mirror of
https://github.com/qemu/qemu.git
synced 2024-12-16 07:53:36 +08:00
915e1d52e2
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org> Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
4324 lines
136 KiB
C++
4324 lines
136 KiB
C++
/*
|
|
* Tiny Code Generator for QEMU
|
|
*
|
|
* Copyright (c) 2008 Fabrice Bellard
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include "../tcg-ldst.c.inc"
|
|
#include "../tcg-pool.c.inc"
|
|
|
|
#ifdef CONFIG_DEBUG_TCG
|
|
static const char * const tcg_target_reg_names[TCG_TARGET_NB_REGS] = {
|
|
#if TCG_TARGET_REG_BITS == 64
|
|
"%rax", "%rcx", "%rdx", "%rbx", "%rsp", "%rbp", "%rsi", "%rdi",
|
|
#else
|
|
"%eax", "%ecx", "%edx", "%ebx", "%esp", "%ebp", "%esi", "%edi",
|
|
#endif
|
|
"%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15",
|
|
"%xmm0", "%xmm1", "%xmm2", "%xmm3", "%xmm4", "%xmm5", "%xmm6", "%xmm7",
|
|
#if TCG_TARGET_REG_BITS == 64
|
|
"%xmm8", "%xmm9", "%xmm10", "%xmm11",
|
|
"%xmm12", "%xmm13", "%xmm14", "%xmm15",
|
|
#endif
|
|
};
|
|
#endif
|
|
|
|
static const int tcg_target_reg_alloc_order[] = {
|
|
#if TCG_TARGET_REG_BITS == 64
|
|
TCG_REG_RBP,
|
|
TCG_REG_RBX,
|
|
TCG_REG_R12,
|
|
TCG_REG_R13,
|
|
TCG_REG_R14,
|
|
TCG_REG_R15,
|
|
TCG_REG_R10,
|
|
TCG_REG_R11,
|
|
TCG_REG_R9,
|
|
TCG_REG_R8,
|
|
TCG_REG_RCX,
|
|
TCG_REG_RDX,
|
|
TCG_REG_RSI,
|
|
TCG_REG_RDI,
|
|
TCG_REG_RAX,
|
|
#else
|
|
TCG_REG_EBX,
|
|
TCG_REG_ESI,
|
|
TCG_REG_EDI,
|
|
TCG_REG_EBP,
|
|
TCG_REG_ECX,
|
|
TCG_REG_EDX,
|
|
TCG_REG_EAX,
|
|
#endif
|
|
TCG_REG_XMM0,
|
|
TCG_REG_XMM1,
|
|
TCG_REG_XMM2,
|
|
TCG_REG_XMM3,
|
|
TCG_REG_XMM4,
|
|
TCG_REG_XMM5,
|
|
#ifndef _WIN64
|
|
/* The Win64 ABI has xmm6-xmm15 as caller-saves, and we do not save
|
|
any of them. Therefore only allow xmm0-xmm5 to be allocated. */
|
|
TCG_REG_XMM6,
|
|
TCG_REG_XMM7,
|
|
#if TCG_TARGET_REG_BITS == 64
|
|
TCG_REG_XMM8,
|
|
TCG_REG_XMM9,
|
|
TCG_REG_XMM10,
|
|
TCG_REG_XMM11,
|
|
TCG_REG_XMM12,
|
|
TCG_REG_XMM13,
|
|
TCG_REG_XMM14,
|
|
TCG_REG_XMM15,
|
|
#endif
|
|
#endif
|
|
};
|
|
|
|
#define TCG_TMP_VEC TCG_REG_XMM5
|
|
|
|
static const int tcg_target_call_iarg_regs[] = {
|
|
#if TCG_TARGET_REG_BITS == 64
|
|
#if defined(_WIN64)
|
|
TCG_REG_RCX,
|
|
TCG_REG_RDX,
|
|
#else
|
|
TCG_REG_RDI,
|
|
TCG_REG_RSI,
|
|
TCG_REG_RDX,
|
|
TCG_REG_RCX,
|
|
#endif
|
|
TCG_REG_R8,
|
|
TCG_REG_R9,
|
|
#else
|
|
/* 32 bit mode uses stack based calling convention (GCC default). */
|
|
#endif
|
|
};
|
|
|
|
static TCGReg tcg_target_call_oarg_reg(TCGCallReturnKind kind, int slot)
|
|
{
|
|
switch (kind) {
|
|
case TCG_CALL_RET_NORMAL:
|
|
tcg_debug_assert(slot >= 0 && slot <= 1);
|
|
return slot ? TCG_REG_EDX : TCG_REG_EAX;
|
|
#ifdef _WIN64
|
|
case TCG_CALL_RET_BY_VEC:
|
|
tcg_debug_assert(slot == 0);
|
|
return TCG_REG_XMM0;
|
|
#endif
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
/* Constants we accept. */
|
|
#define TCG_CT_CONST_S32 0x100
|
|
#define TCG_CT_CONST_U32 0x200
|
|
#define TCG_CT_CONST_I32 0x400
|
|
#define TCG_CT_CONST_WSZ 0x800
|
|
|
|
/* Registers used with L constraint, which are the first argument
|
|
registers on x86_64, and two random call clobbered registers on
|
|
i386. */
|
|
#if TCG_TARGET_REG_BITS == 64
|
|
# define TCG_REG_L0 tcg_target_call_iarg_regs[0]
|
|
# define TCG_REG_L1 tcg_target_call_iarg_regs[1]
|
|
#else
|
|
# define TCG_REG_L0 TCG_REG_EAX
|
|
# define TCG_REG_L1 TCG_REG_EDX
|
|
#endif
|
|
|
|
#if TCG_TARGET_REG_BITS == 64
|
|
# define ALL_GENERAL_REGS 0x0000ffffu
|
|
# define ALL_VECTOR_REGS 0xffff0000u
|
|
# define ALL_BYTEL_REGS ALL_GENERAL_REGS
|
|
#else
|
|
# define ALL_GENERAL_REGS 0x000000ffu
|
|
# define ALL_VECTOR_REGS 0x00ff0000u
|
|
# define ALL_BYTEL_REGS 0x0000000fu
|
|
#endif
|
|
#define SOFTMMU_RESERVE_REGS \
|
|
(tcg_use_softmmu ? (1 << TCG_REG_L0) | (1 << TCG_REG_L1) : 0)
|
|
|
|
/* For 64-bit, we always know that CMOV is available. */
|
|
#if TCG_TARGET_REG_BITS == 64
|
|
# define have_cmov true
|
|
#else
|
|
# define have_cmov (cpuinfo & CPUINFO_CMOV)
|
|
#endif
|
|
#define have_bmi2 (cpuinfo & CPUINFO_BMI2)
|
|
#define have_lzcnt (cpuinfo & CPUINFO_LZCNT)
|
|
|
|
static const tcg_insn_unit *tb_ret_addr;
|
|
|
|
static bool patch_reloc(tcg_insn_unit *code_ptr, int type,
|
|
intptr_t value, intptr_t addend)
|
|
{
|
|
value += addend;
|
|
switch(type) {
|
|
case R_386_PC32:
|
|
value -= (uintptr_t)tcg_splitwx_to_rx(code_ptr);
|
|
if (value != (int32_t)value) {
|
|
return false;
|
|
}
|
|
/* FALLTHRU */
|
|
case R_386_32:
|
|
tcg_patch32(code_ptr, value);
|
|
break;
|
|
case R_386_PC8:
|
|
value -= (uintptr_t)tcg_splitwx_to_rx(code_ptr);
|
|
if (value != (int8_t)value) {
|
|
return false;
|
|
}
|
|
tcg_patch8(code_ptr, value);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* test if a constant matches the constraint */
|
|
static bool tcg_target_const_match(int64_t val, TCGType type, int ct, int vece)
|
|
{
|
|
if (ct & TCG_CT_CONST) {
|
|
return 1;
|
|
}
|
|
if (type == TCG_TYPE_I32) {
|
|
if (ct & (TCG_CT_CONST_S32 | TCG_CT_CONST_U32 | TCG_CT_CONST_I32)) {
|
|
return 1;
|
|
}
|
|
} else {
|
|
if ((ct & TCG_CT_CONST_S32) && val == (int32_t)val) {
|
|
return 1;
|
|
}
|
|
if ((ct & TCG_CT_CONST_U32) && val == (uint32_t)val) {
|
|
return 1;
|
|
}
|
|
if ((ct & TCG_CT_CONST_I32) && ~val == (int32_t)~val) {
|
|
return 1;
|
|
}
|
|
}
|
|
if ((ct & TCG_CT_CONST_WSZ) && val == (type == TCG_TYPE_I32 ? 32 : 64)) {
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
# define LOWREGMASK(x) ((x) & 7)
|
|
|
|
#define P_EXT 0x100 /* 0x0f opcode prefix */
