mirror of
https://github.com/qemu/qemu.git
synced 2024-11-30 15:23:34 +08:00
c34c762015
While we may fail the memory ordering check later that can be confusing. So in cases where TARGET_SUPPORT_MTTCG has yet to be defined we should say so specifically. Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Richard Henderson <rth@twiddle.net> Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
1946 lines
51 KiB
C
1946 lines
51 KiB
C
/*
|
|
* QEMU System Emulator
|
|
*
|
|
* Copyright (c) 2003-2008 Fabrice Bellard
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
/* Needed early for CONFIG_BSD etc. */
|
|
#include "qemu/osdep.h"
|
|
#include "qemu-common.h"
|
|
#include "qemu/config-file.h"
|
|
#include "cpu.h"
|
|
#include "monitor/monitor.h"
|
|
#include "qapi/qmp/qerror.h"
|
|
#include "qemu/error-report.h"
|
|
#include "sysemu/sysemu.h"
|
|
#include "sysemu/block-backend.h"
|
|
#include "exec/gdbstub.h"
|
|
#include "sysemu/dma.h"
|
|
#include "sysemu/hw_accel.h"
|
|
#include "sysemu/kvm.h"
|
|
#include "sysemu/hax.h"
|
|
#include "qmp-commands.h"
|
|
#include "exec/exec-all.h"
|
|
|
|
#include "qemu/thread.h"
|
|
#include "sysemu/cpus.h"
|
|
#include "sysemu/qtest.h"
|
|
#include "qemu/main-loop.h"
|
|
#include "qemu/bitmap.h"
|
|
#include "qemu/seqlock.h"
|
|
#include "tcg.h"
|
|
#include "qapi-event.h"
|
|
#include "hw/nmi.h"
|
|
#include "sysemu/replay.h"
|
|
|
|
#ifdef CONFIG_LINUX
|
|
|
|
#include <sys/prctl.h>
|
|
|
|
#ifndef PR_MCE_KILL
|
|
#define PR_MCE_KILL 33
|
|
#endif
|
|
|
|
#ifndef PR_MCE_KILL_SET
|
|
#define PR_MCE_KILL_SET 1
|
|
#endif
|
|
|
|
#ifndef PR_MCE_KILL_EARLY
|
|
#define PR_MCE_KILL_EARLY 1
|
|
#endif
|
|
|
|
#endif /* CONFIG_LINUX */
|
|
|
|
int64_t max_delay;
|
|
int64_t max_advance;
|
|
|
|
/* vcpu throttling controls */
|
|
static QEMUTimer *throttle_timer;
|
|
static unsigned int throttle_percentage;
|
|
|
|
#define CPU_THROTTLE_PCT_MIN 1
|
|
#define CPU_THROTTLE_PCT_MAX 99
|
|
#define CPU_THROTTLE_TIMESLICE_NS 10000000
|
|
|
|
bool cpu_is_stopped(CPUState *cpu)
|
|
{
|
|
return cpu->stopped || !runstate_is_running();
|
|
}
|
|
|
|
static bool cpu_thread_is_idle(CPUState *cpu)
|
|
{
|
|
if (cpu->stop || cpu->queued_work_first) {
|
|
return false;
|
|
}
|
|
if (cpu_is_stopped(cpu)) {
|
|
return true;
|
|
}
|
|
if (!cpu->halted || cpu_has_work(cpu) ||
|
|
kvm_halt_in_kernel()) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool all_cpu_threads_idle(void)
|
|
{
|
|
CPUState *cpu;
|
|
|
|
CPU_FOREACH(cpu) {
|
|
if (!cpu_thread_is_idle(cpu)) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/***********************************************************/
|
|
/* guest cycle counter */
|
|
|
|
/* Protected by TimersState seqlock */
|
|
|
|
static bool icount_sleep = true;
|
|
static int64_t vm_clock_warp_start = -1;
|
|
/* Conversion factor from emulated instructions to virtual clock ticks. */
|
|
static int icount_time_shift;
|
|
/* Arbitrarily pick 1MIPS as the minimum allowable speed. */
|
|
#define MAX_ICOUNT_SHIFT 10
|
|
|
|
static QEMUTimer *icount_rt_timer;
|
|
static QEMUTimer *icount_vm_timer;
|
|
static QEMUTimer *icount_warp_timer;
|
|
|
|
typedef struct TimersState {
|
|
/* Protected by BQL. */
|
|
int64_t cpu_ticks_prev;
|
|
int64_t cpu_ticks_offset;
|
|
|
|
/* cpu_clock_offset can be read out of BQL, so protect it with
|
|
* this lock.
|
|
*/
|
|
QemuSeqLock vm_clock_seqlock;
|
|
int64_t cpu_clock_offset;
|
|
int32_t cpu_ticks_enabled;
|
|
int64_t dummy;
|
|
|
|
/* Compensate for varying guest execution speed. */
|
|
int64_t qemu_icount_bias;
|
|
/* Only written by TCG thread */
|
|
int64_t qemu_icount;
|
|
} TimersState;
|
|
|
|
static TimersState timers_state;
|
|
bool mttcg_enabled;
|
|
|
|
/*
|
|
* We default to false if we know other options have been enabled
|
|
* which are currently incompatible with MTTCG. Otherwise when each
|
|
* guest (target) has been updated to support:
|
|
* - atomic instructions
|
|
* - memory ordering primitives (barriers)
|
|
* they can set the appropriate CONFIG flags in ${target}-softmmu.mak
|
|
*
|
|
* Once a guest architecture has been converted to the new primitives
|
|
* there are two remaining limitations to check.
|
|
*
|
|
* - The guest can't be oversized (e.g. 64 bit guest on 32 bit host)
|
|
* - The host must have a stronger memory order than the guest
|
|
*
|
|
* It may be possible in future to support strong guests on weak hosts
|
|
* but that will require tagging all load/stores in a guest with their
|
|
* implicit memory order requirements which would likely slow things
|
|
* down a lot.
|
|
*/
|
|
|
|
static bool check_tcg_memory_orders_compatible(void)
|
|
{
|
|
#if defined(TCG_GUEST_DEFAULT_MO) && defined(TCG_TARGET_DEFAULT_MO)
|
|
return (TCG_GUEST_DEFAULT_MO & ~TCG_TARGET_DEFAULT_MO) == 0;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
static bool default_mttcg_enabled(void)
|
|
{
|
|
if (use_icount || TCG_OVERSIZED_GUEST) {
|
|
return false;
|
|
} else {
|
|
#ifdef TARGET_SUPPORTS_MTTCG
|
|
return check_tcg_memory_orders_compatible();
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void qemu_tcg_configure(QemuOpts *opts, Error **errp)
|
|
{
|
|
const char *t = qemu_opt_get(opts, "thread");
|
|
if (t) {
|
|
if (strcmp(t, "multi") == 0) {
|
|
if (TCG_OVERSIZED_GUEST) {
|
|
error_setg(errp, "No MTTCG when guest word size > hosts");
|
|
} else if (use_icount) {
|
|
error_setg(errp, "No MTTCG when icount is enabled");
|
|
} else {
|
|
#ifndef TARGET_SUPPORT_MTTCG
|
|
error_report("Guest not yet converted to MTTCG - "
|
|
"you may get unexpected results");
|
|
#endif
|
|
if (!check_tcg_memory_orders_compatible()) {
|
|
error_report("Guest expects a stronger memory ordering "
|
|
"than the host provides");
|
|
error_printf("This may cause strange/hard to debug errors");
|
|
}
|
|
mttcg_enabled = true;
|
|
}
|
|
} else if (strcmp(t, "single") == 0) {
|
|
mttcg_enabled = false;
|
|
} else {
|
|
error_setg(errp, "Invalid 'thread' setting %s", t);
|
|
}
|
|
} else {
|
|
mttcg_enabled = default_mttcg_enabled();
|
|
}
|
|
}
|
|
|
|
int64_t cpu_get_icount_raw(void)
|
|
{
|
|
int64_t icount;
|
|
CPUState *cpu = current_cpu;
|
|
|
|
icount = timers_state.qemu_icount;
|
|
if (cpu) {
|
|
if (!cpu->can_do_io) {
|
|
fprintf(stderr, "Bad icount read\n");
|
|
exit(1);
|
|
}
|
|
icount -= (cpu->icount_decr.u16.low + cpu->icount_extra);
|
|
}
|
|
return icount;
|
|
}
|
|
|
|
/* Return the virtual CPU time, based on the instruction counter. */
|
|
static int64_t cpu_get_icount_locked(void)
|
|
{
|
|
int64_t icount = cpu_get_icount_raw();
|
|
return timers_state.qemu_icount_bias + cpu_icount_to_ns(icount);
|
|
}
|
|
|
|
int64_t cpu_get_icount(void)
|
|
{
|
|
int64_t icount;
|
|
unsigned start;
|
|
|
|
do {
|
|
start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
|
|
icount = cpu_get_icount_locked();
|
|
} while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
|
|
|
|
return icount;
|
|
}
|
|
|
|
int64_t cpu_icount_to_ns(int64_t icount)
|
|
{
|
|
return icount << icount_time_shift;
|
|
}
|
|
|
|
/* return the time elapsed in VM between vm_start and vm_stop. Unless
|
|
* icount is active, cpu_get_ticks() uses units of the host CPU cycle
|
|
* counter.
