64( aSign, aSig64, aSigExtra STATUS_VAR );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the single-precision floating-point value
|
|
| `a' to the 64-bit two's complement integer format. The conversion is
|
|
| performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic, except that the conversion is always rounded toward zero. If
|
|
| `a' is a NaN, the largest positive integer is returned. Otherwise, if the
|
|
| conversion overflows, the largest integer with the same sign as `a' is
|
|
| returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int64 float32_to_int64_round_to_zero( float32 a STATUS_PARAM )
|
|
{
|
|
flag aSign;
|
|
int_fast16_t aExp, shiftCount;
|
|
uint32_t aSig;
|
|
uint64_t aSig64;
|
|
int64 z;
|
|
a = float32_squash_input_denormal(a STATUS_VAR);
|
|
|
|
aSig = extractFloat32Frac( a );
|
|
aExp = extractFloat32Exp( a );
|
|
aSign = extractFloat32Sign( a );
|
|
shiftCount = aExp - 0xBE;
|
|
if ( 0 <= shiftCount ) {
|
|
if ( float32_val(a) != 0xDF000000 ) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
|
|
return LIT64( 0x7FFFFFFFFFFFFFFF );
|
|
}
|
|
}
|
|
return (int64_t) LIT64( 0x8000000000000000 );
|
|
}
|
|
else if ( aExp <= 0x7E ) {
|
|
if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact;
|
|
return 0;
|
|
}
|
|
aSig64 = aSig | 0x00800000;
|
|
aSig64 <<= 40;
|
|
z = aSig64>>( - shiftCount );
|
|
if ( (uint64_t) ( aSig64<<( shiftCount & 63 ) ) ) {
|
|
STATUS(float_exception_flags) |= float_flag_inexact;
|
|
}
|
|
if ( aSign ) z = - z;
|
|
return z;
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the single-precision floating-point value
|
|
| `a' to the double-precision floating-point format. The conversion is
|
|
| performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float64 float32_to_float64( float32 a STATUS_PARAM )
|
|
{
|
|
flag aSign;
|
|
int_fast16_t aExp;
|
|
uint32_t aSig;
|
|
a = float32_squash_input_denormal(a STATUS_VAR);
|
|
|
|
aSig = extractFloat32Frac( a );
|
|
aExp = extractFloat32Exp( a );
|
|
aSign = extractFloat32Sign( a );
|
|
if ( aExp == 0xFF ) {
|
|
if ( aSig ) return commonNaNToFloat64( float32ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
|
|
return packFloat64( aSign, 0x7FF, 0 );
|
|
}
|
|
if ( aExp == 0 ) {
|
|
if ( aSig == 0 ) return packFloat64( aSign, 0, 0 );
|
|
normalizeFloat32Subnormal( aSig, &aExp, &aSig );
|
|
--aExp;
|
|
}
|
|
return packFloat64( aSign, aExp + 0x380, ( (uint64_t) aSig )<<29 );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the single-precision floating-point value
|
|
| `a' to the extended double-precision floating-point format. The conversion
|
|
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 float32_to_floatx80( float32 a STATUS_PARAM )
|
|
{
|
|
flag aSign;
|
|
int_fast16_t aExp;
|
|
uint32_t aSig;
|
|
|
|
a = float32_squash_input_denormal(a STATUS_VAR);
|
|
aSig = extractFloat32Frac( a );
|
|
aExp = extractFloat32Exp( a );
|
|
aSign = extractFloat32Sign( a );
|
|
if ( aExp == 0xFF ) {
|
|
if ( aSig ) return commonNaNToFloatx80( float32ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
|
|
return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
|
|
}
|
|
if ( aExp == 0 ) {
|
|
if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
|
|
normalizeFloat32Subnormal( aSig, &aExp, &aSig );
|
|
}
|
|
aSig |= 0x00800000;
|
|
return packFloatx80( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<40 );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the single-precision floating-point value
|
|
| `a' to the double-precision floating-point format. The conversion is
|
|
| performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float128 float32_to_float128( float32 a STATUS_PARAM )
|
|
{
|
|
flag aSign;
|
|
int_fast16_t aExp;
|
|
uint32_t aSig;
|
|
|
|
a = float32_squash_input_denormal(a STATUS_VAR);
|
|
aSig = extractFloat32Frac( a );
|
|
aExp = extractFloat32Exp( a );
|
|
aSign = extractFloat32Sign( a );
|
|
if ( aExp == 0xFF ) {
|
|
if ( aSig ) return commonNaNToFloat128( float32ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
|
|
return packFloat128( aSign, 0x7FFF, 0, 0 );
|
|
}
|
|
if ( aExp == 0 ) {
|
|
if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
|
|
normalizeFloat32Subnormal( aSig, &aExp, &aSig );
|
|
--aExp;
|
|
}
|
|
return packFloat128( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<25, 0 );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Rounds the single-precision floating-point value `a' to an integer, and
|
|
| returns the result as a single-precision floating-point value. The
|
|
| operation is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float32 float32_round_to_int( float32 a STATUS_PARAM)
|
|
{
|
|
flag aSign;
|
|
int_fast16_t aExp;
|
|
uint32_t lastBitMask, roundBitsMask;
|
|
int8 roundingMode;
|
|
uint32_t z;
|
|
a = float32_squash_input_denormal(a STATUS_VAR);
|
|
|
|
aExp = extractFloat32Exp( a );
|
|
if ( 0x96 <= aExp ) {
|
|
if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) {
|
|
return propagateFloat32NaN( a, a STATUS_VAR );
|
|
}
|
|
return a;
|
|
}
|
|
if ( aExp <= 0x7E ) {
|
|
if ( (uint32_t) ( float32_val(a)<<1 ) == 0 ) return a;
|
|
STATUS(float_exception_flags) |= float_flag_inexact;
|
|
aSign = extractFloat32Sign( a );
|
|
switch ( STATUS(float_rounding_mode) ) {
|
|
case float_round_nearest_even:
|
|
if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) {
|
|
return packFloat32( aSign, 0x7F, 0 );
|
|
}
|
|
break;
|
|
case float_round_down:
|
|
return make_float32(aSign ? 0xBF800000 : 0);
|
|
case float_round_up:
|
|
return make_float32(aSign ? 0x80000000 : 0x3F800000);
|
|
}
|
|
return packFloat32( aSign, 0, 0 );
|
|
}
|
|
lastBitMask = 1;
|
|
lastBitMask <<= 0x96 - aExp;
|
|
roundBitsMask = lastBitMask - 1;
|
|
z = float32_val(a);
|
|
roundingMode = STATUS(float_rounding_mode);
|
|
if ( roundingMode == float_round_nearest_even ) {
|
|
z += lastBitMask>>1;
|
|
if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask;
|
|
}
|
|
else if ( roundingMode != float_round_to_zero ) {
|
|
if ( extractFloat32Sign( make_float32(z) ) ^ ( roundingMode == float_round_up ) ) {
|
|
z += roundBitsMask;
|
|
}
|
|
}
|
|
z &= ~ roundBitsMask;
|
|
if ( z != float32_val(a) ) STATUS(float_exception_flags) |= float_flag_inexact;
|
|
return make_float32(z);
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of adding the absolute values of the single-precision
|
|
| floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
|
|
| before being returned. `zSign' is ignored if the result is a NaN.
|
|
| The addition is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static float32 addFloat32Sigs( float32 a, float32 b, flag zSign STATUS_PARAM)
|
|
{
|
|
int_fast16_t aExp, bExp, zExp;
|
|
uint32_t aSig, bSig, zSig;
|
|
int_fast16_t expDiff;
|
|
|
|
aSig = extractFloat32Frac( a );
|
|
aExp = extractFloat32Exp( a );
|
|
bSig = extractFloat32Frac( b );
|
|
bExp = extractFloat32Exp( b );
|
|
expDiff = aExp - bExp;
|
|
aSig <<= 6;
|
|
bSig <<= 6;
|
|
if ( 0 < expDiff ) {
|
|
if ( aExp == 0xFF ) {
|
|
if ( aSig ) return propagateFloat32NaN( a, b STATUS_VAR );
|
|
return a;
|
|
}
|
|
if ( bExp == 0 ) {
|
|
--expDiff;
|
|
}
|
|
else {
|
|
bSig |= 0x20000000;
|
|
}
|
|
shift32RightJamming( bSig, expDiff, &bSig );
|
|
zExp = aExp;
|
|
}
|
|
else if ( expDiff < 0 ) {
|
|
if ( bExp == 0xFF ) {
|
|
if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
|
|
return packFloat32( zSign, 0xFF, 0 );
|
|
}
|
|
if ( aExp == 0 ) {
|
|
++expDiff;
|
|
}
|
|
else {
|
|
aSig |= 0x20000000;
|
|
}
|
|
shift32RightJamming( aSig, - expDiff, &aSig );
|
|
zExp = bExp;
|
|
}
|
|
else {
|
|
if ( aExp == 0xFF ) {
|
|
if ( aSig | bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
|
|
return a;
|
|
}
|
|
if ( aExp == 0 ) {
|
|
if (STATUS(flush_to_zero)) {
|
|
if (aSig | bSig) {
|
|
float_raise(float_flag_output_denormal STATUS_VAR);
|
|
}
|
|
return packFloat32(zSign, 0, 0);
|
|
}
|
|
return packFloat32( zSign, 0, ( aSig + bSig )>>6 );
|
|
}
|
|
zSig = 0x40000000 + aSig + bSig;
|
|
zExp = aExp;
|
|
goto roundAndPack;
|
|
}
|
|
aSig |= 0x20000000;
|
|
zSig = ( aSig + bSig )<<1;
|
|
--zExp;
|
|
if ( (int32_t) zSig < 0 ) {
|
|
zSig = aSig + bSig;
|
|
++zExp;
|
|
}
|
|
roundAndPack:
|
|
return roundAndPackFloat32( zSign, zExp, zSig STATUS_VAR );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of subtracting the absolute values of the single-
|
|
| precision floating-point values `a' and `b'. If `zSign' is 1, the
|
|
| difference is negated before being returned. `zSign' is ignored if the
|
|
| result is a NaN. The subtraction is performed according to the IEC/IEEE
|
|
| Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static float32 subFloat32Sigs( float32 a, float32 b, flag zSign STATUS_PARAM)
|
|
{
|
|
int_fast16_t aExp, bExp, zExp;
|
|
uint32_t aSig, bSig, zSig;
|
|
int_fast16_t expDiff;
|
|
|
|
aSig = extractFloat32Frac( a );
|
|
aExp = extractFloat32Exp( a );
|
|
bSig = extractFloat32Frac( b );
|
|
bExp = extractFloat32Exp( b );
|
|
expDiff = aExp - bExp;
|
|
aSig <<= 7;
|
|
bSig <<= 7;
|
|
if ( 0 < expDiff ) goto aExpBigger;
|
|
if ( expDiff < 0 ) goto bExpBigger;
|
|
if ( aExp == 0xFF ) {
|
|
if ( aSig | bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
return float32_default_nan;
|
|
}
|
|
if ( aExp == 0 ) {
|
|
aExp = 1;
|
|
bExp = 1;
|
|
}
|
|
if ( bSig < aSig ) goto aBigger;
|
|
if ( aSig < bSig ) goto bBigger;
|
|
return packFloat32( STATUS(float_rounding_mode) == float_round_down, 0, 0 );
|
|
bExpBigger:
|
|
if ( bExp == 0xFF ) {
|
|
if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
|
|
return packFloat32( zSign ^ 1, 0xFF, 0 );
|
|
}
|
|
if ( aExp == 0 ) {
|
|
++expDiff;
|
|
}
|
|
else {
|
|
aSig |= 0x40000000;
|
|
}
|
|
shift32RightJamming( aSig, - expDiff, &aSig );
|
|
bSig |= 0x40000000;
|
|
bBigger:
|
|
zSig = bSig - aSig;
|
|
zExp = bExp;
|
|
zSign ^= 1;
|
|
goto normalizeRoundAndPack;
|
|
aExpBigger:
|
|
if ( aExp == 0xFF ) {
|
|
if ( aSig ) return propagateFloat32NaN( a, b STATUS_VAR );
|
|
return a;
|
|
}
|
|
if ( bExp == 0 ) {
|
|
--expDiff;
|
|
}
|
|
else {
|
|
bSig |= 0x40000000;
|
|
}
|
|
shift32RightJamming( bSig, expDiff, &bSig );
|
|
aSig |= 0x40000000;
|
|
aBigger:
|
|
zSig = aSig - bSig;
|
|
zExp = aExp;
|
|
normalizeRoundAndPack:
|
|
--zExp;
|
|
return normalizeRoundAndPackFloat32( zSign, zExp, zSig STATUS_VAR );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of adding the single-precision floating-point values `a'
|
|
| and `b'. The operation is performed according to the IEC/IEEE Standard for
|
|
| Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float32 float32_add( float32 a, float32 b STATUS_PARAM )
|
|
{
|
|
flag aSign, bSign;
|
|
a = float32_squash_input_denormal(a STATUS_VAR);
|
|
b = float32_squash_input_denormal(b STATUS_VAR);
|
|
|
|
aSign = extractFloat32Sign( a );
|
|
bSign = extractFloat32Sign( b );
|
|
if ( aSign == bSign ) {
|
|
return addFloat32Sigs( a, b, aSign STATUS_VAR);
|
|
}
|
|
else {
|
|
return subFloat32Sigs( a, b, aSign STATUS_VAR );
|
|
}
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of subtracting the single-precision floating-point values
|
|
| `a' and `b'. The operation is performed according to the IEC/IEEE Standard
|
|
| for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float32 float32_sub( float32 a, float32 b STATUS_PARAM )
|
|
{
|
|
flag aSign, bSign;
|
|
a = float32_squash_input_denormal(a STATUS_VAR);
|
|
b = float32_squash_input_denormal(b STATUS_VAR);
|
|
|
|
aSign = extractFloat32Sign( a );
|
|
bSign = extractFloat32Sign( b );
|
|
if ( aSign == bSign ) {
|
|
return subFloat32Sigs( a, b, aSign STATUS_VAR );
|
|
}
|
|
else {
|
|
return addFloat32Sigs( a, b, aSign STATUS_VAR );
|
|
}
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of multiplying the single-precision floating-point values
|
|
| `a' and `b'. The operation is performed according to the IEC/IEEE Standard
|
|
| for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float32 float32_mul( float32 a, float32 b STATUS_PARAM )
|
|
{
|
|
flag aSign, bSign, zSign;
|
|
int_fast16_t aExp, bExp, zExp;
|
|
uint32_t aSig, bSig;
|
|
uint64_t zSig64;
|
|
uint32_t zSig;
|
|
|
|
a = float32_squash_input_denormal(a STATUS_VAR);
|
|
b = float32_squash_input_denormal(b STATUS_VAR);
|
|
|
|
aSig = extractFloat32Frac( a );
|
|
aExp = extractFloat32Exp( a );
|
|
aSign = extractFloat32Sign( a );
|
|
bSig = extractFloat32Frac( b );
|
|
bExp = extractFloat32Exp( b );
|
|
bSign = extractFloat32Sign( b );
|
|
zSign = aSign ^ bSign;
|
|
if ( aExp == 0xFF ) {
|
|
if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
|
|
return propagateFloat32NaN( a, b STATUS_VAR );
|
|
}
|
|
if ( ( bExp | bSig ) == 0 ) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
return float32_default_nan;
|
|
}
|
|
return packFloat32( zSign, 0xFF, 0 );
|
|
}
|
|
if ( bExp == 0xFF ) {
|
|
if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
|
|
if ( ( aExp | aSig ) == 0 ) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
return float32_default_nan;
|
|
}
|
|
return packFloat32( zSign, 0xFF, 0 );
|
|
}
|
|
if ( aExp == 0 ) {
|
|
if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
|
|
normalizeFloat32Subnormal( aSig, &aExp, &aSig );
|
|
}
|
|
if ( bExp == 0 ) {
|
|
if ( bSig == 0 ) return packFloat32( zSign, 0, 0 );
|
|
normalizeFloat32Subnormal( bSig, &bExp, &bSig );
|
|
}
|
|
zExp = aExp + bExp - 0x7F;
|
|
aSig = ( aSig | 0x00800000 )<<7;
|
|
bSig = ( bSig | 0x00800000 )<<8;
|
|
shift64RightJamming( ( (uint64_t) aSig ) * bSig, 32, &zSig64 );
|
|
zSig = zSig64;
|
|
if ( 0 <= (int32_t) ( zSig<<1 ) ) {
|
|
zSig <<= 1;
|
|
--zExp;
|
|
}
|
|
return roundAndPackFloat32( zSign, zExp, zSig STATUS_VAR );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of dividing the single-precision floating-point value `a'
|
|
| by the corresponding value `b'. The operation is performed according to the
|
|
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float32 float32_div( float32 a, float32 b STATUS_PARAM )
|
|
{
|
|
flag aSign, bSign, zSign;
|
|
int_fast16_t aExp, bExp, zExp;
|
|
uint32_t aSig, bSig, zSig;
|
|
a = float32_squash_input_denormal(a STATUS_VAR);
|
|
b = float32_squash_input_denormal(b STATUS_VAR);
|
|
|
|
aSig = extractFloat32Frac( a );
|
|
aExp = extractFloat32Exp( a );
|
|
aSign = extractFloat32Sign( a );
|
|
bSig = extractFloat32Frac( b );
|
|
bExp = extractFloat32Exp( b );
|
|
bSign = extractFloat32Sign( b );
|
|
zSign = aSign ^ bSign;
|
|
if ( aExp == 0xFF ) {
|
|
if ( aSig ) return propagateFloat32NaN( a, b STATUS_VAR );
|
|
if ( bExp == 0xFF ) {
|
|
if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
return float32_default_nan;
|
|
}
|
|
return packFloat32( zSign, 0xFF, 0 );
|
|
}
|
|
if ( bExp == 0xFF ) {
|
|
if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
|
|
return packFloat32( zSign, 0, 0 );
|
|
}
|
|
if ( bExp == 0 ) {
|
|
if ( bSig == 0 ) {
|
|
if ( ( aExp | aSig ) == 0 ) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
return float32_default_nan;
|
|
}
|
|
float_raise( float_flag_divbyzero STATUS_VAR);
|
|
return packFloat32( zSign, 0xFF, 0 );
|
|
}
|
|
normalizeFloat32Subnormal( bSig, &bExp, &bSig );
|
|
}
|
|
if ( aExp == 0 ) {
|
|
if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
|
|
normalizeFloat32Subnormal( aSig, &aExp, &aSig );
|
|
}
|
|
zExp = aExp - bExp + 0x7D;
|
|
aSig = ( aSig | 0x00800000 )<<7;
|
|
bSig = ( bSig | 0x00800000 )<<8;
|
|
if ( bSig <= ( aSig + aSig ) ) {
|
|
aSig >>= 1;
|
|
++zExp;
|
|
}
|
|
zSig = ( ( (uint64_t) aSig )<<32 ) / bSig;
|
|
if ( ( zSig & 0x3F ) == 0 ) {
|
|
zSig |= ( (uint64_t) bSig * zSig != ( (uint64_t) aSig )<<32 );
|
|
}
|
|
return roundAndPackFloat32( zSign, zExp, zSig STATUS_VAR );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the remainder of the single-precision floating-point value `a'
|
|
| with respect to the corresponding value `b'. The operation is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float32 float32_rem( float32 a, float32 b STATUS_PARAM )
|
|
{
|
|
flag aSign, zSign;
|
|
int_fast16_t aExp, bExp, expDiff;
|
|
uint32_t aSig, bSig;
|
|
uint32_t q;
|
|
uint64_t aSig64, bSig64, q64;
|
|
uint32_t alternateASig;
|
|
int32_t sigMean;
|
|
a = float32_squash_input_denormal(a STATUS_VAR);
|
|
b = float32_squash_input_denormal(b STATUS_VAR);
|
|
|
|
aSig = extractFloat32Frac( a );
|
|
aExp = extractFloat32Exp( a );
|
|
aSign = extractFloat32Sign( a );
|
|
bSig = extractFloat32Frac( b );
|
|
bExp = extractFloat32Exp( b );
|
|
if ( aExp == 0xFF ) {
|
|
if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
|
|
return propagateFloat32NaN( a, b STATUS_VAR );
|
|
}
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
return float32_default_nan;
|
|
}
|
|
if ( bExp == 0xFF ) {
|
|
if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
|
|
return a;
|
|
}
|
|
if ( bExp == 0 ) {
|
|
if ( bSig == 0 ) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
return float32_default_nan;
|
|
}
|
|
normalizeFloat32Subnormal( bSig, &bExp, &bSig );
|
|
}
|
|
if ( aExp == 0 ) {
|
|
if ( aSig == 0 ) return a;
|
|
normalizeFloat32Subnormal( aSig, &aExp, &aSig );
|
|
}
|
|
expDiff = aExp - bExp;
|
|
aSig |= 0x00800000;
|
|
bSig |= 0x00800000;
|
|
if ( expDiff < 32 ) {
|
|
aSig <<= 8;
|
|
bSig <<= 8;
|
|
if ( expDiff < 0 ) {
|
|
if ( expDiff < -1 ) return a;
|
|
aSig >>= 1;
|
|
}
|
|
q = ( bSig <= aSig );
|
|
if ( q ) aSig -= bSig;
|
|
if ( 0 < expDiff ) {
|
|
q = ( ( (uint64_t) aSig )<<32 ) / bSig;
|
|
q >>= 32 - expDiff;
|
|
bSig >>= 2;
|
|
aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
|
|
}
|
|
else {
|
|
aSig >>= 2;
|
|
bSig >>= 2;
|
|
}
|
|
}
|
|
else {
|
|
if ( bSig <= aSig ) aSig -= bSig;
|
|
aSig64 = ( (uint64_t) aSig )<<40;
|
|
bSig64 = ( (uint64_t) bSig )<<40;
|
|
expDiff -= 64;
|
|
while ( 0 < expDiff ) {
|
|
q64 = estimateDiv128To64( aSig64, 0, bSig64 );
|
|
q64 = ( 2 < q64 ) ? q64 - 2 : 0;
|
|
aSig64 = - ( ( bSig * q64 )<<38 );
|
|
expDiff -= 62;
|
|
}
|
|
expDiff += 64;
|
|
q64 = estimateDiv128To64( aSig64, 0, bSig64 );
|
|
q64 = ( 2 < q64 ) ? q64 - 2 : 0;
|
|
q = q64>>( 64 - expDiff );
|
|
bSig <<= 6;
|
|
aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q;
|
|
}
|
|
do {
|
|
alternateASig = aSig;
|
|
++q;
|
|
aSig -= bSig;
|
|
} while ( 0 <= (int32_t) aSig );
|
|
sigMean = aSig + alternateASig;
|
|
if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
|
|
aSig = alternateASig;
|
|
}
|
|
zSign = ( (int32_t) aSig < 0 );
|
|
if ( zSign ) aSig = - aSig;
|
|
return normalizeRoundAndPackFloat32( aSign ^ zSign, bExp, aSig STATUS_VAR );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of multiplying the single-precision floating-point values
|
|
| `a' and `b' then adding 'c', with no intermediate rounding step after the
|
|
| multiplication. The operation is performed according to the IEC/IEEE
|
|
| Standard for Binary Floating-Point Arithmetic 754-2008.
|
|
| The flags argument allows the caller to select negation of the
|
|
| addend, the intermediate product, or the final result. (The difference
|
|
| between this and having the caller do a separate negation is that negating
|
|
| externally will flip the sign bit on NaNs.)