|
|
#define P_EXT38 0x200 /* 0x0f 0x38 opcode prefix */
|
|
#define P_DATA16 0x400 /* 0x66 opcode prefix */
|
|
#define P_VEXW 0x1000 /* Set VEX.W = 1 */
|
|
#if TCG_TARGET_REG_BITS == 64
|
|
# define P_REXW P_VEXW /* Set REX.W = 1; match VEXW */
|
|
# define P_REXB_R 0x2000 /* REG field as byte register */
|
|
# define P_REXB_RM 0x4000 /* R/M field as byte register */
|
|
# define P_GS 0x8000 /* gs segment override */
|
|
#else
|
|
# define P_REXW 0
|
|
# define P_REXB_R 0
|
|
# define P_REXB_RM 0
|
|
# define P_GS 0
|
|
#endif
|
|
#define P_EXT3A 0x10000 /* 0x0f 0x3a opcode prefix */
|
|
#define P_SIMDF3 0x20000 /* 0xf3 opcode prefix */
|
|
#define P_SIMDF2 0x40000 /* 0xf2 opcode prefix */
|
|
#define P_VEXL 0x80000 /* Set VEX.L = 1 */
|
|
#define P_EVEX 0x100000 /* Requires EVEX encoding */
|
|
|
|
#define OPC_ARITH_EvIz (0x81)
|
|
#define OPC_ARITH_EvIb (0x83)
|
|
#define OPC_ARITH_GvEv (0x03) /* ... plus (ARITH_FOO << 3) */
|
|
#define OPC_ANDN (0xf2 | P_EXT38)
|
|
#define OPC_ADD_GvEv (OPC_ARITH_GvEv | (ARITH_ADD << 3))
|
|
#define OPC_AND_GvEv (OPC_ARITH_GvEv | (ARITH_AND << 3))
|
|
#define OPC_BLENDPS (0x0c | P_EXT3A | P_DATA16)
|
|
#define OPC_BSF (0xbc | P_EXT)
|
|
#define OPC_BSR (0xbd | P_EXT)
|
|
#define OPC_BSWAP (0xc8 | P_EXT)
|
|
#define OPC_CALL_Jz (0xe8)
|
|
#define OPC_CMOVCC (0x40 | P_EXT) /* ... plus condition code */
|
|
#define OPC_CMP_GvEv (OPC_ARITH_GvEv | (ARITH_CMP << 3))
|
|
#define OPC_DEC_r32 (0x48)
|
|
#define OPC_IMUL_GvEv (0xaf | P_EXT)
|
|
#define OPC_IMUL_GvEvIb (0x6b)
|
|
#define OPC_IMUL_GvEvIz (0x69)
|
|
#define OPC_INC_r32 (0x40)
|
|
#define OPC_JCC_long (0x80 | P_EXT) /* ... plus condition code */
|
|
#define OPC_JCC_short (0x70) /* ... plus condition code */
|
|
#define OPC_JMP_long (0xe9)
|
|
#define OPC_JMP_short (0xeb)
|
|
#define OPC_LEA (0x8d)
|
|
#define OPC_LZCNT (0xbd | P_EXT | P_SIMDF3)
|
|
#define OPC_MOVB_EvGv (0x88) /* stores, more or less */
|
|
#define OPC_MOVL_EvGv (0x89) /* stores, more or less */
|
|
#define OPC_MOVL_GvEv (0x8b) /* loads, more or less */
|
|
#define OPC_MOVB_EvIz (0xc6)
|
|
#define OPC_MOVL_EvIz (0xc7)
|
|
#define OPC_MOVB_Ib (0xb0)
|
|
#define OPC_MOVL_Iv (0xb8)
|
|
#define OPC_MOVBE_GyMy (0xf0 | P_EXT38)
|
|
#define OPC_MOVBE_MyGy (0xf1 | P_EXT38)
|
|
#define OPC_MOVD_VyEy (0x6e | P_EXT | P_DATA16)
|
|
#define OPC_MOVD_EyVy (0x7e | P_EXT | P_DATA16)
|
|
#define OPC_MOVDDUP (0x12 | P_EXT | P_SIMDF2)
|
|
#define OPC_MOVDQA_VxWx (0x6f | P_EXT | P_DATA16)
|
|
#define OPC_MOVDQA_WxVx (0x7f | P_EXT | P_DATA16)
|
|
#define OPC_MOVDQU_VxWx (0x6f | P_EXT | P_SIMDF3)
|
|
#define OPC_MOVDQU_WxVx (0x7f | P_EXT | P_SIMDF3)
|
|
#define OPC_MOVQ_VqWq (0x7e | P_EXT | P_SIMDF3)
|
|
#define OPC_MOVQ_WqVq (0xd6 | P_EXT | P_DATA16)
|
|
#define OPC_MOVSBL (0xbe | P_EXT)
|
|
#define OPC_MOVSWL (0xbf | P_EXT)
|
|
#define OPC_MOVSLQ (0x63 | P_REXW)
|
|
#define OPC_MOVZBL (0xb6 | P_EXT)
|
|
#define OPC_MOVZWL (0xb7 | P_EXT)
|
|
#define OPC_PABSB (0x1c | P_EXT38 | P_DATA16)
|
|
#define OPC_PABSW (0x1d | P_EXT38 | P_DATA16)
|
|
#define OPC_PABSD (0x1e | P_EXT38 | P_DATA16)
|
|
#define OPC_VPABSQ (0x1f | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
|
|
#define OPC_PACKSSDW (0x6b | P_EXT | P_DATA16)
|
|
#define OPC_PACKSSWB (0x63 | P_EXT | P_DATA16)
|
|
#define OPC_PACKUSDW (0x2b | P_EXT38 | P_DATA16)
|
|
#define OPC_PACKUSWB (0x67 | P_EXT | P_DATA16)
|
|
#define OPC_PADDB (0xfc | P_EXT | P_DATA16)
|
|
#define OPC_PADDW (0xfd | P_EXT | P_DATA16)
|
|
#define OPC_PADDD (0xfe | P_EXT | P_DATA16)
|
|
#define OPC_PADDQ (0xd4 | P_EXT | P_DATA16)
|
|
#define OPC_PADDSB (0xec | P_EXT | P_DATA16)
|
|
#define OPC_PADDSW (0xed | P_EXT | P_DATA16)
|
|
#define OPC_PADDUB (0xdc | P_EXT | P_DATA16)
|
|
#define OPC_PADDUW (0xdd | P_EXT | P_DATA16)
|
|
#define OPC_PAND (0xdb | P_EXT | P_DATA16)
|
|
#define OPC_PANDN (0xdf | P_EXT | P_DATA16)
|
|
#define OPC_PBLENDW (0x0e | P_EXT3A | P_DATA16)
|
|
#define OPC_PCMPEQB (0x74 | P_EXT | P_DATA16)
|
|
#define OPC_PCMPEQW (0x75 | P_EXT | P_DATA16)
|
|
#define OPC_PCMPEQD (0x76 | P_EXT | P_DATA16)
|
|
#define OPC_PCMPEQQ (0x29 | P_EXT38 | P_DATA16)
|
|
#define OPC_PCMPGTB (0x64 | P_EXT | P_DATA16)
|
|
#define OPC_PCMPGTW (0x65 | P_EXT | P_DATA16)
|
|
#define OPC_PCMPGTD (0x66 | P_EXT | P_DATA16)
|
|
#define OPC_PCMPGTQ (0x37 | P_EXT38 | P_DATA16)
|
|
#define OPC_PEXTRD (0x16 | P_EXT3A | P_DATA16)
|
|
#define OPC_PINSRD (0x22 | P_EXT3A | P_DATA16)
|
|
#define OPC_PMAXSB (0x3c | P_EXT38 | P_DATA16)
|
|
#define OPC_PMAXSW (0xee | P_EXT | P_DATA16)
|
|
#define OPC_PMAXSD (0x3d | P_EXT38 | P_DATA16)
|
|
#define OPC_VPMAXSQ (0x3d | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
|
|
#define OPC_PMAXUB (0xde | P_EXT | P_DATA16)
|
|
#define OPC_PMAXUW (0x3e | P_EXT38 | P_DATA16)
|
|
#define OPC_PMAXUD (0x3f | P_EXT38 | P_DATA16)
|
|
#define OPC_VPMAXUQ (0x3f | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
|
|
#define OPC_PMINSB (0x38 | P_EXT38 | P_DATA16)
|
|
#define OPC_PMINSW (0xea | P_EXT | P_DATA16)
|
|
#define OPC_PMINSD (0x39 | P_EXT38 | P_DATA16)
|
|
#define OPC_VPMINSQ (0x39 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
|
|
#define OPC_PMINUB (0xda | P_EXT | P_DATA16)
|
|
#define OPC_PMINUW (0x3a | P_EXT38 | P_DATA16)
|
|
#define OPC_PMINUD (0x3b | P_EXT38 | P_DATA16)
|
|
#define OPC_VPMINUQ (0x3b | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
|
|
#define OPC_PMOVSXBW (0x20 | P_EXT38 | P_DATA16)
|
|
#define OPC_PMOVSXWD (0x23 | P_EXT38 | P_DATA16)
|
|