|
|
*
|
|
* Caller must hold the BQL
|
|
*/
|
|
int64_t cpu_get_ticks(void)
|
|
{
|
|
int64_t ticks;
|
|
|
|
if (use_icount) {
|
|
return cpu_get_icount();
|
|
}
|
|
|
|
ticks = timers_state.cpu_ticks_offset;
|
|
if (timers_state.cpu_ticks_enabled) {
|
|
ticks += cpu_get_host_ticks();
|
|
}
|
|
|
|
if (timers_state.cpu_ticks_prev > ticks) {
|
|
/* Note: non increasing ticks may happen if the host uses
|
|
software suspend */
|
|
timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
|
|
ticks = timers_state.cpu_ticks_prev;
|
|
}
|
|
|
|
timers_state.cpu_ticks_prev = ticks;
|
|
return ticks;
|
|
}
|
|
|
|
static int64_t cpu_get_clock_locked(void)
|
|
{
|
|
int64_t time;
|
|
|
|
time = timers_state.cpu_clock_offset;
|
|
if (timers_state.cpu_ticks_enabled) {
|
|
time += get_clock();
|
|
}
|
|
|
|
return time;
|
|
}
|
|
|
|
/* Return the monotonic time elapsed in VM, i.e.,
|
|
* the time between vm_start and vm_stop
|
|
*/
|
|
int64_t cpu_get_clock(void)
|
|
{
|
|
int64_t ti;
|
|
unsigned start;
|
|
|
|
do {
|
|
start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
|
|
ti = cpu_get_clock_locked();
|
|
} while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
|
|
|
|
return ti;
|
|
}
|
|
|
|
/* enable cpu_get_ticks()
|
|
* Caller must hold BQL which serves as mutex for vm_clock_seqlock.
|
|
*/
|
|
void cpu_enable_ticks(void)
|
|
{
|
|
/* Here, the really thing protected by seqlock is cpu_clock_offset. */
|
|
seqlock_write_begin(&timers_state.vm_clock_seqlock);
|
|
if (!timers_state.cpu_ticks_enabled) {
|
|
timers_state.cpu_ticks_offset -= cpu_get_host_ticks();
|
|
timers_state.cpu_clock_offset -= get_clock();
|
|
timers_state.cpu_ticks_enabled = 1;
|
|
}
|
|
seqlock_write_end(&timers_state.vm_clock_seqlock);
|
|
}
|
|
|
|
/* disable cpu_get_ticks() : the clock is stopped. You must not call
|
|
* cpu_get_ticks() after that.
|
|
* Caller must hold BQL which serves as mutex for vm_clock_seqlock.
|
|
*/
|
|
void cpu_disable_ticks(void)
|
|
{
|
|
/* Here, the really thing protected by seqlock is cpu_clock_offset. */
|
|
seqlock_write_begin(&timers_state.vm_clock_seqlock);
|
|
if (timers_state.cpu_ticks_enabled) {
|
|
timers_state.cpu_ticks_offset += cpu_get_host_ticks();
|
|
timers_state.cpu_clock_offset = cpu_get_clock_locked();
|
|
timers_state.cpu_ticks_enabled = 0;
|
|
}
|
|
seqlock_write_end(&timers_state.vm_clock_seqlock);
|
|
}
|
|
|
|
/* Correlation between real and virtual time is always going to be
|
|
fairly approximate, so ignore small variation.
|
|
When the guest is idle real and virtual time will be aligned in
|
|
the IO wait loop. */
|
|
#define ICOUNT_WOBBLE (NANOSECONDS_PER_SECOND / 10)
|
|
|
|
static void icount_adjust(void)
|
|
{
|
|
int64_t cur_time;
|
|
int64_t cur_icount;
|
|
int64_t delta;
|
|
|
|
/* Protected by TimersState mutex. */
|
|
static int64_t last_delta;
|
|
|
|
/* If the VM is not running, then do nothing. */
|
|
if (!runstate_is_running()) {
|
|
return;
|
|
}
|
|
|
|
seqlock_write_begin(&timers_state.vm_clock_seqlock);
|
|
cur_time = cpu_get_clock_locked();
|
|
cur_icount = cpu_get_icount_locked();
|
|
|
|
delta = cur_icount - cur_time;
|
|
/* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
|
|
if (delta > 0
|
|
&& last_delta + ICOUNT_WOBBLE < delta * 2
|
|
&& icount_time_shift > 0) {
|
|
/* The guest is getting too far ahead. Slow time down. */
|
|
icount_time_shift--;
|
|
}
|
|
if (delta < 0
|
|
&& last_delta - ICOUNT_WOBBLE > delta * 2
|
|
&& icount_time_shift < MAX_ICOUNT_SHIFT) {
|
|
/* The guest is getting too far behind. Speed time up. */
|
|
icount_time_shift++;
|
|
}
|
|
last_delta = delta;
|
|
timers_state.qemu_icount_bias = cur_icount
|
|
- (timers_state.qemu_icount << icount_time_shift);
|
|
seqlock_write_end(&timers_state.vm_clock_seqlock);
|
|
}
|
|
|
|
static void icount_adjust_rt(void *opaque)
|
|
{
|
|
timer_mod(icount_rt_timer,
|
|
qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
|
|
icount_adjust();
|
|
}
|
|
|
|
static void icount_adjust_vm(void *opaque)
|
|
{
|
|
timer_mod(icount_vm_timer,
|
|
qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
|
|
NANOSECONDS_PER_SECOND / 10);
|
|
icount_adjust();
|
|
}
|
|
|
|
static int64_t qemu_icount_round(int64_t count)
|
|
{
|
|
return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
|
|
}
|
|
|
|
static void icount_warp_rt(void)
|
|
{
|
|
unsigned seq;
|
|
int64_t warp_start;
|
|
|
|
/* The icount_warp_timer is rescheduled soon after vm_clock_warp_start
|
|
* changes from -1 to another value, so the race here is okay.
|
|
*/
|
|
do {
|
|
seq = seqlock_read_begin(&timers_state.vm_clock_seqlock);
|
|
warp_start = vm_clock_warp_start;
|
|
} while (seqlock_read_retry(&timers_state.vm_clock_seqlock, seq));
|
|
|
|
if (warp_start == -1) {
|
|
return;
|
|
}
|
|
|
|
seqlock_write_begin(&timers_state.vm_clock_seqlock);
|
|
if (runstate_is_running()) {
|
|
int64_t clock = REPLAY_CLOCK(REPLAY_CLOCK_VIRTUAL_RT,
|
|
cpu_get_clock_locked());
|
|
int64_t warp_delta;
|
|
|
|
warp_delta = clock - vm_clock_warp_start;
|
|
if (use_icount == 2) {
|
|
/*
|
|
* In adaptive mode, do not let QEMU_CLOCK_VIRTUAL run too
|
|
* far ahead of real time.
|
|
*/
|
|
int64_t cur_icount = cpu_get_icount_locked();
|
|
int64_t delta = clock - cur_icount;
|
|
warp_delta = MIN(warp_delta, delta);
|
|
}
|
|
timers_state.qemu_icount_bias += warp_delta;
|
|
}
|
|
vm_clock_warp_start = -1;
|
|
seqlock_write_end(&timers_state.vm_clock_seqlock);
|
|
|
|
if (qemu_clock_expired(QEMU_CLOCK_VIRTUAL)) {
|
|
qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
|
|
}
|
|
}
|
|
|
|
static void icount_timer_cb(void *opaque)
|
|
{
|
|
/* No need for a checkpoint because the timer already synchronizes
|
|
* with CHECKPOINT_CLOCK_VIRTUAL_RT.