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float32 float32_muladd(float32 a, float32 b, float32 c, int flags STATUS_PARAM)
|
|
{
|
|
flag aSign, bSign, cSign, zSign;
|
|
int_fast16_t aExp, bExp, cExp, pExp, zExp, expDiff;
|
|
uint32_t aSig, bSig, cSig;
|
|
flag pInf, pZero, pSign;
|
|
uint64_t pSig64, cSig64, zSig64;
|
|
uint32_t pSig;
|
|
int shiftcount;
|
|
flag signflip, infzero;
|
|
|
|
a = float32_squash_input_denormal(a STATUS_VAR);
|
|
b = float32_squash_input_denormal(b STATUS_VAR);
|
|
c = float32_squash_input_denormal(c STATUS_VAR);
|
|
aSig = extractFloat32Frac(a);
|
|
aExp = extractFloat32Exp(a);
|
|
aSign = extractFloat32Sign(a);
|
|
bSig = extractFloat32Frac(b);
|
|
bExp = extractFloat32Exp(b);
|
|
bSign = extractFloat32Sign(b);
|
|
cSig = extractFloat32Frac(c);
|
|
cExp = extractFloat32Exp(c);
|
|
cSign = extractFloat32Sign(c);
|
|
|
|
infzero = ((aExp == 0 && aSig == 0 && bExp == 0xff && bSig == 0) ||
|
|
(aExp == 0xff && aSig == 0 && bExp == 0 && bSig == 0));
|
|
|
|
/* It is implementation-defined whether the cases of (0,inf,qnan)
|
|
* and (inf,0,qnan) raise InvalidOperation or not (and what QNaN
|
|
* they return if they do), so we have to hand this information
|
|
* off to the target-specific pick-a-NaN routine.
|
|
*/
|
|
if (((aExp == 0xff) && aSig) ||
|
|
((bExp == 0xff) && bSig) ||
|
|
((cExp == 0xff) && cSig)) {
|
|
return propagateFloat32MulAddNaN(a, b, c, infzero STATUS_VAR);
|
|
}
|
|
|
|
if (infzero) {
|
|
float_raise(float_flag_invalid STATUS_VAR);
|
|
return float32_default_nan;
|
|
}
|
|
|
|
if (flags & float_muladd_negate_c) {
|
|
cSign ^= 1;
|
|
}
|
|
|
|
signflip = (flags & float_muladd_negate_result) ? 1 : 0;
|
|
|
|
/* Work out the sign and type of the product */
|
|
pSign = aSign ^ bSign;
|
|
if (flags & float_muladd_negate_product) {
|
|
pSign ^= 1;
|
|
}
|
|
pInf = (aExp == 0xff) || (bExp == 0xff);
|
|
pZero = ((aExp | aSig) == 0) || ((bExp | bSig) == 0);
|
|
|
|
if (cExp == 0xff) {
|
|
if (pInf && (pSign ^ cSign)) {
|
|
/* addition of opposite-signed infinities => InvalidOperation */
|
|
float_raise(float_flag_invalid STATUS_VAR);
|
|
return float32_default_nan;
|
|
}
|
|
/* Otherwise generate an infinity of the same sign */
|
|
return packFloat32(cSign ^ signflip, 0xff, 0);
|
|
}
|
|
|
|
if (pInf) {
|
|
return packFloat32(pSign ^ signflip, 0xff, 0);
|
|
}
|
|
|
|
if (pZero) {
|
|
if (cExp == 0) {
|
|
if (cSig == 0) {
|
|
/* Adding two exact zeroes */
|
|
if (pSign == cSign) {
|
|
zSign = pSign;
|
|
} else if (STATUS(float_rounding_mode) == float_round_down) {
|
|
zSign = 1;
|
|
} else {
|
|
zSign = 0;
|
|
}
|
|
return packFloat32(zSign ^ signflip, 0, 0);
|
|
}
|
|
/* Exact zero plus a denorm */
|
|
if (STATUS(flush_to_zero)) {
|
|
float_raise(float_flag_output_denormal STATUS_VAR);
|
|
return packFloat32(cSign ^ signflip, 0, 0);
|
|
}
|
|
}
|
|
/* Zero plus something non-zero : just return the something */
|
|
return packFloat32(cSign ^ signflip, cExp, cSig);
|
|
}
|
|
|
|
if (aExp == 0) {
|
|
normalizeFloat32Subnormal(aSig, &aExp, &aSig);
|
|
}
|
|
if (bExp == 0) {
|
|
normalizeFloat32Subnormal(bSig, &bExp, &bSig);
|
|
}
|
|
|
|
/* Calculate the actual result a * b + c */
|
|
|
|
/* Multiply first; this is easy. */
|
|
/* NB: we subtract 0x7e where float32_mul() subtracts 0x7f
|
|
* because we want the true exponent, not the "one-less-than"
|
|
* flavour that roundAndPackFloat32() takes.
|
|
*/
|
|
pExp = aExp + bExp - 0x7e;
|
|
aSig = (aSig | 0x00800000) << 7;
|
|
bSig = (bSig | 0x00800000) << 8;
|
|
pSig64 = (uint64_t)aSig * bSig;
|
|
if ((int64_t)(pSig64 << 1) >= 0) {
|
|
pSig64 <<= 1;
|
|
pExp--;
|
|
}
|
|
|
|
zSign = pSign ^ signflip;
|
|
|
|
/* Now pSig64 is the significand of the multiply, with the explicit bit in
|
|
* position 62.
|
|
*/
|
|
if (cExp == 0) {
|
|
if (!cSig) {
|
|
/* Throw out the special case of c being an exact zero now */
|
|
shift64RightJamming(pSig64, 32, &pSig64);
|
|
pSig = pSig64;
|
|
return roundAndPackFloat32(zSign, pExp - 1,
|
|
pSig STATUS_VAR);
|
|
}
|
|
normalizeFloat32Subnormal(cSig, &cExp, &cSig);
|
|
}
|
|
|
|
cSig64 = (uint64_t)cSig << (62 - 23);
|
|
cSig64 |= LIT64(0x4000000000000000);
|
|
expDiff = pExp - cExp;
|
|
|
|
if (pSign == cSign) {
|
|
/* Addition */
|
|
if (expDiff > 0) {
|
|
/* scale c to match p */
|
|
shift64RightJamming(cSig64, expDiff, &cSig64);
|
|
zExp = pExp;
|
|
} else if (expDiff < 0) {
|
|
/* scale p to match c */
|
|
shift64RightJamming(pSig64, -expDiff, &pSig64);
|
|
zExp = cExp;
|
|
} else {
|
|
/* no scaling needed */
|
|
zExp = cExp;
|
|
}
|
|
/* Add significands and make sure explicit bit ends up in posn 62 */
|
|
zSig64 = pSig64 + cSig64;
|
|
if ((int64_t)zSig64 < 0) {
|
|
shift64RightJamming(zSig64, 1, &zSig64);
|
|
} else {
|
|
zExp--;
|
|
}
|
|
} else {
|
|
/* Subtraction */
|
|
if (expDiff > 0) {
|
|
shift64RightJamming(cSig64, expDiff, &cSig64);
|
|
zSig64 = pSig64 - cSig64;
|
|
zExp = pExp;
|
|
} else if (expDiff < 0) {
|
|
shift64RightJamming(pSig64, -expDiff, &pSig64);
|
|
zSig64 = cSig64 - pSig64;
|
|
zExp = cExp;
|
|
zSign ^= 1;
|
|
} else {
|
|
zExp = pExp;
|
|
if (cSig64 < pSig64) {
|
|
zSig64 = pSig64 - cSig64;
|
|
} else if (pSig64 < cSig64) {
|
|
zSig64 = cSig64 - pSig64;
|
|
zSign ^= 1;
|
|
} else {
|
|
/* Exact zero */
|
|
zSign = signflip;
|
|
if (STATUS(float_rounding_mode) == float_round_down) {
|
|
zSign ^= 1;
|
|
}
|
|
return packFloat32(zSign, 0, 0);
|
|
}
|
|
}
|
|
--zExp;
|
|
/* Normalize to put the explicit bit back into bit 62. */
|
|
shiftcount = countLeadingZeros64(zSig64) - 1;
|
|
zSig64 <<= shiftcount;
|
|
zExp -= shiftcount;
|
|
}
|
|
shift64RightJamming(zSig64, 32, &zSig64);
|
|
return roundAndPackFloat32(zSign, zExp, zSig64 STATUS_VAR);
|
|
}
|
|
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the square root of the single-precision floating-point value `a'.
|
|
| The operation is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float32 float32_sqrt( float32 a STATUS_PARAM )
|
|
{
|
|
flag aSign;
|
|
int_fast16_t aExp, zExp;
|
|
uint32_t aSig, zSig;
|
|
uint64_t rem, term;
|
|
a = float32_squash_input_denormal(a STATUS_VAR);
|
|
|
|
aSig = extractFloat32Frac( a );
|
|
aExp = extractFloat32Exp( a );
|
|
aSign = extractFloat32Sign( a );
|
|
if ( aExp == 0xFF ) {
|
|
if ( aSig ) return propagateFloat32NaN( a, float32_zero STATUS_VAR );
|
|
if ( ! aSign ) return a;
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
return float32_default_nan;
|
|
}
|
|
if ( aSign ) {
|
|
if ( ( aExp | aSig ) == 0 ) return a;
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
return float32_default_nan;
|
|
}
|
|
if ( aExp == 0 ) {
|
|
if ( aSig == 0 ) return float32_zero;
|
|
normalizeFloat32Subnormal( aSig, &aExp, &aSig );
|
|
}
|
|
zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E;
|
|
aSig = ( aSig | 0x00800000 )<<8;
|
|
zSig = estimateSqrt32( aExp, aSig ) + 2;
|
|
if ( ( zSig & 0x7F ) <= 5 ) {
|
|
if ( zSig < 2 ) {
|
|
zSig = 0x7FFFFFFF;
|
|
goto roundAndPack;
|
|
}
|
|
aSig >>= aExp & 1;
|
|
term = ( (uint64_t) zSig ) * zSig;
|
|
rem = ( ( (uint64_t) aSig )<<32 ) - term;
|
|
while ( (int64_t) rem < 0 ) {
|
|
--zSig;
|
|
rem += ( ( (uint64_t) zSig )<<1 ) | 1;
|
|
}
|
|
zSig |= ( rem != 0 );
|
|
}
|
|
shift32RightJamming( zSig, 1, &zSig );
|
|
roundAndPack:
|
|
return roundAndPackFloat32( 0, zExp, zSig STATUS_VAR );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the binary exponential of the single-precision floating-point value
|
|
| `a'. The operation is performed according to the IEC/IEEE Standard for
|
|
| Binary Floating-Point Arithmetic.
|
|
|
|
|
| Uses the following identities:
|
|
|
|
|
| 1. -------------------------------------------------------------------------
|
|
| x x*ln(2)
|
|
| 2 = e
|
|
|
|
|
| 2. -------------------------------------------------------------------------
|
|
| 2 3 4 5 n
|
|
| x x x x x x x
|
|
| e = 1 + --- + --- + --- + --- + --- + ... + --- + ...
|
|
| 1! 2! 3! 4! 5! n!
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static const float64 float32_exp2_coefficients[15] =
|
|
{
|
|
const_float64( 0x3ff0000000000000ll ), /* 1 */
|
|
const_float64( 0x3fe0000000000000ll ), /* 2 */
|
|
const_float64( 0x3fc5555555555555ll ), /* 3 */
|
|
const_float64( 0x3fa5555555555555ll ), /* 4 */
|
|
const_float64( 0x3f81111111111111ll ), /* 5 */
|
|
const_float64( 0x3f56c16c16c16c17ll ), /* 6 */
|
|
const_float64( 0x3f2a01a01a01a01all ), /* 7 */
|
|
const_float64( 0x3efa01a01a01a01all ), /* 8 */
|
|
const_float64( 0x3ec71de3a556c734ll ), /* 9 */
|
|
const_float64( 0x3e927e4fb7789f5cll ), /* 10 */
|
|
const_float64( 0x3e5ae64567f544e4ll ), /* 11 */
|
|
const_float64( 0x3e21eed8eff8d898ll ), /* 12 */
|
|
const_float64( 0x3de6124613a86d09ll ), /* 13 */
|
|
const_float64( 0x3da93974a8c07c9dll ), /* 14 */
|
|
const_float64( 0x3d6ae7f3e733b81fll ), /* 15 */
|
|
};
|
|
|
|
float32 float32_exp2( float32 a STATUS_PARAM )
|
|
{
|
|
flag aSign;
|
|
int_fast16_t aExp;
|
|
uint32_t aSig;
|
|
float64 r, x, xn;
|
|
int i;
|
|
a = float32_squash_input_denormal(a STATUS_VAR);
|
|
|
|
aSig = extractFloat32Frac( a );
|
|
aExp = extractFloat32Exp( a );
|
|
aSign = extractFloat32Sign( a );
|
|
|
|
if ( aExp == 0xFF) {
|
|
if ( aSig ) return propagateFloat32NaN( a, float32_zero STATUS_VAR );
|
|
return (aSign) ? float32_zero : a;
|
|
}
|
|
if (aExp == 0) {
|
|
if (aSig == 0) return float32_one;
|
|
}
|
|
|
|
float_raise( float_flag_inexact STATUS_VAR);
|
|
|
|
/* ******************************* */
|
|
/* using float64 for approximation */
|
|
/* ******************************* */
|
|
x = float32_to_float64(a STATUS_VAR);
|
|
x = float64_mul(x, float64_ln2 STATUS_VAR);
|
|
|
|
xn = x;
|
|
r = float64_one;
|
|
for (i = 0 ; i < 15 ; i++) {
|
|
float64 f;
|
|
|
|
f = float64_mul(xn, float32_exp2_coefficients[i] STATUS_VAR);
|
|
r = float64_add(r, f STATUS_VAR);
|
|
|
|
xn = float64_mul(xn, x STATUS_VAR);
|
|
}
|
|
|
|
return float64_to_float32(r, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the binary log of the single-precision floating-point value `a'.
|
|
| The operation is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
float32 float32_log2( float32 a STATUS_PARAM )
|
|
{
|
|
flag aSign, zSign;
|
|
int_fast16_t aExp;
|
|
uint32_t aSig, zSig, i;
|
|
|
|
a = float32_squash_input_denormal(a STATUS_VAR);
|
|
aSig = extractFloat32Frac( a );
|
|
aExp = extractFloat32Exp( a );
|
|
aSign = extractFloat32Sign( a );
|
|
|
|
if ( aExp == 0 ) {
|
|
if ( aSig == 0 ) return packFloat32( 1, 0xFF, 0 );
|
|
normalizeFloat32Subnormal( aSig, &aExp, &aSig );
|
|
}
|
|
if ( aSign ) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
return float32_default_nan;
|
|
}
|
|
if ( aExp == 0xFF ) {
|
|
if ( aSig ) return propagateFloat32NaN( a, float32_zero STATUS_VAR );
|
|
return a;
|
|
}
|
|
|
|
aExp -= 0x7F;
|
|
aSig |= 0x00800000;
|
|
zSign = aExp < 0;
|
|
zSig = aExp << 23;
|
|
|
|
for (i = 1 << 22; i > 0; i >>= 1) {
|
|
aSig = ( (uint64_t)aSig * aSig ) >> 23;
|
|
if ( aSig & 0x01000000 ) {
|
|
aSig >>= 1;
|
|
zSig |= i;
|
|
}
|
|
}
|
|
|
|
if ( zSign )
|
|
zSig = -zSig;
|
|
|
|
return normalizeRoundAndPackFloat32( zSign, 0x85, zSig STATUS_VAR );
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the single-precision floating-point value `a' is equal to
|
|
| the corresponding value `b', and 0 otherwise. The invalid exception is
|
|
| raised if either operand is a NaN. Otherwise, the comparison is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float32_eq( float32 a, float32 b STATUS_PARAM )
|
|
{
|
|
uint32_t av, bv;
|
|
a = float32_squash_input_denormal(a STATUS_VAR);
|
|
b = float32_squash_input_denormal(b STATUS_VAR);
|
|
|
|
if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|
|
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
|
|
) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
return 0;
|
|
}
|
|
av = float32_val(a);
|
|
bv = float32_val(b);
|
|
return ( av == bv ) || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the single-precision floating-point value `a' is less than
|
|
| or equal to the corresponding value `b', and 0 otherwise. The invalid
|
|
| exception is raised if either operand is a NaN. The comparison is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float32_le( float32 a, float32 b STATUS_PARAM )
|
|
{
|
|
flag aSign, bSign;
|
|
uint32_t av, bv;
|
|
a = float32_squash_input_denormal(a STATUS_VAR);
|
|
b = float32_squash_input_denormal(b STATUS_VAR);
|
|
|
|
if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|
|
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
|
|
) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
return 0;
|
|
}
|
|
aSign = extractFloat32Sign( a );
|
|
bSign = extractFloat32Sign( b );
|
|
av = float32_val(a);
|
|
bv = float32_val(b);
|
|
if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
|
|
return ( av == bv ) || ( aSign ^ ( av < bv ) );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the single-precision floating-point value `a' is less than
|
|
| the corresponding value `b', and 0 otherwise. The invalid exception is
|
|
| raised if either operand is a NaN. The comparison is performed according
|
|
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float32_lt( float32 a, float32 b STATUS_PARAM )
|
|
{
|
|
flag aSign, bSign;
|
|
uint32_t av, bv;
|
|
a = float32_squash_input_denormal(a STATUS_VAR);
|
|
b = float32_squash_input_denormal(b STATUS_VAR);
|
|
|
|
if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|
|
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
|
|
) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
return 0;
|
|
}
|
|
aSign = extractFloat32Sign( a );
|
|
bSign = extractFloat32Sign( b );
|
|
av = float32_val(a);
|
|
bv = float32_val(b);
|
|
if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 );
|
|
return ( av != bv ) && ( aSign ^ ( av < bv ) );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the single-precision floating-point values `a' and `b' cannot
|
|
| be compared, and 0 otherwise. The invalid exception is raised if either
|
|
| operand is a NaN. The comparison is performed according to the IEC/IEEE
|
|
| Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float32_unordered( float32 a, float32 b STATUS_PARAM )
|
|
{
|
|
a = float32_squash_input_denormal(a STATUS_VAR);
|
|
b = float32_squash_input_denormal(b STATUS_VAR);
|
|
|
|
if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|
|
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
|
|
) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the single-precision floating-point value `a' is equal to
|
|
| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
|
|
| exception. The comparison is performed according to the IEC/IEEE Standard
|
|
| for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float32_eq_quiet( float32 a, float32 b STATUS_PARAM )
|
|
{
|
|
a = float32_squash_input_denormal(a STATUS_VAR);
|
|
b = float32_squash_input_denormal(b STATUS_VAR);
|
|
|
|
if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|
|
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
|
|
) {
|
|
if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
}
|
|
return 0;
|
|
}
|
|
return ( float32_val(a) == float32_val(b) ) ||
|
|
( (uint32_t) ( ( float32_val(a) | float32_val(b) )<<1 ) == 0 );
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the single-precision floating-point value `a' is less than or
|
|
| equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
|
|
| cause an exception. Otherwise, the comparison is performed according to the
|
|
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float32_le_quiet( float32 a, float32 b STATUS_PARAM )
|
|
{
|
|
flag aSign, bSign;
|
|
uint32_t av, bv;
|
|
a = float32_squash_input_denormal(a STATUS_VAR);
|
|
b = float32_squash_input_denormal(b STATUS_VAR);
|
|
|
|
if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|
|
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
|
|
) {
|
|
if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
}
|
|
return 0;
|
|
}
|
|
aSign = extractFloat32Sign( a );
|
|
bSign = extractFloat32Sign( b );
|
|
av = float32_val(a);
|
|
bv = float32_val(b);
|
|
if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
|
|
return ( av == bv ) || ( aSign ^ ( av < bv ) );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the single-precision floating-point value `a' is less than
|
|
| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
|
|
| exception. Otherwise, the comparison is performed according to the IEC/IEEE
|
|
| Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float32_lt_quiet( float32 a, float32 b STATUS_PARAM )
|
|
{
|
|
flag aSign, bSign;
|
|
uint32_t av, bv;
|
|
a = float32_squash_input_denormal(a STATUS_VAR);
|
|
b = float32_squash_input_denormal(b STATUS_VAR);
|
|
|
|
if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|
|
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
|
|
) {
|
|
if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
}
|
|
return 0;
|
|
}
|
|
aSign = extractFloat32Sign( a );
|
|
bSign = extractFloat32Sign( b );
|
|
av = float32_val(a);
|
|
bv = float32_val(b);
|
|
if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 );
|
|
return ( av != bv ) && ( aSign ^ ( av < bv ) );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the single-precision floating-point values `a' and `b' cannot
|
|
| be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The
|
|
| comparison is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float32_unordered_quiet( float32 a, float32 b STATUS_PARAM )
|
|
{
|
|
a = float32_squash_input_denormal(a STATUS_VAR);
|
|
b = float32_squash_input_denormal(b STATUS_VAR);
|
|
|
|
if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|
|
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
|
|
) {
|
|
if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
}
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the double-precision floating-point value
|
|
| `a' to the 32-bit two's complement integer format. The conversion is
|
|
| performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic---which means in particular that the conversion is rounded
|
|
| according to the current rounding mode. If `a' is a NaN, the largest
|
|
| positive integer is returned. Otherwise, if the conversion overflows, the
|
|
| largest integer with the same sign as `a' is returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int32 float64_to_int32( float64 a STATUS_PARAM )
|
|
{
|
|
flag aSign;
|
|
int_fast16_t aExp, shiftCount;
|
|
uint64_t aSig;
|
|
a = float64_squash_input_denormal(a STATUS_VAR);
|
|
|
|
aSig = extractFloat64Frac( a );
|
|
aExp = extractFloat64Exp( a );
|
|
aSign = extractFloat64Sign( a );
|
|
if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
|
|
if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
|
|
shiftCount = 0x42C - aExp;
|
|
if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig );
|
|
return roundAndPackInt32( aSign, aSig STATUS_VAR );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the double-precision floating-point value
|
|
| `a' to the 32-bit two's complement integer format. The conversion is
|
|
| performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic, except that the conversion is always rounded toward zero.
|
|
| If `a' is a NaN, the largest positive integer is returned. Otherwise, if
|
|
| the conversion overflows, the largest integer with the same sign as `a' is
|
|
| returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int32 float64_to_int32_round_to_zero( float64 a STATUS_PARAM )
|
|
{
|
|
flag aSign;
|
|
int_fast16_t aExp, shiftCount;
|
|
uint64_t aSig, savedASig;
|
|
int32_t z;
|
|
a = float64_squash_input_denormal(a STATUS_VAR);
|
|
|
|
aSig = extractFloat64Frac( a );
|
|
aExp = extractFloat64Exp( a );
|
|
aSign = extractFloat64Sign( a );
|
|
if ( 0x41E < aExp ) {
|
|
if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
|
|
goto invalid;
|
|
}
|
|
else if ( aExp < 0x3FF ) {
|
|
if ( aExp || aSig ) STATUS(float_exception_flags) |= float_flag_inexact;
|
|
return 0;
|
|
}
|
|
aSig |= LIT64( 0x0010000000000000 );
|
|
shiftCount = 0x433 - aExp;
|
|
savedASig = aSig;
|
|
aSig >>= shiftCount;
|
|
z = aSig;
|
|
if ( aSign ) z = - z;
|
|
if ( ( z < 0 ) ^ aSign ) {
|
|
invalid:
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
|
|
}
|
|
if ( ( aSig<<shiftCount ) != savedASig ) {
|
|
STATUS(float_exception_flags) |= float_flag_inexact;
|
|
}
|
|
return z;
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the double-precision floating-point value
|
|
| `a' to the 16-bit two's complement integer format. The conversion is
|
|
| performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic, except that the conversion is always rounded toward zero.