#define OPC_PMOVSXDQ (0x25 | P_EXT38 | P_DATA16)
|
|
#define OPC_PMOVZXBW (0x30 | P_EXT38 | P_DATA16)
|
|
#define OPC_PMOVZXWD (0x33 | P_EXT38 | P_DATA16)
|
|
#define OPC_PMOVZXDQ (0x35 | P_EXT38 | P_DATA16)
|
|
#define OPC_PMULLW (0xd5 | P_EXT | P_DATA16)
|
|
#define OPC_PMULLD (0x40 | P_EXT38 | P_DATA16)
|
|
#define OPC_VPMULLQ (0x40 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
|
|
#define OPC_POR (0xeb | P_EXT | P_DATA16)
|
|
#define OPC_PSHUFB (0x00 | P_EXT38 | P_DATA16)
|
|
#define OPC_PSHUFD (0x70 | P_EXT | P_DATA16)
|
|
#define OPC_PSHUFLW (0x70 | P_EXT | P_SIMDF2)
|
|
#define OPC_PSHUFHW (0x70 | P_EXT | P_SIMDF3)
|
|
#define OPC_PSHIFTW_Ib (0x71 | P_EXT | P_DATA16) /* /2 /6 /4 */
|
|
#define OPC_PSHIFTD_Ib (0x72 | P_EXT | P_DATA16) /* /1 /2 /6 /4 */
|
|
#define OPC_PSHIFTQ_Ib (0x73 | P_EXT | P_DATA16) /* /2 /6 /4 */
|
|
#define OPC_PSLLW (0xf1 | P_EXT | P_DATA16)
|
|
#define OPC_PSLLD (0xf2 | P_EXT | P_DATA16)
|
|
#define OPC_PSLLQ (0xf3 | P_EXT | P_DATA16)
|
|
#define OPC_PSRAW (0xe1 | P_EXT | P_DATA16)
|
|
#define OPC_PSRAD (0xe2 | P_EXT | P_DATA16)
|
|
#define OPC_VPSRAQ (0xe2 | P_EXT | P_DATA16 | P_VEXW | P_EVEX)
|
|
#define OPC_PSRLW (0xd1 | P_EXT | P_DATA16)
|
|
#define OPC_PSRLD (0xd2 | P_EXT | P_DATA16)
|
|
#define OPC_PSRLQ (0xd3 | P_EXT | P_DATA16)
|
|
#define OPC_PSUBB (0xf8 | P_EXT | P_DATA16)
|
|
#define OPC_PSUBW (0xf9 | P_EXT | P_DATA16)
|
|
#define OPC_PSUBD (0xfa | P_EXT | P_DATA16)
|
|
#define OPC_PSUBQ (0xfb | P_EXT | P_DATA16)
|
|
#define OPC_PSUBSB (0xe8 | P_EXT | P_DATA16)
|
|
#define OPC_PSUBSW (0xe9 | P_EXT | P_DATA16)
|
|
#define OPC_PSUBUB (0xd8 | P_EXT | P_DATA16)
|
|
#define OPC_PSUBUW (0xd9 | P_EXT | P_DATA16)
|
|
#define OPC_PUNPCKLBW (0x60 | P_EXT | P_DATA16)
|
|
#define OPC_PUNPCKLWD (0x61 | P_EXT | P_DATA16)
|
|
#define OPC_PUNPCKLDQ (0x62 | P_EXT | P_DATA16)
|
|
#define OPC_PUNPCKLQDQ (0x6c | P_EXT | P_DATA16)
|
|
#define OPC_PUNPCKHBW (0x68 | P_EXT | P_DATA16)
|
|
#define OPC_PUNPCKHWD (0x69 | P_EXT | P_DATA16)
|
|
#define OPC_PUNPCKHDQ (0x6a | P_EXT | P_DATA16)
|
|
#define OPC_PUNPCKHQDQ (0x6d | P_EXT | P_DATA16)
|
|
#define OPC_PXOR (0xef | P_EXT | P_DATA16)
|
|
#define OPC_POP_r32 (0x58)
|
|
#define OPC_POPCNT (0xb8 | P_EXT | P_SIMDF3)
|
|
#define OPC_PUSH_r32 (0x50)
|
|
#define OPC_PUSH_Iv (0x68)
|
|
#define OPC_PUSH_Ib (0x6a)
|
|
#define OPC_RET (0xc3)
|
|
#define OPC_SETCC (0x90 | P_EXT | P_REXB_RM) /* ... plus cc */
|
|
#define OPC_SHIFT_1 (0xd1)
|
|
#define OPC_SHIFT_Ib (0xc1)
|
|
#define OPC_SHIFT_cl (0xd3)
|
|
#define OPC_SARX (0xf7 | P_EXT38 | P_SIMDF3)
|
|
#define OPC_SHUFPS (0xc6 | P_EXT)
|
|
#define OPC_SHLX (0xf7 | P_EXT38 | P_DATA16)
|
|
#define OPC_SHRX (0xf7 | P_EXT38 | P_SIMDF2)
|
|
#define OPC_SHRD_Ib (0xac | P_EXT)
|
|
#define OPC_TESTL (0x85)
|
|
#define OPC_TZCNT (0xbc | P_EXT | P_SIMDF3)
|
|
#define OPC_UD2 (0x0b | P_EXT)
|
|
#define OPC_VPBLENDD (0x02 | P_EXT3A | P_DATA16)
|
|
#define OPC_VPBLENDVB (0x4c | P_EXT3A | P_DATA16)
|
|
#define OPC_VPINSRB (0x20 | P_EXT3A | P_DATA16)
|
|
#define OPC_VPINSRW (0xc4 | P_EXT | P_DATA16)
|
|
#define OPC_VBROADCASTSS (0x18 | P_EXT38 | P_DATA16)
|
|
#define OPC_VBROADCASTSD (0x19 | P_EXT38 | P_DATA16)
|
|
#define OPC_VPBROADCASTB (0x78 | P_EXT38 | P_DATA16)
|
|
#define OPC_VPBROADCASTW (0x79 | P_EXT38 | P_DATA16)
|
|
#define OPC_VPBROADCASTD (0x58 | P_EXT38 | P_DATA16)
|
|
#define OPC_VPBROADCASTQ (0x59 | P_EXT38 | P_DATA16)
|
|
#define OPC_VPERMQ (0x00 | P_EXT3A | P_DATA16 | P_VEXW)
|
|
#define OPC_VPERM2I128 (0x46 | P_EXT3A | P_DATA16 | P_VEXL)
|
|
#define OPC_VPROLVD (0x15 | P_EXT38 | P_DATA16 | P_EVEX)
|
|
#define OPC_VPROLVQ (0x15 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
|
|
#define OPC_VPRORVD (0x14 | P_EXT38 | P_DATA16 | P_EVEX)
|
|
#define OPC_VPRORVQ (0x14 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
|
|
#define OPC_VPSHLDW (0x70 | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
|
|
#define OPC_VPSHLDD (0x71 | P_EXT3A | P_DATA16 | P_EVEX)
|
|
#define OPC_VPSHLDQ (0x71 | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
|
|
#define OPC_VPSHLDVW (0x70 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
|
|
#define OPC_VPSHLDVD (0x71 | P_EXT38 | P_DATA16 | P_EVEX)
|
|
#define OPC_VPSHLDVQ (0x71 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
|
|
#define OPC_VPSHRDVW (0x72 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
|
|
#define OPC_VPSHRDVD (0x73 | P_EXT38 | P_DATA16 | P_EVEX)
|
|
#define OPC_VPSHRDVQ (0x73 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
|
|
#define OPC_VPSLLVW (0x12 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
|
|
#define OPC_VPSLLVD (0x47 | P_EXT38 | P_DATA16)
|
|
#define OPC_VPSLLVQ (0x47 | P_EXT38 | P_DATA16 | P_VEXW)
|
|
#define OPC_VPSRAVW (0x11 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
|
|
#define OPC_VPSRAVD (0x46 | P_EXT38 | P_DATA16)
|
|
#define OPC_VPSRAVQ (0x46 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
|
|
#define OPC_VPSRLVW (0x10 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
|
|
#define OPC_VPSRLVD (0x45 | P_EXT38 | P_DATA16)
|
|
#define OPC_VPSRLVQ (0x45 | P_EXT38 | P_DATA16 | P_VEXW)
|
|
#define OPC_VPTERNLOGQ (0x25 | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
|
|
#define OPC_VZEROUPPER (0x77 | P_EXT)
|
|
#define OPC_XCHG_ax_r32 (0x90)
|
|
#define OPC_XCHG_EvGv (0x87)
|
|
|
|
#define OPC_GRP3_Eb (0xf6)
|
|
#define OPC_GRP3_Ev (0xf7)
|
|
#define OPC_GRP5 (0xff)
|
|
#define OPC_GRP14 (0x73 | P_EXT | P_DATA16)
|
|
|
|
/* Group 1 opcode extensions for 0x80-0x83.
