mirror of
https://github.com/qemu/qemu.git
synced 2024-12-15 23:43:31 +08:00
1611956bce
The GICR_CTLR.CES bit is a read-only bit which is set to 1 to indicate that the GICR_CTLR.EnableLPIs bit can be written to 0 to disable LPIs (as opposed to allowing LPIs to be enabled but not subsequently disabled). Our implementation permits this, so advertise it by setting CES to 1. Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20220122182444.724087-10-peter.maydell@linaro.org
571 lines
19 KiB
C
571 lines
19 KiB
C
/*
|
|
* ARM GICv3 support - common bits of emulated and KVM kernel model
|
|
*
|
|
* Copyright (c) 2012 Linaro Limited
|
|
* Copyright (c) 2015 Huawei.
|
|
* Copyright (c) 2015 Samsung Electronics Co., Ltd.
|
|
* Written by Peter Maydell
|
|
* Reworked for GICv3 by Shlomo Pongratz and Pavel Fedin
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qapi/error.h"
|
|
#include "qemu/module.h"
|
|
#include "hw/core/cpu.h"
|
|
#include "hw/intc/arm_gicv3_common.h"
|
|
#include "hw/qdev-properties.h"
|
|
#include "migration/vmstate.h"
|
|
#include "gicv3_internal.h"
|
|
#include "hw/arm/linux-boot-if.h"
|
|
#include "sysemu/kvm.h"
|
|
|
|
|
|
static void gicv3_gicd_no_migration_shift_bug_post_load(GICv3State *cs)
|
|
{
|
|
if (cs->gicd_no_migration_shift_bug) {
|
|
return;
|
|
}
|
|
|
|
/* Older versions of QEMU had a bug in the handling of state save/restore
|
|
* to the KVM GICv3: they got the offset in the bitmap arrays wrong,
|
|
* so that instead of the data for external interrupts 32 and up
|
|
* starting at bit position 32 in the bitmap, it started at bit
|
|
* position 64. If we're receiving data from a QEMU with that bug,
|
|
* we must move the data down into the right place.
|
|
*/
|
|
memmove(cs->group, (uint8_t *)cs->group + GIC_INTERNAL / 8,
|
|
sizeof(cs->group) - GIC_INTERNAL / 8);
|
|
memmove(cs->grpmod, (uint8_t *)cs->grpmod + GIC_INTERNAL / 8,
|
|
sizeof(cs->grpmod) - GIC_INTERNAL / 8);
|
|
memmove(cs->enabled, (uint8_t *)cs->enabled + GIC_INTERNAL / 8,
|
|
sizeof(cs->enabled) - GIC_INTERNAL / 8);
|
|
memmove(cs->pending, (uint8_t *)cs->pending + GIC_INTERNAL / 8,
|
|
sizeof(cs->pending) - GIC_INTERNAL / 8);
|
|
memmove(cs->active, (uint8_t *)cs->active + GIC_INTERNAL / 8,
|
|
sizeof(cs->active) - GIC_INTERNAL / 8);
|
|
memmove(cs->edge_trigger, (uint8_t *)cs->edge_trigger + GIC_INTERNAL / 8,
|
|
sizeof(cs->edge_trigger) - GIC_INTERNAL / 8);
|
|
|
|
/*
|
|
* While this new version QEMU doesn't have this kind of bug as we fix it,
|
|
* so it needs to set the flag to true to indicate that and it's necessary
|
|
* for next migration to work from this new version QEMU.