|
|
*/
|
|
icount_warp_rt();
|
|
}
|
|
|
|
void qtest_clock_warp(int64_t dest)
|
|
{
|
|
int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
|
|
AioContext *aio_context;
|
|
assert(qtest_enabled());
|
|
aio_context = qemu_get_aio_context();
|
|
while (clock < dest) {
|
|
int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
|
|
int64_t warp = qemu_soonest_timeout(dest - clock, deadline);
|
|
|
|
seqlock_write_begin(&timers_state.vm_clock_seqlock);
|
|
timers_state.qemu_icount_bias += warp;
|
|
seqlock_write_end(&timers_state.vm_clock_seqlock);
|
|
|
|
qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL);
|
|
timerlist_run_timers(aio_context->tlg.tl[QEMU_CLOCK_VIRTUAL]);
|
|
clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
|
|
}
|
|
qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
|
|
}
|
|
|
|
void qemu_start_warp_timer(void)
|
|
{
|
|
int64_t clock;
|
|
int64_t deadline;
|
|
|
|
if (!use_icount) {
|
|
return;
|
|
}
|
|
|
|
/* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
|
|
* do not fire, so computing the deadline does not make sense.
|
|
*/
|
|
if (!runstate_is_running()) {
|
|
return;
|
|
}
|
|
|
|
/* warp clock deterministically in record/replay mode */
|
|
if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_START)) {
|
|
return;
|
|
}
|
|
|
|
if (!all_cpu_threads_idle()) {
|
|
return;
|
|
}
|
|
|
|
if (qtest_enabled()) {
|
|
/* When testing, qtest commands advance icount. */
|
|
return;
|
|
}
|
|
|
|
/* We want to use the earliest deadline from ALL vm_clocks */
|
|
clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
|
|
deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
|
|
if (deadline < 0) {
|
|
static bool notified;
|
|
if (!icount_sleep && !notified) {
|
|
error_report("WARNING: icount sleep disabled and no active timers");
|
|
notified = true;
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (deadline > 0) {
|
|
/*
|
|
* Ensure QEMU_CLOCK_VIRTUAL proceeds even when the virtual CPU goes to
|
|
* sleep. Otherwise, the CPU might be waiting for a future timer
|
|
* interrupt to wake it up, but the interrupt never comes because
|
|
* the vCPU isn't running any insns and thus doesn't advance the
|
|
* QEMU_CLOCK_VIRTUAL.
|
|
*/
|
|
if (!icount_sleep) {
|
|
/*
|
|
* We never let VCPUs sleep in no sleep icount mode.
|
|
* If there is a pending QEMU_CLOCK_VIRTUAL timer we just advance
|
|
* to the next QEMU_CLOCK_VIRTUAL event and notify it.
|
|
* It is useful when we want a deterministic execution time,
|
|
* isolated from host latencies.
|
|
*/
|
|
seqlock_write_begin(&timers_state.vm_clock_seqlock);
|
|
timers_state.qemu_icount_bias += deadline;
|
|
seqlock_write_end(&timers_state.vm_clock_seqlock);
|
|
qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
|
|
} else {
|
|
/*
|
|
* We do stop VCPUs and only advance QEMU_CLOCK_VIRTUAL after some
|
|
* "real" time, (related to the time left until the next event) has
|
|
* passed. The QEMU_CLOCK_VIRTUAL_RT clock will do this.
|
|
* This avoids that the warps are visible externally; for example,
|
|
* you will not be sending network packets continuously instead of
|
|
* every 100ms.
|
|
*/
|
|
seqlock_write_begin(&timers_state.vm_clock_seqlock);
|
|
if (vm_clock_warp_start == -1 || vm_clock_warp_start > clock) {
|
|
vm_clock_warp_start = clock;
|
|
}
|
|
seqlock_write_end(&timers_state.vm_clock_seqlock);
|
|
timer_mod_anticipate(icount_warp_timer, clock + deadline);
|
|
}
|
|
} else if (deadline == 0) {
|
|
qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
|
|
}
|
|
}
|
|
|
|
static void qemu_account_warp_timer(void)
|
|
{
|
|
if (!use_icount || !icount_sleep) {
|
|
return;
|
|
}
|
|
|
|
/* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
|
|
* do not fire, so computing the deadline does not make sense.
|
|
*/
|
|
if (!runstate_is_running()) {
|
|
return;
|
|
}
|
|
|
|
/* warp clock deterministically in record/replay mode */
|
|
if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_ACCOUNT)) {
|
|
return;
|
|
}
|
|
|
|
timer_del(icount_warp_timer);
|
|
icount_warp_rt();
|
|
}
|
|
|
|
static bool icount_state_needed(void *opaque)
|
|
{
|
|
return use_icount;
|
|
}
|
|
|
|
/*
|
|
* This is a subsection for icount migration.
|
|
*/
|
|
static const VMStateDescription icount_vmstate_timers = {
|
|
.name = "timer/icount",
|
|
.version_id = 1,
|
|
.minimum_version_id = 1,
|
|
.needed = icount_state_needed,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_INT64(qemu_icount_bias, TimersState),
|
|
VMSTATE_INT64(qemu_icount, TimersState),
|
|
VMSTATE_END_OF_LIST()
|
|
}
|
|
};
|
|
|
|
static const VMStateDescription vmstate_timers = {
|
|
.name = "timer",
|
|
.version_id = 2,
|
|
.minimum_version_id = 1,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_INT64(cpu_ticks_offset, TimersState),
|
|
VMSTATE_INT64(dummy, TimersState),
|
|
VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
|
|
VMSTATE_END_OF_LIST()
|
|
},
|
|
.subsections = (const VMStateDescription*[]) {
|
|
&icount_vmstate_timers,
|
|
NULL
|
|
}
|
|
};
|
|
|
|
static void cpu_throttle_thread(CPUState *cpu, run_on_cpu_data opaque)
|
|
{
|
|
double pct;
|
|
double throttle_ratio;
|
|
long sleeptime_ns;
|
|
|
|
if (!cpu_throttle_get_percentage()) {
|
|
return;
|
|
}
|
|
|
|
pct = (double)cpu_throttle_get_percentage()/100;
|
|
throttle_ratio = pct / (1 - pct);
|
|
sleeptime_ns = (long)(throttle_ratio * CPU_THROTTLE_TIMESLICE_NS);
|
|
|
|
qemu_mutex_unlock_iothread();
|
|
atomic_set(&cpu->throttle_thread_scheduled, 0);
|
|
g_usleep(sleeptime_ns / 1000); /* Convert ns to us for usleep call */
|
|
qemu_mutex_lock_iothread();
|
|
}
|
|
|
|
static void cpu_throttle_timer_tick(void *opaque)
|
|
{
|
|
CPUState *cpu;
|
|
double pct;
|
|
|
|
/* Stop the timer if needed */
|
|
if (!cpu_throttle_get_percentage()) {
|
|
return;
|
|
}
|
|
CPU_FOREACH(cpu) {
|
|
if (!atomic_xchg(&cpu->throttle_thread_scheduled, 1)) {
|
|
async_run_on_cpu(cpu, cpu_throttle_thread,
|
|
RUN_ON_CPU_NULL);
|
|
}
|
|
}
|
|
|
|
pct = (double)cpu_throttle_get_percentage()/100;
|
|
timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) +
|
|
CPU_THROTTLE_TIMESLICE_NS / (1-pct));
|
|
}
|
|
|
|
void cpu_throttle_set(int new_throttle_pct)
|
|
{
|
|
/* Ensure throttle percentage is within valid range */
|
|
new_throttle_pct = MIN(new_throttle_pct, CPU_THROTTLE_PCT_MAX);
|
|
new_throttle_pct = MAX(new_throttle_pct, CPU_THROTTLE_PCT_MIN);
|
|
|
|
atomic_set(&throttle_percentage, new_throttle_pct);
|
|
|
|
timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) +
|
|
CPU_THROTTLE_TIMESLICE_NS);
|
|
}
|
|
|
|
void cpu_throttle_stop(void)
|
|
{
|
|
atomic_set(&throttle_percentage, 0);
|
|
}
|
|
|
|
bool cpu_throttle_active(void)
|
|
{
|
|
return (cpu_throttle_get_percentage() != 0);
|
|
}
|
|
|
|
int cpu_throttle_get_percentage(void)
|
|
{
|
|
return atomic_read(&throttle_percentage);
|
|
}
|
|
|
|
void cpu_ticks_init(void)
|
|
{
|
|
seqlock_init(&timers_state.vm_clock_seqlock);
|
|
vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
|
|
throttle_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT,
|
|
cpu_throttle_timer_tick, NULL);
|
|
}
|
|
|
|
void configure_icount(QemuOpts *opts, Error **errp)
|
|
{
|
|
const char *option;
|
|
char *rem_str = NULL;
|
|
|
|
option = qemu_opt_get(opts, "shift");
|
|
if (!option) {
|
|
if (qemu_opt_get(opts, "align") != NULL) {
|
|
error_setg(errp, "Please specify shift option when using align");
|
|
}
|
|
return;
|
|
}
|
|
|
|
icount_sleep = qemu_opt_get_bool(opts, "sleep", true);
|
|
if (icount_sleep) {
|
|
icount_warp_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT,
|
|
icount_timer_cb, NULL);
|
|
}
|
|
|
|
icount_align_option = qemu_opt_get_bool(opts, "align", false);
|
|
|
|
if (icount_align_option && !icount_sleep) {
|
|
error_setg(errp, "align=on and sleep=off are incompatible");
|
|
}
|
|
if (strcmp(option, "auto") != 0) {
|
|
errno = 0;
|
|
icount_time_shift = strtol(option, &rem_str, 0);
|
|
if (errno != 0 || *rem_str != '\0' || !strlen(option)) {
|
|
error_setg(errp, "icount: Invalid shift value");
|
|
}
|
|
use_icount = 1;
|
|
return;
|
|
} else if (icount_align_option) {
|
|
error_setg(errp, "shift=auto and align=on are incompatible");
|
|
} else if (!icount_sleep) {
|
|
error_setg(errp, "shift=auto and sleep=off are incompatible");
|
|
}
|
|
|
|
use_icount = 2;
|
|
|
|
/* 125MIPS seems a reasonable initial guess at the guest speed.