|
|
These are also used as modifiers for OPC_ARITH. */
|
|
#define ARITH_ADD 0
|
|
#define ARITH_OR 1
|
|
#define ARITH_ADC 2
|
|
#define ARITH_SBB 3
|
|
#define ARITH_AND 4
|
|
#define ARITH_SUB 5
|
|
#define ARITH_XOR 6
|
|
#define ARITH_CMP 7
|
|
|
|
/* Group 2 opcode extensions for 0xc0, 0xc1, 0xd0-0xd3. */
|
|
#define SHIFT_ROL 0
|
|
#define SHIFT_ROR 1
|
|
#define SHIFT_SHL 4
|
|
#define SHIFT_SHR 5
|
|
#define SHIFT_SAR 7
|
|
|
|
/* Group 3 opcode extensions for 0xf6, 0xf7. To be used with OPC_GRP3. */
|
|
#define EXT3_TESTi 0
|
|
#define EXT3_NOT 2
|
|
#define EXT3_NEG 3
|
|
#define EXT3_MUL 4
|
|
#define EXT3_IMUL 5
|
|
#define EXT3_DIV 6
|
|
#define EXT3_IDIV 7
|
|
|
|
/* Group 5 opcode extensions for 0xff. To be used with OPC_GRP5. */
|
|
#define EXT5_INC_Ev 0
|
|
#define EXT5_DEC_Ev 1
|
|
#define EXT5_CALLN_Ev 2
|
|
#define EXT5_JMPN_Ev 4
|
|
|
|
/* Condition codes to be added to OPC_JCC_{long,short}. */
|
|
#define JCC_JMP (-1)
|
|
#define JCC_JO 0x0
|
|
#define JCC_JNO 0x1
|
|
#define JCC_JB 0x2
|
|
#define JCC_JAE 0x3
|
|
#define JCC_JE 0x4
|
|
#define JCC_JNE 0x5
|
|
#define JCC_JBE 0x6
|
|
#define JCC_JA 0x7
|
|
#define JCC_JS 0x8
|
|
#define JCC_JNS 0x9
|
|
#define JCC_JP 0xa
|
|
#define JCC_JNP 0xb
|
|
#define JCC_JL 0xc
|
|
#define JCC_JGE 0xd
|
|
#define JCC_JLE 0xe
|
|
#define JCC_JG 0xf
|
|
|
|
static const uint8_t tcg_cond_to_jcc[] = {
|
|
[TCG_COND_EQ] = JCC_JE,
|
|
[TCG_COND_NE] = JCC_JNE,
|
|
[TCG_COND_LT] = JCC_JL,
|
|
[TCG_COND_GE] = JCC_JGE,
|
|
[TCG_COND_LE] = JCC_JLE,
|
|
[TCG_COND_GT] = JCC_JG,
|
|
[TCG_COND_LTU] = JCC_JB,
|
|
[TCG_COND_GEU] = JCC_JAE,
|
|
[TCG_COND_LEU] = JCC_JBE,
|
|
[TCG_COND_GTU] = JCC_JA,
|
|
};
|
|
|
|
#if TCG_TARGET_REG_BITS == 64
|
|
static void tcg_out_opc(TCGContext *s, int opc, int r, int rm, int x)
|
|
{
|
|
int rex;
|
|
|
|
if (opc & P_GS) {
|
|
tcg_out8(s, 0x65);
|
|
}
|
|
if (opc & P_DATA16) {
|
|
/* We should never be asking for both 16 and 64-bit operation. */
|
|
tcg_debug_assert((opc & P_REXW) == 0);
|
|
tcg_out8(s, 0x66);
|
|
}
|
|
if (opc & P_SIMDF3) {
|
|
tcg_out8(s, 0xf3);
|
|
} else if (opc & P_SIMDF2) {
|
|
tcg_out8(s, 0xf2);
|
|
}
|
|
|
|
rex = 0;
|
|
rex |= (opc & P_REXW) ? 0x8 : 0x0; /* REX.W */
|
|
rex |= (r & 8) >> 1; /* REX.R */
|
|
rex |= (x & 8) >> 2; /* REX.X */
|
|
rex |= (rm & 8) >> 3; /* REX.B */
|
|
|
|
/* P_REXB_{R,RM} indicates that the given register is the low byte.
|
|
For %[abcd]l we need no REX prefix, but for %{si,di,bp,sp}l we do,
|
|
as otherwise the encoding indicates %[abcd]h. Note that the values
|
|
that are ORed in merely indicate that the REX byte must be present;
|
|
those bits get discarded in output. */
|
|
rex |= opc & (r >= 4 ? P_REXB_R : 0);
|
|
rex |= opc & (rm >= 4 ? P_REXB_RM : 0);
|
|
|
|
if (rex) {
|
|
tcg_out8(s, (uint8_t)(rex | 0x40));
|
|
}
|
|
|
|
if (opc & (P_EXT | P_EXT38 | P_EXT3A)) {
|
|
tcg_out8(s, 0x0f);
|
|
if (opc & P_EXT38) {
|
|
tcg_out8(s, 0x38);
|
|
} else if (opc & P_EXT3A) {
|
|
tcg_out8(s, 0x3a);
|
|
}
|
|
}
|
|
|
|
tcg_out8(s, opc);
|
|
}
|
|
#else
|
|
static void tcg_out_opc(TCGContext *s, int opc)
|
|
{
|
|
if (opc & P_DATA16) {
|
|
tcg_out8(s, 0x66);
|
|
}
|
|
if (opc & P_SIMDF3) {
|
|
tcg_out8(s, 0xf3);
|
|
} else if (opc & P_SIMDF2) {
|
|
tcg_out8(s, 0xf2);
|
|
}
|
|
if (opc & (P_EXT | P_EXT38 | P_EXT3A)) {
|
|
tcg_out8(s, 0x0f);
|
|
if (opc & P_EXT38) {
|
|
tcg_out8(s, 0x38);
|
|
} else if (opc & P_EXT3A) {
|
|
tcg_out8(s, 0x3a);
|
|
}
|
|
}
|
|
tcg_out8(s, opc);
|
|
}
|
|
/* Discard the register arguments to tcg_out_opc early, so as not to penalize
|
|
the 32-bit compilation paths. This method works with all versions of gcc,
|
|
whereas relying on optimization may not be able to exclude them. */
|
|
#define tcg_out_opc(s, opc, r, rm, x) (tcg_out_opc)(s, opc)
|
|
#endif
|
|
|
|
static void tcg_out_modrm(TCGContext *s, int opc, int r, int rm)
|
|
{
|
|
tcg_out_opc(s, opc, r, rm, 0);
|
|
tcg_out8(s, 0xc0 | (LOWREGMASK(r) << 3) | LOWREGMASK(rm));
|
|
}
|
|
|
|
static void tcg_out_vex_opc(TCGContext *s, int opc, int r, int v,
|
|
int rm, int index)
|
|
{
|
|
int tmp;
|
|
|
|
if (opc & P_GS) {
|
|
tcg_out8(s, 0x65);
|
|
}
|
|
/* Use the two byte form if possible, which cannot encode
|
|
VEX.W, VEX.B, VEX.X, or an m-mmmm field other than P_EXT. */
|
|
if ((opc & (P_EXT | P_EXT38 | P_EXT3A | P_VEXW)) == P_EXT
|
|
&& ((rm | index) & 8) == 0) {
|
|
/* Two byte VEX prefix. */
|
|
tcg_out8(s, 0xc5);
|
|
|
|
tmp = (r & 8 ? 0 : 0x80); /* VEX.R */
|
|
} else {
|
|
/* Three byte VEX prefix. */
|
|
tcg_out8(s, 0xc4);
|
|
|
|
/* VEX.m-mmmm */
|
|
if (opc & P_EXT3A) {
|
|
tmp = 3;
|
|
} else if (opc & P_EXT38) {
|
|
tmp = 2;
|
|
} else if (opc & P_EXT) {
|
|
tmp = 1;
|
|
} else {
|
|
g_assert_not_reached();
|
|
}
|
|
tmp |= (r & 8 ? 0 : 0x80); /* VEX.R */
|
|
tmp |= (index & 8 ? 0 : 0x40); /* VEX.X */
|
|
tmp |= (rm & 8 ? 0 : 0x20); /* VEX.B */
|
|
tcg_out8(s, tmp);
|
|
|
|
tmp = (opc & P_VEXW ? 0x80 : 0); /* VEX.W */
|
|
}
|
|
|
|
tmp |= (opc & P_VEXL ? 0x04 : 0); /* VEX.L */
|
|
/* VEX.pp */
|
|
if (opc & P_DATA16) {
|
|
tmp |= 1; /* 0x66 */
|
|
} else if (opc & P_SIMDF3) {
|
|
tmp |= 2; /* 0xf3 */
|
|
} else if (opc & P_SIMDF2) {
|
|
tmp |= 3; /* 0xf2 */
|
|
}
|
|
tmp |= (~v & 15) << 3; /* VEX.vvvv */
|
|
tcg_out8(s, tmp);
|
|
tcg_out8(s, opc);
|
|
}
|
|
|
|
static void tcg_out_evex_opc(TCGContext *s, int opc, int r, int v,
|
|
int rm, int index)
|
|
{
|
|
/* The entire 4-byte evex prefix; with R' and V' set. */
|
|
uint32_t p = 0x08041062;
|
|
int mm, pp;
|
|
|
|
tcg_debug_assert(have_avx512vl);
|
|
|
|
/* EVEX.mm */
|
|
if (opc & P_EXT3A) {
|
|
mm = 3;
|
|
} else if (opc & P_EXT38) {
|
|
mm = 2;
|
|
} else if (opc & P_EXT) {
|
|
mm = 1;
|
|
} else {
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
/* EVEX.pp */
|
|
if (opc & P_DATA16) {
|
|
pp = 1; /* 0x66 */
|
|
} else if (opc & P_SIMDF3) {
|
|
pp = 2; /* 0xf3 */
|
|
} else if (opc & P_SIMDF2) {
|
|
pp = 3; /* 0xf2 */
|
|
} else {
|
|
pp = 0;
|
|
}
|
|
|
|
p = deposit32(p, 8, 2, mm);
|
|
p = deposit32(p, 13, 1, (rm & 8) == 0); /* EVEX.RXB.B */
|
|
p = deposit32(p, 14, 1, (index & 8) == 0); /* EVEX.RXB.X */
|
|
p = deposit32(p, 15, 1, (r & 8) == 0); /* EVEX.RXB.R */
|
|
p = deposit32(p, 16, 2, pp);
|
|
p = deposit32(p, 19, 4, ~v);
|
|
p = deposit32(p, 23, 1, (opc & P_VEXW) != 0);
|
|
p = deposit32(p, 29, 2, (opc & P_VEXL) != 0);
|
|
|
|
tcg_out32(s, p);
|
|
tcg_out8(s, opc);
|
|
}
|
|
|
|
static void tcg_out_vex_modrm(TCGContext *s, int opc, int r, int v, int rm)
|
|
{
|
|
if (opc & P_EVEX) {
|
|
tcg_out_evex_opc(s, opc, r, v, rm, 0);
|
|
} else {
|
|
tcg_out_vex_opc(s, opc, r, v, rm, 0);
|
|
}
|
|
tcg_out8(s, 0xc0 | (LOWREGMASK(r) << 3) | LOWREGMASK(rm));
|
|
}
|
|
|
|
/* Output an opcode with a full "rm + (index<<shift) + offset" address mode.