|
|
*/
|
|
cs->gicd_no_migration_shift_bug = true;
|
|
}
|
|
|
|
static int gicv3_pre_save(void *opaque)
|
|
{
|
|
GICv3State *s = (GICv3State *)opaque;
|
|
ARMGICv3CommonClass *c = ARM_GICV3_COMMON_GET_CLASS(s);
|
|
|
|
if (c->pre_save) {
|
|
c->pre_save(s);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gicv3_post_load(void *opaque, int version_id)
|
|
{
|
|
GICv3State *s = (GICv3State *)opaque;
|
|
ARMGICv3CommonClass *c = ARM_GICV3_COMMON_GET_CLASS(s);
|
|
|
|
gicv3_gicd_no_migration_shift_bug_post_load(s);
|
|
|
|
if (c->post_load) {
|
|
c->post_load(s);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static bool virt_state_needed(void *opaque)
|
|
{
|
|
GICv3CPUState *cs = opaque;
|
|
|
|
return cs->num_list_regs != 0;
|
|
}
|
|
|
|
static const VMStateDescription vmstate_gicv3_cpu_virt = {
|
|
.name = "arm_gicv3_cpu/virt",
|
|
.version_id = 1,
|
|
.minimum_version_id = 1,
|
|
.needed = virt_state_needed,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_UINT64_2DARRAY(ich_apr, GICv3CPUState, 3, 4),
|
|
VMSTATE_UINT64(ich_hcr_el2, GICv3CPUState),
|
|
VMSTATE_UINT64_ARRAY(ich_lr_el2, GICv3CPUState, GICV3_LR_MAX),
|
|
VMSTATE_UINT64(ich_vmcr_el2, GICv3CPUState),
|
|
VMSTATE_END_OF_LIST()
|
|
}
|
|
};
|
|
|
|
static int vmstate_gicv3_cpu_pre_load(void *opaque)
|
|
{
|
|
GICv3CPUState *cs = opaque;
|
|
|
|
/*
|
|
* If the sre_el1 subsection is not transferred this
|
|
* means SRE_EL1 is 0x7 (which might not be the same as
|
|
* our reset value).
|
|
*/
|
|
cs->icc_sre_el1 = 0x7;
|
|
return 0;
|
|
}
|
|
|
|
static bool icc_sre_el1_reg_needed(void *opaque)
|
|
{
|
|
GICv3CPUState *cs = opaque;
|
|
|
|
return cs->icc_sre_el1 != 7;
|
|
}
|
|
|
|
const VMStateDescription vmstate_gicv3_cpu_sre_el1 = {
|
|
.name = "arm_gicv3_cpu/sre_el1",
|
|
.version_id = 1,
|
|
.minimum_version_id = 1,
|
|
.needed = icc_sre_el1_reg_needed,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_UINT64(icc_sre_el1, GICv3CPUState),
|
|
VMSTATE_END_OF_LIST()
|
|
}
|
|
};
|
|
|
|
static const VMStateDescription vmstate_gicv3_cpu = {
|
|
.name = "arm_gicv3_cpu",
|
|
.version_id = 1,
|
|
.minimum_version_id = 1,
|
|
.pre_load = vmstate_gicv3_cpu_pre_load,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_UINT32(level, GICv3CPUState),
|
|
VMSTATE_UINT32(gicr_ctlr, GICv3CPUState),
|
|
VMSTATE_UINT32_ARRAY(gicr_statusr, GICv3CPUState, 2),
|
|
VMSTATE_UINT32(gicr_waker, GICv3CPUState),
|
|
VMSTATE_UINT64(gicr_propbaser, GICv3CPUState),
|
|
VMSTATE_UINT64(gicr_pendbaser, GICv3CPUState),
|
|
VMSTATE_UINT32(gicr_igroupr0, GICv3CPUState),
|
|
VMSTATE_UINT32(gicr_ienabler0, GICv3CPUState),
|
|
VMSTATE_UINT32(gicr_ipendr0, GICv3CPUState),
|
|
VMSTATE_UINT32(gicr_iactiver0, GICv3CPUState),
|
|
VMSTATE_UINT32(edge_trigger, GICv3CPUState),
|
|
VMSTATE_UINT32(gicr_igrpmodr0, GICv3CPUState),
|
|
VMSTATE_UINT32(gicr_nsacr, GICv3CPUState),
|
|
VMSTATE_UINT8_ARRAY(gicr_ipriorityr, GICv3CPUState, GIC_INTERNAL),
|
|
VMSTATE_UINT64_ARRAY(icc_ctlr_el1, GICv3CPUState, 2),
|
|
VMSTATE_UINT64(icc_pmr_el1, GICv3CPUState),
|
|
VMSTATE_UINT64_ARRAY(icc_bpr, GICv3CPUState, 3),
|
|
VMSTATE_UINT64_2DARRAY(icc_apr, GICv3CPUState, 3, 4),
|
|
VMSTATE_UINT64_ARRAY(icc_igrpen, GICv3CPUState, 3),
|
|
VMSTATE_UINT64(icc_ctlr_el3, GICv3CPUState),
|
|
VMSTATE_END_OF_LIST()
|
|
},
|
|
.subsections = (const VMStateDescription * []) {
|
|
&vmstate_gicv3_cpu_virt,
|
|
&vmstate_gicv3_cpu_sre_el1,
|
|
NULL
|
|
}
|
|
};
|
|
|
|
static int gicv3_pre_load(void *opaque)
|
|
{
|
|
GICv3State *cs = opaque;
|
|
|
|
/*
|
|
* The gicd_no_migration_shift_bug flag is used for migration compatibility
|
|
* for old version QEMU which may have the GICD bmp shift bug under KVM mode.