|
|
| If `a' is a NaN, the largest positive integer is returned. Otherwise, if
|
|
| the conversion overflows, the largest integer with the same sign as `a' is
|
|
| returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int_fast16_t float64_to_int16_round_to_zero(float64 a STATUS_PARAM)
|
|
{
|
|
flag aSign;
|
|
int_fast16_t aExp, shiftCount;
|
|
uint64_t aSig, savedASig;
|
|
int32 z;
|
|
|
|
aSig = extractFloat64Frac( a );
|
|
aExp = extractFloat64Exp( a );
|
|
aSign = extractFloat64Sign( a );
|
|
if ( 0x40E < aExp ) {
|
|
if ( ( aExp == 0x7FF ) && aSig ) {
|
|
aSign = 0;
|
|
}
|
|
goto invalid;
|
|
}
|
|
else if ( aExp < 0x3FF ) {
|
|
if ( aExp || aSig ) {
|
|
STATUS(float_exception_flags) |= float_flag_inexact;
|
|
}
|
|
return 0;
|
|
}
|
|
aSig |= LIT64( 0x0010000000000000 );
|
|
shiftCount = 0x433 - aExp;
|
|
savedASig = aSig;
|
|
aSig >>= shiftCount;
|
|
z = aSig;
|
|
if ( aSign ) {
|
|
z = - z;
|
|
}
|
|
if ( ( (int16_t)z < 0 ) ^ aSign ) {
|
|
invalid:
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
return aSign ? (int32_t) 0xffff8000 : 0x7FFF;
|
|
}
|
|
if ( ( aSig<<shiftCount ) != savedASig ) {
|
|
STATUS(float_exception_flags) |= float_flag_inexact;
|
|
}
|
|
return z;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the double-precision floating-point value
|
|
| `a' to the 64-bit two's complement integer format. The conversion is
|
|
| performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic---which means in particular that the conversion is rounded
|
|
| according to the current rounding mode. If `a' is a NaN, the largest
|
|
| positive integer is returned. Otherwise, if the conversion overflows, the
|
|
| largest integer with the same sign as `a' is returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int64 float64_to_int64( float64 a STATUS_PARAM )
|
|
{
|
|
flag aSign;
|
|
int_fast16_t aExp, shiftCount;
|
|
uint64_t aSig, aSigExtra;
|
|
a = float64_squash_input_denormal(a STATUS_VAR);
|
|
|
|
aSig = extractFloat64Frac( a );
|
|
aExp = extractFloat64Exp( a );
|
|
aSign = extractFloat64Sign( a );
|
|
if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
|
|
shiftCount = 0x433 - aExp;
|
|
if ( shiftCount <= 0 ) {
|
|
if ( 0x43E < aExp ) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
if ( ! aSign
|
|
|| ( ( aExp == 0x7FF )
|
|
&& ( aSig != LIT64( 0x0010000000000000 ) ) )
|
|
) {
|
|
return LIT64( 0x7FFFFFFFFFFFFFFF );
|
|
}
|
|
return (int64_t) LIT64( 0x8000000000000000 );
|
|
}
|
|
aSigExtra = 0;
|
|
aSig <<= - shiftCount;
|
|
}
|
|
else {
|
|
shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra );
|
|
}
|
|
return roundAndPackInt64( aSign, aSig, aSigExtra STATUS_VAR );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the double-precision floating-point value
|
|
| `a' to the 64-bit two's complement integer format. The conversion is
|
|
| performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic, except that the conversion is always rounded toward zero.
|
|
| If `a' is a NaN, the largest positive integer is returned. Otherwise, if
|
|
| the conversion overflows, the largest integer with the same sign as `a' is
|
|
| returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int64 float64_to_int64_round_to_zero( float64 a STATUS_PARAM )
|
|
{
|
|
flag aSign;
|
|
int_fast16_t aExp, shiftCount;
|
|
uint64_t aSig;
|
|
int64 z;
|
|
a = float64_squash_input_denormal(a STATUS_VAR);
|
|
|
|
aSig = extractFloat64Frac( a );
|
|
aExp = extractFloat64Exp( a );
|
|
aSign = extractFloat64Sign( a );
|
|
if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
|
|
shiftCount = aExp - 0x433;
|
|
if ( 0 <= shiftCount ) {
|
|
if ( 0x43E <= aExp ) {
|
|
if ( float64_val(a) != LIT64( 0xC3E0000000000000 ) ) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
if ( ! aSign
|
|
|| ( ( aExp == 0x7FF )
|
|
&& ( aSig != LIT64( 0x0010000000000000 ) ) )
|
|
) {
|
|
return LIT64( 0x7FFFFFFFFFFFFFFF );
|
|
}
|
|
}
|
|
return (int64_t) LIT64( 0x8000000000000000 );
|
|
}
|
|
z = aSig<<shiftCount;
|
|
}
|
|
else {
|
|
if ( aExp < 0x3FE ) {
|
|
if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact;
|
|
return 0;
|
|
}
|
|
z = aSig>>( - shiftCount );
|
|
if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) {
|
|
STATUS(float_exception_flags) |= float_flag_inexact;
|
|
}
|
|
}
|
|
if ( aSign ) z = - z;
|
|
return z;
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the double-precision floating-point value
|
|
| `a' to the single-precision floating-point format. The conversion is
|
|
| performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float32 float64_to_float32( float64 a STATUS_PARAM )
|
|
{
|
|
flag aSign;
|
|
int_fast16_t aExp;
|
|
uint64_t aSig;
|
|
uint32_t zSig;
|
|
a = float64_squash_input_denormal(a STATUS_VAR);
|
|
|
|
aSig = extractFloat64Frac( a );
|
|
aExp = extractFloat64Exp( a );
|
|
aSign = extractFloat64Sign( a );
|
|
if ( aExp == 0x7FF ) {
|
|
if ( aSig ) return commonNaNToFloat32( float64ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
|
|
return packFloat32( aSign, 0xFF, 0 );
|
|
}
|
|
shift64RightJamming( aSig, 22, &aSig );
|
|
zSig = aSig;
|
|
if ( aExp || zSig ) {
|
|
zSig |= 0x40000000;
|
|
aExp -= 0x381;
|
|
}
|
|
return roundAndPackFloat32( aSign, aExp, zSig STATUS_VAR );
|
|
|
|
}
|
|
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
|
|
| half-precision floating-point value, returning the result. After being
|
|
| shifted into the proper positions, the three fields are simply added
|
|
| together to form the result. This means that any integer portion of `zSig'
|
|
| will be added into the exponent. Since a properly normalized significand
|
|
| will have an integer portion equal to 1, the `zExp' input should be 1 less
|
|
| than the desired result exponent whenever `zSig' is a complete, normalized
|
|
| significand.
|
|
*----------------------------------------------------------------------------*/
|
|
static float16 packFloat16(flag zSign, int_fast16_t zExp, uint16_t zSig)
|
|
{
|
|
return make_float16(
|
|
(((uint32_t)zSign) << 15) + (((uint32_t)zExp) << 10) + zSig);
|
|
}
|
|
|
|
/* Half precision floats come in two formats: standard IEEE and "ARM" format.
|
|
The latter gains extra exponent range by omitting the NaN/Inf encodings. */
|
|
|
|
float32 float16_to_float32(float16 a, flag ieee STATUS_PARAM)
|
|
{
|
|
flag aSign;
|
|
int_fast16_t aExp;
|
|
uint32_t aSig;
|
|
|
|
aSign = extractFloat16Sign(a);
|
|
aExp = extractFloat16Exp(a);
|
|
aSig = extractFloat16Frac(a);
|
|
|
|
if (aExp == 0x1f && ieee) {
|
|
if (aSig) {
|
|
return commonNaNToFloat32(float16ToCommonNaN(a STATUS_VAR) STATUS_VAR);
|
|
}
|
|
return packFloat32(aSign, 0xff, 0);
|
|
}
|
|
if (aExp == 0) {
|
|
int8 shiftCount;
|
|
|
|
if (aSig == 0) {
|
|
return packFloat32(aSign, 0, 0);
|
|
}
|
|
|
|
shiftCount = countLeadingZeros32( aSig ) - 21;
|
|
aSig = aSig << shiftCount;
|
|
aExp = -shiftCount;
|
|
}
|
|
return packFloat32( aSign, aExp + 0x70, aSig << 13);
|
|
}
|
|
|
|
float16 float32_to_float16(float32 a, flag ieee STATUS_PARAM)
|
|
{
|
|
flag aSign;
|
|
int_fast16_t aExp;
|
|
uint32_t aSig;
|
|
uint32_t mask;
|
|
uint32_t increment;
|
|
int8 roundingMode;
|
|
a = float32_squash_input_denormal(a STATUS_VAR);
|
|
|
|
aSig = extractFloat32Frac( a );
|
|
aExp = extractFloat32Exp( a );
|
|
aSign = extractFloat32Sign( a );
|
|
if ( aExp == 0xFF ) {
|
|
if (aSig) {
|
|
/* Input is a NaN */
|
|
float16 r = commonNaNToFloat16( float32ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
|
|
if (!ieee) {
|
|
return packFloat16(aSign, 0, 0);
|
|
}
|
|
return r;
|
|
}
|
|
/* Infinity */
|
|
if (!ieee) {
|
|
float_raise(float_flag_invalid STATUS_VAR);
|
|
return packFloat16(aSign, 0x1f, 0x3ff);
|
|
}
|
|
return packFloat16(aSign, 0x1f, 0);
|
|
}
|
|
if (aExp == 0 && aSig == 0) {
|
|
return packFloat16(aSign, 0, 0);
|
|
}
|
|
/* Decimal point between bits 22 and 23. */
|
|
aSig |= 0x00800000;
|
|
aExp -= 0x7f;
|
|
if (aExp < -14) {
|
|
mask = 0x00ffffff;
|
|
if (aExp >= -24) {
|
|
mask >>= 25 + aExp;
|
|
}
|
|
} else {
|
|
mask = 0x00001fff;
|
|
}
|
|
if (aSig & mask) {
|
|
float_raise( float_flag_underflow STATUS_VAR );
|
|
roundingMode = STATUS(float_rounding_mode);
|
|
switch (roundingMode) {
|
|
case float_round_nearest_even:
|
|
increment = (mask + 1) >> 1;
|
|
if ((aSig & mask) == increment) {
|
|
increment = aSig & (increment << 1);
|
|
}
|
|
break;
|
|
case float_round_up:
|
|
increment = aSign ? 0 : mask;
|
|
break;
|
|
case float_round_down:
|
|
increment = aSign ? mask : 0;
|
|
break;
|
|
default: /* round_to_zero */
|
|
increment = 0;
|
|
break;
|
|
}
|
|
aSig += increment;
|
|
if (aSig >= 0x01000000) {
|
|
aSig >>= 1;
|
|
aExp++;
|
|
}
|
|
} else if (aExp < -14
|
|
&& STATUS(float_detect_tininess) == float_tininess_before_rounding) {
|
|
float_raise( float_flag_underflow STATUS_VAR);
|
|
}
|
|
|
|
if (ieee) {
|
|
if (aExp > 15) {
|
|
float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR);
|
|
return packFloat16(aSign, 0x1f, 0);
|
|
}
|
|
} else {
|
|
if (aExp > 16) {
|
|
float_raise(float_flag_invalid | float_flag_inexact STATUS_VAR);
|
|
return packFloat16(aSign, 0x1f, 0x3ff);
|
|
}
|
|
}
|
|
if (aExp < -24) {
|
|
return packFloat16(aSign, 0, 0);
|
|
}
|
|
if (aExp < -14) {
|
|
aSig >>= -14 - aExp;
|
|
aExp = -14;
|
|
}
|
|
return packFloat16(aSign, aExp + 14, aSig >> 13);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the double-precision floating-point value
|
|
| `a' to the extended double-precision floating-point format. The conversion
|
|
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 float64_to_floatx80( float64 a STATUS_PARAM )
|
|
{
|
|
flag aSign;
|
|
int_fast16_t aExp;
|
|
uint64_t aSig;
|
|
|
|
a = float64_squash_input_denormal(a STATUS_VAR);
|
|
aSig = extractFloat64Frac( a );
|
|
aExp = extractFloat64Exp( a );
|
|
aSign = extractFloat64Sign( a );
|
|
if ( aExp == 0x7FF ) {
|
|
if ( aSig ) return commonNaNToFloatx80( float64ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
|
|
return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
|
|
}
|
|
if ( aExp == 0 ) {
|
|
if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
|
|
normalizeFloat64Subnormal( aSig, &aExp, &aSig );
|
|
}
|
|
return
|
|
packFloatx80(
|
|
aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the double-precision floating-point value
|
|
| `a' to the quadruple-precision floating-point format. The conversion is
|
|
| performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float128 float64_to_float128( float64 a STATUS_PARAM )
|
|
{
|
|
flag aSign;
|
|
int_fast16_t aExp;
|
|
uint64_t aSig, zSig0, zSig1;
|
|
|
|
a = float64_squash_input_denormal(a STATUS_VAR);
|
|
aSig = extractFloat64Frac( a );
|
|
aExp = extractFloat64Exp( a );
|
|
aSign = extractFloat64Sign( a );
|
|
if ( aExp == 0x7FF ) {
|
|
if ( aSig ) return commonNaNToFloat128( float64ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
|
|
return packFloat128( aSign, 0x7FFF, 0, 0 );
|
|
}
|
|
if ( aExp == 0 ) {
|
|
if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
|
|
normalizeFloat64Subnormal( aSig, &aExp, &aSig );
|
|
--aExp;
|
|
}
|
|
shift128Right( aSig, 0, 4, &zSig0, &zSig1 );
|
|
return packFloat128( aSign, aExp + 0x3C00, zSig0, zSig1 );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Rounds the double-precision floating-point value `a' to an integer, and
|
|
| returns the result as a double-precision floating-point value. The
|
|
| operation is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float64 float64_round_to_int( float64 a STATUS_PARAM )
|
|
{
|
|
flag aSign;
|
|
int_fast16_t aExp;
|
|
uint64_t lastBitMask, roundBitsMask;
|
|
int8 roundingMode;
|
|
uint64_t z;
|
|
a = float64_squash_input_denormal(a STATUS_VAR);
|
|
|
|
aExp = extractFloat64Exp( a );
|
|
if ( 0x433 <= aExp ) {
|
|
if ( ( aExp == 0x7FF ) && extractFloat64Frac( a ) ) {
|
|
return propagateFloat64NaN( a, a STATUS_VAR );
|
|
}
|
|
return a;
|
|
}
|
|
if ( aExp < 0x3FF ) {
|
|
if ( (uint64_t) ( float64_val(a)<<1 ) == 0 ) return a;
|
|
STATUS(float_exception_flags) |= float_flag_inexact;
|
|
aSign = extractFloat64Sign( a );
|
|
switch ( STATUS(float_rounding_mode) ) {
|
|
case float_round_nearest_even:
|
|
if ( ( aExp == 0x3FE ) && extractFloat64Frac( a ) ) {
|
|
return packFloat64( aSign, 0x3FF, 0 );
|
|
}
|
|
break;
|
|
case float_round_down:
|
|
return make_float64(aSign ? LIT64( 0xBFF0000000000000 ) : 0);
|
|
case float_round_up:
|
|
return make_float64(
|
|
aSign ? LIT64( 0x8000000000000000 ) : LIT64( 0x3FF0000000000000 ));
|
|
}
|
|
return packFloat64( aSign, 0, 0 );
|
|
}
|
|
lastBitMask = 1;
|
|
lastBitMask <<= 0x433 - aExp;
|
|
roundBitsMask = lastBitMask - 1;
|
|
z = float64_val(a);
|
|
roundingMode = STATUS(float_rounding_mode);
|
|
if ( roundingMode == float_round_nearest_even ) {
|
|
z += lastBitMask>>1;
|
|
if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask;
|
|
}
|
|
else if ( roundingMode != float_round_to_zero ) {
|
|
if ( extractFloat64Sign( make_float64(z) ) ^ ( roundingMode == float_round_up ) ) {
|
|
z += roundBitsMask;
|
|
}
|
|
}
|
|
z &= ~ roundBitsMask;
|
|
if ( z != float64_val(a) )
|
|
STATUS(float_exception_flags) |= float_flag_inexact;
|
|
return make_float64(z);
|
|
|
|
}
|
|
|
|
float64 float64_trunc_to_int( float64 a STATUS_PARAM)
|
|
{
|
|
int oldmode;
|
|
float64 res;
|
|
oldmode = STATUS(float_rounding_mode);
|
|
STATUS(float_rounding_mode) = float_round_to_zero;
|
|
res = float64_round_to_int(a STATUS_VAR);
|
|
STATUS(float_rounding_mode) = oldmode;
|
|
return res;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of adding the absolute values of the double-precision
|
|
| floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
|
|
| before being returned. `zSign' is ignored if the result is a NaN.
|
|
| The addition is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static float64 addFloat64Sigs( float64 a, float64 b, flag zSign STATUS_PARAM )
|
|
{
|
|
int_fast16_t aExp, bExp, zExp;
|
|
uint64_t aSig, bSig, zSig;
|
|
int_fast16_t expDiff;
|
|
|
|
aSig = extractFloat64Frac( a );
|
|
aExp = extractFloat64Exp( a );
|
|
bSig = extractFloat64Frac( b );
|
|
bExp = extractFloat64Exp( b );
|
|
expDiff = aExp - bExp;
|
|
aSig <<= 9;
|
|
bSig <<= 9;
|
|
if ( 0 < expDiff ) {
|
|
if ( aExp == 0x7FF ) {
|
|
if ( aSig ) return propagateFloat64NaN( a, b STATUS_VAR );
|
|
return a;
|
|
}
|
|
if ( bExp == 0 ) {
|
|
--expDiff;
|
|
}
|
|
else {
|
|
bSig |= LIT64( 0x2000000000000000 );
|
|
}
|
|
shift64RightJamming( bSig, expDiff, &bSig );
|
|
zExp = aExp;
|
|
}
|
|
else if ( expDiff < 0 ) {
|
|
if ( bExp == 0x7FF ) {
|
|
if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
|
|
return packFloat64( zSign, 0x7FF, 0 );
|
|
}
|
|
if ( aExp == 0 ) {
|
|
++expDiff;
|
|
}
|
|
else {
|
|
aSig |= LIT64( 0x2000000000000000 );
|
|
}
|
|
shift64RightJamming( aSig, - expDiff, &aSig );
|
|
zExp = bExp;
|
|
}
|
|
else {
|
|
if ( aExp == 0x7FF ) {
|
|
if ( aSig | bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
|
|
return a;
|
|
}
|
|
if ( aExp == 0 ) {
|
|
if (STATUS(flush_to_zero)) {
|
|
if (aSig | bSig) {
|
|
float_raise(float_flag_output_denormal STATUS_VAR);
|
|
}
|
|
return packFloat64(zSign, 0, 0);
|
|
}
|
|
return packFloat64( zSign, 0, ( aSig + bSig )>>9 );
|
|
}
|
|
zSig = LIT64( 0x4000000000000000 ) + aSig + bSig;
|
|
zExp = aExp;
|
|
goto roundAndPack;
|
|
}
|
|
aSig |= LIT64( 0x2000000000000000 );
|
|
zSig = ( aSig + bSig )<<1;
|
|
--zExp;
|
|
if ( (int64_t) zSig < 0 ) {
|
|
zSig = aSig + bSig;
|
|
++zExp;
|
|
}
|
|
roundAndPack:
|
|
return roundAndPackFloat64( zSign, zExp, zSig STATUS_VAR );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of subtracting the absolute values of the double-
|
|
| precision floating-point values `a' and `b'. If `zSign' is 1, the
|
|
| difference is negated before being returned. `zSign' is ignored if the
|
|
| result is a NaN. The subtraction is performed according to the IEC/IEEE
|
|
| Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static float64 subFloat64Sigs( float64 a, float64 b, flag zSign STATUS_PARAM )
|
|
{
|
|
int_fast16_t aExp, bExp, zExp;
|
|
uint64_t aSig, bSig, zSig;
|
|
int_fast16_t expDiff;
|
|
|
|
aSig = extractFloat64Frac( a );
|
|
aExp = extractFloat64Exp( a );
|
|
bSig = extractFloat64Frac( b );
|
|
bExp = extractFloat64Exp( b );
|
|
expDiff = aExp - bExp;
|
|
aSig <<= 10;
|
|
bSig <<= 10;
|
|
if ( 0 < expDiff ) goto aExpBigger;
|
|
if ( expDiff < 0 ) goto bExpBigger;
|
|
if ( aExp == 0x7FF ) {
|
|
if ( aSig | bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
return float64_default_nan;
|
|
}
|
|
if ( aExp == 0 ) {
|
|
aExp = 1;
|
|
bExp = 1;
|
|
}
|
|
if ( bSig < aSig ) goto aBigger;
|
|
if ( aSig < bSig ) goto bBigger;
|
|
return packFloat64( STATUS(float_rounding_mode) == float_round_down, 0, 0 );
|
|
bExpBigger:
|
|
if ( bExp == 0x7FF ) {
|
|
if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
|
|
return packFloat64( zSign ^ 1, 0x7FF, 0 );
|
|
}
|
|
if ( aExp == 0 ) {
|
|
++expDiff;
|
|
}
|
|
else {
|
|
aSig |= LIT64( 0x4000000000000000 );
|
|
}
|
|
shift64RightJamming( aSig, - expDiff, &aSig );
|
|
bSig |= LIT64( 0x4000000000000000 );
|
|
bBigger:
|
|
zSig = bSig - aSig;
|
|
zExp = bExp;
|
|
zSign ^= 1;
|
|
goto normalizeRoundAndPack;
|
|
aExpBigger:
|
|
if ( aExp == 0x7FF ) {
|
|
if ( aSig ) return propagateFloat64NaN( a, b STATUS_VAR );
|
|
return a;
|
|
}
|
|
if ( bExp == 0 ) {
|
|
--expDiff;
|
|
}
|
|
else {
|
|