|
|
We handle either RM and INDEX missing with a negative value. In 64-bit
|
|
mode for absolute addresses, ~RM is the size of the immediate operand
|
|
that will follow the instruction. */
|
|
|
|
static void tcg_out_sib_offset(TCGContext *s, int r, int rm, int index,
|
|
int shift, intptr_t offset)
|
|
{
|
|
int mod, len;
|
|
|
|
if (index < 0 && rm < 0) {
|
|
if (TCG_TARGET_REG_BITS == 64) {
|
|
/* Try for a rip-relative addressing mode. This has replaced
|
|
the 32-bit-mode absolute addressing encoding. */
|
|
intptr_t pc = (intptr_t)s->code_ptr + 5 + ~rm;
|
|
intptr_t disp = offset - pc;
|
|
if (disp == (int32_t)disp) {
|
|
tcg_out8(s, (LOWREGMASK(r) << 3) | 5);
|
|
tcg_out32(s, disp);
|
|
return;
|
|
}
|
|
|
|
/* Try for an absolute address encoding. This requires the
|
|
use of the MODRM+SIB encoding and is therefore larger than
|
|
rip-relative addressing. */
|
|
if (offset == (int32_t)offset) {
|
|
tcg_out8(s, (LOWREGMASK(r) << 3) | 4);
|
|
tcg_out8(s, (4 << 3) | 5);
|
|
tcg_out32(s, offset);
|
|
return;
|
|
}
|
|
|
|
/* ??? The memory isn't directly addressable. */
|
|
g_assert_not_reached();
|
|
} else {
|
|
/* Absolute address. */
|
|
tcg_out8(s, (r << 3) | 5);
|
|
tcg_out32(s, offset);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Find the length of the immediate addend. Note that the encoding
|
|
that would be used for (%ebp) indicates absolute addressing. */
|
|
if (rm < 0) {
|
|
mod = 0, len = 4, rm = 5;
|
|
} else if (offset == 0 && LOWREGMASK(rm) != TCG_REG_EBP) {
|
|
mod = 0, len = 0;
|
|
} else if (offset == (int8_t)offset) {
|
|
mod = 0x40, len = 1;
|
|
} else {
|
|
mod = 0x80, len = 4;
|
|
}
|
|
|
|
/* Use a single byte MODRM format if possible. Note that the encoding
|
|
that would be used for %esp is the escape to the two byte form. */
|
|
if (index < 0 && LOWREGMASK(rm) != TCG_REG_ESP) {
|
|
/* Single byte MODRM format. */
|
|
tcg_out8(s, mod | (LOWREGMASK(r) << 3) | LOWREGMASK(rm));
|
|
} else {
|
|
/* Two byte MODRM+SIB format. */
|
|
|
|
/* Note that the encoding that would place %esp into the index
|
|
field indicates no index register. In 64-bit mode, the REX.X
|
|
bit counts, so %r12 can be used as the index. */
|
|
if (index < 0) {
|
|
index = 4;
|
|
} else {
|
|
tcg_debug_assert(index != TCG_REG_ESP);
|
|
}
|
|
|
|
tcg_out8(s, mod | (LOWREGMASK(r) << 3) | 4);
|
|
tcg_out8(s, (shift << 6) | (LOWREGMASK(index) << 3) | LOWREGMASK(rm));
|
|
}
|
|
|
|
if (len == 1) {
|
|
tcg_out8(s, offset);
|
|
} else if (len == 4) {
|
|
tcg_out32(s, offset);
|
|
}
|
|
}
|
|
|
|
static void tcg_out_modrm_sib_offset(TCGContext *s, int opc, int r, int rm,
|
|
int index, int shift, intptr_t offset)
|
|
{
|
|
tcg_out_opc(s, opc, r, rm < 0 ? 0 : rm, index < 0 ? 0 : index);
|
|
tcg_out_sib_offset(s, r, rm, index, shift, offset);
|
|
}
|
|
|
|
static void tcg_out_vex_modrm_sib_offset(TCGContext *s, int opc, int r, int v,
|
|
int rm, int index, int shift,
|
|
intptr_t offset)
|
|
{
|
|
tcg_out_vex_opc(s, opc, r, v, rm < 0 ? 0 : rm, index < 0 ? 0 : index);
|
|
tcg_out_sib_offset(s, r, rm, index, shift, offset);
|
|
}
|
|
|
|
/* A simplification of the above with no index or shift. */
|
|
static inline void tcg_out_modrm_offset(TCGContext *s, int opc, int r,
|
|
int rm, intptr_t offset)
|
|
{
|
|
tcg_out_modrm_sib_offset(s, opc, r, rm, -1, 0, offset);
|
|
}
|
|
|
|
static inline void tcg_out_vex_modrm_offset(TCGContext *s, int opc, int r,
|
|
int v, int rm, intptr_t offset)
|
|
{
|
|
tcg_out_vex_modrm_sib_offset(s, opc, r, v, rm, -1, 0, offset);
|
|
}
|
|
|
|
/* Output an opcode with an expected reference to the constant pool. */
|
|
static inline void tcg_out_modrm_pool(TCGContext *s, int opc, int r)
|
|
{
|
|
tcg_out_opc(s, opc, r, 0, 0);
|
|
/* Absolute for 32-bit, pc-relative for 64-bit. */
|
|
tcg_out8(s, LOWREGMASK(r) << 3 | 5);
|
|
tcg_out32(s, 0);
|
|
}
|
|
|
|
/* Output an opcode with an expected reference to the constant pool. */
|
|
static inline void tcg_out_vex_modrm_pool(TCGContext *s, int opc, int r)
|
|
{
|
|
tcg_out_vex_opc(s, opc, r, 0, 0, 0);
|
|
/* Absolute for 32-bit, pc-relative for 64-bit. */
|
|
tcg_out8(s, LOWREGMASK(r) << 3 | 5);
|
|
tcg_out32(s, 0);
|
|
}
|
|
|
|
/* Generate dest op= src. Uses the same ARITH_* codes as tgen_arithi. */
|
|
static inline void tgen_arithr(TCGContext *s, int subop, int dest, int src)
|
|
{
|
|
/* Propagate an opcode prefix, such as P_REXW. */
|
|
int ext = subop & ~0x7;
|
|
subop &= 0x7;
|
|
|
|
tcg_out_modrm(s, OPC_ARITH_GvEv + (subop << 3) + ext, dest, src);
|
|
}
|
|
|
|
static bool tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg)
|
|
{
|
|
int rexw = 0;
|
|
|
|
if (arg == ret) {
|
|
return true;
|
|
}
|
|
switch (type) {
|
|
case TCG_TYPE_I64:
|
|
rexw = P_REXW;
|
|
/* fallthru */
|
|
case TCG_TYPE_I32:
|
|
if (ret < 16) {
|
|
if (arg < 16) {
|
|
tcg_out_modrm(s, OPC_MOVL_GvEv + rexw, ret, arg);
|
|
} else {
|
|
tcg_out_vex_modrm(s, OPC_MOVD_EyVy + rexw, arg, 0, ret);
|
|
}
|
|
} else {
|
|
if (arg < 16) {
|
|
tcg_out_vex_modrm(s, OPC_MOVD_VyEy + rexw, ret, 0, arg);
|
|
} else {
|
|
tcg_out_vex_modrm(s, OPC_MOVQ_VqWq, ret, 0, arg);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case TCG_TYPE_V64:
|
|
tcg_debug_assert(ret >= 16 && arg >= 16);
|
|
tcg_out_vex_modrm(s, OPC_MOVQ_VqWq, ret, 0, arg);
|
|
break;
|
|
case TCG_TYPE_V128:
|
|
tcg_debug_assert(ret >= 16 && arg >= 16);
|
|
tcg_out_vex_modrm(s, OPC_MOVDQA_VxWx, ret, 0, arg);
|
|
break;
|
|
case TCG_TYPE_V256:
|
|
tcg_debug_assert(ret >= 16 && arg >= 16);
|
|
tcg_out_vex_modrm(s, OPC_MOVDQA_VxWx | P_VEXL, ret, 0, arg);
|
|
break;
|
|
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static const int avx2_dup_insn[4] = {
|
|
OPC_VPBROADCASTB, OPC_VPBROADCASTW,
|
|
OPC_VPBROADCASTD, OPC_VPBROADCASTQ,
|
|
};
|
|
|
|
static bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece,
|
|
TCGReg r, TCGReg a)
|
|
{
|
|
if (have_avx2) {
|
|
int vex_l = (type == TCG_TYPE_V256 ? P_VEXL : 0);
|
|
tcg_out_vex_modrm(s, avx2_dup_insn[vece] + vex_l, r, 0, a);
|
|
} else {
|
|
switch (vece) {
|
|
case MO_8:
|
|
/* ??? With zero in a register, use PSHUFB. */
|
|
tcg_out_vex_modrm(s, OPC_PUNPCKLBW, r, a, a);
|
|
a = r;
|
|
/* FALLTHRU */
|
|
case MO_16:
|
|
tcg_out_vex_modrm(s, OPC_PUNPCKLWD, r, a, a);
|
|
a = r;
|
|
/* FALLTHRU */
|
|
case MO_32:
|
|
tcg_out_vex_modrm(s, OPC_PSHUFD, r, 0, a);
|
|
/* imm8 operand: all output lanes selected from input lane 0. */