|
|
* Strictly, what we want to know is whether the migration source is using
|
|
* KVM. Since we don't have any way to determine that, we look at whether the
|
|
* destination is using KVM; this is close enough because for the older QEMU
|
|
* versions with this bug KVM -> TCG migration didn't work anyway. If the
|
|
* source is a newer QEMU without this bug it will transmit the migration
|
|
* subsection which sets the flag to true; otherwise it will remain set to
|
|
* the value we select here.
|
|
*/
|
|
if (kvm_enabled()) {
|
|
cs->gicd_no_migration_shift_bug = false;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool needed_always(void *opaque)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
const VMStateDescription vmstate_gicv3_gicd_no_migration_shift_bug = {
|
|
.name = "arm_gicv3/gicd_no_migration_shift_bug",
|
|
.version_id = 1,
|
|
.minimum_version_id = 1,
|
|
.needed = needed_always,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_BOOL(gicd_no_migration_shift_bug, GICv3State),
|
|
VMSTATE_END_OF_LIST()
|
|
}
|
|
};
|
|
|
|
static const VMStateDescription vmstate_gicv3 = {
|
|
.name = "arm_gicv3",
|
|
.version_id = 1,
|
|
.minimum_version_id = 1,
|
|
.pre_load = gicv3_pre_load,
|
|
.pre_save = gicv3_pre_save,
|
|
.post_load = gicv3_post_load,
|
|
.priority = MIG_PRI_GICV3,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_UINT32(gicd_ctlr, GICv3State),
|
|
VMSTATE_UINT32_ARRAY(gicd_statusr, GICv3State, 2),
|
|
VMSTATE_UINT32_ARRAY(group, GICv3State, GICV3_BMP_SIZE),
|
|
VMSTATE_UINT32_ARRAY(grpmod, GICv3State, GICV3_BMP_SIZE),
|
|
VMSTATE_UINT32_ARRAY(enabled, GICv3State, GICV3_BMP_SIZE),
|
|
VMSTATE_UINT32_ARRAY(pending, GICv3State, GICV3_BMP_SIZE),
|
|
VMSTATE_UINT32_ARRAY(active, GICv3State, GICV3_BMP_SIZE),
|
|
VMSTATE_UINT32_ARRAY(level, GICv3State, GICV3_BMP_SIZE),
|
|
VMSTATE_UINT32_ARRAY(edge_trigger, GICv3State, GICV3_BMP_SIZE),
|
|
VMSTATE_UINT8_ARRAY(gicd_ipriority, GICv3State, GICV3_MAXIRQ),
|
|
VMSTATE_UINT64_ARRAY(gicd_irouter, GICv3State, GICV3_MAXIRQ),
|
|
VMSTATE_UINT32_ARRAY(gicd_nsacr, GICv3State,
|
|
DIV_ROUND_UP(GICV3_MAXIRQ, 16)),
|
|
VMSTATE_STRUCT_VARRAY_POINTER_UINT32(cpu, GICv3State, num_cpu,
|
|
vmstate_gicv3_cpu, GICv3CPUState),
|
|
VMSTATE_END_OF_LIST()
|
|
},
|
|
.subsections = (const VMStateDescription * []) {
|
|
&vmstate_gicv3_gicd_no_migration_shift_bug,
|
|
NULL
|
|
}
|
|
};
|
|
|
|
void gicv3_init_irqs_and_mmio(GICv3State *s, qemu_irq_handler handler,
|
|
const MemoryRegionOps *ops)
|
|
{
|
|
SysBusDevice *sbd = SYS_BUS_DEVICE(s);
|
|
int i;
|
|
int cpuidx;
|
|
|
|
/* For the GIC, also expose incoming GPIO lines for PPIs for each CPU.