|
|
It will be corrected fairly quickly anyway. */
|
|
icount_time_shift = 3;
|
|
|
|
/* Have both realtime and virtual time triggers for speed adjustment.
|
|
The realtime trigger catches emulated time passing too slowly,
|
|
the virtual time trigger catches emulated time passing too fast.
|
|
Realtime triggers occur even when idle, so use them less frequently
|
|
than VM triggers. */
|
|
icount_rt_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL_RT,
|
|
icount_adjust_rt, NULL);
|
|
timer_mod(icount_rt_timer,
|
|
qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
|
|
icount_vm_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
|
|
icount_adjust_vm, NULL);
|
|
timer_mod(icount_vm_timer,
|
|
qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
|
|
NANOSECONDS_PER_SECOND / 10);
|
|
}
|
|
|
|
/***********************************************************/
|
|
/* TCG vCPU kick timer
|
|
*
|
|
* The kick timer is responsible for moving single threaded vCPU
|
|
* emulation on to the next vCPU. If more than one vCPU is running a
|
|
* timer event with force a cpu->exit so the next vCPU can get
|
|
* scheduled.
|
|
*
|
|
* The timer is removed if all vCPUs are idle and restarted again once
|
|
* idleness is complete.
|
|
*/
|
|
|
|
static QEMUTimer *tcg_kick_vcpu_timer;
|
|
static CPUState *tcg_current_rr_cpu;
|
|
|
|
#define TCG_KICK_PERIOD (NANOSECONDS_PER_SECOND / 10)
|
|
|
|
static inline int64_t qemu_tcg_next_kick(void)
|
|
{
|
|
return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + TCG_KICK_PERIOD;
|
|
}
|
|
|
|
/* Kick the currently round-robin scheduled vCPU */
|
|
static void qemu_cpu_kick_rr_cpu(void)
|
|
{
|
|
CPUState *cpu;
|
|
do {
|
|
cpu = atomic_mb_read(&tcg_current_rr_cpu);
|
|
if (cpu) {
|
|
cpu_exit(cpu);
|
|
}
|
|
} while (cpu != atomic_mb_read(&tcg_current_rr_cpu));
|
|
}
|
|
|
|
static void kick_tcg_thread(void *opaque)
|
|
{
|
|
timer_mod(tcg_kick_vcpu_timer, qemu_tcg_next_kick());
|
|
qemu_cpu_kick_rr_cpu();
|
|
}
|
|
|
|
static void start_tcg_kick_timer(void)
|
|
{
|
|
if (!mttcg_enabled && !tcg_kick_vcpu_timer && CPU_NEXT(first_cpu)) {
|
|
tcg_kick_vcpu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
|
|
kick_tcg_thread, NULL);
|
|
timer_mod(tcg_kick_vcpu_timer, qemu_tcg_next_kick());
|
|
}
|
|
}
|
|
|
|
static void stop_tcg_kick_timer(void)
|
|
{
|
|
if (tcg_kick_vcpu_timer) {
|
|
timer_del(tcg_kick_vcpu_timer);
|
|
tcg_kick_vcpu_timer = NULL;
|
|
}
|
|
}
|
|
|
|
/***********************************************************/
|
|
void hw_error(const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
CPUState *cpu;
|
|
|
|
va_start(ap, fmt);
|
|
fprintf(stderr, "qemu: hardware error: ");
|
|
vfprintf(stderr, fmt, ap);
|
|
fprintf(stderr, "\n");
|
|
CPU_FOREACH(cpu) {
|
|
fprintf(stderr, "CPU #%d:\n", cpu->cpu_index);
|
|
cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU);
|
|
}
|
|
va_end(ap);
|
|
abort();
|
|
}
|
|
|
|
void cpu_synchronize_all_states(void)
|
|
{
|
|
CPUState *cpu;
|
|
|
|
CPU_FOREACH(cpu) {
|
|
cpu_synchronize_state(cpu);
|
|
}
|
|
}
|
|
|
|
void cpu_synchronize_all_post_reset(void)
|
|
{
|
|
CPUState *cpu;
|
|
|
|
CPU_FOREACH(cpu) {
|
|
cpu_synchronize_post_reset(cpu);
|
|
}
|
|
}
|
|
|
|
void cpu_synchronize_all_post_init(void)
|
|
{
|
|
CPUState *cpu;
|
|
|
|
CPU_FOREACH(cpu) {
|
|
cpu_synchronize_post_init(cpu);
|
|
}
|
|
}
|
|
|
|
static int do_vm_stop(RunState state)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (runstate_is_running()) {
|
|
cpu_disable_ticks();
|
|
pause_all_vcpus();
|
|
runstate_set(state);
|
|
vm_state_notify(0, state);
|
|
qapi_event_send_stop(&error_abort);
|
|
}
|
|
|
|
bdrv_drain_all();
|
|
replay_disable_events();
|
|
ret = bdrv_flush_all();
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool cpu_can_run(CPUState *cpu)
|
|
{
|
|
if (cpu->stop) {
|
|
return false;
|
|
}
|
|
if (cpu_is_stopped(cpu)) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void cpu_handle_guest_debug(CPUState *cpu)
|
|
{
|
|
gdb_set_stop_cpu(cpu);
|
|
qemu_system_debug_request();
|
|
cpu->stopped = true;
|
|
}
|
|
|
|
#ifdef CONFIG_LINUX
|
|
static void sigbus_reraise(void)
|
|
{
|
|
sigset_t set;
|
|
struct sigaction action;
|
|
|
|
memset(&action, 0, sizeof(action));
|
|
action.sa_handler = SIG_DFL;
|
|
if (!sigaction(SIGBUS, &action, NULL)) {
|
|
raise(SIGBUS);
|
|
sigemptyset(&set);
|
|
sigaddset(&set, SIGBUS);
|
|
pthread_sigmask(SIG_UNBLOCK, &set, NULL);
|
|
}
|
|
perror("Failed to re-raise SIGBUS!\n");
|
|
abort();
|
|
}
|
|
|
|
static void sigbus_handler(int n, siginfo_t *siginfo, void *ctx)
|
|
{
|
|
if (siginfo->si_code != BUS_MCEERR_AO && siginfo->si_code != BUS_MCEERR_AR) {
|
|
sigbus_reraise();
|
|
}
|
|
|
|
if (current_cpu) {
|
|
/* Called asynchronously in VCPU thread. */
|
|
if (kvm_on_sigbus_vcpu(current_cpu, siginfo->si_code, siginfo->si_addr)) {
|
|
sigbus_reraise();
|
|
}
|
|
} else {
|
|
/* Called synchronously (via signalfd) in main thread. */
|
|
if (kvm_on_sigbus(siginfo->si_code, siginfo->si_addr)) {
|
|
sigbus_reraise();
|
|
}
|
|
}
|
|
}
|
|
|
|
static void qemu_init_sigbus(void)
|
|
{
|
|
struct sigaction action;
|
|
|
|
memset(&action, 0, sizeof(action));
|
|
action.sa_flags = SA_SIGINFO;
|
|
action.sa_sigaction = sigbus_handler;
|
|
sigaction(SIGBUS, &action, NULL);
|
|
|
|
prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
|
|
}
|
|
#else /* !CONFIG_LINUX */
|
|
static void qemu_init_sigbus(void)
|
|
{
|
|
}
|
|
#endif /* !CONFIG_LINUX */
|
|
|
|
static QemuMutex qemu_global_mutex;
|
|
|
|
static QemuThread io_thread;
|
|
|
|
/* cpu creation */
|
|
static QemuCond qemu_cpu_cond;
|
|
/* system init */
|
|
static QemuCond qemu_pause_cond;
|
|
|
|
void qemu_init_cpu_loop(void)
|
|
{
|
|
qemu_init_sigbus();
|
|
qemu_cond_init(&qemu_cpu_cond);
|
|
qemu_cond_init(&qemu_pause_cond);
|
|
qemu_mutex_init(&qemu_global_mutex);
|
|
|
|
qemu_thread_get_self(&io_thread);
|
|
}
|
|
|
|