bSig |= LIT64( 0x4000000000000000 );
|
|
}
|
|
shift64RightJamming( bSig, expDiff, &bSig );
|
|
aSig |= LIT64( 0x4000000000000000 );
|
|
aBigger:
|
|
zSig = aSig - bSig;
|
|
zExp = aExp;
|
|
normalizeRoundAndPack:
|
|
--zExp;
|
|
return normalizeRoundAndPackFloat64( zSign, zExp, zSig STATUS_VAR );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of adding the double-precision floating-point values `a'
|
|
| and `b'. The operation is performed according to the IEC/IEEE Standard for
|
|
| Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float64 float64_add( float64 a, float64 b STATUS_PARAM )
|
|
{
|
|
flag aSign, bSign;
|
|
a = float64_squash_input_denormal(a STATUS_VAR);
|
|
b = float64_squash_input_denormal(b STATUS_VAR);
|
|
|
|
aSign = extractFloat64Sign( a );
|
|
bSign = extractFloat64Sign( b );
|
|
if ( aSign == bSign ) {
|
|
return addFloat64Sigs( a, b, aSign STATUS_VAR );
|
|
}
|
|
else {
|
|
return subFloat64Sigs( a, b, aSign STATUS_VAR );
|
|
}
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of subtracting the double-precision floating-point values
|
|
| `a' and `b'. The operation is performed according to the IEC/IEEE Standard
|
|
| for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float64 float64_sub( float64 a, float64 b STATUS_PARAM )
|
|
{
|
|
flag aSign, bSign;
|
|
a = float64_squash_input_denormal(a STATUS_VAR);
|
|
b = float64_squash_input_denormal(b STATUS_VAR);
|
|
|
|
aSign = extractFloat64Sign( a );
|
|
bSign = extractFloat64Sign( b );
|
|
if ( aSign == bSign ) {
|
|
return subFloat64Sigs( a, b, aSign STATUS_VAR );
|
|
}
|
|
else {
|
|
return addFloat64Sigs( a, b, aSign STATUS_VAR );
|
|
}
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of multiplying the double-precision floating-point values
|
|
| `a' and `b'. The operation is performed according to the IEC/IEEE Standard
|
|
| for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float64 float64_mul( float64 a, float64 b STATUS_PARAM )
|
|
{
|
|
flag aSign, bSign, zSign;
|
|
int_fast16_t aExp, bExp, zExp;
|
|
uint64_t aSig, bSig, zSig0, zSig1;
|
|
|
|
a = float64_squash_input_denormal(a STATUS_VAR);
|
|
b = float64_squash_input_denormal(b STATUS_VAR);
|
|
|
|
aSig = extractFloat64Frac( a );
|
|
aExp = extractFloat64Exp( a );
|
|
aSign = extractFloat64Sign( a );
|
|
bSig = extractFloat64Frac( b );
|
|
bExp = extractFloat64Exp( b );
|
|
bSign = extractFloat64Sign( b );
|
|
zSign = aSign ^ bSign;
|
|
if ( aExp == 0x7FF ) {
|
|
if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
|
|
return propagateFloat64NaN( a, b STATUS_VAR );
|
|
}
|
|
if ( ( bExp | bSig ) == 0 ) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
return float64_default_nan;
|
|
}
|
|
return packFloat64( zSign, 0x7FF, 0 );
|
|
}
|
|
if ( bExp == 0x7FF ) {
|
|
if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
|
|
if ( ( aExp | aSig ) == 0 ) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
return float64_default_nan;
|
|
}
|
|
return packFloat64( zSign, 0x7FF, 0 );
|
|
}
|
|
if ( aExp == 0 ) {
|
|
if ( aSig == 0 ) return packFloat64( zSign, 0, 0 );
|
|
normalizeFloat64Subnormal( aSig, &aExp, &aSig );
|
|
}
|
|
if ( bExp == 0 ) {
|
|
if ( bSig == 0 ) return packFloat64( zSign, 0, 0 );
|
|
normalizeFloat64Subnormal( bSig, &bExp, &bSig );
|
|
}
|
|
zExp = aExp + bExp - 0x3FF;
|
|
aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10;
|
|
bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
|
|
mul64To128( aSig, bSig, &zSig0, &zSig1 );
|
|
zSig0 |= ( zSig1 != 0 );
|
|
if ( 0 <= (int64_t) ( zSig0<<1 ) ) {
|
|
zSig0 <<= 1;
|
|
--zExp;
|
|
}
|
|
return roundAndPackFloat64( zSign, zExp, zSig0 STATUS_VAR );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of dividing the double-precision floating-point value `a'
|
|
| by the corresponding value `b'. The operation is performed according to
|
|
| the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float64 float64_div( float64 a, float64 b STATUS_PARAM )
|
|
{
|
|
flag aSign, bSign, zSign;
|
|
int_fast16_t aExp, bExp, zExp;
|
|
uint64_t aSig, bSig, zSig;
|
|
uint64_t rem0, rem1;
|
|
uint64_t term0, term1;
|
|
a = float64_squash_input_denormal(a STATUS_VAR);
|
|
b = float64_squash_input_denormal(b STATUS_VAR);
|
|
|
|
aSig = extractFloat64Frac( a );
|
|
aExp = extractFloat64Exp( a );
|
|
aSign = extractFloat64Sign( a );
|
|
bSig = extractFloat64Frac( b );
|
|
bExp = extractFloat64Exp( b );
|
|
bSign = extractFloat64Sign( b );
|
|
zSign = aSign ^ bSign;
|
|
if ( aExp == 0x7FF ) {
|
|
if ( aSig ) return propagateFloat64NaN( a, b STATUS_VAR );
|
|
if ( bExp == 0x7FF ) {
|
|
if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
return float64_default_nan;
|
|
}
|
|
return packFloat64( zSign, 0x7FF, 0 );
|
|
}
|
|
if ( bExp == 0x7FF ) {
|
|
if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
|
|
return packFloat64( zSign, 0, 0 );
|
|
}
|
|
if ( bExp == 0 ) {
|
|
if ( bSig == 0 ) {
|
|
if ( ( aExp | aSig ) == 0 ) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
return float64_default_nan;
|
|
}
|
|
float_raise( float_flag_divbyzero STATUS_VAR);
|
|
return packFloat64( zSign, 0x7FF, 0 );
|
|
}
|
|
normalizeFloat64Subnormal( bSig, &bExp, &bSig );
|
|
}
|
|
if ( aExp == 0 ) {
|
|
if ( aSig == 0 ) return packFloat64( zSign, 0, 0 );
|
|
normalizeFloat64Subnormal( aSig, &aExp, &aSig );
|
|
}
|
|
zExp = aExp - bExp + 0x3FD;
|
|
aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10;
|
|
bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
|
|
if ( bSig <= ( aSig + aSig ) ) {
|
|
aSig >>= 1;
|
|
++zExp;
|
|
}
|
|
zSig = estimateDiv128To64( aSig, 0, bSig );
|
|
if ( ( zSig & 0x1FF ) <= 2 ) {
|
|
mul64To128( bSig, zSig, &term0, &term1 );
|
|
sub128( aSig, 0, term0, term1, &rem0, &rem1 );
|
|
while ( (int64_t) rem0 < 0 ) {
|
|
--zSig;
|
|
add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
|
|
}
|
|
zSig |= ( rem1 != 0 );
|
|
}
|
|
return roundAndPackFloat64( zSign, zExp, zSig STATUS_VAR );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the remainder of the double-precision floating-point value `a'
|
|
| with respect to the corresponding value `b'. The operation is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float64 float64_rem( float64 a, float64 b STATUS_PARAM )
|
|
{
|
|
flag aSign, zSign;
|
|
int_fast16_t aExp, bExp, expDiff;
|
|
uint64_t aSig, bSig;
|
|
uint64_t q, alternateASig;
|
|
int64_t sigMean;
|
|
|
|
a = float64_squash_input_denormal(a STATUS_VAR);
|
|
b = float64_squash_input_denormal(b STATUS_VAR);
|
|
aSig = extractFloat64Frac( a );
|
|
aExp = extractFloat64Exp( a );
|
|
aSign = extractFloat64Sign( a );
|
|
bSig = extractFloat64Frac( b );
|
|
bExp = extractFloat64Exp( b );
|
|
if ( aExp == 0x7FF ) {
|
|
if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
|
|
return propagateFloat64NaN( a, b STATUS_VAR );
|
|
}
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
return float64_default_nan;
|
|
}
|
|
if ( bExp == 0x7FF ) {
|
|
if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
|
|
return a;
|
|
}
|
|
if ( bExp == 0 ) {
|
|
if ( bSig == 0 ) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
return float64_default_nan;
|
|
}
|
|
normalizeFloat64Subnormal( bSig, &bExp, &bSig );
|
|
}
|
|
if ( aExp == 0 ) {
|
|
if ( aSig == 0 ) return a;
|
|
normalizeFloat64Subnormal( aSig, &aExp, &aSig );
|
|
}
|
|
expDiff = aExp - bExp;
|
|
aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11;
|
|
bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
|
|
if ( expDiff < 0 ) {
|
|
if ( expDiff < -1 ) return a;
|
|
aSig >>= 1;
|
|
}
|
|
q = ( bSig <= aSig );
|
|
if ( q ) aSig -= bSig;
|
|
expDiff -= 64;
|
|
while ( 0 < expDiff ) {
|
|
q = estimateDiv128To64( aSig, 0, bSig );
|
|
q = ( 2 < q ) ? q - 2 : 0;
|
|
aSig = - ( ( bSig>>2 ) * q );
|
|
expDiff -= 62;
|
|
}
|
|
expDiff += 64;
|
|
if ( 0 < expDiff ) {
|
|
q = estimateDiv128To64( aSig, 0, bSig );
|
|
q = ( 2 < q ) ? q - 2 : 0;
|
|
q >>= 64 - expDiff;
|
|
bSig >>= 2;
|
|
aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
|
|
}
|
|
else {
|
|
aSig >>= 2;
|
|
bSig >>= 2;
|
|
}
|
|
do {
|
|
alternateASig = aSig;
|
|
++q;
|
|
aSig -= bSig;
|
|
} while ( 0 <= (int64_t) aSig );
|
|
sigMean = aSig + alternateASig;
|
|
if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
|
|
aSig = alternateASig;
|
|
}
|
|
zSign = ( (int64_t) aSig < 0 );
|
|
if ( zSign ) aSig = - aSig;
|
|
return normalizeRoundAndPackFloat64( aSign ^ zSign, bExp, aSig STATUS_VAR );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of multiplying the double-precision floating-point values
|
|
| `a' and `b' then adding 'c', with no intermediate rounding step after the
|
|
| multiplication. The operation is performed according to the IEC/IEEE
|
|
| Standard for Binary Floating-Point Arithmetic 754-2008.
|
|
| The flags argument allows the caller to select negation of the
|
|
| addend, the intermediate product, or the final result. (The difference
|
|
| between this and having the caller do a separate negation is that negating
|
|
| externally will flip the sign bit on NaNs.)
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float64 float64_muladd(float64 a, float64 b, float64 c, int flags STATUS_PARAM)
|
|
{
|
|
flag aSign, bSign, cSign, zSign;
|
|
int_fast16_t aExp, bExp, cExp, pExp, zExp, expDiff;
|
|
uint64_t aSig, bSig, cSig;
|
|
flag pInf, pZero, pSign;
|
|
uint64_t pSig0, pSig1, cSig0, cSig1, zSig0, zSig1;
|
|
int shiftcount;
|
|
flag signflip, infzero;
|
|
|
|
a = float64_squash_input_denormal(a STATUS_VAR);
|
|
b = float64_squash_input_denormal(b STATUS_VAR);
|
|
c = float64_squash_input_denormal(c STATUS_VAR);
|
|
aSig = extractFloat64Frac(a);
|
|
aExp = extractFloat64Exp(a);
|
|
aSign = extractFloat64Sign(a);
|
|
bSig = extractFloat64Frac(b);
|
|
bExp = extractFloat64Exp(b);
|
|
bSign = extractFloat64Sign(b);
|
|
cSig = extractFloat64Frac(c);
|
|
cExp = extractFloat64Exp(c);
|
|
cSign = extractFloat64Sign(c);
|
|
|
|
infzero = ((aExp == 0 && aSig == 0 && bExp == 0x7ff && bSig == 0) ||
|
|
(aExp == 0x7ff && aSig == 0 && bExp == 0 && bSig == 0));
|
|
|
|
/* It is implementation-defined whether the cases of (0,inf,qnan)
|
|
* and (inf,0,qnan) raise InvalidOperation or not (and what QNaN
|
|
* they return if they do), so we have to hand this information
|
|
* off to the target-specific pick-a-NaN routine.
|
|
*/
|
|
if (((aExp == 0x7ff) && aSig) ||
|
|
((bExp == 0x7ff) && bSig) ||
|
|
((cExp == 0x7ff) && cSig)) {
|
|
return propagateFloat64MulAddNaN(a, b, c, infzero STATUS_VAR);
|
|
}
|
|
|
|
if (infzero) {
|
|
float_raise(float_flag_invalid STATUS_VAR);
|
|
return float64_default_nan;
|
|
}
|
|
|
|
if (flags & float_muladd_negate_c) {
|
|
cSign ^= 1;
|
|
}
|
|
|
|
signflip = (flags & float_muladd_negate_result) ? 1 : 0;
|
|
|
|
/* Work out the sign and type of the product */
|
|
pSign = aSign ^ bSign;
|
|
if (flags & float_muladd_negate_product) {
|
|
pSign ^= 1;
|
|
}
|
|
pInf = (aExp == 0x7ff) || (bExp == 0x7ff);
|
|
pZero = ((aExp | aSig) == 0) || ((bExp | bSig) == 0);
|
|
|
|
if (cExp == 0x7ff) {
|
|
if (pInf && (pSign ^ cSign)) {
|
|
/* addition of opposite-signed infinities => InvalidOperation */
|
|
float_raise(float_flag_invalid STATUS_VAR);
|
|
return float64_default_nan;
|
|
}
|
|
/* Otherwise generate an infinity of the same sign */
|
|
return packFloat64(cSign ^ signflip, 0x7ff, 0);
|
|
}
|
|
|
|
if (pInf) {
|
|
return packFloat64(pSign ^ signflip, 0x7ff, 0);
|
|
}
|
|
|
|
if (pZero) {
|
|
if (cExp == 0) {
|
|
if (cSig == 0) {
|
|
/* Adding two exact zeroes */
|
|
if (pSign == cSign) {
|
|
zSign = pSign;
|
|
} else if (STATUS(float_rounding_mode) == float_round_down) {
|
|
zSign = 1;
|
|
} else {
|
|
zSign = 0;
|
|
}
|
|
return packFloat64(zSign ^ signflip, 0, 0);
|
|
}
|
|
/* Exact zero plus a denorm */
|
|
if (STATUS(flush_to_zero)) {
|
|
float_raise(float_flag_output_denormal STATUS_VAR);
|
|
return packFloat64(cSign ^ signflip, 0, 0);
|
|
}
|
|
}
|
|
/* Zero plus something non-zero : just return the something */
|
|
return packFloat64(cSign ^ signflip, cExp, cSig);
|
|
}
|
|
|
|
if (aExp == 0) {
|
|
normalizeFloat64Subnormal(aSig, &aExp, &aSig);
|
|
}
|
|
if (bExp == 0) {
|
|
normalizeFloat64Subnormal(bSig, &bExp, &bSig);
|
|
}
|
|
|
|
/* Calculate the actual result a * b + c */
|
|
|
|
/* Multiply first; this is easy. */
|
|
/* NB: we subtract 0x3fe where float64_mul() subtracts 0x3ff
|
|
* because we want the true exponent, not the "one-less-than"
|
|
* flavour that roundAndPackFloat64() takes.
|
|
*/
|
|
pExp = aExp + bExp - 0x3fe;
|
|
aSig = (aSig | LIT64(0x0010000000000000))<<10;
|
|
bSig = (bSig | LIT64(0x0010000000000000))<<11;
|
|
mul64To128(aSig, bSig, &pSig0, &pSig1);
|
|
if ((int64_t)(pSig0 << 1) >= 0) {
|
|
shortShift128Left(pSig0, pSig1, 1, &pSig0, &pSig1);
|
|
pExp--;
|
|
}
|
|
|
|
zSign = pSign ^ signflip;
|
|
|
|
/* Now [pSig0:pSig1] is the significand of the multiply, with the explicit
|
|
* bit in position 126.
|
|
*/
|
|
if (cExp == 0) {
|
|
if (!cSig) {
|
|
/* Throw out the special case of c being an exact zero now */
|
|
shift128RightJamming(pSig0, pSig1, 64, &pSig0, &pSig1);
|
|
return roundAndPackFloat64(zSign, pExp - 1,
|
|
pSig1 STATUS_VAR);
|
|
}
|
|
normalizeFloat64Subnormal(cSig, &cExp, &cSig);
|
|
}
|
|
|
|
/* Shift cSig and add the explicit bit so [cSig0:cSig1] is the
|
|
* significand of the addend, with the explicit bit in position 126.
|
|
*/
|
|
cSig0 = cSig << (126 - 64 - 52);
|
|
cSig1 = 0;
|
|
cSig0 |= LIT64(0x4000000000000000);
|
|
expDiff = pExp - cExp;
|
|
|
|
if (pSign == cSign) {
|
|
/* Addition */
|
|
if (expDiff > 0) {
|
|
/* scale c to match p */
|
|
shift128RightJamming(cSig0, cSig1, expDiff, &cSig0, &cSig1);
|
|
zExp = pExp;
|
|
} else if (expDiff < 0) {
|
|
/* scale p to match c */
|
|
shift128RightJamming(pSig0, pSig1, -expDiff, &pSig0, &pSig1);
|
|
zExp = cExp;
|
|
} else {
|
|
/* no scaling needed */
|
|
zExp = cExp;
|
|
}
|
|
/* Add significands and make sure explicit bit ends up in posn 126 */
|
|
add128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1);
|
|
if ((int64_t)zSig0 < 0) {
|
|
shift128RightJamming(zSig0, zSig1, 1, &zSig0, &zSig1);
|
|
} else {
|
|
zExp--;
|
|
}
|
|
shift128RightJamming(zSig0, zSig1, 64, &zSig0, &zSig1);
|
|
return roundAndPackFloat64(zSign, zExp, zSig1 STATUS_VAR);
|
|
} else {
|
|
/* Subtraction */
|
|
if (expDiff > 0) {
|
|
shift128RightJamming(cSig0, cSig1, expDiff, &cSig0, &cSig1);
|
|
sub128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1);
|
|
zExp = pExp;
|
|
} else if (expDiff < 0) {
|
|
shift128RightJamming(pSig0, pSig1, -expDiff, &pSig0, &pSig1);
|
|
sub128(cSig0, cSig1, pSig0, pSig1, &zSig0, &zSig1);
|
|
zExp = cExp;
|
|
zSign ^= 1;
|
|
} else {
|
|
zExp = pExp;
|
|
if (lt128(cSig0, cSig1, pSig0, pSig1)) {
|
|
sub128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1);
|
|
} else if (lt128(pSig0, pSig1, cSig0, cSig1)) {
|
|
sub128(cSig0, cSig1, pSig0, pSig1, &zSig0, &zSig1);
|
|
zSign ^= 1;
|
|
} else {
|
|
/* Exact zero */
|
|
zSign = signflip;
|
|
if (STATUS(float_rounding_mode) == float_round_down) {
|
|
zSign ^= 1;
|
|
}
|
|
return packFloat64(zSign, 0, 0);
|
|
}
|
|
}
|
|
--zExp;
|
|
/* Do the equivalent of normalizeRoundAndPackFloat64() but
|
|
* starting with the significand in a pair of uint64_t.
|
|
*/
|
|
if (zSig0) {
|
|
shiftcount = countLeadingZeros64(zSig0) - 1;
|
|
shortShift128Left(zSig0, zSig1, shiftcount, &zSig0, &zSig1);
|
|
if (zSig1) {
|
|
zSig0 |= 1;
|
|
}
|
|
zExp -= shiftcount;
|
|
} else {
|
|
shiftcount = countLeadingZeros64(zSig1) - 1;
|
|
zSig0 = zSig1 << shiftcount;
|
|
zExp -= (shiftcount + 64);
|
|
}
|
|
return roundAndPackFloat64(zSign, zExp, zSig0 STATUS_VAR);
|
|
}
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the square root of the double-precision floating-point value `a'.
|
|
| The operation is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float64 float64_sqrt( float64 a STATUS_PARAM )
|
|
{
|
|
flag aSign;
|
|
int_fast16_t aExp, zExp;
|
|
uint64_t aSig, zSig, doubleZSig;
|
|
uint64_t rem0, rem1, term0, term1;
|
|
a = float64_squash_input_denormal(a STATUS_VAR);
|
|
|
|
aSig = extractFloat64Frac( a );
|
|
aExp = extractFloat64Exp( a );
|
|
aSign = extractFloat64Sign( a );
|
|
if ( aExp == 0x7FF ) {
|
|
if ( aSig ) return propagateFloat64NaN( a, a STATUS_VAR );
|
|
if ( ! aSign ) return a;
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
return float64_default_nan;
|
|
}
|
|
if ( aSign ) {
|
|
if ( ( aExp | aSig ) == 0 ) return a;
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
return float64_default_nan;
|
|
}
|
|
if ( aExp == 0 ) {
|
|
if ( aSig == 0 ) return float64_zero;
|
|
normalizeFloat64Subnormal( aSig, &aExp, &aSig );
|
|
}
|
|
zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE;
|
|
aSig |= LIT64( 0x0010000000000000 );
|
|
zSig = estimateSqrt32( aExp, aSig>>21 );
|
|
aSig <<= 9 - ( aExp & 1 );
|
|
zSig = estimateDiv128To64( aSig, 0, zSig<<32 ) + ( zSig<<30 );
|
|
if ( ( zSig & 0x1FF ) <= 5 ) {
|
|
doubleZSig = zSig<<1;
|
|
mul64To128( zSig, zSig, &term0, &term1 );
|
|
sub128( aSig, 0, term0, term1, &rem0, &rem1 );
|
|
while ( (int64_t) rem0 < 0 ) {
|
|
--zSig;
|
|
doubleZSig -= 2;
|
|
add128( rem0, rem1, zSig>>63, doubleZSig | 1, &rem0, &rem1 );
|
|
}
|
|
zSig |= ( ( rem0 | rem1 ) != 0 );
|
|
}
|
|
return roundAndPackFloat64( 0, zExp, zSig STATUS_VAR );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the binary log of the double-precision floating-point value `a'.