|
|
* GPIO array layout is thus:
|
|
* [0..N-1] spi
|
|
* [N..N+31] PPIs for CPU 0
|
|
* [N+32..N+63] PPIs for CPU 1
|
|
* ...
|
|
*/
|
|
i = s->num_irq - GIC_INTERNAL + GIC_INTERNAL * s->num_cpu;
|
|
qdev_init_gpio_in(DEVICE(s), handler, i);
|
|
|
|
for (i = 0; i < s->num_cpu; i++) {
|
|
sysbus_init_irq(sbd, &s->cpu[i].parent_irq);
|
|
}
|
|
for (i = 0; i < s->num_cpu; i++) {
|
|
sysbus_init_irq(sbd, &s->cpu[i].parent_fiq);
|
|
}
|
|
for (i = 0; i < s->num_cpu; i++) {
|
|
sysbus_init_irq(sbd, &s->cpu[i].parent_virq);
|
|
}
|
|
for (i = 0; i < s->num_cpu; i++) {
|
|
sysbus_init_irq(sbd, &s->cpu[i].parent_vfiq);
|
|
}
|
|
|
|
memory_region_init_io(&s->iomem_dist, OBJECT(s), ops, s,
|
|
"gicv3_dist", 0x10000);
|
|
sysbus_init_mmio(sbd, &s->iomem_dist);
|
|
|
|
s->redist_regions = g_new0(GICv3RedistRegion, s->nb_redist_regions);
|
|
cpuidx = 0;
|
|
for (i = 0; i < s->nb_redist_regions; i++) {
|
|
char *name = g_strdup_printf("gicv3_redist_region[%d]", i);
|
|
GICv3RedistRegion *region = &s->redist_regions[i];
|
|
|
|
region->gic = s;
|
|
region->cpuidx = cpuidx;
|
|
cpuidx += s->redist_region_count[i];
|
|
|
|
memory_region_init_io(®ion->iomem, OBJECT(s),
|
|
ops ? &ops[1] : NULL, region, name,
|
|
s->redist_region_count[i] * GICV3_REDIST_SIZE);
|
|
sysbus_init_mmio(sbd, ®ion->iomem);
|
|
g_free(name);
|
|
}
|
|
}
|
|
|
|
static void arm_gicv3_common_realize(DeviceState *dev, Error **errp)
|
|
{
|
|
GICv3State *s = ARM_GICV3_COMMON(dev);
|
|
int i, rdist_capacity, cpuidx;
|
|
|
|
/* revision property is actually reserved and currently used only in order
|
|
* to keep the interface compatible with GICv2 code, avoiding extra
|
|
* conditions. However, in future it could be used, for example, if we
|
|
* implement GICv4.