|
|
tcg_out8(s, 0);
|
|
break;
|
|
case MO_64:
|
|
tcg_out_vex_modrm(s, OPC_PUNPCKLQDQ, r, a, a);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece,
|
|
TCGReg r, TCGReg base, intptr_t offset)
|
|
{
|
|
if (have_avx2) {
|
|
int vex_l = (type == TCG_TYPE_V256 ? P_VEXL : 0);
|
|
tcg_out_vex_modrm_offset(s, avx2_dup_insn[vece] + vex_l,
|
|
r, 0, base, offset);
|
|
} else {
|
|
switch (vece) {
|
|
case MO_64:
|
|
tcg_out_vex_modrm_offset(s, OPC_MOVDDUP, r, 0, base, offset);
|
|
break;
|
|
case MO_32:
|
|
tcg_out_vex_modrm_offset(s, OPC_VBROADCASTSS, r, 0, base, offset);
|
|
break;
|
|
case MO_16:
|
|
tcg_out_vex_modrm_offset(s, OPC_VPINSRW, r, r, base, offset);
|
|
tcg_out8(s, 0); /* imm8 */
|
|
tcg_out_dup_vec(s, type, vece, r, r);
|
|
break;
|
|
case MO_8:
|
|
tcg_out_vex_modrm_offset(s, OPC_VPINSRB, r, r, base, offset);
|
|
tcg_out8(s, 0); /* imm8 */
|
|
tcg_out_dup_vec(s, type, vece, r, r);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void tcg_out_dupi_vec(TCGContext *s, TCGType type, unsigned vece,
|
|
TCGReg ret, int64_t arg)
|
|
{
|
|
int vex_l = (type == TCG_TYPE_V256 ? P_VEXL : 0);
|
|
|
|
if (arg == 0) {
|
|
tcg_out_vex_modrm(s, OPC_PXOR, ret, ret, ret);
|
|
return;
|
|
}
|
|
if (arg == -1) {
|
|
tcg_out_vex_modrm(s, OPC_PCMPEQB + vex_l, ret, ret, ret);
|
|
return;
|
|
}
|
|
|
|
if (TCG_TARGET_REG_BITS == 32 && vece < MO_64) {
|
|
if (have_avx2) {
|
|
tcg_out_vex_modrm_pool(s, OPC_VPBROADCASTD + vex_l, ret);
|
|
} else {
|
|
tcg_out_vex_modrm_pool(s, OPC_VBROADCASTSS, ret);
|
|
}
|
|
new_pool_label(s, arg, R_386_32, s->code_ptr - 4, 0);
|
|
} else {
|
|
if (type == TCG_TYPE_V64) {
|
|
tcg_out_vex_modrm_pool(s, OPC_MOVQ_VqWq, ret);
|
|
} else if (have_avx2) {
|
|
tcg_out_vex_modrm_pool(s, OPC_VPBROADCASTQ + vex_l, ret);
|
|
} else {
|
|
tcg_out_vex_modrm_pool(s, OPC_MOVDDUP, ret);
|
|
}
|
|
if (TCG_TARGET_REG_BITS == 64) {
|
|
new_pool_label(s, arg, R_386_PC32, s->code_ptr - 4, -4);
|
|
} else {
|
|
new_pool_l2(s, R_386_32, s->code_ptr - 4, 0, arg, arg >> 32);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void tcg_out_movi_vec(TCGContext *s, TCGType type,
|
|
TCGReg ret, tcg_target_long arg)
|
|
{
|
|
if (arg == 0) {
|
|
tcg_out_vex_modrm(s, OPC_PXOR, ret, ret, ret);
|
|
return;
|
|
}
|
|
if (arg == -1) {
|
|
tcg_out_vex_modrm(s, OPC_PCMPEQB, ret, ret, ret);
|
|
return;
|
|
}
|
|
|
|
int rexw = (type == TCG_TYPE_I32 ? 0 : P_REXW);
|
|
tcg_out_vex_modrm_pool(s, OPC_MOVD_VyEy + rexw, ret);
|
|
if (TCG_TARGET_REG_BITS == 64) {
|
|
new_pool_label(s, arg, R_386_PC32, s->code_ptr - 4, -4);
|
|
} else {
|
|
new_pool_label(s, arg, R_386_32, s->code_ptr - 4, 0);
|
|
}
|
|
}
|
|
|
|
static void tcg_out_movi_int(TCGContext *s, TCGType type,
|
|
TCGReg ret, tcg_target_long arg)
|
|
{
|
|
tcg_target_long diff;
|
|
|
|
if (arg == 0) {
|
|
tgen_arithr(s, ARITH_XOR, ret, ret);
|
|
return;
|
|
}
|
|
if (arg == (uint32_t)arg || type == TCG_TYPE_I32) {
|
|
tcg_out_opc(s, OPC_MOVL_Iv + LOWREGMASK(ret), 0, ret, 0);
|
|
tcg_out32(s, arg);
|
|
return;
|
|
}
|
|
if (arg == (int32_t)arg) {
|
|
tcg_out_modrm(s, OPC_MOVL_EvIz + P_REXW, 0, ret);
|
|
tcg_out32(s, arg);
|
|
return;
|
|
}
|
|
|
|
/* Try a 7 byte pc-relative lea before the 10 byte movq. */
|
|
diff = tcg_pcrel_diff(s, (const void *)arg) - 7;
|
|
if (diff == (int32_t)diff) {
|
|
tcg_out_opc(s, OPC_LEA | P_REXW, ret, 0, 0);
|
|
tcg_out8(s, (LOWREGMASK(ret) << 3) | 5);
|
|
tcg_out32(s, diff);
|
|
return;
|
|
}
|
|
|
|
tcg_out_opc(s, OPC_MOVL_Iv + P_REXW + LOWREGMASK(ret), 0, ret, 0);
|
|
tcg_out64(s, arg);
|
|
}
|
|
|
|
static void tcg_out_movi(TCGContext *s, TCGType type,
|
|
TCGReg ret, tcg_target_long arg)
|
|
{
|
|
switch (type) {
|
|
case TCG_TYPE_I32:
|
|
#if TCG_TARGET_REG_BITS == 64
|
|
case TCG_TYPE_I64:
|
|
#endif
|
|
if (ret < 16) {
|
|
tcg_out_movi_int(s, type, ret, arg);
|
|
} else {
|
|
tcg_out_movi_vec(s, type, ret, arg);
|
|
}
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
static bool tcg_out_xchg(TCGContext *s, TCGType type, TCGReg r1, TCGReg r2)
|
|
{
|
|
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
|
|
tcg_out_modrm(s, OPC_XCHG_EvGv + rexw, r1, r2);
|
|
return true;
|
|
}
|
|
|
|
static void tcg_out_addi_ptr(TCGContext *s, TCGReg rd, TCGReg rs,
|
|
tcg_target_long imm)
|
|
{
|
|
/* This function is only used for passing structs by reference. */
|
|
tcg_debug_assert(imm == (int32_t)imm);
|
|
tcg_out_modrm_offset(s, OPC_LEA | P_REXW, rd, rs, imm);
|
|
}
|
|
|
|
static inline void tcg_out_pushi(TCGContext *s, tcg_target_long val)
|
|
{
|
|
if (val == (int8_t)val) {
|
|
tcg_out_opc(s, OPC_PUSH_Ib, 0, 0, 0);
|
|
tcg_out8(s, val);
|
|
} else if (val == (int32_t)val) {
|
|
tcg_out_opc(s, OPC_PUSH_Iv, 0, 0, 0);
|
|
tcg_out32(s, val);
|
|
} else {
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
static inline void tcg_out_mb(TCGContext *s, TCGArg a0)
|
|
{
|
|
/* Given the strength of x86 memory ordering, we only need care for
|
|
store-load ordering. Experimentally, "lock orl $0,0(%esp)" is
|
|
faster than "mfence", so don't bother with the sse insn. */
|
|
if (a0 & TCG_MO_ST_LD) {
|
|
tcg_out8(s, 0xf0);
|
|
tcg_out_modrm_offset(s, OPC_ARITH_EvIb, ARITH_OR, TCG_REG_ESP, 0);
|
|
tcg_out8(s, 0);
|
|
}
|
|
}
|
|
|
|
static inline void tcg_out_push(TCGContext *s, int reg)
|
|
{
|
|
tcg_out_opc(s, OPC_PUSH_r32 + LOWREGMASK(reg), 0, reg, 0);
|
|
}
|
|
|
|
static inline void tcg_out_pop(TCGContext *s, int reg)
|
|
{
|
|
tcg_out_opc(s, OPC_POP_r32 + LOWREGMASK(reg), 0, reg, 0);
|
|
}
|
|
|
|
static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret,
|
|
TCGReg arg1, intptr_t arg2)
|
|
{
|
|
switch (type) {
|
|
case TCG_TYPE_I32:
|
|
if (ret < 16) {
|
|
tcg_out_modrm_offset(s, OPC_MOVL_GvEv, ret, arg1, arg2);
|
|
} else {
|
|
tcg_out_vex_modrm_offset(s, OPC_MOVD_VyEy, ret, 0, arg1, arg2);
|
|
}
|
|
break;
|
|
case TCG_TYPE_I64:
|
|
if (ret < 16) {
|
|
tcg_out_modrm_offset(s, OPC_MOVL_GvEv | P_REXW, ret, arg1, arg2);
|
|
break;
|
|
}
|
|
/* FALLTHRU */
|
|
case TCG_TYPE_V64:
|
|
/* There is no instruction that can validate 8-byte alignment. */
|
|
tcg_debug_assert(ret >= 16);
|
|
tcg_out_vex_modrm_offset(s, OPC_MOVQ_VqWq, ret, 0, arg1, arg2);
|
|
break;
|
|
case TCG_TYPE_V128:
|
|
/*
|
|
* The gvec infrastructure is asserts that v128 vector loads
|
|
* and stores use a 16-byte aligned offset. Validate that the
|
|
* final pointer is aligned by using an insn that will SIGSEGV.
