mirror of
https://github.com/qemu/qemu.git
synced 2025-01-26 23:43:24 +08:00
75750e4d43
The Arm IoTKit includes a system control element which provides a block of read-only ID registers and a block of read-write control registers. Implement a minimal version of this. Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20180820141116.9118-9-peter.maydell@linaro.org
262 lines
7.4 KiB
C
262 lines
7.4 KiB
C
/*
|
|
* ARM IoTKit system control element
|
|
*
|
|
* Copyright (c) 2018 Linaro Limited
|
|
* Written by Peter Maydell
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 or
|
|
* (at your option) any later version.
|
|
*/
|
|
|
|
/*
|
|
* This is a model of the "system control element" which is part of the
|
|
* Arm IoTKit and documented in
|
|
* http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ecm0601256/index.html
|
|
* Specifically, it implements the "system control register" blocks.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu/log.h"
|
|
#include "trace.h"
|
|
#include "qapi/error.h"
|
|
#include "sysemu/sysemu.h"
|
|
#include "hw/sysbus.h"
|
|
#include "hw/registerfields.h"
|
|
#include "hw/misc/iotkit-sysctl.h"
|
|
|
|
REG32(SECDBGSTAT, 0x0)
|
|
REG32(SECDBGSET, 0x4)
|
|
REG32(SECDBGCLR, 0x8)
|
|
REG32(RESET_SYNDROME, 0x100)
|
|
REG32(RESET_MASK, 0x104)
|
|
REG32(SWRESET, 0x108)
|
|
FIELD(SWRESET, SWRESETREQ, 9, 1)
|
|
REG32(GRETREG, 0x10c)
|
|
REG32(INITSVRTOR0, 0x110)
|
|
REG32(CPUWAIT, 0x118)
|
|
REG32(BUSWAIT, 0x11c)
|
|
REG32(WICCTRL, 0x120)
|
|
REG32(PID4, 0xfd0)
|
|
REG32(PID5, 0xfd4)
|
|
REG32(PID6, 0xfd8)
|
|
REG32(PID7, 0xfdc)
|
|
REG32(PID0, 0xfe0)
|
|
REG32(PID1, 0xfe4)
|
|
REG32(PID2, 0xfe8)
|
|
REG32(PID3, 0xfec)
|
|
REG32(CID0, 0xff0)
|
|
REG32(CID1, 0xff4)
|
|
REG32(CID2, 0xff8)
|
|
REG32(CID3, 0xffc)
|
|
|
|
/* PID/CID values */
|
|
static const int sysctl_id[] = {
|
|
0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */
|
|
0x54, 0xb8, 0x0b, 0x00, /* PID0..PID3 */
|
|
0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */
|
|
};
|
|
|
|
static uint64_t iotkit_sysctl_read(void *opaque, hwaddr offset,
|
|
unsigned size)
|
|
{
|
|
IoTKitSysCtl *s = IOTKIT_SYSCTL(opaque);
|
|
uint64_t r;
|
|
|
|
switch (offset) {
|
|
case A_SECDBGSTAT:
|
|
r = s->secure_debug;
|
|
break;
|
|
case A_RESET_SYNDROME:
|
|
r = s->reset_syndrome;
|
|
break;
|
|
case A_RESET_MASK:
|
|
r = s->reset_mask;
|
|
break;
|
|
case A_GRETREG:
|
|
r = s->gretreg;
|
|
break;
|
|
case A_INITSVRTOR0:
|
|
r = s->initsvrtor0;
|
|
break;
|
|
case A_CPUWAIT:
|
|
r = s->cpuwait;
|
|
break;
|
|
case A_BUSWAIT:
|
|
/* In IoTKit BUSWAIT is reserved, R/O, zero */
|
|
r = 0;
|
|
break;
|
|
case A_WICCTRL:
|
|
r = s->wicctrl;
|
|
break;
|
|
case A_PID4 ... A_CID3:
|
|
r = sysctl_id[(offset - A_PID4) / 4];
|
|
break;
|
|
case A_SECDBGSET:
|
|
case A_SECDBGCLR:
|
|
case A_SWRESET:
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"IoTKit SysCtl read: read of WO offset %x\n",
|
|
(int)offset);
|
|
r = 0;
|
|
break;
|
|
default:
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"IoTKit SysCtl read: bad offset %x\n", (int)offset);
|
|
r = 0;
|
|
break;
|
|
}
|
|
trace_iotkit_sysctl_read(offset, r, size);
|
|
return r;
|
|
}
|
|
|
|
static void iotkit_sysctl_write(void *opaque, hwaddr offset,
|
|
uint64_t value, unsigned size)
|
|
{
|
|
IoTKitSysCtl *s = IOTKIT_SYSCTL(opaque);
|
|
|
|
trace_iotkit_sysctl_write(offset, value, size);
|
|
|
|
/*
|
|
* Most of the state here has to do with control of reset and
|
|
* similar kinds of power up -- for instance the guest can ask
|
|
* what the reason for the last reset was, or forbid reset for
|
|
* some causes (like the non-secure watchdog). Most of this is
|
|
* not relevant to QEMU, which doesn't really model anything other
|
|
* than a full power-on reset.
|
|
* We just model the registers as reads-as-written.