|
|
*/
|
|
if (s->revision != 3) {
|
|
error_setg(errp, "unsupported GIC revision %d", s->revision);
|
|
return;
|
|
}
|
|
|
|
if (s->num_irq > GICV3_MAXIRQ) {
|
|
error_setg(errp,
|
|
"requested %u interrupt lines exceeds GIC maximum %d",
|
|
s->num_irq, GICV3_MAXIRQ);
|
|
return;
|
|
}
|
|
if (s->num_irq < GIC_INTERNAL) {
|
|
error_setg(errp,
|
|
"requested %u interrupt lines is below GIC minimum %d",
|
|
s->num_irq, GIC_INTERNAL);
|
|
return;
|
|
}
|
|
|
|
/* ITLinesNumber is represented as (N / 32) - 1, so this is an
|
|
* implementation imposed restriction, not an architectural one,
|
|
* so we don't have to deal with bitfields where only some of the
|
|
* bits in a 32-bit word should be valid.
|
|
*/
|
|
if (s->num_irq % 32) {
|
|
error_setg(errp,
|
|
"%d interrupt lines unsupported: not divisible by 32",
|
|
s->num_irq);
|
|
return;
|
|
}
|
|
|
|
if (s->lpi_enable && !s->dma) {
|
|
error_setg(errp, "Redist-ITS: Guest 'sysmem' reference link not set");
|
|
return;
|
|
}
|
|
|
|
rdist_capacity = 0;
|
|
for (i = 0; i < s->nb_redist_regions; i++) {
|
|
rdist_capacity += s->redist_region_count[i];
|
|
}
|
|
if (rdist_capacity < s->num_cpu) {
|
|
error_setg(errp, "Capacity of the redist regions(%d) "
|
|
"is less than number of vcpus(%d)",
|
|
rdist_capacity, s->num_cpu);
|
|
return;
|
|
}
|
|
|
|
if (s->lpi_enable) {
|
|
address_space_init(&s->dma_as, s->dma,
|
|
"gicv3-its-sysmem");
|
|
}
|
|
|
|
s->cpu = g_new0(GICv3CPUState, s->num_cpu);
|
|
|
|
for (i = 0; i < s->num_cpu; i++) {
|
|
CPUState *cpu = qemu_get_cpu(i);
|
|
uint64_t cpu_affid;
|
|
|
|
s->cpu[i].cpu = cpu;
|
|
s->cpu[i].gic = s;
|
|
/* Store GICv3CPUState in CPUARMState gicv3state pointer */
|
|
gicv3_set_gicv3state(cpu, &s->cpu[i]);
|
|
|
|
/* Pre-construct the GICR_TYPER:
|
|
* For our implementation:
|
|
* Top 32 bits are the affinity value of the associated CPU
|
|
* CommonLPIAff == 01 (redistributors with same Aff3 share LPI table)
|
|
* Processor_Number == CPU index starting from 0
|
|
* DPGS == 0 (GICR_CTLR.DPG* not supported)
|
|
* Last == 1 if this is the last redistributor in a series of
|
|
* contiguous redistributor pages
|
|
* DirectLPI == 0 (direct injection of LPIs not supported)
|
|
* VLPIS == 0 (virtual LPIs not supported)
|
|
* PLPIS == 0 (physical LPIs not supported)
|
|
*/
|
|
cpu_affid = object_property_get_uint(OBJECT(cpu), "mp-affinity", NULL);
|
|
|
|
/* The CPU mp-affinity property is in MPIDR register format; squash
|
|
* the affinity bytes into 32 bits as the GICR_TYPER has them.
|
|
*/
|
|
cpu_affid = ((cpu_affid & 0xFF00000000ULL) >> 8) |
|
|
(cpu_affid & 0xFFFFFF);
|
|
s->cpu[i].gicr_typer = (cpu_affid << 32) |
|
|
(1 << 24) |
|
|
(i << 8);
|
|
|
|
if (s->lpi_enable) {
|
|
s->cpu[i].gicr_typer |= GICR_TYPER_PLPIS;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now go through and set GICR_TYPER.Last for the final
|
|
* redistributor in each region.