|
|
*/
|
|
tcg_debug_assert(ret >= 16);
|
|
tcg_out_vex_modrm_offset(s, OPC_MOVDQA_VxWx, ret, 0, arg1, arg2);
|
|
break;
|
|
case TCG_TYPE_V256:
|
|
/*
|
|
* The gvec infrastructure only requires 16-byte alignment,
|
|
* so here we must use an unaligned load.
|
|
*/
|
|
tcg_debug_assert(ret >= 16);
|
|
tcg_out_vex_modrm_offset(s, OPC_MOVDQU_VxWx | P_VEXL,
|
|
ret, 0, arg1, arg2);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
static void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg,
|
|
TCGReg arg1, intptr_t arg2)
|
|
{
|
|
switch (type) {
|
|
case TCG_TYPE_I32:
|
|
if (arg < 16) {
|
|
tcg_out_modrm_offset(s, OPC_MOVL_EvGv, arg, arg1, arg2);
|
|
} else {
|
|
tcg_out_vex_modrm_offset(s, OPC_MOVD_EyVy, arg, 0, arg1, arg2);
|
|
}
|
|
break;
|
|
case TCG_TYPE_I64:
|
|
if (arg < 16) {
|
|
tcg_out_modrm_offset(s, OPC_MOVL_EvGv | P_REXW, arg, arg1, arg2);
|
|
break;
|
|
}
|
|
/* FALLTHRU */
|
|
case TCG_TYPE_V64:
|
|
/* There is no instruction that can validate 8-byte alignment. */
|
|
tcg_debug_assert(arg >= 16);
|
|
tcg_out_vex_modrm_offset(s, OPC_MOVQ_WqVq, arg, 0, arg1, arg2);
|
|
break;
|
|
case TCG_TYPE_V128:
|
|
/*
|
|
* The gvec infrastructure is asserts that v128 vector loads
|
|
* and stores use a 16-byte aligned offset. Validate that the
|
|
* final pointer is aligned by using an insn that will SIGSEGV.
|
|
*
|
|
* This specific instance is also used by TCG_CALL_RET_BY_VEC,
|
|
* for _WIN64, which must have SSE2 but may not have AVX.
|
|
*/
|
|
tcg_debug_assert(arg >= 16);
|
|
if (have_avx1) {
|
|
tcg_out_vex_modrm_offset(s, OPC_MOVDQA_WxVx, arg, 0, arg1, arg2);
|
|
} else {
|
|
tcg_out_modrm_offset(s, OPC_MOVDQA_WxVx, arg, arg1, arg2);
|
|
}
|
|
break;
|
|
case TCG_TYPE_V256:
|
|
/*
|
|
* The gvec infrastructure only requires 16-byte alignment,
|
|
* so here we must use an unaligned store.
|
|
*/
|
|
tcg_debug_assert(arg >= 16);
|
|
tcg_out_vex_modrm_offset(s, OPC_MOVDQU_WxVx | P_VEXL,
|
|
arg, 0, arg1, arg2);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
static bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val,
|
|
TCGReg base, intptr_t ofs)
|
|
{
|
|
int rexw = 0;
|
|
if (TCG_TARGET_REG_BITS == 64 && type == TCG_TYPE_I64) {
|
|
if (val != (int32_t)val) {
|
|
return false;
|
|
}
|
|
rexw = P_REXW;
|
|
} else if (type != TCG_TYPE_I32) {
|
|
return false;
|
|
}
|
|
tcg_out_modrm_offset(s, OPC_MOVL_EvIz | rexw, 0, base, ofs);
|
|
tcg_out32(s, val);
|
|
return true;
|
|
}
|
|
|
|
static void tcg_out_shifti(TCGContext *s, int subopc, int reg, int count)
|
|
{
|
|
/* Propagate an opcode prefix, such as P_DATA16. */
|
|
int ext = subopc & ~0x7;
|
|
subopc &= 0x7;
|
|
|
|
if (count == 1) {
|
|
tcg_out_modrm(s, OPC_SHIFT_1 + ext, subopc, reg);
|
|
} else {
|
|
tcg_out_modrm(s, OPC_SHIFT_Ib + ext, subopc, reg);
|
|
tcg_out8(s, count);
|
|
}
|
|
}
|
|
|
|
static inline void tcg_out_bswap32(TCGContext *s, int reg)
|
|
{
|
|
tcg_out_opc(s, OPC_BSWAP + LOWREGMASK(reg), 0, reg, 0);
|
|
}
|
|
|
|
static inline void tcg_out_rolw_8(TCGContext *s, int reg)
|
|
{
|
|
tcg_out_shifti(s, SHIFT_ROL + P_DATA16, reg, 8);
|
|
}
|
|
|
|
static void tcg_out_ext8u(TCGContext *s, TCGReg dest, TCGReg src)
|
|
{
|
|
/* movzbl */
|
|
tcg_debug_assert(src < 4 || TCG_TARGET_REG_BITS == 64);
|
|
tcg_out_modrm(s, OPC_MOVZBL + P_REXB_RM, dest, src);
|
|
}
|
|
|
|
static void tcg_out_ext8s(TCGContext *s, TCGType type, TCGReg dest, TCGReg src)
|
|
{
|
|
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
|
|
/* movsbl */
|
|
tcg_debug_assert(src < 4 || TCG_TARGET_REG_BITS == 64);
|
|
tcg_out_modrm(s, OPC_MOVSBL + P_REXB_RM + rexw, dest, src);
|
|
}
|
|
|
|
static void tcg_out_ext16u(TCGContext *s, TCGReg dest, TCGReg src)
|
|
{
|
|
/* movzwl */
|
|
tcg_out_modrm(s, OPC_MOVZWL, dest, src);
|
|
}
|
|
|
|
static void tcg_out_ext16s(TCGContext *s, TCGType type, TCGReg dest, TCGReg src)
|
|
{
|
|
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
|
|
/* movsw[lq] */
|
|
tcg_out_modrm(s, OPC_MOVSWL + rexw, dest, src);
|
|
}
|
|
|
|
static void tcg_out_ext32u(TCGContext *s, TCGReg dest, TCGReg src)
|
|
{
|
|
/* 32-bit mov zero extends. */
|
|
tcg_out_modrm(s, OPC_MOVL_GvEv, dest, src);
|
|
}
|
|
|
|
static void tcg_out_ext32s(TCGContext *s, TCGReg dest, TCGReg src)
|
|
{
|
|
tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
|
|
tcg_out_modrm(s, OPC_MOVSLQ, dest, src);
|
|
}
|
|
|
|
static void tcg_out_exts_i32_i64(TCGContext *s, TCGReg dest, TCGReg src)
|
|
{
|
|
tcg_out_ext32s(s, dest, src);
|
|
}
|
|
|
|
static void tcg_out_extu_i32_i64(TCGContext *s, TCGReg dest, TCGReg src)
|
|
{
|
|
if (dest != src) {
|
|
tcg_out_ext32u(s, dest, src);
|
|
}
|
|
}
|
|
|
|
static void tcg_out_extrl_i64_i32(TCGContext *s, TCGReg dest, TCGReg src)
|
|
{
|
|
tcg_out_ext32u(s, dest, src);
|
|
}
|
|
|
|
static inline void tcg_out_bswap64(TCGContext *s, int reg)
|
|
{
|
|
tcg_out_opc(s, OPC_BSWAP + P_REXW + LOWREGMASK(reg), 0, reg, 0);
|
|
}
|
|
|
|
static void tgen_arithi(TCGContext *s, int c, int r0,
|
|
tcg_target_long val, int cf)
|
|
{
|
|
int rexw = 0;
|
|
|
|
if (TCG_TARGET_REG_BITS == 64) {
|
|
rexw = c & -8;
|
|
c &= 7;
|
|
}
|
|
|
|
/* ??? While INC is 2 bytes shorter than ADDL $1, they also induce
|
|
partial flags update stalls on Pentium4 and are not recommended
|
|
by current Intel optimization manuals. */
|
|
if (!cf && (c == ARITH_ADD || c == ARITH_SUB) && (val == 1 || val == -1)) {
|
|
int is_inc = (c == ARITH_ADD) ^ (val < 0);
|
|
if (TCG_TARGET_REG_BITS == 64) {
|
|
/* The single-byte increment encodings are re-tasked as the
|
|
REX prefixes. Use the MODRM encoding. */
|
|
tcg_out_modrm(s, OPC_GRP5 + rexw,
|
|