|
|
| The operation is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
float64 float64_log2( float64 a STATUS_PARAM )
|
|
{
|
|
flag aSign, zSign;
|
|
int_fast16_t aExp;
|
|
uint64_t aSig, aSig0, aSig1, zSig, i;
|
|
a = float64_squash_input_denormal(a STATUS_VAR);
|
|
|
|
aSig = extractFloat64Frac( a );
|
|
aExp = extractFloat64Exp( a );
|
|
aSign = extractFloat64Sign( a );
|
|
|
|
if ( aExp == 0 ) {
|
|
if ( aSig == 0 ) return packFloat64( 1, 0x7FF, 0 );
|
|
normalizeFloat64Subnormal( aSig, &aExp, &aSig );
|
|
}
|
|
if ( aSign ) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
return float64_default_nan;
|
|
}
|
|
if ( aExp == 0x7FF ) {
|
|
if ( aSig ) return propagateFloat64NaN( a, float64_zero STATUS_VAR );
|
|
return a;
|
|
}
|
|
|
|
aExp -= 0x3FF;
|
|
aSig |= LIT64( 0x0010000000000000 );
|
|
zSign = aExp < 0;
|
|
zSig = (uint64_t)aExp << 52;
|
|
for (i = 1LL << 51; i > 0; i >>= 1) {
|
|
mul64To128( aSig, aSig, &aSig0, &aSig1 );
|
|
aSig = ( aSig0 << 12 ) | ( aSig1 >> 52 );
|
|
if ( aSig & LIT64( 0x0020000000000000 ) ) {
|
|
aSig >>= 1;
|
|
zSig |= i;
|
|
}
|
|
}
|
|
|
|
if ( zSign )
|
|
zSig = -zSig;
|
|
return normalizeRoundAndPackFloat64( zSign, 0x408, zSig STATUS_VAR );
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the double-precision floating-point value `a' is equal to the
|
|
| corresponding value `b', and 0 otherwise. The invalid exception is raised
|
|
| if either operand is a NaN. Otherwise, the comparison is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float64_eq( float64 a, float64 b STATUS_PARAM )
|
|
{
|
|
uint64_t av, bv;
|
|
a = float64_squash_input_denormal(a STATUS_VAR);
|
|
b = float64_squash_input_denormal(b STATUS_VAR);
|
|
|
|
if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
|
|
|| ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
|
|
) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
return 0;
|
|
}
|
|
av = float64_val(a);
|
|
bv = float64_val(b);
|
|
return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the double-precision floating-point value `a' is less than or
|
|
| equal to the corresponding value `b', and 0 otherwise. The invalid
|
|
| exception is raised if either operand is a NaN. The comparison is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float64_le( float64 a, float64 b STATUS_PARAM )
|
|
{
|
|
flag aSign, bSign;
|
|
uint64_t av, bv;
|
|
a = float64_squash_input_denormal(a STATUS_VAR);
|
|
b = float64_squash_input_denormal(b STATUS_VAR);
|
|
|
|
if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
|
|
|| ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
|
|
) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
return 0;
|
|
}
|
|
aSign = extractFloat64Sign( a );
|
|
bSign = extractFloat64Sign( b );
|
|
av = float64_val(a);
|
|
bv = float64_val(b);
|
|
if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
|
|
return ( av == bv ) || ( aSign ^ ( av < bv ) );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the double-precision floating-point value `a' is less than
|
|
| the corresponding value `b', and 0 otherwise. The invalid exception is
|
|
| raised if either operand is a NaN. The comparison is performed according
|
|
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float64_lt( float64 a, float64 b STATUS_PARAM )
|
|
{
|
|
flag aSign, bSign;
|
|
uint64_t av, bv;
|
|
|
|
a = float64_squash_input_denormal(a STATUS_VAR);
|
|
b = float64_squash_input_denormal(b STATUS_VAR);
|
|
if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
|
|
|| ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
|
|
) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
return 0;
|
|
}
|
|
aSign = extractFloat64Sign( a );
|
|
bSign = extractFloat64Sign( b );
|
|
av = float64_val(a);
|
|
bv = float64_val(b);
|
|
if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 );
|
|
return ( av != bv ) && ( aSign ^ ( av < bv ) );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the double-precision floating-point values `a' and `b' cannot
|
|
| be compared, and 0 otherwise. The invalid exception is raised if either
|
|
| operand is a NaN. The comparison is performed according to the IEC/IEEE
|
|
| Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float64_unordered( float64 a, float64 b STATUS_PARAM )
|
|
{
|
|
a = float64_squash_input_denormal(a STATUS_VAR);
|
|
b = float64_squash_input_denormal(b STATUS_VAR);
|
|
|
|
if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
|
|
|| ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
|
|
) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the double-precision floating-point value `a' is equal to the
|
|
| corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
|
|
| exception.The comparison is performed according to the IEC/IEEE Standard
|
|
| for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float64_eq_quiet( float64 a, float64 b STATUS_PARAM )
|
|
{
|
|
uint64_t av, bv;
|
|
a = float64_squash_input_denormal(a STATUS_VAR);
|
|
b = float64_squash_input_denormal(b STATUS_VAR);
|
|
|
|
if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
|
|
|| ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
|
|
) {
|
|
if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
}
|
|
return 0;
|
|
}
|
|
av = float64_val(a);
|
|
bv = float64_val(b);
|
|
return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the double-precision floating-point value `a' is less than or
|
|
| equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
|
|
| cause an exception. Otherwise, the comparison is performed according to the
|
|
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float64_le_quiet( float64 a, float64 b STATUS_PARAM )
|
|
{
|
|
flag aSign, bSign;
|
|
uint64_t av, bv;
|
|
a = float64_squash_input_denormal(a STATUS_VAR);
|
|
b = float64_squash_input_denormal(b STATUS_VAR);
|
|
|
|
if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
|
|
|| ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
|
|
) {
|
|
if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
}
|
|
return 0;
|
|
}
|
|
aSign = extractFloat64Sign( a );
|
|
bSign = extractFloat64Sign( b );
|
|
av = float64_val(a);
|
|
bv = float64_val(b);
|
|
if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
|
|
return ( av == bv ) || ( aSign ^ ( av < bv ) );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the double-precision floating-point value `a' is less than
|
|
| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
|
|
| exception. Otherwise, the comparison is performed according to the IEC/IEEE
|
|
| Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float64_lt_quiet( float64 a, float64 b STATUS_PARAM )
|
|
{
|
|
flag aSign, bSign;
|
|
uint64_t av, bv;
|
|
a = float64_squash_input_denormal(a STATUS_VAR);
|
|
b = float64_squash_input_denormal(b STATUS_VAR);
|
|
|
|
if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
|
|
|| ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
|
|
) {
|
|
if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
}
|
|
return 0;
|
|
}
|
|
aSign = extractFloat64Sign( a );
|
|
bSign = extractFloat64Sign( b );
|
|
av = float64_val(a);
|
|
bv = float64_val(b);
|
|
if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 );
|
|
return ( av != bv ) && ( aSign ^ ( av < bv ) );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the double-precision floating-point values `a' and `b' cannot
|
|
| be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The
|
|
| comparison is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float64_unordered_quiet( float64 a, float64 b STATUS_PARAM )
|
|
{
|
|
a = float64_squash_input_denormal(a STATUS_VAR);
|
|
b = float64_squash_input_denormal(b STATUS_VAR);
|
|
|
|
if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
|
|
|| ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
|
|
) {
|
|
if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
}
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the extended double-precision floating-
|
|
| point value `a' to the 32-bit two's complement integer format. The
|
|
| conversion is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic---which means in particular that the conversion
|
|
| is rounded according to the current rounding mode. If `a' is a NaN, the
|
|
| largest positive integer is returned. Otherwise, if the conversion
|
|
| overflows, the largest integer with the same sign as `a' is returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int32 floatx80_to_int32( floatx80 a STATUS_PARAM )
|
|
{
|
|
flag aSign;
|
|
int32 aExp, shiftCount;
|
|
uint64_t aSig;
|
|
|
|
aSig = extractFloatx80Frac( a );
|
|
aExp = extractFloatx80Exp( a );
|
|
aSign = extractFloatx80Sign( a );
|
|
if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0;
|
|
shiftCount = 0x4037 - aExp;
|
|
if ( shiftCount <= 0 ) shiftCount = 1;
|
|
shift64RightJamming( aSig, shiftCount, &aSig );
|
|
return roundAndPackInt32( aSign, aSig STATUS_VAR );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the extended double-precision floating-
|
|
| point value `a' to the 32-bit two's complement integer format. The
|
|
| conversion is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic, except that the conversion is always rounded
|
|
| toward zero. If `a' is a NaN, the largest positive integer is returned.
|
|
| Otherwise, if the conversion overflows, the largest integer with the same
|
|
| sign as `a' is returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int32 floatx80_to_int32_round_to_zero( floatx80 a STATUS_PARAM )
|
|
{
|
|
flag aSign;
|
|
int32 aExp, shiftCount;
|
|
uint64_t aSig, savedASig;
|
|
int32_t z;
|
|
|
|
aSig = extractFloatx80Frac( a );
|
|
aExp = extractFloatx80Exp( a );
|
|
aSign = extractFloatx80Sign( a );
|
|
if ( 0x401E < aExp ) {
|
|
if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0;
|
|
goto invalid;
|
|
}
|
|
else if ( aExp < 0x3FFF ) {
|
|
if ( aExp || aSig ) STATUS(float_exception_flags) |= float_flag_inexact;
|
|
return 0;
|
|
}
|
|
shiftCount = 0x403E - aExp;
|
|
savedASig = aSig;
|
|
aSig >>= shiftCount;
|
|
z = aSig;
|
|
if ( aSign ) z = - z;
|
|
if ( ( z < 0 ) ^ aSign ) {
|
|
invalid:
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
|
|
}
|
|
if ( ( aSig<<shiftCount ) != savedASig ) {
|
|
STATUS(float_exception_flags) |= float_flag_inexact;
|
|
}
|
|
return z;
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the extended double-precision floating-
|
|
| point value `a' to the 64-bit two's complement integer format. The
|
|
| conversion is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic---which means in particular that the conversion
|
|
| is rounded according to the current rounding mode. If `a' is a NaN,
|
|
| the largest positive integer is returned. Otherwise, if the conversion
|
|
| overflows, the largest integer with the same sign as `a' is returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int64 floatx80_to_int64( floatx80 a STATUS_PARAM )
|
|
{
|
|
flag aSign;
|
|
int32 aExp, shiftCount;
|
|
uint64_t aSig, aSigExtra;
|
|
|
|
aSig = extractFloatx80Frac( a );
|
|
aExp = extractFloatx80Exp( a );
|
|
aSign = extractFloatx80Sign( a );
|
|
shiftCount = 0x403E - aExp;
|
|
if ( shiftCount <= 0 ) {
|
|
if ( shiftCount ) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
if ( ! aSign
|
|
|| ( ( aExp == 0x7FFF )
|
|
&& ( aSig != LIT64( 0x8000000000000000 ) ) )
|
|
) {
|
|
return LIT64( 0x7FFFFFFFFFFFFFFF );
|
|
}
|
|
return (int64_t) LIT64( 0x8000000000000000 );
|
|
}
|
|
aSigExtra = 0;
|
|
}
|
|
else {
|
|
shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra );
|
|
}
|
|
return roundAndPackInt64( aSign, aSig, aSigExtra STATUS_VAR );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the extended double-precision floating-
|
|
| point value `a' to the 64-bit two's complement integer format. The
|
|
| conversion is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic, except that the conversion is always rounded
|
|
| toward zero. If `a' is a NaN, the largest positive integer is returned.
|
|
| Otherwise, if the conversion overflows, the largest integer with the same
|
|
| sign as `a' is returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int64 floatx80_to_int64_round_to_zero( floatx80 a STATUS_PARAM )
|
|
{
|
|
flag aSign;
|
|
int32 aExp, shiftCount;
|
|
uint64_t aSig;
|
|
int64 z;
|
|
|
|
aSig = extractFloatx80Frac( a );
|
|
aExp = extractFloatx80Exp( a );
|
|
aSign = extractFloatx80Sign( a );
|
|
shiftCount = aExp - 0x403E;
|
|
if ( 0 <= shiftCount ) {
|
|
aSig &= LIT64( 0x7FFFFFFFFFFFFFFF );
|
|
if ( ( a.high != 0xC03E ) || aSig ) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
if ( ! aSign || ( ( aExp == 0x7FFF ) && aSig ) ) {
|
|
return LIT64( 0x7FFFFFFFFFFFFFFF );
|
|
}
|
|
}
|
|
return (int64_t) LIT64( 0x8000000000000000 );
|
|
}
|
|
else if ( aExp < 0x3FFF ) {
|
|
if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact;
|
|
return 0;
|
|
}
|
|
z = aSig>>( - shiftCount );
|
|
if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) {
|
|
STATUS(float_exception_flags) |= float_flag_inexact;
|
|
}
|
|
if ( aSign ) z = - z;
|
|
return z;
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the extended double-precision floating-
|
|
| point value `a' to the single-precision floating-point format. The
|
|
| conversion is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float32 floatx80_to_float32( floatx80 a STATUS_PARAM )
|
|
{
|
|
flag aSign;
|
|
int32 aExp;
|
|
uint64_t aSig;
|
|
|
|
aSig = extractFloatx80Frac( a );
|
|
aExp = extractFloatx80Exp( a );
|
|
aSign = extractFloatx80Sign( a );
|
|
if ( aExp == 0x7FFF ) {
|
|
if ( (uint64_t) ( aSig<<1 ) ) {
|
|
return commonNaNToFloat32( floatx80ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
|
|
}
|
|
return packFloat32( aSign, 0xFF, 0 );
|
|
}
|
|
shift64RightJamming( aSig, 33, &aSig );
|
|
if ( aExp || aSig ) aExp -= 0x3F81;
|
|
return roundAndPackFloat32( aSign, aExp, aSig STATUS_VAR );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the extended double-precision floating-
|
|
| point value `a' to the double-precision floating-point format. The
|
|
| conversion is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float64 floatx80_to_float64( floatx80 a STATUS_PARAM )
|
|
{
|
|
flag aSign;
|
|
int32 aExp;
|
|
uint64_t aSig, zSig;
|
|
|
|
aSig = extractFloatx80Frac( a );
|
|
aExp = extractFloatx80Exp( a );
|
|
aSign = extractFloatx80Sign( a );
|
|
if ( aExp == 0x7FFF ) {
|
|
if ( (uint64_t) ( aSig<<1 ) ) {
|
|
return commonNaNToFloat64( floatx80ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
|
|
}
|
|
return packFloat64( aSign, 0x7FF, 0 );
|
|
}
|
|
shift64RightJamming( aSig, 1, &zSig );
|
|
if ( aExp || aSig ) aExp -= 0x3C01;
|
|
return roundAndPackFloat64( aSign, aExp, zSig STATUS_VAR );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the extended double-precision floating-
|
|
| point value `a' to the quadruple-precision floating-point format. The
|
|
| conversion is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float128 floatx80_to_float128( floatx80 a STATUS_PARAM )
|
|
{
|
|
flag aSign;
|
|
int_fast16_t aExp;
|
|
uint64_t aSig, zSig0, zSig1;
|
|
|
|
aSig = extractFloatx80Frac( a );
|
|
aExp = extractFloatx80Exp( a );
|
|
aSign = extractFloatx80Sign( a );
|
|
if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) {
|
|
return commonNaNToFloat128( floatx80ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
|
|
}
|
|
shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 );
|
|
return packFloat128( aSign, aExp, zSig0, zSig1 );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Rounds the extended double-precision floating-point value `a' to an integer,
|
|
| and returns the result as an extended quadruple-precision floating-point
|
|
| value. The operation is performed according to the IEC/IEEE Standard for
|
|
| Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 floatx80_round_to_int( floatx80 a STATUS_PARAM )
|
|
{
|
|
flag aSign;
|
|
int32 aExp;
|
|
uint64_t lastBitMask, roundBitsMask;
|
|
int8 roundingMode;
|
|
floatx80 z;
|
|
|
|
aExp = extractFloatx80Exp( a );
|
|
if ( 0x403E <= aExp ) {
|
|
if ( ( aExp == 0x7FFF ) && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) {
|
|
return propagateFloatx80NaN( a, a STATUS_VAR );
|
|
}
|
|
return a;
|
|
}
|
|
if ( aExp < 0x3FFF ) {
|
|
if ( ( aExp == 0 )
|
|
&& ( (uint64_t) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) {
|
|
return a;
|
|
}
|
|
STATUS(float_exception_flags) |= float_flag_inexact;
|
|
aSign = extractFloatx80Sign( a );
|
|
switch ( STATUS(float_rounding_mode) ) {
|
|
case float_round_nearest_even:
|
|
if ( ( aExp == 0x3FFE ) && (uint64_t) ( extractFloatx80Frac( a )<<1 )
|
|
) {
|
|
return
|
|
packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) );
|
|
}
|
|
break;
|
|
case float_round_down:
|
|
return
|
|
aSign ?
|
|
packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) )
|
|
: packFloatx80( 0, 0, 0 );
|
|
case float_round_up:
|
|
return
|
|
aSign ? packFloatx80( 1, 0, 0 )
|
|
: packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) );
|
|
}
|
|
return packFloatx80( aSign, 0, 0 );
|
|
}
|
|
lastBitMask = 1;
|
|
lastBitMask <<= 0x403E - aExp;
|
|
roundBitsMask = lastBitMask - 1;
|
|
z = a;
|
|
roundingMode = STATUS(float_rounding_mode);
|
|
if ( roundingMode == float_round_nearest_even ) {
|
|
z.low += lastBitMask>>1;
|
|
if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
|
|
}
|
|
else if ( roundingMode != float_round_to_zero ) {
|
|
if ( extractFloatx80Sign( z ) ^ ( roundingMode == float_round_up ) ) {
|
|
z.low += roundBitsMask;
|
|
}
|
|
}
|
|
z.low &= ~ roundBitsMask;
|
|
if ( z.low == 0 ) {
|
|
++z.high;
|
|
z.low = LIT64( 0x8000000000000000 );
|
|
}
|
|
if ( z.low != a.low ) STATUS(float_exception_flags) |= float_flag_inexact;
|
|
return z;
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of adding the absolute values of the extended double-
|
|
| precision floating-point values `a' and `b'. If `zSign' is 1, the sum is
|
|
| negated before being returned. `zSign' is ignored if the result is a NaN.
|
|
| The addition is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static floatx80 addFloatx80Sigs( floatx80 a, floatx80 b, flag zSign STATUS_PARAM)
|
|
{
|
|
int32 aExp, bExp, zExp;
|
|
uint64_t aSig, bSig, zSig0, zSig1;
|
|
int32 expDiff;
|
|
|
|
aSig = extractFloatx80Frac( a );
|
|
aExp = extractFloatx80Exp( a );
|
|
bSig = extractFloatx80Frac( b );
|
|
bExp = extractFloatx80Exp( b );
|
|
expDiff = aExp - bExp;
|
|
if ( 0 < expDiff ) {
|
|
if ( aExp == 0x7FFF ) {
|
|
if ( (uint64_t) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
|
|
return a;
|
|
}
|
|
if ( bExp == 0 ) --expDiff;
|
|
shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
|
|
zExp = aExp;
|
|
}
|
|
else if ( expDiff < 0 ) {
|
|
if ( bExp == 0x7FFF ) {
|
|
if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
|
|
return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
|
|
}
|
|
if ( aExp == 0 ) ++expDiff;
|
|
shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
|
|
zExp = bExp;
|
|
}
|
|
else {
|
|
if ( aExp == 0x7FFF ) {
|
|
if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) {
|
|
return propagateFloatx80NaN( a, b STATUS_VAR );
|
|
}
|
|
return a;
|
|
}
|
|
zSig1 = 0;
|
|
zSig0 = aSig + bSig;
|
|
if ( aExp == 0 ) {
|
|
normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 );
|
|
goto roundAndPack;
|
|
}
|
|
zExp = aExp;
|
|
goto shiftRight1;
|
|
}
|
|
zSig0 = aSig + bSig;
|
|
if ( (int64_t) zSig0 < 0 ) goto roundAndPack;
|
|
shiftRight1:
|
|
shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 );
|
|
zSig0 |= LIT64( 0x8000000000000000 );
|
|
++zExp;
|
|
roundAndPack:
|
|
return
|
|
roundAndPackFloatx80(
|
|
STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of subtracting the absolute values of the extended
|
|
| double-precision floating-point values `a' and `b'. If `zSign' is 1, the
|
|
| difference is negated before being returned. `zSign' is ignored if the
|
|
| result is a NaN. The subtraction is performed according to the IEC/IEEE
|
|
| Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static floatx80 subFloatx80Sigs( floatx80 a, floatx80 b, flag zSign STATUS_PARAM )
|
|
{
|
|
int32 aExp, bExp, zExp;
|
|
uint64_t aSig, bSig, zSig0, zSig1;
|
|
int32 expDiff;
|
|
floatx80 z;
|
|
|
|
aSig = extractFloatx80Frac( a );
|
|
aExp = extractFloatx80Exp( a );
|
|
bSig = extractFloatx80Frac( b );
|
|
bExp = extractFloatx80Exp( b );
|
|
expDiff = aExp - bExp;
|
|
if ( 0 < expDiff ) goto aExpBigger;
|
|
if ( expDiff < 0 ) goto bExpBigger;
|
|
if ( aExp == 0x7FFF ) {
|
|
if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) {
|
|
return propagateFloatx80NaN( a, b STATUS_VAR );
|
|
}
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
z.low = floatx80_default_nan_low;
|
|
z.high = floatx80_default_nan_high;
|
|
return z;
|
|
}
|
|
if ( aExp == 0 ) {
|
|
aExp = 1;
|
|
bExp = 1;
|
|
}
|
|
zSig1 = 0;
|
|
if ( bSig < aSig ) goto aBigger;
|
|
if ( aSig < bSig ) goto bBigger;
|
|
return packFloatx80( STATUS(float_rounding_mode) == float_round_down, 0, 0 );
|
|
bExpBigger:
|
|
if ( bExp == 0x7FFF ) {
|
|
if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
|
|
return packFloatx80( zSign ^ 1, 0x7FFF, LIT64( 0x8000000000000000 ) );
|
|
}
|
|
if ( aExp == 0 ) ++expDiff;
|
|
shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
|
|
bBigger:
|
|
sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 );
|
|
zExp = bExp;
|
|
zSign ^= 1;
|
|
goto normalizeRoundAndPack;
|
|
aExpBigger:
|
|
if ( aExp == 0x7FFF ) {
|
|
if ( (uint64_t) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
|
|
return a;
|
|
}
|
|
if ( bExp == 0 ) --expDiff;
|
|
shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
|
|
aBigger:
|
|
sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 );
|
|
zExp = aExp;
|
|
normalizeRoundAndPack:
|
|
return
|
|
normalizeRoundAndPackFloatx80(
|
|
STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of adding the extended double-precision floating-point
|
|
| values `a' and `b'. The operation is performed according to the IEC/IEEE
|
|
| Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 floatx80_add( floatx80 a, floatx80 b STATUS_PARAM )
|
|
{
|
|
flag aSign, bSign;
|
|
|
|
aSign = extractFloatx80Sign( a );
|
|
bSign = extractFloatx80Sign( b );
|
|
if ( aSign == bSign ) {
|