|
|
*/
|
|
cpuidx = 0;
|
|
for (i = 0; i < s->nb_redist_regions; i++) {
|
|
cpuidx += s->redist_region_count[i];
|
|
s->cpu[cpuidx - 1].gicr_typer |= GICR_TYPER_LAST;
|
|
}
|
|
}
|
|
|
|
static void arm_gicv3_finalize(Object *obj)
|
|
{
|
|
GICv3State *s = ARM_GICV3_COMMON(obj);
|
|
|
|
g_free(s->redist_region_count);
|
|
}
|
|
|
|
static void arm_gicv3_common_reset(DeviceState *dev)
|
|
{
|
|
GICv3State *s = ARM_GICV3_COMMON(dev);
|
|
int i;
|
|
|
|
for (i = 0; i < s->num_cpu; i++) {
|
|
GICv3CPUState *cs = &s->cpu[i];
|
|
|
|
cs->level = 0;
|
|
cs->gicr_ctlr = 0;
|
|
if (s->lpi_enable) {
|
|
/* Our implementation supports clearing GICR_CTLR.EnableLPIs */
|
|
cs->gicr_ctlr |= GICR_CTLR_CES;
|
|
}
|
|
cs->gicr_statusr[GICV3_S] = 0;
|
|
cs->gicr_statusr[GICV3_NS] = 0;
|
|
cs->gicr_waker = GICR_WAKER_ProcessorSleep | GICR_WAKER_ChildrenAsleep;
|
|
cs->gicr_propbaser = 0;
|
|
cs->gicr_pendbaser = 0;
|
|
/* If we're resetting a TZ-aware GIC as if secure firmware
|
|
* had set it up ready to start a kernel in non-secure, we
|
|
* need to set interrupts to group 1 so the kernel can use them.
|
|
* Otherwise they reset to group 0 like the hardware.
|
|
*/
|
|
if (s->irq_reset_nonsecure) {
|
|
cs->gicr_igroupr0 = 0xffffffff;
|
|
} else {
|
|
cs->gicr_igroupr0 = 0;
|
|
}
|
|
|
|
cs->gicr_ienabler0 = 0;
|
|
cs->gicr_ipendr0 = 0;
|
|
cs->gicr_iactiver0 = 0;
|
|
cs->edge_trigger = 0xffff;
|
|
cs->gicr_igrpmodr0 = 0;
|
|
cs->gicr_nsacr = 0;
|
|
memset(cs->gicr_ipriorityr, 0, sizeof(cs->gicr_ipriorityr));
|
|
|
|
cs->hppi.prio = 0xff;
|
|
cs->hpplpi.prio = 0xff;
|
|
|
|
/* State in the CPU interface must *not* be reset here, because it
|
|
* is part of the CPU's reset domain, not the GIC device's.
|
|
*/
|
|
}
|
|
|
|
/* For our implementation affinity routing is always enabled */
|
|
if (s->security_extn) {
|
|
s->gicd_ctlr = GICD_CTLR_ARE_S | GICD_CTLR_ARE_NS;
|
|
} else {
|
|
s->gicd_ctlr = GICD_CTLR_DS | GICD_CTLR_ARE;
|
|
}
|
|
|
|
s->gicd_statusr[GICV3_S] = 0;
|
|
s->gicd_statusr[GICV3_NS] = 0;
|
|
|
|
memset(s->group, 0, sizeof(s->group));
|
|
memset(s->grpmod, 0, sizeof(s->grpmod));
|
|
memset(s->enabled, 0, sizeof(s->enabled));
|
|
memset(s->pending, 0, sizeof(s->pending));
|
|
memset(s->active, 0, sizeof(s->active));
|
|
memset(s->level, 0, sizeof(s->level));
|
|
memset(s->edge_trigger, 0, sizeof(s->edge_trigger));
|
|
memset(s->gicd_ipriority, 0, sizeof(s->gicd_ipriority));
|
|
memset(s->gicd_irouter, 0, sizeof(s->gicd_irouter));
|
|
memset(s->gicd_nsacr, 0, sizeof(s->gicd_nsacr));
|
|
/* GICD_IROUTER are UNKNOWN at reset so in theory the guest must
|
|
* write these to get sane behaviour and we need not populate the
|
|
* pointer cache here; however having the cache be different for
|
|
* "happened to be 0 from reset" and "guest wrote 0" would be
|
|
* too confusing.