void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data)
|
|
{
|
|
do_run_on_cpu(cpu, func, data, &qemu_global_mutex);
|
|
}
|
|
|
|
static void qemu_kvm_destroy_vcpu(CPUState *cpu)
|
|
{
|
|
if (kvm_destroy_vcpu(cpu) < 0) {
|
|
error_report("kvm_destroy_vcpu failed");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
|
|
static void qemu_tcg_destroy_vcpu(CPUState *cpu)
|
|
{
|
|
}
|
|
|
|
static void qemu_wait_io_event_common(CPUState *cpu)
|
|
{
|
|
atomic_mb_set(&cpu->thread_kicked, false);
|
|
if (cpu->stop) {
|
|
cpu->stop = false;
|
|
cpu->stopped = true;
|
|
qemu_cond_broadcast(&qemu_pause_cond);
|
|
}
|
|
process_queued_cpu_work(cpu);
|
|
}
|
|
|
|
static bool qemu_tcg_should_sleep(CPUState *cpu)
|
|
{
|
|
if (mttcg_enabled) {
|
|
return cpu_thread_is_idle(cpu);
|
|
} else {
|
|
return all_cpu_threads_idle();
|
|
}
|
|
}
|
|
|
|
static void qemu_tcg_wait_io_event(CPUState *cpu)
|
|
{
|
|
while (qemu_tcg_should_sleep(cpu)) {
|
|
stop_tcg_kick_timer();
|
|
qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
|
|
}
|
|
|
|
start_tcg_kick_timer();
|
|
|
|
qemu_wait_io_event_common(cpu);
|
|
}
|
|
|
|
static void qemu_kvm_wait_io_event(CPUState *cpu)
|
|
{
|
|
while (cpu_thread_is_idle(cpu)) {
|
|
qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
|
|
}
|
|
|
|
qemu_wait_io_event_common(cpu);
|
|
}
|
|
|
|
static void *qemu_kvm_cpu_thread_fn(void *arg)
|
|
{
|
|
CPUState *cpu = arg;
|
|
int r;
|
|
|
|
rcu_register_thread();
|
|
|
|
qemu_mutex_lock_iothread();
|
|
qemu_thread_get_self(cpu->thread);
|
|
cpu->thread_id = qemu_get_thread_id();
|
|
cpu->can_do_io = 1;
|
|
current_cpu = cpu;
|
|
|
|
r = kvm_init_vcpu(cpu);
|
|
if (r < 0) {
|
|
fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
|
|
exit(1);
|
|
}
|
|
|
|
kvm_init_cpu_signals(cpu);
|
|
|
|
/* signal CPU creation */
|
|
cpu->created = true;
|
|
qemu_cond_signal(&qemu_cpu_cond);
|
|
|
|
do {
|
|
if (cpu_can_run(cpu)) {
|
|
r = kvm_cpu_exec(cpu);
|
|
if (r == EXCP_DEBUG) {
|
|
cpu_handle_guest_debug(cpu);
|
|
}
|
|
}
|
|
qemu_kvm_wait_io_event(cpu);
|
|
} while (!cpu->unplug || cpu_can_run(cpu));
|
|
|
|
qemu_kvm_destroy_vcpu(cpu);
|
|
cpu->created = false;
|
|
qemu_cond_signal(&qemu_cpu_cond);
|
|
qemu_mutex_unlock_iothread();
|
|
return NULL;
|
|
}
|
|
|
|
static void *qemu_dummy_cpu_thread_fn(void *arg)
|
|
{
|
|
#ifdef _WIN32
|
|
fprintf(stderr, "qtest is not supported under Windows\n");
|
|
exit(1);
|
|
#else
|
|
CPUState *cpu = arg;
|
|
sigset_t waitset;
|
|
int r;
|
|
|
|
rcu_register_thread();
|
|
|
|
qemu_mutex_lock_iothread();
|
|
qemu_thread_get_self(cpu->thread);
|
|
cpu->thread_id = qemu_get_thread_id();
|
|
cpu->can_do_io = 1;
|
|
current_cpu = cpu;
|
|
|
|
sigemptyset(&waitset);
|
|
sigaddset(&waitset, SIG_IPI);
|
|
|
|
/* signal CPU creation */
|
|
cpu->created = true;
|
|
qemu_cond_signal(&qemu_cpu_cond);
|
|
|
|
while (1) {
|
|
qemu_mutex_unlock_iothread();
|
|
do {
|
|
int sig;
|
|
r = sigwait(&waitset, &sig);
|
|
} while (r == -1 && (errno == EAGAIN || errno == EINTR));
|
|
if (r == -1) {
|
|
perror("sigwait");
|
|
exit(1);
|
|
}
|
|
qemu_mutex_lock_iothread();
|
|
qemu_wait_io_event_common(cpu);
|
|
}
|
|
|
|
return NULL;
|
|
#endif
|
|
}
|
|
|
|
static int64_t tcg_get_icount_limit(void)
|
|
{
|
|
int64_t deadline;
|
|
|
|
if (replay_mode != REPLAY_MODE_PLAY) {
|
|
deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
|
|
|
|
/* Maintain prior (possibly buggy) behaviour where if no deadline
|
|
* was set (as there is no QEMU_CLOCK_VIRTUAL timer) or it is more than
|
|
* INT32_MAX nanoseconds ahead, we still use INT32_MAX
|
|
* nanoseconds.
|
|
*/
|
|
if ((deadline < 0) || (deadline > INT32_MAX)) {
|
|
deadline = INT32_MAX;
|
|
}
|
|
|
|
return qemu_icount_round(deadline);
|
|
} else {
|
|
return replay_get_instructions();
|
|
}
|
|
}
|
|
|
|
static void handle_icount_deadline(void)
|
|
{
|
|
if (use_icount) {
|
|
int64_t deadline =
|
|
qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
|
|
|
|
if (deadline == 0) {
|
|
qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int tcg_cpu_exec(CPUState *cpu)
|
|
{
|
|
int ret;
|
|
#ifdef CONFIG_PROFILER
|
|
int64_t ti;
|
|
#endif
|
|
|
|
#ifdef CONFIG_PROFILER
|
|
ti = profile_getclock();
|
|
#endif
|
|
if (use_icount) {
|
|
int64_t count;
|
|
int decr;
|
|
timers_state.qemu_icount -= (cpu->icount_decr.u16.low
|
|
+ cpu->icount_extra);
|
|
cpu->icount_decr.u16.low = 0;
|
|
cpu->icount_extra = 0;
|
|
count = tcg_get_icount_limit();
|
|
timers_state.qemu_icount += count;
|
|
decr = (count > 0xffff) ? 0xffff : count;
|
|
count -= decr;
|
|
cpu->icount_decr.u16.low = decr;
|
|
cpu->icount_extra = count;
|
|
}
|
|
qemu_mutex_unlock_iothread();
|
|
cpu_exec_start(cpu);
|
|
ret = cpu_exec(cpu);
|
|
cpu_exec_end(cpu);
|
|
qemu_mutex_lock_iothread();
|
|
#ifdef CONFIG_PROFILER
|
|
tcg_time += profile_getclock() - ti;
|
|
#endif
|
|
if (use_icount) {
|
|
/* Fold pending instructions back into the
|
|
instruction counter, and clear the interrupt flag. */
|
|
timers_state.qemu_icount -= (cpu->icount_decr.u16.low
|
|
+ cpu->icount_extra);
|
|
cpu->icount_decr.u32 = 0;
|
|
cpu->icount_extra = 0;
|
|
replay_account_executed_instructions();
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* Destroy any remaining vCPUs which have been unplugged and have
|
|
* finished running
|
|
*/
|
|
static void deal_with_unplugged_cpus(void)
|
|
{
|
|
CPUState *cpu;
|
|
|
|
CPU_FOREACH(cpu) {
|
|
if (cpu->unplug && !cpu_can_run(cpu)) {
|
|
qemu_tcg_destroy_vcpu(cpu);
|
|
cpu->created = false;
|
|
qemu_cond_signal(&qemu_cpu_cond);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Single-threaded TCG
|
|
*
|
|
* In the single-threaded case each vCPU is simulated in turn. If
|
|
* there is more than a single vCPU we create a simple timer to kick
|
|
* the vCPU and ensure we don't get stuck in a tight loop in one vCPU.
|
|
* This is done explicitly rather than relying on side-effects
|
|
* elsewhere.