|
return addFloatx80Sigs( a, b, aSign STATUS_VAR );
|
|
}
|
|
else {
|
|
return subFloatx80Sigs( a, b, aSign STATUS_VAR );
|
|
}
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of subtracting the extended double-precision floating-
|
|
| point values `a' and `b'. The operation is performed according to the
|
|
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 floatx80_sub( floatx80 a, floatx80 b STATUS_PARAM )
|
|
{
|
|
flag aSign, bSign;
|
|
|
|
aSign = extractFloatx80Sign( a );
|
|
bSign = extractFloatx80Sign( b );
|
|
if ( aSign == bSign ) {
|
|
return subFloatx80Sigs( a, b, aSign STATUS_VAR );
|
|
}
|
|
else {
|
|
return addFloatx80Sigs( a, b, aSign STATUS_VAR );
|
|
}
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of multiplying the extended double-precision floating-
|
|
| point values `a' and `b'. The operation is performed according to the
|
|
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 floatx80_mul( floatx80 a, floatx80 b STATUS_PARAM )
|
|
{
|
|
flag aSign, bSign, zSign;
|
|
int32 aExp, bExp, zExp;
|
|
uint64_t aSig, bSig, zSig0, zSig1;
|
|
floatx80 z;
|
|
|
|
aSig = extractFloatx80Frac( a );
|
|
aExp = extractFloatx80Exp( a );
|
|
aSign = extractFloatx80Sign( a );
|
|
bSig = extractFloatx80Frac( b );
|
|
bExp = extractFloatx80Exp( b );
|
|
bSign = extractFloatx80Sign( b );
|
|
zSign = aSign ^ bSign;
|
|
if ( aExp == 0x7FFF ) {
|
|
if ( (uint64_t) ( aSig<<1 )
|
|
|| ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) {
|
|
return propagateFloatx80NaN( a, b STATUS_VAR );
|
|
}
|
|
if ( ( bExp | bSig ) == 0 ) goto invalid;
|
|
return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
|
|
}
|
|
if ( bExp == 0x7FFF ) {
|
|
if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
|
|
if ( ( aExp | aSig ) == 0 ) {
|
|
invalid:
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
z.low = floatx80_default_nan_low;
|
|
z.high = floatx80_default_nan_high;
|
|
return z;
|
|
}
|
|
return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
|
|
}
|
|
if ( aExp == 0 ) {
|
|
if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
|
|
normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
|
|
}
|
|
if ( bExp == 0 ) {
|
|
if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 );
|
|
normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
|
|
}
|
|
zExp = aExp + bExp - 0x3FFE;
|
|
mul64To128( aSig, bSig, &zSig0, &zSig1 );
|
|
if ( 0 < (int64_t) zSig0 ) {
|
|
shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 );
|
|
--zExp;
|
|
}
|
|
return
|
|
roundAndPackFloatx80(
|
|
STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of dividing the extended double-precision floating-point
|
|
| value `a' by the corresponding value `b'. The operation is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 floatx80_div( floatx80 a, floatx80 b STATUS_PARAM )
|
|
{
|
|
flag aSign, bSign, zSign;
|
|
int32 aExp, bExp, zExp;
|
|
uint64_t aSig, bSig, zSig0, zSig1;
|
|
uint64_t rem0, rem1, rem2, term0, term1, term2;
|
|
floatx80 z;
|
|
|
|
aSig = extractFloatx80Frac( a );
|
|
aExp = extractFloatx80Exp( a );
|
|
aSign = extractFloatx80Sign( a );
|
|
bSig = extractFloatx80Frac( b );
|
|
bExp = extractFloatx80Exp( b );
|
|
bSign = extractFloatx80Sign( b );
|
|
zSign = aSign ^ bSign;
|
|
if ( aExp == 0x7FFF ) {
|
|
if ( (uint64_t) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
|
|
if ( bExp == 0x7FFF ) {
|
|
if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
|
|
goto invalid;
|
|
}
|
|
return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
|
|
}
|
|
if ( bExp == 0x7FFF ) {
|
|
if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
|
|
return packFloatx80( zSign, 0, 0 );
|
|
}
|
|
if ( bExp == 0 ) {
|
|
if ( bSig == 0 ) {
|
|
if ( ( aExp | aSig ) == 0 ) {
|
|
invalid:
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
z.low = floatx80_default_nan_low;
|
|
z.high = floatx80_default_nan_high;
|
|
return z;
|
|
}
|
|
float_raise( float_flag_divbyzero STATUS_VAR);
|
|
return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
|
|
}
|
|
normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
|
|
}
|
|
if ( aExp == 0 ) {
|
|
if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
|
|
normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
|
|
}
|
|
zExp = aExp - bExp + 0x3FFE;
|
|
rem1 = 0;
|
|
if ( bSig <= aSig ) {
|
|
shift128Right( aSig, 0, 1, &aSig, &rem1 );
|
|
++zExp;
|
|
}
|
|
zSig0 = estimateDiv128To64( aSig, rem1, bSig );
|
|
mul64To128( bSig, zSig0, &term0, &term1 );
|
|
sub128( aSig, rem1, term0, term1, &rem0, &rem1 );
|
|
while ( (int64_t) rem0 < 0 ) {
|
|
--zSig0;
|
|
add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
|
|
}
|
|
zSig1 = estimateDiv128To64( rem1, 0, bSig );
|
|
if ( (uint64_t) ( zSig1<<1 ) <= 8 ) {
|
|
mul64To128( bSig, zSig1, &term1, &term2 );
|
|
sub128( rem1, 0, term1, term2, &rem1, &rem2 );
|
|
while ( (int64_t) rem1 < 0 ) {
|
|
--zSig1;
|
|
add128( rem1, rem2, 0, bSig, &rem1, &rem2 );
|
|
}
|
|
zSig1 |= ( ( rem1 | rem2 ) != 0 );
|
|
}
|
|
return
|
|
roundAndPackFloatx80(
|
|
STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the remainder of the extended double-precision floating-point value
|
|
| `a' with respect to the corresponding value `b'. The operation is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 floatx80_rem( floatx80 a, floatx80 b STATUS_PARAM )
|
|
{
|
|
flag aSign, zSign;
|
|
int32 aExp, bExp, expDiff;
|
|
uint64_t aSig0, aSig1, bSig;
|
|
uint64_t q, term0, term1, alternateASig0, alternateASig1;
|
|
floatx80 z;
|
|
|
|
aSig0 = extractFloatx80Frac( a );
|
|
aExp = extractFloatx80Exp( a );
|
|
aSign = extractFloatx80Sign( a );
|
|
bSig = extractFloatx80Frac( b );
|
|
bExp = extractFloatx80Exp( b );
|
|
if ( aExp == 0x7FFF ) {
|
|
if ( (uint64_t) ( aSig0<<1 )
|
|
|| ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) {
|
|
return propagateFloatx80NaN( a, b STATUS_VAR );
|
|
}
|
|
goto invalid;
|
|
}
|
|
if ( bExp == 0x7FFF ) {
|
|
if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
|
|
return a;
|
|
}
|
|
if ( bExp == 0 ) {
|
|
if ( bSig == 0 ) {
|
|
invalid:
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
z.low = floatx80_default_nan_low;
|
|
z.high = floatx80_default_nan_high;
|
|
return z;
|
|
}
|
|
normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
|
|
}
|
|
if ( aExp == 0 ) {
|
|
if ( (uint64_t) ( aSig0<<1 ) == 0 ) return a;
|
|
normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
|
|
}
|
|
bSig |= LIT64( 0x8000000000000000 );
|
|
zSign = aSign;
|
|
expDiff = aExp - bExp;
|
|
aSig1 = 0;
|
|
if ( expDiff < 0 ) {
|
|
if ( expDiff < -1 ) return a;
|
|
shift128Right( aSig0, 0, 1, &aSig0, &aSig1 );
|
|
expDiff = 0;
|
|
}
|
|
q = ( bSig <= aSig0 );
|
|
if ( q ) aSig0 -= bSig;
|
|
expDiff -= 64;
|
|
while ( 0 < expDiff ) {
|
|
q = estimateDiv128To64( aSig0, aSig1, bSig );
|
|
q = ( 2 < q ) ? q - 2 : 0;
|
|
mul64To128( bSig, q, &term0, &term1 );
|
|
sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
|
|
shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 );
|
|
expDiff -= 62;
|
|
}
|
|
expDiff += 64;
|
|
if ( 0 < expDiff ) {
|
|
q = estimateDiv128To64( aSig0, aSig1, bSig );
|
|
q = ( 2 < q ) ? q - 2 : 0;
|
|
q >>= 64 - expDiff;
|
|
mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 );
|
|
sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
|
|
shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 );
|
|
while ( le128( term0, term1, aSig0, aSig1 ) ) {
|
|
++q;
|
|
sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
|
|
}
|
|
}
|
|
else {
|
|
term1 = 0;
|
|
term0 = bSig;
|
|
}
|
|
sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 );
|
|
if ( lt128( alternateASig0, alternateASig1, aSig0, aSig1 )
|
|
|| ( eq128( alternateASig0, alternateASig1, aSig0, aSig1 )
|
|
&& ( q & 1 ) )
|
|
) {
|
|
aSig0 = alternateASig0;
|
|
aSig1 = alternateASig1;
|
|
zSign = ! zSign;
|
|
}
|
|
return
|
|
normalizeRoundAndPackFloatx80(
|
|
80, zSign, bExp + expDiff, aSig0, aSig1 STATUS_VAR );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the square root of the extended double-precision floating-point
|
|
| value `a'. The operation is performed according to the IEC/IEEE Standard
|
|
| for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 floatx80_sqrt( floatx80 a STATUS_PARAM )
|
|
{
|
|
flag aSign;
|
|
int32 aExp, zExp;
|
|
uint64_t aSig0, aSig1, zSig0, zSig1, doubleZSig0;
|
|
uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
|
|
floatx80 z;
|
|
|
|
aSig0 = extractFloatx80Frac( a );
|
|
aExp = extractFloatx80Exp( a );
|
|
aSign = extractFloatx80Sign( a );
|
|
if ( aExp == 0x7FFF ) {
|
|
if ( (uint64_t) ( aSig0<<1 ) ) return propagateFloatx80NaN( a, a STATUS_VAR );
|
|
if ( ! aSign ) return a;
|
|
goto invalid;
|
|
}
|
|
if ( aSign ) {
|
|
if ( ( aExp | aSig0 ) == 0 ) return a;
|
|
invalid:
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
z.low = floatx80_default_nan_low;
|
|
z.high = floatx80_default_nan_high;
|
|
return z;
|
|
}
|
|
if ( aExp == 0 ) {
|
|
if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 );
|
|
normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
|
|
}
|
|
zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF;
|
|
zSig0 = estimateSqrt32( aExp, aSig0>>32 );
|
|
shift128Right( aSig0, 0, 2 + ( aExp & 1 ), &aSig0, &aSig1 );
|
|
zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
|
|
doubleZSig0 = zSig0<<1;
|
|
mul64To128( zSig0, zSig0, &term0, &term1 );
|
|
sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
|
|
while ( (int64_t) rem0 < 0 ) {
|
|
--zSig0;
|
|
doubleZSig0 -= 2;
|
|
add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
|
|
}
|
|
zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
|
|
if ( ( zSig1 & LIT64( 0x3FFFFFFFFFFFFFFF ) ) <= 5 ) {
|
|
if ( zSig1 == 0 ) zSig1 = 1;
|
|
mul64To128( doubleZSig0, zSig1, &term1, &term2 );
|
|
sub128( rem1, 0, term1, term2, &rem1, &rem2 );
|
|
mul64To128( zSig1, zSig1, &term2, &term3 );
|
|
sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
|
|
while ( (int64_t) rem1 < 0 ) {
|
|
--zSig1;
|
|
shortShift128Left( 0, zSig1, 1, &term2, &term3 );
|
|
term3 |= 1;
|
|
term2 |= doubleZSig0;
|
|
add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
|
|
}
|
|
zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
|
|
}
|
|
shortShift128Left( 0, zSig1, 1, &zSig0, &zSig1 );
|
|
zSig0 |= doubleZSig0;
|
|
return
|
|
roundAndPackFloatx80(
|
|
STATUS(floatx80_rounding_precision), 0, zExp, zSig0, zSig1 STATUS_VAR );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the extended double-precision floating-point value `a' is equal
|
|
| to the corresponding value `b', and 0 otherwise. The invalid exception is
|
|
| raised if either operand is a NaN. Otherwise, the comparison is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int floatx80_eq( floatx80 a, floatx80 b STATUS_PARAM )
|
|
{
|
|
|
|
if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
|
|
&& (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
|
|
|| ( ( extractFloatx80Exp( b ) == 0x7FFF )
|
|
&& (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
|
|
) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
return 0;
|
|
}
|
|
return
|
|
( a.low == b.low )
|
|
&& ( ( a.high == b.high )
|
|
|| ( ( a.low == 0 )
|
|
&& ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) )
|
|
);
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the extended double-precision floating-point value `a' is
|
|
| less than or equal to the corresponding value `b', and 0 otherwise. The
|
|
| invalid exception is raised if either operand is a NaN. The comparison is
|
|
| performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int floatx80_le( floatx80 a, floatx80 b STATUS_PARAM )
|
|
{
|
|
flag aSign, bSign;
|
|
|
|
if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
|
|
&& (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
|
|
|| ( ( extractFloatx80Exp( b ) == 0x7FFF )
|
|
&& (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
|
|
) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
return 0;
|
|
}
|
|
aSign = extractFloatx80Sign( a );
|
|
bSign = extractFloatx80Sign( b );
|
|
if ( aSign != bSign ) {
|
|
return
|
|
aSign
|
|
|| ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
|
|
== 0 );
|
|
}
|
|
return
|
|
aSign ? le128( b.high, b.low, a.high, a.low )
|
|
: le128( a.high, a.low, b.high, b.low );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the extended double-precision floating-point value `a' is
|
|
| less than the corresponding value `b', and 0 otherwise. The invalid
|
|
| exception is raised if either operand is a NaN. The comparison is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int floatx80_lt( floatx80 a, floatx80 b STATUS_PARAM )
|
|
{
|
|
flag aSign, bSign;
|
|
|
|
if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
|
|
&& (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
|
|
|| ( ( extractFloatx80Exp( b ) == 0x7FFF )
|
|
&& (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
|
|
) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
return 0;
|
|
}
|
|
aSign = extractFloatx80Sign( a );
|
|
bSign = extractFloatx80Sign( b );
|
|
if ( aSign != bSign ) {
|
|
return
|
|
aSign
|
|
&& ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
|
|
!= 0 );
|
|
}
|
|
return
|
|
aSign ? lt128( b.high, b.low, a.high, a.low )
|
|
: lt128( a.high, a.low, b.high, b.low );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the extended double-precision floating-point values `a' and `b'
|
|
| cannot be compared, and 0 otherwise. The invalid exception is raised if
|
|
| either operand is a NaN. The comparison is performed according to the
|
|
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
int floatx80_unordered( floatx80 a, floatx80 b STATUS_PARAM )
|
|
{
|
|
if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
|
|
&& (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
|
|
|| ( ( extractFloatx80Exp( b ) == 0x7FFF )
|
|
&& (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
|
|
) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the extended double-precision floating-point value `a' is
|
|
| equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
|
|
| cause an exception. The comparison is performed according to the IEC/IEEE
|
|
| Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int floatx80_eq_quiet( floatx80 a, floatx80 b STATUS_PARAM )
|
|
{
|
|
|
|
if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
|
|
&& (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
|
|
|| ( ( extractFloatx80Exp( b ) == 0x7FFF )
|
|
&& (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
|
|
) {
|
|
if ( floatx80_is_signaling_nan( a )
|
|
|| floatx80_is_signaling_nan( b ) ) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
}
|
|
return 0;
|
|
}
|
|
return
|
|
( a.low == b.low )
|
|
&& ( ( a.high == b.high )
|
|
|| ( ( a.low == 0 )
|
|
&& ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) )
|
|
);
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the extended double-precision floating-point value `a' is less
|
|
| than or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs
|
|
| do not cause an exception. Otherwise, the comparison is performed according
|
|
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int floatx80_le_quiet( floatx80 a, floatx80 b STATUS_PARAM )
|
|
{
|
|
flag aSign, bSign;
|
|
|
|
if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
|
|
&& (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
|
|
|| ( ( extractFloatx80Exp( b ) == 0x7FFF )
|
|
&& (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
|
|
) {
|
|
if ( floatx80_is_signaling_nan( a )
|
|
|| floatx80_is_signaling_nan( b ) ) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
}
|
|
return 0;
|
|
}
|
|
aSign = extractFloatx80Sign( a );
|
|
bSign = extractFloatx80Sign( b );
|
|
if ( aSign != bSign ) {
|
|
return
|
|
aSign
|
|
|| ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
|
|
== 0 );
|
|
}
|
|
return
|
|
aSign ? le128( b.high, b.low, a.high, a.low )
|
|
: le128( a.high, a.low, b.high, b.low );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the extended double-precision floating-point value `a' is less
|
|
| than the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause
|
|
| an exception. Otherwise, the comparison is performed according to the
|
|
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int floatx80_lt_quiet( floatx80 a, floatx80 b STATUS_PARAM )
|
|
{
|
|
flag aSign, bSign;
|
|
|
|
if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
|
|
&& (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
|
|
|| ( ( extractFloatx80Exp( b ) == 0x7FFF )
|
|
&& (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
|
|
) {
|
|
if ( floatx80_is_signaling_nan( a )
|
|
|| floatx80_is_signaling_nan( b ) ) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
}
|
|
return 0;
|
|
}
|
|
aSign = extractFloatx80Sign( a );
|
|
bSign = extractFloatx80Sign( b );
|
|
if ( aSign != bSign ) {
|
|
return
|
|
aSign
|
|
&& ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
|
|
!= 0 );
|
|
}
|
|
return
|
|
aSign ? lt128( b.high, b.low, a.high, a.low )
|
|
: lt128( a.high, a.low, b.high, b.low );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the extended double-precision floating-point values `a' and `b'
|
|
| cannot be compared, and 0 otherwise. Quiet NaNs do not cause an exception.
|
|
| The comparison is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
int floatx80_unordered_quiet( floatx80 a, floatx80 b STATUS_PARAM )
|
|
{
|
|
if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
|
|
&& (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
|
|
|| ( ( extractFloatx80Exp( b ) == 0x7FFF )
|
|
&& (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
|
|
) {
|
|
if ( floatx80_is_signaling_nan( a )
|
|
|| floatx80_is_signaling_nan( b ) ) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
}
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the quadruple-precision floating-point
|
|
| value `a' to the 32-bit two's complement integer format. The conversion
|
|
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic---which means in particular that the conversion is rounded
|
|
| according to the current rounding mode. If `a' is a NaN, the largest
|
|
| positive integer is returned. Otherwise, if the conversion overflows, the
|
|
| largest integer with the same sign as `a' is returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int32 float128_to_int32( float128 a STATUS_PARAM )
|
|
{
|
|
flag aSign;
|
|
int32 aExp, shiftCount;
|
|
uint64_t aSig0, aSig1;
|
|
|
|
aSig1 = extractFloat128Frac1( a );
|
|
aSig0 = extractFloat128Frac0( a );
|
|
aExp = extractFloat128Exp( a );
|
|
aSign = extractFloat128Sign( a );
|
|
if ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) aSign = 0;
|
|
if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
|
|
aSig0 |= ( aSig1 != 0 );
|
|
shiftCount = 0x4028 - aExp;
|
|
if ( 0 < shiftCount ) shift64RightJamming( aSig0, shiftCount, &aSig0 );
|
|
return roundAndPackInt32( aSign, aSig0 STATUS_VAR );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the quadruple-precision floating-point
|
|
| value `a' to the 32-bit two's complement integer format. The conversion
|
|
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic, except that the conversion is always rounded toward zero. If
|
|
| `a' is a NaN, the largest positive integer is returned. Otherwise, if the
|
|
| conversion overflows, the largest integer with the same sign as `a' is
|
|
| returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int32 float128_to_int32_round_to_zero( float128 a STATUS_PARAM )
|
|
{
|
|
flag aSign;
|
|
int32 aExp, shiftCount;
|
|
uint64_t aSig0, aSig1, savedASig;
|
|
int32_t z;
|
|
|
|
aSig1 = extractFloat128Frac1( a );
|
|
aSig0 = extractFloat128Frac0( a );
|
|
aExp = extractFloat128Exp( a );
|
|
aSign = extractFloat128Sign( a );
|
|
aSig0 |= ( aSig1 != 0 );
|
|
if ( 0x401E < aExp ) {
|
|
if ( ( aExp == 0x7FFF ) && aSig0 ) aSign = 0;
|
|
goto invalid;
|
|
}
|
|
else if ( aExp < 0x3FFF ) {
|
|
if ( aExp || aSig0 ) STATUS(float_exception_flags) |= float_flag_inexact;
|
|
return 0;
|
|
}
|
|
aSig0 |= LIT64( 0x0001000000000000 );
|
|
shiftCount = 0x402F - aExp;
|
|
savedASig = aSig0;
|
|
aSig0 >>= shiftCount;
|
|
z = aSig0;
|
|
if ( aSign ) z = - z;
|
|
if ( ( z < 0 ) ^ aSign ) {
|
|
invalid:
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
|
|
}
|
|
if ( ( aSig0<<shiftCount ) != savedASig ) {
|
|
STATUS(float_exception_flags) |= float_flag_inexact;
|
|
}
|
|
return z;
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the quadruple-precision floating-point
|
|
| value `a' to the 64-bit two's complement integer format. The conversion
|
|
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic---which means in particular that the conversion is rounded
|
|
| according to the current rounding mode. If `a' is a NaN, the largest
|
|
| positive integer is returned. Otherwise, if the conversion overflows, the
|
|
| largest integer with the same sign as `a' is returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int64 float128_to_int64( float128 a STATUS_PARAM )
|
|
{
|
|
flag aSign;
|
|
int32 aExp, shiftCount;
|
|
uint64_t aSig0, aSig1;
|
|
|
|
aSig1 = extractFloat128Frac1( a );
|
|
aSig0 = extractFloat128Frac0( a );
|
|
aExp = extractFloat128Exp( a );
|
|
aSign = extractFloat128Sign( a );
|
|
if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
|
|
shiftCount = 0x402F - aExp;
|
|
if ( shiftCount <= 0 ) {
|
|
if ( 0x403E < aExp ) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
if ( ! aSign
|
|
|| ( ( aExp == 0x7FFF )
|
|
&& ( aSig1 || ( aSig0 != LIT64( 0x0001000000000000 ) ) )
|
|
)
|
|
) {
|
|
return LIT64( 0x7FFFFFFFFFFFFFFF );
|
|
}
|
|
return (int64_t) LIT64( 0x8000000000000000 );
|
|
}
|
|
shortShift128Left( aSig0, aSig1, - shiftCount, &aSig0, &aSig1 );
|
|
}
|
|
else {
|
|
shift64ExtraRightJamming( aSig0, aSig1, shiftCount, &aSig0, &aSig1 );
|
|
}
|
|
return roundAndPackInt64( aSign, aSig0, aSig1 STATUS_VAR );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the quadruple-precision floating-point
|
|
| value `a' to the 64-bit two's complement integer format. The conversion
|
|
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic, except that the conversion is always rounded toward zero.