|
|
*/
|
|
gicv3_cache_all_target_cpustates(s);
|
|
|
|
if (s->irq_reset_nonsecure) {
|
|
/* If we're resetting a TZ-aware GIC as if secure firmware
|
|
* had set it up ready to start a kernel in non-secure, we
|
|
* need to set interrupts to group 1 so the kernel can use them.
|
|
* Otherwise they reset to group 0 like the hardware.
|
|
*/
|
|
for (i = GIC_INTERNAL; i < s->num_irq; i++) {
|
|
gicv3_gicd_group_set(s, i);
|
|
}
|
|
}
|
|
s->gicd_no_migration_shift_bug = true;
|
|
}
|
|
|
|
static void arm_gic_common_linux_init(ARMLinuxBootIf *obj,
|
|
bool secure_boot)
|
|
{
|
|
GICv3State *s = ARM_GICV3_COMMON(obj);
|
|
|
|
if (s->security_extn && !secure_boot) {
|
|
/* We're directly booting a kernel into NonSecure. If this GIC
|
|
* implements the security extensions then we must configure it
|
|
* to have all the interrupts be NonSecure (this is a job that
|
|
* is done by the Secure boot firmware in real hardware, and in
|
|
* this mode QEMU is acting as a minimalist firmware-and-bootloader
|
|
* equivalent).
|
|
*/
|
|
s->irq_reset_nonsecure = true;
|
|
}
|
|
}
|
|
|
|
static Property arm_gicv3_common_properties[] = {
|
|
DEFINE_PROP_UINT32("num-cpu", GICv3State, num_cpu, 1),
|
|
DEFINE_PROP_UINT32("num-irq", GICv3State, num_irq, 32),
|
|
DEFINE_PROP_UINT32("revision", GICv3State, revision, 3),
|
|
DEFINE_PROP_BOOL("has-lpi", GICv3State, lpi_enable, 0),
|
|
DEFINE_PROP_BOOL("has-security-extensions", GICv3State, security_extn, 0),
|
|
DEFINE_PROP_ARRAY("redist-region-count", GICv3State, nb_redist_regions,
|
|
redist_region_count, qdev_prop_uint32, uint32_t),
|
|
DEFINE_PROP_LINK("sysmem", GICv3State, dma, TYPE_MEMORY_REGION,
|
|
MemoryRegion *),
|
|
DEFINE_PROP_END_OF_LIST(),
|
|
};
|
|
|
|
static void arm_gicv3_common_class_init(ObjectClass *klass, void *data)
|
|
{
|
|
DeviceClass *dc = DEVICE_CLASS(klass);
|
|
ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_CLASS(klass);
|
|
|
|
dc->reset = arm_gicv3_common_reset;
|
|
dc->realize = arm_gicv3_common_realize;
|
|
device_class_set_props(dc, arm_gicv3_common_properties);
|
|
dc->vmsd = &vmstate_gicv3;
|
|
albifc->arm_linux_init = arm_gic_common_linux_init;
|
|
}
|
|
|
|
static const TypeInfo arm_gicv3_common_type = {
|
|
.name = TYPE_ARM_GICV3_COMMON,
|
|
.parent = TYPE_SYS_BUS_DEVICE,
|
|
.instance_size = sizeof(GICv3State),
|
|
.class_size = sizeof(ARMGICv3CommonClass),
|
|
.class_init = arm_gicv3_common_class_init,
|
|
.instance_finalize = arm_gicv3_finalize,
|
|
.abstract = true,
|
|
.interfaces = (InterfaceInfo []) {
|
|
{ TYPE_ARM_LINUX_BOOT_IF },
|
|
{ },
|
|
},
|
|
};
|
|
|
|
static void register_types(void)
|
|
{
|
|
type_register_static(&arm_gicv3_common_type);
|
|
}
|
|
|
|
type_init(register_types)
|