|
|
*/
|
|
|
|
static void *qemu_tcg_rr_cpu_thread_fn(void *arg)
|
|
{
|
|
CPUState *cpu = arg;
|
|
|
|
rcu_register_thread();
|
|
|
|
qemu_mutex_lock_iothread();
|
|
qemu_thread_get_self(cpu->thread);
|
|
|
|
CPU_FOREACH(cpu) {
|
|
cpu->thread_id = qemu_get_thread_id();
|
|
cpu->created = true;
|
|
cpu->can_do_io = 1;
|
|
}
|
|
qemu_cond_signal(&qemu_cpu_cond);
|
|
|
|
/* wait for initial kick-off after machine start */
|
|
while (first_cpu->stopped) {
|
|
qemu_cond_wait(first_cpu->halt_cond, &qemu_global_mutex);
|
|
|
|
/* process any pending work */
|
|
CPU_FOREACH(cpu) {
|
|
current_cpu = cpu;
|
|
qemu_wait_io_event_common(cpu);
|
|
}
|
|
}
|
|
|
|
start_tcg_kick_timer();
|
|
|
|
cpu = first_cpu;
|
|
|
|
/* process any pending work */
|
|
cpu->exit_request = 1;
|
|
|
|
while (1) {
|
|
/* Account partial waits to QEMU_CLOCK_VIRTUAL. */
|
|
qemu_account_warp_timer();
|
|
|
|
if (!cpu) {
|
|
cpu = first_cpu;
|
|
}
|
|
|
|
while (cpu && !cpu->queued_work_first && !cpu->exit_request) {
|
|
|
|
atomic_mb_set(&tcg_current_rr_cpu, cpu);
|
|
current_cpu = cpu;
|
|
|
|
qemu_clock_enable(QEMU_CLOCK_VIRTUAL,
|
|
(cpu->singlestep_enabled & SSTEP_NOTIMER) == 0);
|
|
|
|
if (cpu_can_run(cpu)) {
|
|
int r;
|
|
r = tcg_cpu_exec(cpu);
|
|
if (r == EXCP_DEBUG) {
|
|
cpu_handle_guest_debug(cpu);
|
|
break;
|
|
} else if (r == EXCP_ATOMIC) {
|
|
qemu_mutex_unlock_iothread();
|
|
cpu_exec_step_atomic(cpu);
|
|
qemu_mutex_lock_iothread();
|
|
break;
|
|
}
|
|
} else if (cpu->stop) {
|
|
if (cpu->unplug) {
|
|
cpu = CPU_NEXT(cpu);
|
|
}
|
|
break;
|
|
}
|
|
|
|
cpu = CPU_NEXT(cpu);
|
|
} /* while (cpu && !cpu->exit_request).. */
|
|
|
|
/* Does not need atomic_mb_set because a spurious wakeup is okay. */
|
|
atomic_set(&tcg_current_rr_cpu, NULL);
|
|
|
|
if (cpu && cpu->exit_request) {
|
|
atomic_mb_set(&cpu->exit_request, 0);
|
|
}
|
|
|
|
handle_icount_deadline();
|
|
|
|
qemu_tcg_wait_io_event(cpu ? cpu : QTAILQ_FIRST(&cpus));
|
|
deal_with_unplugged_cpus();
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void *qemu_hax_cpu_thread_fn(void *arg)
|
|
{
|
|
CPUState *cpu = arg;
|
|
int r;
|
|
qemu_thread_get_self(cpu->thread);
|
|
qemu_mutex_lock(&qemu_global_mutex);
|
|
|
|
cpu->thread_id = qemu_get_thread_id();
|
|
cpu->created = true;
|
|
cpu->halted = 0;
|
|
current_cpu = cpu;
|
|
|
|
hax_init_vcpu(cpu);
|
|
qemu_cond_signal(&qemu_cpu_cond);
|
|
|
|
while (1) {
|
|
if (cpu_can_run(cpu)) {
|
|
r = hax_smp_cpu_exec(cpu);
|
|
if (r == EXCP_DEBUG) {
|
|
cpu_handle_guest_debug(cpu);
|
|
}
|
|
}
|
|
|
|
while (cpu_thread_is_idle(cpu)) {
|
|
qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
|
|
}
|
|
#ifdef _WIN32
|
|
SleepEx(0, TRUE);
|
|
#endif
|
|
qemu_wait_io_event_common(cpu);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
#ifdef _WIN32
|
|
static void CALLBACK dummy_apc_func(ULONG_PTR unused)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
/* Multi-threaded TCG
|
|
*
|
|
* In the multi-threaded case each vCPU has its own thread. The TLS
|
|
* variable current_cpu can be used deep in the code to find the
|
|
* current CPUState for a given thread.
|
|
*/
|
|
|
|
static void *qemu_tcg_cpu_thread_fn(void *arg)
|
|
{
|
|
CPUState *cpu = arg;
|
|
|
|
rcu_register_thread();
|
|
|
|
qemu_mutex_lock_iothread();
|
|
qemu_thread_get_self(cpu->thread);
|
|
|
|
cpu->thread_id = qemu_get_thread_id();
|
|
cpu->created = true;
|
|
cpu->can_do_io = 1;
|
|
current_cpu = cpu;
|
|
qemu_cond_signal(&qemu_cpu_cond);
|
|
|
|
/* process any pending work */
|
|
cpu->exit_request = 1;
|
|
|
|
while (1) {
|
|
if (cpu_can_run(cpu)) {
|
|
int r;
|
|
r = tcg_cpu_exec(cpu);
|
|
switch (r) {
|
|
case EXCP_DEBUG:
|
|
cpu_handle_guest_debug(cpu);
|
|
break;
|
|
case EXCP_HALTED:
|
|
/* during start-up the vCPU is reset and the thread is
|
|
* kicked several times. If we don't ensure we go back
|
|
* to sleep in the halted state we won't cleanly
|
|
* start-up when the vCPU is enabled.
|
|
*
|
|
* cpu->halted should ensure we sleep in wait_io_event
|
|
*/
|
|
g_assert(cpu->halted);
|
|
break;
|
|
case EXCP_ATOMIC:
|
|
qemu_mutex_unlock_iothread();
|
|
cpu_exec_step_atomic(cpu);
|
|
qemu_mutex_lock_iothread();
|
|
default:
|
|
/* Ignore everything else? */
|
|
break;
|
|
}
|
|
}
|
|
|
|
handle_icount_deadline();
|
|
|
|
atomic_mb_set(&cpu->exit_request, 0);
|
|
qemu_tcg_wait_io_event(cpu);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void qemu_cpu_kick_thread(CPUState *cpu)
|
|
{
|
|
#ifndef _WIN32
|
|
int err;
|
|
|
|
if (cpu->thread_kicked) {
|
|
return;
|
|
}
|
|
cpu->thread_kicked = true;
|
|
err = pthread_kill(cpu->thread->thread, SIG_IPI);
|
|
if (err) {
|
|
fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
|
|
exit(1);
|
|
}
|
|
#else /* _WIN32 */
|
|
if (!qemu_cpu_is_self(cpu)) {
|
|
if (!QueueUserAPC(dummy_apc_func, cpu->hThread, 0)) {
|
|
fprintf(stderr, "%s: QueueUserAPC failed with error %lu\n",
|
|
__func__, GetLastError());
|
|
exit(1);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void qemu_cpu_kick(CPUState *cpu)
|
|
{
|
|
qemu_cond_broadcast(cpu->halt_cond);
|
|
if (tcg_enabled()) {
|
|
cpu_exit(cpu);
|
|
/* NOP unless doing single-thread RR */
|
|
qemu_cpu_kick_rr_cpu();
|
|
} else {
|
|
if (hax_enabled()) {
|
|
/*
|
|
* FIXME: race condition with the exit_request check in
|
|
* hax_vcpu_hax_exec
|
|
*/
|
|
cpu->exit_request = 1;
|
|
}
|
|
qemu_cpu_kick_thread(cpu);
|
|
}
|
|
}
|
|
|
|
void qemu_cpu_kick_self(void)
|
|
{
|
|
assert(current_cpu);
|
|
qemu_cpu_kick_thread(current_cpu);
|
|
}
|
|
|
|
bool qemu_cpu_is_self(CPUState *cpu)
|
|
{
|
|
return qemu_thread_is_self(cpu->thread);
|
|
}
|
|
|
|
bool qemu_in_vcpu_thread(void)
|
|
{
|
|
return current_cpu && qemu_cpu_is_self(current_cpu);
|
|
}
|
|
|
|
static __thread bool iothread_locked = false;
|
|
|
|
bool qemu_mutex_iothread_locked(void)
|
|
{
|
|
return iothread_locked;
|
|
}
|
|
|
|
void qemu_mutex_lock_iothread(void)
|
|
{
|
|
g_assert(!qemu_mutex_iothread_locked());
|
|
qemu_mutex_lock(&qemu_global_mutex);
|
|