|
|
| If `a' is a NaN, the largest positive integer is returned. Otherwise, if
|
|
| the conversion overflows, the largest integer with the same sign as `a' is
|
|
| returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int64 float128_to_int64_round_to_zero( float128 a STATUS_PARAM )
|
|
{
|
|
flag aSign;
|
|
int32 aExp, shiftCount;
|
|
uint64_t aSig0, aSig1;
|
|
int64 z;
|
|
|
|
aSig1 = extractFloat128Frac1( a );
|
|
aSig0 = extractFloat128Frac0( a );
|
|
aExp = extractFloat128Exp( a );
|
|
aSign = extractFloat128Sign( a );
|
|
if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
|
|
shiftCount = aExp - 0x402F;
|
|
if ( 0 < shiftCount ) {
|
|
if ( 0x403E <= aExp ) {
|
|
aSig0 &= LIT64( 0x0000FFFFFFFFFFFF );
|
|
if ( ( a.high == LIT64( 0xC03E000000000000 ) )
|
|
&& ( aSig1 < LIT64( 0x0002000000000000 ) ) ) {
|
|
if ( aSig1 ) STATUS(float_exception_flags) |= float_flag_inexact;
|
|
}
|
|
else {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
if ( ! aSign || ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) ) {
|
|
return LIT64( 0x7FFFFFFFFFFFFFFF );
|
|
}
|
|
}
|
|
return (int64_t) LIT64( 0x8000000000000000 );
|
|
}
|
|
z = ( aSig0<<shiftCount ) | ( aSig1>>( ( - shiftCount ) & 63 ) );
|
|
if ( (uint64_t) ( aSig1<<shiftCount ) ) {
|
|
STATUS(float_exception_flags) |= float_flag_inexact;
|
|
}
|
|
}
|
|
else {
|
|
if ( aExp < 0x3FFF ) {
|
|
if ( aExp | aSig0 | aSig1 ) {
|
|
STATUS(float_exception_flags) |= float_flag_inexact;
|
|
}
|
|
return 0;
|
|
}
|
|
z = aSig0>>( - shiftCount );
|
|
if ( aSig1
|
|
|| ( shiftCount && (uint64_t) ( aSig0<<( shiftCount & 63 ) ) ) ) {
|
|
STATUS(float_exception_flags) |= float_flag_inexact;
|
|
}
|
|
}
|
|
if ( aSign ) z = - z;
|
|
return z;
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the quadruple-precision floating-point
|
|
| value `a' to the single-precision floating-point format. The conversion
|
|
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float32 float128_to_float32( float128 a STATUS_PARAM )
|
|
{
|
|
flag aSign;
|
|
int32 aExp;
|
|
uint64_t aSig0, aSig1;
|
|
uint32_t zSig;
|
|
|
|
aSig1 = extractFloat128Frac1( a );
|
|
aSig0 = extractFloat128Frac0( a );
|
|
aExp = extractFloat128Exp( a );
|
|
aSign = extractFloat128Sign( a );
|
|
if ( aExp == 0x7FFF ) {
|
|
if ( aSig0 | aSig1 ) {
|
|
return commonNaNToFloat32( float128ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
|
|
}
|
|
return packFloat32( aSign, 0xFF, 0 );
|
|
}
|
|
aSig0 |= ( aSig1 != 0 );
|
|
shift64RightJamming( aSig0, 18, &aSig0 );
|
|
zSig = aSig0;
|
|
if ( aExp || zSig ) {
|
|
zSig |= 0x40000000;
|
|
aExp -= 0x3F81;
|
|
}
|
|
return roundAndPackFloat32( aSign, aExp, zSig STATUS_VAR );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the quadruple-precision floating-point
|
|
| value `a' to the double-precision floating-point format. The conversion
|
|
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float64 float128_to_float64( float128 a STATUS_PARAM )
|
|
{
|
|
flag aSign;
|
|
int32 aExp;
|
|
uint64_t aSig0, aSig1;
|
|
|
|
aSig1 = extractFloat128Frac1( a );
|
|
aSig0 = extractFloat128Frac0( a );
|
|
aExp = extractFloat128Exp( a );
|
|
aSign = extractFloat128Sign( a );
|
|
if ( aExp == 0x7FFF ) {
|
|
if ( aSig0 | aSig1 ) {
|
|
return commonNaNToFloat64( float128ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
|
|
}
|
|
return packFloat64( aSign, 0x7FF, 0 );
|
|
}
|
|
shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
|
|
aSig0 |= ( aSig1 != 0 );
|
|
if ( aExp || aSig0 ) {
|
|
aSig0 |= LIT64( 0x4000000000000000 );
|
|
aExp -= 0x3C01;
|
|
}
|
|
return roundAndPackFloat64( aSign, aExp, aSig0 STATUS_VAR );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the quadruple-precision floating-point
|
|
| value `a' to the extended double-precision floating-point format. The
|
|
| conversion is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 float128_to_floatx80( float128 a STATUS_PARAM )
|
|
{
|
|
flag aSign;
|
|
int32 aExp;
|
|
uint64_t aSig0, aSig1;
|
|
|
|
aSig1 = extractFloat128Frac1( a );
|
|
aSig0 = extractFloat128Frac0( a );
|
|
aExp = extractFloat128Exp( a );
|
|
aSign = extractFloat128Sign( a );
|
|
if ( aExp == 0x7FFF ) {
|
|
if ( aSig0 | aSig1 ) {
|
|
return commonNaNToFloatx80( float128ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
|
|
}
|
|
return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
|
|
}
|
|
if ( aExp == 0 ) {
|
|
if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 );
|
|
normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
|
|
}
|
|
else {
|
|
aSig0 |= LIT64( 0x0001000000000000 );
|
|
}
|
|
shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 );
|
|
return roundAndPackFloatx80( 80, aSign, aExp, aSig0, aSig1 STATUS_VAR );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Rounds the quadruple-precision floating-point value `a' to an integer, and
|
|
| returns the result as a quadruple-precision floating-point value. The
|
|
| operation is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float128 float128_round_to_int( float128 a STATUS_PARAM )
|
|
{
|
|
flag aSign;
|
|
int32 aExp;
|
|
uint64_t lastBitMask, roundBitsMask;
|
|
int8 roundingMode;
|
|
float128 z;
|
|
|
|
aExp = extractFloat128Exp( a );
|
|
if ( 0x402F <= aExp ) {
|
|
if ( 0x406F <= aExp ) {
|
|
if ( ( aExp == 0x7FFF )
|
|
&& ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) )
|
|
) {
|
|
return propagateFloat128NaN( a, a STATUS_VAR );
|
|
}
|
|
return a;
|
|
}
|
|
lastBitMask = 1;
|
|
lastBitMask = ( lastBitMask<<( 0x406E - aExp ) )<<1;
|
|
roundBitsMask = lastBitMask - 1;
|
|
z = a;
|
|
roundingMode = STATUS(float_rounding_mode);
|
|
if ( roundingMode == float_round_nearest_even ) {
|
|
if ( lastBitMask ) {
|
|
add128( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low );
|
|
if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
|
|
}
|
|
else {
|
|
if ( (int64_t) z.low < 0 ) {
|
|
++z.high;
|
|
if ( (uint64_t) ( z.low<<1 ) == 0 ) z.high &= ~1;
|
|
}
|
|
}
|
|
}
|
|
else if ( roundingMode != float_round_to_zero ) {
|
|
if ( extractFloat128Sign( z )
|
|
^ ( roundingMode == float_round_up ) ) {
|
|
add128( z.high, z.low, 0, roundBitsMask, &z.high, &z.low );
|
|
}
|
|
}
|
|
z.low &= ~ roundBitsMask;
|
|
}
|
|
else {
|
|
if ( aExp < 0x3FFF ) {
|
|
if ( ( ( (uint64_t) ( a.high<<1 ) ) | a.low ) == 0 ) return a;
|
|
STATUS(float_exception_flags) |= float_flag_inexact;
|
|
aSign = extractFloat128Sign( a );
|
|
switch ( STATUS(float_rounding_mode) ) {
|
|
case float_round_nearest_even:
|
|
if ( ( aExp == 0x3FFE )
|
|
&& ( extractFloat128Frac0( a )
|
|
| extractFloat128Frac1( a ) )
|
|
) {
|
|
return packFloat128( aSign, 0x3FFF, 0, 0 );
|
|
}
|
|
break;
|
|
case float_round_down:
|
|
return
|
|
aSign ? packFloat128( 1, 0x3FFF, 0, 0 )
|
|
: packFloat128( 0, 0, 0, 0 );
|
|
case float_round_up:
|
|
return
|
|
aSign ? packFloat128( 1, 0, 0, 0 )
|
|
: packFloat128( 0, 0x3FFF, 0, 0 );
|
|
}
|
|
return packFloat128( aSign, 0, 0, 0 );
|
|
}
|
|
lastBitMask = 1;
|
|
lastBitMask <<= 0x402F - aExp;
|
|
roundBitsMask = lastBitMask - 1;
|
|
z.low = 0;
|
|
z.high = a.high;
|
|
roundingMode = STATUS(float_rounding_mode);
|
|
if ( roundingMode == float_round_nearest_even ) {
|
|
z.high += lastBitMask>>1;
|
|
if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) {
|
|
z.high &= ~ lastBitMask;
|
|
}
|
|
}
|
|
else if ( roundingMode != float_round_to_zero ) {
|
|
if ( extractFloat128Sign( z )
|
|
^ ( roundingMode == float_round_up ) ) {
|
|
z.high |= ( a.low != 0 );
|
|
z.high += roundBitsMask;
|
|
}
|
|
}
|
|
z.high &= ~ roundBitsMask;
|
|
}
|
|
if ( ( z.low != a.low ) || ( z.high != a.high ) ) {
|
|
STATUS(float_exception_flags) |= float_flag_inexact;
|
|
}
|
|
return z;
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of adding the absolute values of the quadruple-precision
|
|
| floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
|
|
| before being returned. `zSign' is ignored if the result is a NaN.
|
|
| The addition is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static float128 addFloat128Sigs( float128 a, float128 b, flag zSign STATUS_PARAM)
|
|
{
|
|
int32 aExp, bExp, zExp;
|
|
uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
|
|
int32 expDiff;
|
|
|
|
aSig1 = extractFloat128Frac1( a );
|
|
aSig0 = extractFloat128Frac0( a );
|
|
aExp = extractFloat128Exp( a );
|
|
bSig1 = extractFloat128Frac1( b );
|
|
bSig0 = extractFloat128Frac0( b );
|
|
bExp = extractFloat128Exp( b );
|
|
expDiff = aExp - bExp;
|
|
if ( 0 < expDiff ) {
|
|
if ( aExp == 0x7FFF ) {
|
|
if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
|
|
return a;
|
|
}
|
|
if ( bExp == 0 ) {
|
|
--expDiff;
|
|
}
|
|
else {
|
|
bSig0 |= LIT64( 0x0001000000000000 );
|
|
}
|
|
shift128ExtraRightJamming(
|
|
bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 );
|
|
zExp = aExp;
|
|
}
|
|
else if ( expDiff < 0 ) {
|
|
if ( bExp == 0x7FFF ) {
|
|
if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
|
|
return packFloat128( zSign, 0x7FFF, 0, 0 );
|
|
}
|
|
if ( aExp == 0 ) {
|
|
++expDiff;
|
|
}
|
|
else {
|
|
aSig0 |= LIT64( 0x0001000000000000 );
|
|
}
|
|
shift128ExtraRightJamming(
|
|
aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 );
|
|
zExp = bExp;
|
|
}
|
|
else {
|
|
if ( aExp == 0x7FFF ) {
|
|
if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
|
|
return propagateFloat128NaN( a, b STATUS_VAR );
|
|
}
|
|
return a;
|
|
}
|
|
add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
|
|
if ( aExp == 0 ) {
|
|
if (STATUS(flush_to_zero)) {
|
|
if (zSig0 | zSig1) {
|
|
float_raise(float_flag_output_denormal STATUS_VAR);
|
|
}
|
|
return packFloat128(zSign, 0, 0, 0);
|
|
}
|
|
return packFloat128( zSign, 0, zSig0, zSig1 );
|
|
}
|
|
zSig2 = 0;
|
|
zSig0 |= LIT64( 0x0002000000000000 );
|
|
zExp = aExp;
|
|
goto shiftRight1;
|
|
}
|
|
aSig0 |= LIT64( 0x0001000000000000 );
|
|
add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
|
|
--zExp;
|
|
if ( zSig0 < LIT64( 0x0002000000000000 ) ) goto roundAndPack;
|
|
++zExp;
|
|
shiftRight1:
|
|
shift128ExtraRightJamming(
|
|
zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
|
|
roundAndPack:
|
|
return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of subtracting the absolute values of the quadruple-
|
|
| precision floating-point values `a' and `b'. If `zSign' is 1, the
|
|
| difference is negated before being returned. `zSign' is ignored if the
|
|
| result is a NaN. The subtraction is performed according to the IEC/IEEE
|
|
| Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static float128 subFloat128Sigs( float128 a, float128 b, flag zSign STATUS_PARAM)
|
|
{
|
|
int32 aExp, bExp, zExp;
|
|
uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1;
|
|
int32 expDiff;
|
|
float128 z;
|
|
|
|
aSig1 = extractFloat128Frac1( a );
|
|
aSig0 = extractFloat128Frac0( a );
|
|
aExp = extractFloat128Exp( a );
|
|
bSig1 = extractFloat128Frac1( b );
|
|
bSig0 = extractFloat128Frac0( b );
|
|
bExp = extractFloat128Exp( b );
|
|
expDiff = aExp - bExp;
|
|
shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
|
|
shortShift128Left( bSig0, bSig1, 14, &bSig0, &bSig1 );
|
|
if ( 0 < expDiff ) goto aExpBigger;
|
|
if ( expDiff < 0 ) goto bExpBigger;
|
|
if ( aExp == 0x7FFF ) {
|
|
if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
|
|
return propagateFloat128NaN( a, b STATUS_VAR );
|
|
}
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
z.low = float128_default_nan_low;
|
|
z.high = float128_default_nan_high;
|
|
return z;
|
|
}
|
|
if ( aExp == 0 ) {
|
|
aExp = 1;
|
|
bExp = 1;
|
|
}
|
|
if ( bSig0 < aSig0 ) goto aBigger;
|
|
if ( aSig0 < bSig0 ) goto bBigger;
|
|
if ( bSig1 < aSig1 ) goto aBigger;
|
|
if ( aSig1 < bSig1 ) goto bBigger;
|
|
return packFloat128( STATUS(float_rounding_mode) == float_round_down, 0, 0, 0 );
|
|
bExpBigger:
|
|
if ( bExp == 0x7FFF ) {
|
|
if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
|
|
return packFloat128( zSign ^ 1, 0x7FFF, 0, 0 );
|
|
}
|
|
if ( aExp == 0 ) {
|
|
++expDiff;
|
|
}
|
|
else {
|
|
aSig0 |= LIT64( 0x4000000000000000 );
|
|
}
|
|
shift128RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
|
|
bSig0 |= LIT64( 0x4000000000000000 );
|
|
bBigger:
|
|
sub128( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 );
|
|
zExp = bExp;
|
|
zSign ^= 1;
|
|
goto normalizeRoundAndPack;
|
|
aExpBigger:
|
|
if ( aExp == 0x7FFF ) {
|
|
if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
|
|
return a;
|
|
}
|
|
if ( bExp == 0 ) {
|
|
--expDiff;
|
|
}
|
|
else {
|
|
bSig0 |= LIT64( 0x4000000000000000 );
|
|
}
|
|
shift128RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 );
|
|
aSig0 |= LIT64( 0x4000000000000000 );
|
|
aBigger:
|
|
sub128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
|
|
zExp = aExp;
|
|
normalizeRoundAndPack:
|
|
--zExp;
|
|
return normalizeRoundAndPackFloat128( zSign, zExp - 14, zSig0, zSig1 STATUS_VAR );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of adding the quadruple-precision floating-point values
|
|
| `a' and `b'. The operation is performed according to the IEC/IEEE Standard
|
|
| for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float128 float128_add( float128 a, float128 b STATUS_PARAM )
|
|
{
|
|
flag aSign, bSign;
|
|
|
|
aSign = extractFloat128Sign( a );
|
|
bSign = extractFloat128Sign( b );
|
|
if ( aSign == bSign ) {
|
|
return addFloat128Sigs( a, b, aSign STATUS_VAR );
|
|
}
|
|
else {
|
|
return subFloat128Sigs( a, b, aSign STATUS_VAR );
|
|
}
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of subtracting the quadruple-precision floating-point
|
|
| values `a' and `b'. The operation is performed according to the IEC/IEEE
|
|
| Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float128 float128_sub( float128 a, float128 b STATUS_PARAM )
|
|
{
|
|
flag aSign, bSign;
|
|
|
|
aSign = extractFloat128Sign( a );
|
|
bSign = extractFloat128Sign( b );
|
|
if ( aSign == bSign ) {
|
|
return subFloat128Sigs( a, b, aSign STATUS_VAR );
|
|
}
|
|
else {
|
|
return addFloat128Sigs( a, b, aSign STATUS_VAR );
|
|
}
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of multiplying the quadruple-precision floating-point
|
|
| values `a' and `b'. The operation is performed according to the IEC/IEEE
|
|
| Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float128 float128_mul( float128 a, float128 b STATUS_PARAM )
|
|
{
|
|
flag aSign, bSign, zSign;
|
|
int32 aExp, bExp, zExp;
|
|
uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3;
|
|
float128 z;
|
|
|
|
aSig1 = extractFloat128Frac1( a );
|
|
aSig0 = extractFloat128Frac0( a );
|
|
aExp = extractFloat128Exp( a );
|
|
aSign = extractFloat128Sign( a );
|
|
bSig1 = extractFloat128Frac1( b );
|
|
bSig0 = extractFloat128Frac0( b );
|
|
bExp = extractFloat128Exp( b );
|
|
bSign = extractFloat128Sign( b );
|
|
zSign = aSign ^ bSign;
|
|
if ( aExp == 0x7FFF ) {
|
|
if ( ( aSig0 | aSig1 )
|
|
|| ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
|
|
return propagateFloat128NaN( a, b STATUS_VAR );
|
|
}
|
|
if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid;
|
|
return packFloat128( zSign, 0x7FFF, 0, 0 );
|
|
}
|
|
if ( bExp == 0x7FFF ) {
|
|
if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
|
|
if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
|
|
invalid:
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
z.low = float128_default_nan_low;
|
|
z.high = float128_default_nan_high;
|
|
return z;
|
|
}
|
|
return packFloat128( zSign, 0x7FFF, 0, 0 );
|
|
}
|
|
if ( aExp == 0 ) {
|
|
if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
|
|
normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
|
|
}
|
|
if ( bExp == 0 ) {
|
|
if ( ( bSig0 | bSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
|
|
normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
|
|
}
|
|
zExp = aExp + bExp - 0x4000;
|
|
aSig0 |= LIT64( 0x0001000000000000 );
|
|
shortShift128Left( bSig0, bSig1, 16, &bSig0, &bSig1 );
|
|
mul128To256( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 );
|
|
add128( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 );
|
|
zSig2 |= ( zSig3 != 0 );
|
|
if ( LIT64( 0x0002000000000000 ) <= zSig0 ) {
|
|
shift128ExtraRightJamming(
|
|
zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
|
|
++zExp;
|
|
}
|
|
return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of dividing the quadruple-precision floating-point value
|
|
| `a' by the corresponding value `b'. The operation is performed according to
|
|
| the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float128 float128_div( float128 a, float128 b STATUS_PARAM )
|
|
{
|
|
flag aSign, bSign, zSign;
|
|
int32 aExp, bExp, zExp;
|
|
uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
|
|
uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
|
|
float128 z;
|
|
|
|
aSig1 = extractFloat128Frac1( a );
|
|
aSig0 = extractFloat128Frac0( a );
|
|
aExp = extractFloat128Exp( a );
|
|
aSign = extractFloat128Sign( a );
|
|
bSig1 = extractFloat128Frac1( b );
|
|
bSig0 = extractFloat128Frac0( b );
|
|
bExp = extractFloat128Exp( b );
|
|
bSign = extractFloat128Sign( b );
|
|
zSign = aSign ^ bSign;
|
|
if ( aExp == 0x7FFF ) {
|
|
if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
|
|
if ( bExp == 0x7FFF ) {
|
|
if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
|
|
goto invalid;
|
|
}
|
|
return packFloat128( zSign, 0x7FFF, 0, 0 );
|
|
}
|
|
if ( bExp == 0x7FFF ) {
|
|
if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
|
|
return packFloat128( zSign, 0, 0, 0 );
|
|
}
|
|
if ( bExp == 0 ) {
|
|
if ( ( bSig0 | bSig1 ) == 0 ) {
|
|
if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
|
|
invalid:
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
z.low = float128_default_nan_low;
|
|
z.high = float128_default_nan_high;
|
|
return z;
|
|
}
|
|
float_raise( float_flag_divbyzero STATUS_VAR);
|
|
return packFloat128( zSign, 0x7FFF, 0, 0 );
|
|
}
|
|
normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
|
|
}
|
|
if ( aExp == 0 ) {
|
|
if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
|
|
normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
|
|
}
|
|
zExp = aExp - bExp + 0x3FFD;
|
|
shortShift128Left(
|
|
aSig0 | LIT64( 0x0001000000000000 ), aSig1, 15, &aSig0, &aSig1 );
|
|
shortShift128Left(
|
|
bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
|
|
if ( le128( bSig0, bSig1, aSig0, aSig1 ) ) {
|
|
shift128Right( aSig0, aSig1, 1, &aSig0, &aSig1 );
|
|
++zExp;
|
|
}
|
|
zSig0 = estimateDiv128To64( aSig0, aSig1, bSig0 );
|
|
mul128By64To192( bSig0, bSig1, zSig0, &term0, &term1, &term2 );
|
|
sub192( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 );
|
|
while ( (int64_t) rem0 < 0 ) {
|
|
--zSig0;
|
|
add192( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 );
|
|
}
|
|
zSig1 = estimateDiv128To64( rem1, rem2, bSig0 );
|
|
if ( ( zSig1 & 0x3FFF ) <= 4 ) {
|
|
mul128By64To192( bSig0, bSig1, zSig1, &term1, &term2, &term3 );
|
|
sub192( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 );
|
|
while ( (int64_t) rem1 < 0 ) {
|
|
--zSig1;
|
|
add192( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 );
|
|
}
|
|
zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
|
|
}
|
|
shift128ExtraRightJamming( zSig0, zSig1, 0, 15, &zSig0, &zSig1, &zSig2 );
|
|
return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the remainder of the quadruple-precision floating-point value `a'
|
|
| with respect to the corresponding value `b'. The operation is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float128 float128_rem( float128 a, float128 b STATUS_PARAM )
|
|
{
|
|
flag aSign, zSign;
|
|
int32 aExp, bExp, expDiff;
|
|
uint64_t aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2;
|
|
uint64_t allZero, alternateASig0, alternateASig1, sigMean1;
|
|
int64_t sigMean0;
|
|
float128 z;
|
|
|
|
aSig1 = extractFloat128Frac1( a );
|
|
aSig0 = extractFloat128Frac0( a );
|
|
aExp = extractFloat128Exp( a );
|
|
aSign = extractFloat128Sign( a );
|
|
bSig1 = extractFloat128Frac1( b );
|
|
bSig0 = extractFloat128Frac0( b );
|
|
bExp = extractFloat128Exp( b );
|
|
if ( aExp == 0x7FFF ) {
|
|
if ( ( aSig0 | aSig1 )
|
|
|| ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
|
|
return propagateFloat128NaN( a, b STATUS_VAR );
|
|
}
|
|
goto invalid;
|
|
}
|
|
if ( bExp == 0x7FFF ) {
|
|
if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
|
|
return a;
|
|
}
|
|
if ( bExp == 0 ) {
|
|
if ( ( bSig0 | bSig1 ) == 0 ) {
|
|
invalid:
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
z.low = float128_default_nan_low;
|
|
z.high = float128_default_nan_high;
|
|
return z;
|
|
}
|
|
normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
|
|
}
|
|
if ( aExp == 0 ) {
|
|
if ( ( aSig0 | aSig1 ) == 0 ) return a;
|
|
normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
|
|
}
|
|
expDiff = aExp - bExp;
|
|
if ( expDiff < -1 ) return a;
|
|
shortShift128Left(
|
|
aSig0 | LIT64( 0x0001000000000000 ),
|
|
aSig1,
|
|
15 - ( expDiff < 0 ),
|
|
&aSig0,
|
|
&aSig1
|
|
);
|
|
shortShift128Left(
|
|
bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
|
|
q = le128( bSig0, bSig1, aSig0, aSig1 );
|
|
if ( q ) sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
|
|
expDiff -= 64;
|
|
while ( 0 < expDiff ) {
|
|
q = estimateDiv128To64( aSig0, aSig1, bSig0 );
|
|
q = ( 4 < q ) ? q - 4 : 0;
|
|
mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
|
|
shortShift192Left( term0, term1, term2, 61, &term1, &term2, &allZero );
|
|
shortShift128Left( aSig0, aSig1, 61, &aSig0, &allZero );
|
|
sub128( aSig0, 0, term1, term2, &aSig0, &aSig1 );
|
|
expDiff -= 61;
|
|
}
|
|
if ( -64 < expDiff ) {
|
|
q = estimateDiv128To64( aSig0, aSig1, bSig0 );
|
|
q = ( 4 < q ) ? q - 4 : 0;
|
|
q >>= - expDiff;
|
|
shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
|
|
expDiff += 52;
|
|
if ( expDiff < 0 ) {
|
|
shift128Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
|
|
}
|
|
else {
|
|
shortShift128Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 );
|
|
}
|
|
mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
|
|
sub128( aSig0, aSig1, term1, term2, &aSig0, &aSig1 );
|
|
}
|
|
else {
|
|
shift128Right( aSig0, aSig1, 12, &aSig0, &aSig1 );
|
|
shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
|
|
}
|
|
do {
|
|
alternateASig0 = aSig0;
|
|
alternateASig1 = aSig1;
|
|
++q;
|
|
sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
|
|
} while ( 0 <= (int64_t) aSig0 );
|
|
add128(
|
|
aSig0, aSig1, alternateASig0, alternateASig1, (uint64_t *)&sigMean0, &sigMean1 );
|
|
if ( ( sigMean0 < 0 )
|
|
|| ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) {
|
|
aSig0 = alternateASig0;
|
|
aSig1 = alternateASig1;
|
|
}
|
|
zSign = ( (int64_t) aSig0 < 0 );
|
|
if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 );
|
|
return
|
|
normalizeRoundAndPackFloat128( aSign ^ zSign, bExp - 4, aSig0, aSig1 STATUS_VAR );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the square root of the quadruple-precision floating-point value `a'.