|
|
*/
|
|
|
|
switch (offset) {
|
|
case A_RESET_SYNDROME:
|
|
qemu_log_mask(LOG_UNIMP,
|
|
"IoTKit SysCtl RESET_SYNDROME unimplemented\n");
|
|
s->reset_syndrome = value;
|
|
break;
|
|
case A_RESET_MASK:
|
|
qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl RESET_MASK unimplemented\n");
|
|
s->reset_mask = value;
|
|
break;
|
|
case A_GRETREG:
|
|
/*
|
|
* General retention register, which is only reset by a power-on
|
|
* reset. Technically this implementation is complete, since
|
|
* QEMU only supports power-on resets...
|
|
*/
|
|
s->gretreg = value;
|
|
break;
|
|
case A_INITSVRTOR0:
|
|
qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl INITSVRTOR0 unimplemented\n");
|
|
s->initsvrtor0 = value;
|
|
break;
|
|
case A_CPUWAIT:
|
|
qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl CPUWAIT unimplemented\n");
|
|
s->cpuwait = value;
|
|
break;
|
|
case A_WICCTRL:
|
|
qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl WICCTRL unimplemented\n");
|
|
s->wicctrl = value;
|
|
break;
|
|
case A_SECDBGSET:
|
|
/* write-1-to-set */
|
|
qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl SECDBGSET unimplemented\n");
|
|
s->secure_debug |= value;
|
|
break;
|
|
case A_SECDBGCLR:
|
|
/* write-1-to-clear */
|
|
s->secure_debug &= ~value;
|
|
break;
|
|
case A_SWRESET:
|
|
/* One w/o bit to request a reset; all other bits reserved */
|
|
if (value & R_SWRESET_SWRESETREQ_MASK) {
|
|
qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
|
|
}
|
|
break;
|
|
case A_BUSWAIT: /* In IoTKit BUSWAIT is reserved, R/O, zero */
|
|
case A_SECDBGSTAT:
|
|
case A_PID4 ... A_CID3:
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"IoTKit SysCtl write: write of RO offset %x\n",
|
|
(int)offset);
|
|
break;
|
|
default:
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"IoTKit SysCtl write: bad offset %x\n", (int)offset);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static const MemoryRegionOps iotkit_sysctl_ops = {
|
|
.read = iotkit_sysctl_read,
|
|
.write = iotkit_sysctl_write,
|
|
.endianness = DEVICE_LITTLE_ENDIAN,
|
|
/* byte/halfword accesses are just zero-padded on reads and writes */
|
|
.impl.min_access_size = 4,
|
|
.impl.max_access_size = 4,
|
|
.valid.min_access_size = 1,
|
|
.valid.max_access_size = 4,
|
|
};
|
|
|
|
static void iotkit_sysctl_reset(DeviceState *dev)
|
|
{
|
|
IoTKitSysCtl *s = IOTKIT_SYSCTL(dev);
|
|
|
|
trace_iotkit_sysctl_reset();
|
|
s->secure_debug = 0;
|
|
s->reset_syndrome = 1;
|
|
s->reset_mask = 0;
|
|
s->gretreg = 0;
|
|
s->initsvrtor0 = 0x10000000;
|
|
s->cpuwait = 0;
|
|
s->wicctrl = 0;
|
|
}
|
|
|
|
static void iotkit_sysctl_init(Object *obj)
|
|
{
|
|
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
|
|
IoTKitSysCtl *s = IOTKIT_SYSCTL(obj);
|
|
|
|
memory_region_init_io(&s->iomem, obj, &iotkit_sysctl_ops,
|
|
s, "iotkit-sysctl", 0x1000);
|
|
sysbus_init_mmio(sbd, &s->iomem);
|
|
}
|
|
|
|
static const VMStateDescription iotkit_sysctl_vmstate = {
|
|
.name = "iotkit-sysctl",
|
|
.version_id = 1,
|
|
.minimum_version_id = 1,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_UINT32(secure_debug, IoTKitSysCtl),
|
|
VMSTATE_UINT32(reset_syndrome, IoTKitSysCtl),
|
|
VMSTATE_UINT32(reset_mask, IoTKitSysCtl),
|
|
VMSTATE_UINT32(gretreg, IoTKitSysCtl),
|
|
VMSTATE_UINT32(initsvrtor0, IoTKitSysCtl),
|
|
VMSTATE_UINT32(cpuwait, IoTKitSysCtl),
|
|
VMSTATE_UINT32(wicctrl, IoTKitSysCtl),
|
|
VMSTATE_END_OF_LIST()
|
|
}
|
|
};
|
|
|
|
static void iotkit_sysctl_class_init(ObjectClass *klass, void *data)
|
|
{
|
|
DeviceClass *dc = DEVICE_CLASS(klass);
|
|
|
|
dc->vmsd = &iotkit_sysctl_vmstate;
|
|
dc->reset = iotkit_sysctl_reset;
|
|
}
|
|
|
|
static const TypeInfo iotkit_sysctl_info = {
|
|
.name = TYPE_IOTKIT_SYSCTL,
|
|
.parent = TYPE_SYS_BUS_DEVICE,
|
|
.instance_size = sizeof(IoTKitSysCtl),
|
|
.instance_init = iotkit_sysctl_init,
|
|
.class_init = iotkit_sysctl_class_init,
|
|
};
|
|
|
|
static void iotkit_sysctl_register_types(void)
|
|
{
|
|
type_register_static(&iotkit_sysctl_info);
|
|
}
|
|
|
|
type_init(iotkit_sysctl_register_types);
|