iothread_locked = true;
|
|
}
|
|
|
|
void qemu_mutex_unlock_iothread(void)
|
|
{
|
|
g_assert(qemu_mutex_iothread_locked());
|
|
iothread_locked = false;
|
|
qemu_mutex_unlock(&qemu_global_mutex);
|
|
}
|
|
|
|
static bool all_vcpus_paused(void)
|
|
{
|
|
CPUState *cpu;
|
|
|
|
CPU_FOREACH(cpu) {
|
|
if (!cpu->stopped) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void pause_all_vcpus(void)
|
|
{
|
|
CPUState *cpu;
|
|
|
|
qemu_clock_enable(QEMU_CLOCK_VIRTUAL, false);
|
|
CPU_FOREACH(cpu) {
|
|
cpu->stop = true;
|
|
qemu_cpu_kick(cpu);
|
|
}
|
|
|
|
if (qemu_in_vcpu_thread()) {
|
|
cpu_stop_current();
|
|
}
|
|
|
|
while (!all_vcpus_paused()) {
|
|
qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
|
|
CPU_FOREACH(cpu) {
|
|
qemu_cpu_kick(cpu);
|
|
}
|
|
}
|
|
}
|
|
|
|
void cpu_resume(CPUState *cpu)
|
|
{
|
|
cpu->stop = false;
|
|
cpu->stopped = false;
|
|
qemu_cpu_kick(cpu);
|
|
}
|
|
|
|
void resume_all_vcpus(void)
|
|
{
|
|
CPUState *cpu;
|
|
|
|
qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true);
|
|
CPU_FOREACH(cpu) {
|
|
cpu_resume(cpu);
|
|
}
|
|
}
|
|
|
|
void cpu_remove(CPUState *cpu)
|
|
{
|
|
cpu->stop = true;
|
|
cpu->unplug = true;
|
|
qemu_cpu_kick(cpu);
|
|
}
|
|
|
|
void cpu_remove_sync(CPUState *cpu)
|
|
{
|
|
cpu_remove(cpu);
|
|
while (cpu->created) {
|
|
qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
|
|
}
|
|
}
|
|
|
|
/* For temporary buffers for forming a name */
|
|
#define VCPU_THREAD_NAME_SIZE 16
|
|
|
|
static void qemu_tcg_init_vcpu(CPUState *cpu)
|
|
{
|
|
char thread_name[VCPU_THREAD_NAME_SIZE];
|
|
static QemuCond *single_tcg_halt_cond;
|
|
static QemuThread *single_tcg_cpu_thread;
|
|
|
|
if (qemu_tcg_mttcg_enabled() || !single_tcg_cpu_thread) {
|
|
cpu->thread = g_malloc0(sizeof(QemuThread));
|
|
cpu->halt_cond = g_malloc0(sizeof(QemuCond));
|
|
qemu_cond_init(cpu->halt_cond);
|
|
|
|
if (qemu_tcg_mttcg_enabled()) {
|
|
/* create a thread per vCPU with TCG (MTTCG) */
|
|
parallel_cpus = true;
|
|
snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/TCG",
|
|
cpu->cpu_index);
|
|
|
|
qemu_thread_create(cpu->thread, thread_name, qemu_tcg_cpu_thread_fn,
|
|
cpu, QEMU_THREAD_JOINABLE);
|
|
|
|
} else {
|
|
/* share a single thread for all cpus with TCG */
|
|
snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "ALL CPUs/TCG");
|
|
qemu_thread_create(cpu->thread, thread_name,
|
|
qemu_tcg_rr_cpu_thread_fn,
|
|
cpu, QEMU_THREAD_JOINABLE);
|
|
|
|
single_tcg_halt_cond = cpu->halt_cond;
|
|
single_tcg_cpu_thread = cpu->thread;
|
|
}
|
|
#ifdef _WIN32
|
|
cpu->hThread = qemu_thread_get_handle(cpu->thread);
|
|
#endif
|
|
while (!cpu->created) {
|
|
qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
|
|
}
|
|
} else {
|
|
/* For non-MTTCG cases we share the thread */
|
|
cpu->thread = single_tcg_cpu_thread;
|
|
cpu->halt_cond = single_tcg_halt_cond;
|
|
}
|
|
}
|
|
|
|
static void qemu_hax_start_vcpu(CPUState *cpu)
|
|
{
|
|
char thread_name[VCPU_THREAD_NAME_SIZE];
|
|
|
|
cpu->thread = g_malloc0(sizeof(QemuThread));
|
|
cpu->halt_cond = g_malloc0(sizeof(QemuCond));
|
|
qemu_cond_init(cpu->halt_cond);
|
|
|
|
snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/HAX",
|
|
cpu->cpu_index);
|
|
qemu_thread_create(cpu->thread, thread_name, qemu_hax_cpu_thread_fn,
|
|
cpu, QEMU_THREAD_JOINABLE);
|
|
#ifdef _WIN32
|
|
cpu->hThread = qemu_thread_get_handle(cpu->thread);
|
|
#endif
|
|
while (!cpu->created) {
|
|
qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
|
|
}
|
|
}
|
|
|
|
static void qemu_kvm_start_vcpu(CPUState *cpu)
|
|
{
|
|
char thread_name[VCPU_THREAD_NAME_SIZE];
|
|
|
|
cpu->thread = g_malloc0(sizeof(QemuThread));
|
|
cpu->halt_cond = g_malloc0(sizeof(QemuCond));
|
|
qemu_cond_init(cpu->halt_cond);
|
|
snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/KVM",
|
|
cpu->cpu_index);
|
|
qemu_thread_create(cpu->thread, thread_name, qemu_kvm_cpu_thread_fn,
|
|
cpu, QEMU_THREAD_JOINABLE);
|
|
while (!cpu->created) {
|
|
qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
|
|
}
|
|
}
|
|
|
|
static void qemu_dummy_start_vcpu(CPUState *cpu)
|
|
{
|
|
char thread_name[VCPU_THREAD_NAME_SIZE];
|
|
|
|
cpu->thread = g_malloc0(sizeof(QemuThread));
|
|
cpu->halt_cond = g_malloc0(sizeof(QemuCond));
|
|
qemu_cond_init(cpu->halt_cond);
|
|
snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/DUMMY",
|
|
cpu->cpu_index);
|
|
qemu_thread_create(cpu->thread, thread_name, qemu_dummy_cpu_thread_fn, cpu,
|
|
QEMU_THREAD_JOINABLE);
|
|
while (!cpu->created) {
|
|
qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
|
|
}
|
|
}
|
|
|
|
void qemu_init_vcpu(CPUState *cpu)
|
|
{
|
|
cpu->nr_cores = smp_cores;
|
|
cpu->nr_threads = smp_threads;
|
|
cpu->stopped = true;
|
|
|
|
if (!cpu->as) {
|
|
/* If the target cpu hasn't set up any address spaces itself,
|
|
* give it the default one.
|
|
*/
|
|
AddressSpace *as = address_space_init_shareable(cpu->memory,
|
|
"cpu-memory");
|
|
cpu->num_ases = 1;
|
|
cpu_address_space_init(cpu, as, 0);
|
|
}
|
|
|
|
if (kvm_enabled()) {
|
|
qemu_kvm_start_vcpu(cpu);
|
|
} else if (hax_enabled()) {
|
|
qemu_hax_start_vcpu(cpu);
|
|
} else if (tcg_enabled()) {
|
|
qemu_tcg_init_vcpu(cpu);
|
|
} else {
|
|
qemu_dummy_start_vcpu(cpu);
|
|
}
|
|
}
|
|
|
|
void cpu_stop_current(void)
|
|
{
|
|
if (current_cpu) {
|
|
current_cpu->stop = false;
|
|
current_cpu->stopped = true;
|
|
cpu_exit(current_cpu);
|
|
qemu_cond_broadcast(&qemu_pause_cond);
|
|
}
|
|
}
|
|
|
|
int vm_stop(RunState state)
|
|
{
|
|
if (qemu_in_vcpu_thread()) {
|
|
qemu_system_vmstop_request_prepare();
|
|
qemu_system_vmstop_request(state);
|
|
/*
|
|
* FIXME: should not return to device code in case
|
|
* vm_stop() has been requested.
|
|
*/
|
|
cpu_stop_current();
|
|
return 0;
|
|
}
|
|
|
|
return do_vm_stop(state);
|
|
}
|
|
|
|
/**
|
|
* Prepare for (re)starting the VM.
|
|
* Returns -1 if the vCPUs are not to be restarted (e.g. if they are already
|
|
* running or in case of an error condition), 0 otherwise.