|
|
| The operation is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float128 float128_sqrt( float128 a STATUS_PARAM )
|
|
{
|
|
flag aSign;
|
|
int32 aExp, zExp;
|
|
uint64_t aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0;
|
|
uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
|
|
float128 z;
|
|
|
|
aSig1 = extractFloat128Frac1( a );
|
|
aSig0 = extractFloat128Frac0( a );
|
|
aExp = extractFloat128Exp( a );
|
|
aSign = extractFloat128Sign( a );
|
|
if ( aExp == 0x7FFF ) {
|
|
if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, a STATUS_VAR );
|
|
if ( ! aSign ) return a;
|
|
goto invalid;
|
|
}
|
|
if ( aSign ) {
|
|
if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a;
|
|
invalid:
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
z.low = float128_default_nan_low;
|
|
z.high = float128_default_nan_high;
|
|
return z;
|
|
}
|
|
if ( aExp == 0 ) {
|
|
if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 );
|
|
normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
|
|
}
|
|
zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFE;
|
|
aSig0 |= LIT64( 0x0001000000000000 );
|
|
zSig0 = estimateSqrt32( aExp, aSig0>>17 );
|
|
shortShift128Left( aSig0, aSig1, 13 - ( aExp & 1 ), &aSig0, &aSig1 );
|
|
zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
|
|
doubleZSig0 = zSig0<<1;
|
|
mul64To128( zSig0, zSig0, &term0, &term1 );
|
|
sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
|
|
while ( (int64_t) rem0 < 0 ) {
|
|
--zSig0;
|
|
doubleZSig0 -= 2;
|
|
add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
|
|
}
|
|
zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
|
|
if ( ( zSig1 & 0x1FFF ) <= 5 ) {
|
|
if ( zSig1 == 0 ) zSig1 = 1;
|
|
mul64To128( doubleZSig0, zSig1, &term1, &term2 );
|
|
sub128( rem1, 0, term1, term2, &rem1, &rem2 );
|
|
mul64To128( zSig1, zSig1, &term2, &term3 );
|
|
sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
|
|
while ( (int64_t) rem1 < 0 ) {
|
|
--zSig1;
|
|
shortShift128Left( 0, zSig1, 1, &term2, &term3 );
|
|
term3 |= 1;
|
|
term2 |= doubleZSig0;
|
|
add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
|
|
}
|
|
zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
|
|
}
|
|
shift128ExtraRightJamming( zSig0, zSig1, 0, 14, &zSig0, &zSig1, &zSig2 );
|
|
return roundAndPackFloat128( 0, zExp, zSig0, zSig1, zSig2 STATUS_VAR );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the quadruple-precision floating-point value `a' is equal to
|
|
| the corresponding value `b', and 0 otherwise. The invalid exception is
|
|
| raised if either operand is a NaN. Otherwise, the comparison is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float128_eq( float128 a, float128 b STATUS_PARAM )
|
|
{
|
|
|
|
if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
|
|
&& ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
|
|
|| ( ( extractFloat128Exp( b ) == 0x7FFF )
|
|
&& ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
|
|
) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
return 0;
|
|
}
|
|
return
|
|
( a.low == b.low )
|
|
&& ( ( a.high == b.high )
|
|
|| ( ( a.low == 0 )
|
|
&& ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) )
|
|
);
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the quadruple-precision floating-point value `a' is less than
|
|
| or equal to the corresponding value `b', and 0 otherwise. The invalid
|
|
| exception is raised if either operand is a NaN. The comparison is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float128_le( float128 a, float128 b STATUS_PARAM )
|
|
{
|
|
flag aSign, bSign;
|
|
|
|
if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
|
|
&& ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
|
|
|| ( ( extractFloat128Exp( b ) == 0x7FFF )
|
|
&& ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
|
|
) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
return 0;
|
|
}
|
|
aSign = extractFloat128Sign( a );
|
|
bSign = extractFloat128Sign( b );
|
|
if ( aSign != bSign ) {
|
|
return
|
|
aSign
|
|
|| ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
|
|
== 0 );
|
|
}
|
|
return
|
|
aSign ? le128( b.high, b.low, a.high, a.low )
|
|
: le128( a.high, a.low, b.high, b.low );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the quadruple-precision floating-point value `a' is less than
|
|
| the corresponding value `b', and 0 otherwise. The invalid exception is
|
|
| raised if either operand is a NaN. The comparison is performed according
|
|
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float128_lt( float128 a, float128 b STATUS_PARAM )
|
|
{
|
|
flag aSign, bSign;
|
|
|
|
if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
|
|
&& ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
|
|
|| ( ( extractFloat128Exp( b ) == 0x7FFF )
|
|
&& ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
|
|
) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
return 0;
|
|
}
|
|
aSign = extractFloat128Sign( a );
|
|
bSign = extractFloat128Sign( b );
|
|
if ( aSign != bSign ) {
|
|
return
|
|
aSign
|
|
&& ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
|
|
!= 0 );
|
|
}
|
|
return
|
|
aSign ? lt128( b.high, b.low, a.high, a.low )
|
|
: lt128( a.high, a.low, b.high, b.low );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot
|
|
| be compared, and 0 otherwise. The invalid exception is raised if either
|
|
| operand is a NaN. The comparison is performed according to the IEC/IEEE
|
|
| Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float128_unordered( float128 a, float128 b STATUS_PARAM )
|
|
{
|
|
if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
|
|
&& ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
|
|
|| ( ( extractFloat128Exp( b ) == 0x7FFF )
|
|
&& ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
|
|
) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the quadruple-precision floating-point value `a' is equal to
|
|
| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
|
|
| exception. The comparison is performed according to the IEC/IEEE Standard
|
|
| for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float128_eq_quiet( float128 a, float128 b STATUS_PARAM )
|
|
{
|
|
|
|
if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
|
|
&& ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
|
|
|| ( ( extractFloat128Exp( b ) == 0x7FFF )
|
|
&& ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
|
|
) {
|
|
if ( float128_is_signaling_nan( a )
|
|
|| float128_is_signaling_nan( b ) ) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
}
|
|
return 0;
|
|
}
|
|
return
|
|
( a.low == b.low )
|
|
&& ( ( a.high == b.high )
|
|
|| ( ( a.low == 0 )
|
|
&& ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) )
|
|
);
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the quadruple-precision floating-point value `a' is less than
|
|
| or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
|
|
| cause an exception. Otherwise, the comparison is performed according to the
|
|
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float128_le_quiet( float128 a, float128 b STATUS_PARAM )
|
|
{
|
|
flag aSign, bSign;
|
|
|
|
if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
|
|
&& ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
|
|
|| ( ( extractFloat128Exp( b ) == 0x7FFF )
|
|
&& ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
|
|
) {
|
|
if ( float128_is_signaling_nan( a )
|
|
|| float128_is_signaling_nan( b ) ) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
}
|
|
return 0;
|
|
}
|
|
aSign = extractFloat128Sign( a );
|
|
bSign = extractFloat128Sign( b );
|
|
if ( aSign != bSign ) {
|
|
return
|
|
aSign
|
|
|| ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
|
|
== 0 );
|
|
}
|
|
return
|
|
aSign ? le128( b.high, b.low, a.high, a.low )
|
|
: le128( a.high, a.low, b.high, b.low );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the quadruple-precision floating-point value `a' is less than
|
|
| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
|
|
| exception. Otherwise, the comparison is performed according to the IEC/IEEE
|
|
| Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float128_lt_quiet( float128 a, float128 b STATUS_PARAM )
|
|
{
|
|
flag aSign, bSign;
|
|
|
|
if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
|
|
&& ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
|
|
|| ( ( extractFloat128Exp( b ) == 0x7FFF )
|
|
&& ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
|
|
) {
|
|
if ( float128_is_signaling_nan( a )
|
|
|| float128_is_signaling_nan( b ) ) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
}
|
|
return 0;
|
|
}
|
|
aSign = extractFloat128Sign( a );
|
|
bSign = extractFloat128Sign( b );
|
|
if ( aSign != bSign ) {
|
|
return
|
|
aSign
|
|
&& ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
|
|
!= 0 );
|
|
}
|
|
return
|
|
aSign ? lt128( b.high, b.low, a.high, a.low )
|
|
: lt128( a.high, a.low, b.high, b.low );
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot
|
|
| be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The
|
|
| comparison is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float128_unordered_quiet( float128 a, float128 b STATUS_PARAM )
|
|
{
|
|
if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
|
|
&& ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
|
|
|| ( ( extractFloat128Exp( b ) == 0x7FFF )
|
|
&& ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
|
|
) {
|
|
if ( float128_is_signaling_nan( a )
|
|
|| float128_is_signaling_nan( b ) ) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
}
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* misc functions */
|
|
float32 uint32_to_float32( uint32 a STATUS_PARAM )
|
|
{
|
|
return int64_to_float32(a STATUS_VAR);
|
|
}
|
|
|
|
float64 uint32_to_float64( uint32 a STATUS_PARAM )
|
|
{
|
|
return int64_to_float64(a STATUS_VAR);
|
|
}
|
|
|
|
uint32 float32_to_uint32( float32 a STATUS_PARAM )
|
|
{
|
|
int64_t v;
|
|
uint32 res;
|
|
|
|
v = float32_to_int64(a STATUS_VAR);
|
|
if (v < 0) {
|
|
res = 0;
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
} else if (v > 0xffffffff) {
|
|
res = 0xffffffff;
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
} else {
|
|
res = v;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
uint32 float32_to_uint32_round_to_zero( float32 a STATUS_PARAM )
|
|
{
|
|
int64_t v;
|
|
uint32 res;
|
|
|
|
v = float32_to_int64_round_to_zero(a STATUS_VAR);
|
|
if (v < 0) {
|
|
res = 0;
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
} else if (v > 0xffffffff) {
|
|
res = 0xffffffff;
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
} else {
|
|
res = v;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
uint_fast16_t float32_to_uint16_round_to_zero(float32 a STATUS_PARAM)
|
|
{
|
|
int64_t v;
|
|
uint_fast16_t res;
|
|
|
|
v = float32_to_int64_round_to_zero(a STATUS_VAR);
|
|
if (v < 0) {
|
|
res = 0;
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
} else if (v > 0xffff) {
|
|
res = 0xffff;
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
} else {
|
|
res = v;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
uint32 float64_to_uint32( float64 a STATUS_PARAM )
|
|
{
|
|
int64_t v;
|
|
uint32 res;
|
|
|
|
v = float64_to_int64(a STATUS_VAR);
|
|
if (v < 0) {
|
|
res = 0;
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
} else if (v > 0xffffffff) {
|
|
res = 0xffffffff;
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
} else {
|
|
res = v;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
uint32 float64_to_uint32_round_to_zero( float64 a STATUS_PARAM )
|
|
{
|
|
int64_t v;
|
|
uint32 res;
|
|
|
|
v = float64_to_int64_round_to_zero(a STATUS_VAR);
|
|
if (v < 0) {
|
|
res = 0;
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
} else if (v > 0xffffffff) {
|
|
res = 0xffffffff;
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
} else {
|
|
res = v;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
uint_fast16_t float64_to_uint16_round_to_zero(float64 a STATUS_PARAM)
|
|
{
|
|
int64_t v;
|
|
uint_fast16_t res;
|
|
|
|
v = float64_to_int64_round_to_zero(a STATUS_VAR);
|
|
if (v < 0) {
|
|
res = 0;
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
} else if (v > 0xffff) {
|
|
res = 0xffff;
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
} else {
|
|
res = v;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/* FIXME: This looks broken. */
|
|
uint64_t float64_to_uint64 (float64 a STATUS_PARAM)
|
|
{
|
|
int64_t v;
|
|
|
|
v = float64_val(int64_to_float64(INT64_MIN STATUS_VAR));
|
|
v += float64_val(a);
|
|
v = float64_to_int64(make_float64(v) STATUS_VAR);
|
|
|
|
return v - INT64_MIN;
|
|
}
|
|
|
|
uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM)
|
|
{
|
|
int64_t v;
|
|
|
|
v = float64_val(int64_to_float64(INT64_MIN STATUS_VAR));
|
|
v += float64_val(a);
|
|
v = float64_to_int64_round_to_zero(make_float64(v) STATUS_VAR);
|
|
|
|
return v - INT64_MIN;
|
|
}
|
|
|
|
#define COMPARE(s, nan_exp) \
|
|
INLINE int float ## s ## _compare_internal( float ## s a, float ## s b, \
|
|
int is_quiet STATUS_PARAM ) \
|
|
{ \
|
|
flag aSign, bSign; \
|
|
uint ## s ## _t av, bv; \
|
|
a = float ## s ## _squash_input_denormal(a STATUS_VAR); \
|
|
b = float ## s ## _squash_input_denormal(b STATUS_VAR); \
|
|
\
|
|
if (( ( extractFloat ## s ## Exp( a ) == nan_exp ) && \
|
|
extractFloat ## s ## Frac( a ) ) || \
|
|
( ( extractFloat ## s ## Exp( b ) == nan_exp ) && \
|
|
extractFloat ## s ## Frac( b ) )) { \
|
|
if (!is_quiet || \
|
|
float ## s ## _is_signaling_nan( a ) || \
|
|
float ## s ## _is_signaling_nan( b ) ) { \
|
|
float_raise( float_flag_invalid STATUS_VAR); \
|
|
} \
|
|
return float_relation_unordered; \
|
|
} \
|
|
aSign = extractFloat ## s ## Sign( a ); \
|
|
bSign = extractFloat ## s ## Sign( b ); \
|
|
av = float ## s ## _val(a); \
|
|
bv = float ## s ## _val(b); \
|
|
if ( aSign != bSign ) { \
|
|
if ( (uint ## s ## _t) ( ( av | bv )<<1 ) == 0 ) { \
|
|
/* zero case */ \
|
|
return float_relation_equal; \
|
|
} else { \
|
|
return 1 - (2 * aSign); \
|
|
} \
|
|
} else { \
|
|
if (av == bv) { \
|
|
return float_relation_equal; \
|
|
} else { \
|
|
return 1 - 2 * (aSign ^ ( av < bv )); \
|
|
} \
|
|
} \
|
|
} \
|
|
\
|
|
int float ## s ## _compare( float ## s a, float ## s b STATUS_PARAM ) \
|
|
{ \
|
|
return float ## s ## _compare_internal(a, b, 0 STATUS_VAR); \
|
|
} \
|
|
\
|
|
int float ## s ## _compare_quiet( float ## s a, float ## s b STATUS_PARAM ) \
|
|
{ \
|
|
return float ## s ## _compare_internal(a, b, 1 STATUS_VAR); \
|
|
}
|
|
|
|
COMPARE(32, 0xff)
|
|
COMPARE(64, 0x7ff)
|
|
|
|
INLINE int floatx80_compare_internal( floatx80 a, floatx80 b,
|
|
int is_quiet STATUS_PARAM )
|
|
{
|
|
flag aSign, bSign;
|
|
|
|
if (( ( extractFloatx80Exp( a ) == 0x7fff ) &&
|
|
( extractFloatx80Frac( a )<<1 ) ) ||
|
|
( ( extractFloatx80Exp( b ) == 0x7fff ) &&
|
|
( extractFloatx80Frac( b )<<1 ) )) {
|
|
if (!is_quiet ||
|
|
floatx80_is_signaling_nan( a ) ||
|
|
floatx80_is_signaling_nan( b ) ) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
}
|
|
return float_relation_unordered;
|
|
}
|
|
aSign = extractFloatx80Sign( a );
|
|
bSign = extractFloatx80Sign( b );
|
|
if ( aSign != bSign ) {
|
|
|
|
if ( ( ( (uint16_t) ( ( a.high | b.high ) << 1 ) ) == 0) &&
|
|
( ( a.low | b.low ) == 0 ) ) {
|
|
/* zero case */
|
|
return float_relation_equal;
|
|
} else {
|
|
return 1 - (2 * aSign);
|
|
}
|
|
} else {
|
|
if (a.low == b.low && a.high == b.high) {
|
|
return float_relation_equal;
|
|
} else {
|
|
return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) ));
|
|
}
|
|
}
|
|
}
|
|
|
|
int floatx80_compare( floatx80 a, floatx80 b STATUS_PARAM )
|
|
{
|
|
return floatx80_compare_internal(a, b, 0 STATUS_VAR);
|
|
}
|
|
|
|
int floatx80_compare_quiet( floatx80 a, floatx80 b STATUS_PARAM )
|
|
{
|
|
return floatx80_compare_internal(a, b, 1 STATUS_VAR);
|
|
}
|
|
|
|
INLINE int float128_compare_internal( float128 a, float128 b,
|
|
int is_quiet STATUS_PARAM )
|
|
{
|
|
flag aSign, bSign;
|
|
|
|
if (( ( extractFloat128Exp( a ) == 0x7fff ) &&
|
|
( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) ||
|
|
( ( extractFloat128Exp( b ) == 0x7fff ) &&
|
|
( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )) {
|
|
if (!is_quiet ||
|
|
float128_is_signaling_nan( a ) ||
|
|
float128_is_signaling_nan( b ) ) {
|
|
float_raise( float_flag_invalid STATUS_VAR);
|
|
}
|
|
return float_relation_unordered;
|
|
}
|
|
aSign = extractFloat128Sign( a );
|
|
bSign = extractFloat128Sign( b );
|
|
if ( aSign != bSign ) {
|
|
if ( ( ( ( a.high | b.high )<<1 ) | a.low | b.low ) == 0 ) {
|
|
/* zero case */
|
|
return float_relation_equal;
|
|
} else {
|
|
return 1 - (2 * aSign);
|
|
}
|
|
} else {
|
|
if (a.low == b.low && a.high == b.high) {
|
|
return float_relation_equal;
|
|
} else {
|
|
return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) ));
|
|
}
|
|
}
|
|
}
|
|
|
|
int float128_compare( float128 a, float128 b STATUS_PARAM )
|
|
{
|
|
return float128_compare_internal(a, b, 0 STATUS_VAR);
|
|
}
|
|
|
|
int float128_compare_quiet( float128 a, float128 b STATUS_PARAM )
|
|
{
|
|
return float128_compare_internal(a, b, 1 STATUS_VAR);
|
|
}
|
|
|
|
/* min() and max() functions. These can't be implemented as
|
|
* 'compare and pick one input' because that would mishandle
|
|
* NaNs and +0 vs -0.
|
|
*/
|
|
#define MINMAX(s, nan_exp) \
|
|
INLINE float ## s float ## s ## _minmax(float ## s a, float ## s b, \
|
|
int ismin STATUS_PARAM ) \
|
|
{ \
|
|
flag aSign, bSign; \
|
|
uint ## s ## _t av, bv; \
|
|
a = float ## s ## _squash_input_denormal(a STATUS_VAR); \
|
|
b = float ## s ## _squash_input_denormal(b STATUS_VAR); \
|
|
if (float ## s ## _is_any_nan(a) || \
|
|
float ## s ## _is_any_nan(b)) { \
|
|
return propagateFloat ## s ## NaN(a, b STATUS_VAR); \
|
|
} \
|
|
aSign = extractFloat ## s ## Sign(a); \
|
|
bSign = extractFloat ## s ## Sign(b); \
|
|
av = float ## s ## _val(a); \
|
|
bv = float ## s ## _val(b); \
|
|
if (aSign != bSign) { \
|
|
if (ismin) { \
|
|
return aSign ? a : b; \
|
|
} else { \
|
|
return aSign ? b : a; \
|
|
} \
|
|
} else { \
|
|
if (ismin) { \
|
|
return (aSign ^ (av < bv)) ? a : b; \
|
|
} else { \
|
|
return (aSign ^ (av < bv)) ? b : a; \
|
|
} \
|
|
} \
|
|
} \
|
|
\
|
|
float ## s float ## s ## _min(float ## s a, float ## s b STATUS_PARAM) \
|
|
{ \
|
|
return float ## s ## _minmax(a, b, 1 STATUS_VAR); \
|
|
} \
|
|
\
|
|
float ## s float ## s ## _max(float ## s a, float ## s b STATUS_PARAM) \
|
|
{ \
|
|
return float ## s ## _minmax(a, b, 0 STATUS_VAR); \
|
|
}
|
|
|
|
MINMAX(32, 0xff)
|
|
MINMAX(64, 0x7ff)
|
|
|
|
|
|
/* Multiply A by 2 raised to the power N. */
|
|
float32 float32_scalbn( float32 a, int n STATUS_PARAM )
|
|
{
|
|
flag aSign;
|
|
int16_t aExp;
|
|
uint32_t aSig;
|
|
|
|
a = float32_squash_input_denormal(a STATUS_VAR);
|
|
aSig = extractFloat32Frac( a );
|
|
aExp = extractFloat32Exp( a );
|
|
aSign = extractFloat32Sign( a );
|
|
|
|
if ( aExp == 0xFF ) {
|
|
if ( aSig ) {
|
|
return propagateFloat32NaN( a, a STATUS_VAR );
|
|
}
|
|
return a;
|
|
}
|
|
if ( aExp != 0 )
|
|
aSig |= 0x00800000;
|
|
else if ( aSig == 0 )
|
|
return a;
|
|
|
|
if (n > 0x200) {
|
|
n = 0x200;
|
|
} else if (n < -0x200) {
|
|
n = -0x200;
|
|
}
|
|
|
|
aExp += n - 1;
|
|
aSig <<= 7;
|
|
return normalizeRoundAndPackFloat32( aSign, aExp, aSig STATUS_VAR );
|
|
}
|
|
|
|
float64 float64_scalbn( float64 a, int n STATUS_PARAM )
|
|
{
|
|
flag aSign;
|
|
int16_t aExp;
|
|
uint64_t aSig;
|
|
|
|
a = float64_squash_input_denormal(a STATUS_VAR);
|
|
aSig = extractFloat64Frac( a );
|
|
aExp = extractFloat64Exp( a );
|
|
aSign = extractFloat64Sign( a );
|
|
|
|
if ( aExp == 0x7FF ) {
|
|
if ( aSig ) {
|
|
return propagateFloat64NaN( a, a STATUS_VAR );
|
|
}
|
|
return a;
|
|
}
|
|
if ( aExp != 0 )
|
|
aSig |= LIT64( 0x0010000000000000 );
|
|
else if ( aSig == 0 )
|
|
return a;
|
|
|
|
if (n > 0x1000) {
|
|
n = 0x1000;
|
|
} else if (n < -0x1000) {
|
|
n = -0x1000;
|
|
}
|
|
|
|
aExp += n - 1;
|
|
aSig <<= 10;
|
|
return normalizeRoundAndPackFloat64( aSign, aExp, aSig STATUS_VAR );
|
|
}
|
|
|
|
floatx80 floatx80_scalbn( floatx80 a, int n STATUS_PARAM )
|
|
{
|
|
flag aSign;
|
|
int32_t aExp;
|
|
uint64_t aSig;
|
|
|
|
aSig = extractFloatx80Frac( a );
|
|
aExp = extractFloatx80Exp( a );
|
|
aSign = extractFloatx80Sign( a );
|
|
|
|
if ( aExp == 0x7FFF ) {
|
|
if ( aSig<<1 ) {
|
|
return propagateFloatx80NaN( a, a STATUS_VAR );
|
|
}
|
|
return a;
|
|
}
|
|
|
|
if (aExp == 0 && aSig == 0)
|
|
return a;
|
|
|
|
if (n > 0x10000) {
|
|
n = 0x10000;
|
|
} else if (n < -0x10000) {
|
|
n = -0x10000;
|
|
}
|
|
|
|
aExp += n;
|
|
return normalizeRoundAndPackFloatx80( STATUS(floatx80_rounding_precision),
|
|
aSign, aExp, aSig, 0 STATUS_VAR );
|
|
}
|
|
|
|
float128 float128_scalbn( float128 a, int n STATUS_PARAM )
|
|
{
|
|
flag aSign;
|
|
int32_t aExp;
|
|
uint64_t aSig0, aSig1;
|
|
|
|
aSig1 = extractFloat128Frac1( a );
|
|
aSig0 = extractFloat128Frac0( a );
|
|
aExp = extractFloat128Exp( a );
|
|
aSign = extractFloat128Sign( a );
|
|
if ( aExp == 0x7FFF ) {
|
|
if ( aSig0 | aSig1 ) {
|
|
return propagateFloat128NaN( a, a STATUS_VAR );
|
|
}
|
|
return a;
|
|
}
|
|
if ( aExp != 0 )
|
|
aSig0 |= LIT64( 0x0001000000000000 );
|
|
else if ( aSig0 == 0 && aSig1 == 0 )
|
|
return a;
|
|
|
|
if (n > 0x10000) {
|
|
n = 0x10000;
|
|
} else if (n < -0x10000) {
|
|
n = -0x10000;
|
|
}
|
|
|
|
aExp += n - 1;
|
|
return normalizeRoundAndPackFloat128( aSign, aExp, aSig0, aSig1
|
|
STATUS_VAR );
|
|
|
|
}
|