|
|
*/
|
|
int vm_prepare_start(void)
|
|
{
|
|
RunState requested;
|
|
int res = 0;
|
|
|
|
qemu_vmstop_requested(&requested);
|
|
if (runstate_is_running() && requested == RUN_STATE__MAX) {
|
|
return -1;
|
|
}
|
|
|
|
/* Ensure that a STOP/RESUME pair of events is emitted if a
|
|
* vmstop request was pending. The BLOCK_IO_ERROR event, for
|
|
* example, according to documentation is always followed by
|
|
* the STOP event.
|
|
*/
|
|
if (runstate_is_running()) {
|
|
qapi_event_send_stop(&error_abort);
|
|
res = -1;
|
|
} else {
|
|
replay_enable_events();
|
|
cpu_enable_ticks();
|
|
runstate_set(RUN_STATE_RUNNING);
|
|
vm_state_notify(1, RUN_STATE_RUNNING);
|
|
}
|
|
|
|
/* We are sending this now, but the CPUs will be resumed shortly later */
|
|
qapi_event_send_resume(&error_abort);
|
|
return res;
|
|
}
|
|
|
|
void vm_start(void)
|
|
{
|
|
if (!vm_prepare_start()) {
|
|
resume_all_vcpus();
|
|
}
|
|
}
|
|
|
|
/* does a state transition even if the VM is already stopped,
|
|
current state is forgotten forever */
|
|
int vm_stop_force_state(RunState state)
|
|
{
|
|
if (runstate_is_running()) {
|
|
return vm_stop(state);
|
|
} else {
|
|
runstate_set(state);
|
|
|
|
bdrv_drain_all();
|
|
/* Make sure to return an error if the flush in a previous vm_stop()
|
|
* failed. */
|
|
return bdrv_flush_all();
|
|
}
|
|
}
|
|
|
|
void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
|
|
{
|
|
/* XXX: implement xxx_cpu_list for targets that still miss it */
|
|
#if defined(cpu_list)
|
|
cpu_list(f, cpu_fprintf);
|
|
#endif
|
|
}
|
|
|
|
CpuInfoList *qmp_query_cpus(Error **errp)
|
|
{
|
|
CpuInfoList *head = NULL, *cur_item = NULL;
|
|
CPUState *cpu;
|
|
|
|
CPU_FOREACH(cpu) {
|
|
CpuInfoList *info;
|
|
#if defined(TARGET_I386)
|
|
X86CPU *x86_cpu = X86_CPU(cpu);
|
|
CPUX86State *env = &x86_cpu->env;
|
|
#elif defined(TARGET_PPC)
|
|
PowerPCCPU *ppc_cpu = POWERPC_CPU(cpu);
|
|
CPUPPCState *env = &ppc_cpu->env;
|
|
#elif defined(TARGET_SPARC)
|
|
SPARCCPU *sparc_cpu = SPARC_CPU(cpu);
|
|
CPUSPARCState *env = &sparc_cpu->env;
|
|
#elif defined(TARGET_MIPS)
|
|
MIPSCPU *mips_cpu = MIPS_CPU(cpu);
|
|
CPUMIPSState *env = &mips_cpu->env;
|
|
#elif defined(TARGET_TRICORE)
|
|
TriCoreCPU *tricore_cpu = TRICORE_CPU(cpu);
|
|
CPUTriCoreState *env = &tricore_cpu->env;
|
|
#endif
|
|
|
|
cpu_synchronize_state(cpu);
|
|
|
|
info = g_malloc0(sizeof(*info));
|
|
info->value = g_malloc0(sizeof(*info->value));
|
|
info->value->CPU = cpu->cpu_index;
|
|
info->value->current = (cpu == first_cpu);
|
|
info->value->halted = cpu->halted;
|
|
info->value->qom_path = object_get_canonical_path(OBJECT(cpu));
|
|
info->value->thread_id = cpu->thread_id;
|
|
#if defined(TARGET_I386)
|
|
info->value->arch = CPU_INFO_ARCH_X86;
|
|
info->value->u.x86.pc = env->eip + env->segs[R_CS].base;
|
|
#elif defined(TARGET_PPC)
|
|
info->value->arch = CPU_INFO_ARCH_PPC;
|
|
info->value->u.ppc.nip = env->nip;
|
|
#elif defined(TARGET_SPARC)
|
|
info->value->arch = CPU_INFO_ARCH_SPARC;
|
|
info->value->u.q_sparc.pc = env->pc;
|
|
info->value->u.q_sparc.npc = env->npc;
|
|
#elif defined(TARGET_MIPS)
|
|
info->value->arch = CPU_INFO_ARCH_MIPS;
|
|
info->value->u.q_mips.PC = env->active_tc.PC;
|
|
#elif defined(TARGET_TRICORE)
|
|
info->value->arch = CPU_INFO_ARCH_TRICORE;
|
|
info->value->u.tricore.PC = env->PC;
|
|
#else
|
|
info->value->arch = CPU_INFO_ARCH_OTHER;
|
|
#endif
|
|
|
|
/* XXX: waiting for the qapi to support GSList */
|
|
if (!cur_item) {
|
|
head = cur_item = info;
|
|
} else {
|
|
cur_item->next = info;
|
|
cur_item = info;
|
|
}
|
|
}
|
|
|
|
return head;
|
|
}
|
|
|
|
void qmp_memsave(int64_t addr, int64_t size, const char *filename,
|
|
bool has_cpu, int64_t cpu_index, Error **errp)
|
|
{
|
|
FILE *f;
|
|
uint32_t l;
|
|
CPUState *cpu;
|
|
uint8_t buf[1024];
|
|
int64_t orig_addr = addr, orig_size = size;
|
|
|
|
if (!has_cpu) {
|
|
cpu_index = 0;
|
|
}
|
|
|
|
cpu = qemu_get_cpu(cpu_index);
|
|
if (cpu == NULL) {
|
|
error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
|
|
"a CPU number");
|
|
return;
|
|
}
|
|
|
|
f = fopen(filename, "wb");
|
|
if (!f) {
|
|
error_setg_file_open(errp, errno, filename);
|
|
return;
|
|
}
|
|
|
|
while (size != 0) {
|
|
l = sizeof(buf);
|
|
if (l > size)
|
|
l = size;
|
|
if (cpu_memory_rw_debug(cpu, addr, buf, l, 0) != 0) {
|
|
error_setg(errp, "Invalid addr 0x%016" PRIx64 "/size %" PRId64
|
|
" specified", orig_addr, orig_size);
|
|
goto exit;
|
|
}
|
|
if (fwrite(buf, 1, l, f) != l) {
|
|
error_setg(errp, QERR_IO_ERROR);
|
|
goto exit;
|
|
}
|
|
addr += l;
|
|
size -= l;
|
|
}
|
|
|
|
exit:
|
|
fclose(f);
|
|
}
|
|
|
|
void qmp_pmemsave(int64_t addr, int64_t size, const char *filename,
|
|
Error **errp)
|
|
{
|
|
FILE *f;
|
|
uint32_t l;
|
|
uint8_t buf[1024];
|
|
|
|
f = fopen(filename, "wb");
|
|
if (!f) {
|
|
error_setg_file_open(errp, errno, filename);
|
|
return;
|
|
}
|
|
|
|
while (size != 0) {
|
|
l = sizeof(buf);
|
|
if (l > size)
|
|
l = size;
|
|
cpu_physical_memory_read(addr, buf, l);
|
|
if (fwrite(buf, 1, l, f) != l) {
|
|
error_setg(errp, QERR_IO_ERROR);
|
|
goto exit;
|
|
}
|
|
addr += l;
|
|
size -= l;
|
|
}
|
|
|
|
exit:
|
|
fclose(f);
|
|
}
|
|
|
|
void qmp_inject_nmi(Error **errp)
|
|
{
|
|
nmi_monitor_handle(monitor_get_cpu_index(), errp);
|
|
}
|
|
|
|
void dump_drift_info(FILE *f, fprintf_function cpu_fprintf)
|
|
{
|
|
if (!use_icount) {
|
|
return;
|
|
}
|
|
|
|
cpu_fprintf(f, "Host - Guest clock %"PRIi64" ms\n",
|
|
(cpu_get_clock() - cpu_get_icount())/SCALE_MS);
|
|
if (icount_align_option) {
|
|
cpu_fprintf(f, "Max guest delay %"PRIi64" ms\n", -max_delay/SCALE_MS);
|
|
cpu_fprintf(f, "Max guest advance %"PRIi64" ms\n", max_advance/SCALE_MS);
|
|
} else {
|
|
cpu_fprintf(f, "Max guest delay NA\n");
|
|
cpu_fprintf(f, "Max guest advance NA\n");
|
|
}
|
|
}
|