(is_inc ? EXT5_INC_Ev : EXT5_DEC_Ev), r0);
|
|
} else {
|
|
tcg_out8(s, (is_inc ? OPC_INC_r32 : OPC_DEC_r32) + r0);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (c == ARITH_AND) {
|
|
if (TCG_TARGET_REG_BITS == 64) {
|
|
if (val == 0xffffffffu) {
|
|
tcg_out_ext32u(s, r0, r0);
|
|
return;
|
|
}
|
|
if (val == (uint32_t)val) {
|
|
/* AND with no high bits set can use a 32-bit operation. */
|
|
rexw = 0;
|
|
}
|
|
}
|
|
if (val == 0xffu && (r0 < 4 || TCG_TARGET_REG_BITS == 64)) {
|
|
tcg_out_ext8u(s, r0, r0);
|
|
return;
|
|
}
|
|
if (val == 0xffffu) {
|
|
tcg_out_ext16u(s, r0, r0);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (val == (int8_t)val) {
|
|
tcg_out_modrm(s, OPC_ARITH_EvIb + rexw, c, r0);
|
|
tcg_out8(s, val);
|
|
return;
|
|
}
|
|
if (rexw == 0 || val == (int32_t)val) {
|
|
tcg_out_modrm(s, OPC_ARITH_EvIz + rexw, c, r0);
|
|
tcg_out32(s, val);
|
|
return;
|
|
}
|
|
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
static void tcg_out_addi(TCGContext *s, int reg, tcg_target_long val)
|
|
{
|
|
if (val != 0) {
|
|
tgen_arithi(s, ARITH_ADD + P_REXW, reg, val, 0);
|
|
}
|
|
}
|
|
|
|
/* Set SMALL to force a short forward branch. */
|
|
static void tcg_out_jxx(TCGContext *s, int opc, TCGLabel *l, bool small)
|
|
{
|
|
int32_t val, val1;
|
|
|
|
if (l->has_value) {
|
|
val = tcg_pcrel_diff(s, l->u.value_ptr);
|
|
val1 = val - 2;
|
|
if ((int8_t)val1 == val1) {
|
|
if (opc == -1) {
|
|
tcg_out8(s, OPC_JMP_short);
|
|
} else {
|
|
tcg_out8(s, OPC_JCC_short + opc);
|
|
}
|
|
tcg_out8(s, val1);
|
|
} else {
|
|
tcg_debug_assert(!small);
|
|
if (opc == -1) {
|
|
tcg_out8(s, OPC_JMP_long);
|
|
tcg_out32(s, val - 5);
|
|
} else {
|
|
tcg_out_opc(s, OPC_JCC_long + opc, 0, 0, 0);
|
|
tcg_out32(s, val - 6);
|
|
}
|
|
}
|
|
} else if (small) {
|
|
if (opc == -1) {
|
|
tcg_out8(s, OPC_JMP_short);
|
|
} else {
|
|
tcg_out8(s, OPC_JCC_short + opc);
|
|
}
|
|
tcg_out_reloc(s, s->code_ptr, R_386_PC8, l, -1);
|
|
s->code_ptr += 1;
|
|
} else {
|
|
if (opc == -1) {
|
|
tcg_out8(s, OPC_JMP_long);
|
|
} else {
|
|
tcg_out_opc(s, OPC_JCC_long + opc, 0, 0, 0);
|
|
}
|
|
tcg_out_reloc(s, s->code_ptr, R_386_PC32, l, -4);
|
|
s->code_ptr += 4;
|
|
}
|
|
}
|
|
|
|
static void tcg_out_cmp(TCGContext *s, TCGArg arg1, TCGArg arg2,
|
|
int const_arg2, int rexw)
|
|
{
|
|
if (const_arg2) {
|
|
if (arg2 == 0) {
|
|
/* test r, r */
|
|
tcg_out_modrm(s, OPC_TESTL + rexw, arg1, arg1);
|
|
} else {
|
|
tgen_arithi(s, ARITH_CMP + rexw, arg1, arg2, 0);
|
|
}
|
|
} else {
|
|
tgen_arithr(s, ARITH_CMP + rexw, arg1, arg2);
|
|
}
|
|
}
|
|
|
|
static void tcg_out_brcond(TCGContext *s, int rexw, TCGCond cond,
|
|
TCGArg arg1, TCGArg arg2, int const_arg2,
|
|
TCGLabel *label, bool small)
|
|
{
|
|
tcg_out_cmp(s, arg1, arg2, const_arg2, rexw);
|
|
tcg_out_jxx(s, tcg_cond_to_jcc[cond], label, small);
|
|
}
|
|
|
|
#if TCG_TARGET_REG_BITS == 32
|
|
static void tcg_out_brcond2(TCGContext *s, const TCGArg *args,
|
|
const int *const_args, bool small)
|
|
{
|
|
TCGLabel *label_next = gen_new_label();
|
|
TCGLabel *label_this = arg_label(args[5]);
|
|
|
|
switch(args[4]) {
|
|
case TCG_COND_EQ:
|
|
tcg_out_brcond(s, 0, TCG_COND_NE, args[0], args[2], const_args[2],
|
|
label_next, 1);
|
|
tcg_out_brcond(s, 0, TCG_COND_EQ, args[1], args[3], const_args[3],
|
|
label_this, small);
|
|
break;
|
|
case TCG_COND_NE:
|
|
tcg_out_brcond(s, 0, TCG_COND_NE, args[0], args[2], const_args[2],
|
|
label_this, small);
|
|
tcg_out_brcond(s, 0, TCG_COND_NE, args[1], args[3], const_args[3],
|
|
label_this, small);
|
|
break;
|
|
case TCG_COND_LT:
|
|
tcg_out_brcond(s, 0, TCG_COND_LT, args[1], args[3], const_args[3],
|
|
label_this, small);
|
|
tcg_out_jxx(s, JCC_JNE, label_next, 1);
|
|
tcg_out_brcond(s, 0, TCG_COND_LTU, args[0], args[2], const_args[2],
|
|
label_this, small);
|
|
break;
|
|
case TCG_COND_LE:
|
|
tcg_out_brcond(s, 0, TCG_COND_LT, args[1], args[3], const_args[3],
|
|
label_this, small);
|
|
tcg_out_jxx(s, JCC_JNE, label_next, 1);
|
|
tcg_out_brcond(s, 0, TCG_COND_LEU, args[0], args[2], const_args[2],
|
|
label_this, small);
|
|
break;
|
|
case TCG_COND_GT:
|
|
tcg_out_brcond(s, 0, TCG_COND_GT, args[1], args[3], const_args[3],
|
|
label_this, small);
|
|
tcg_out_jxx(s, JCC_JNE, label_next, 1);
|
|
tcg_out_brcond(s, 0, TCG_COND_GTU, args[0], args[2], const_args[2],
|
|
label_this, small);
|
|
break;
|
|
case TCG_COND_GE:
|
|
tcg_out_brcond(s, 0, TCG_COND_GT, args[1], args[3], const_args[3],
|
|
label_this, small);
|
|
tcg_out_jxx(s, JCC_JNE, label_next, 1);
|
|
tcg_out_brcond(s, 0, TCG_COND_GEU, args[0], args[2], const_args[2],
|
|
label_this, small);
|
|
break;
|
|
case TCG_COND_LTU:
|
|
tcg_out_brcond(s, 0, TCG_COND_LTU, args[1], args[3], const_args[3],
|
|
label_this, small);
|
|
tcg_out_jxx(s, JCC_JNE, label_next, 1);
|
|
tcg_out_brcond(s, 0, TCG_COND_LTU, args[0], args[2], const_args[2],
|
|
label_this, small);
|
|
break;
|
|
case TCG_COND_LEU:
|
|
tcg_out_brcond(s, 0, TCG_COND_LTU, args[1], args[3], const_args[3],
|
|
label_this, small);
|
|
tcg_out_jxx(s, JCC_JNE, label_next, 1);
|
|
tcg_out_brcond(s, 0, TCG_COND_LEU, args[0], args[2], const_args[2],
|
|
label_this, small);
|
|
break;
|
|
case TCG_COND_GTU:
|
|
tcg_out_brcond(s, 0, TCG_COND_GTU, args[1], args[3], const_args[3],
|
|
label_this, small);
|
|
tcg_out_jxx(s, JCC_JNE, label_next, 1);
|
|
tcg_out_brcond(s, 0, TCG_COND_GTU, args[0], args[2], const_args[2],
|
|
label_this, small);
|
|
break;
|
|
case TCG_COND_GEU:
|
|
tcg_out_brcond(s, 0, TCG_COND_GTU, args[1], args[3], const_args[3],
|
|
label_this, small);
|
|
tcg_out_jxx(s, JCC_JNE, label_next, 1);
|
|
tcg_out_brcond(s, 0, TCG_COND_GEU, args[0], args[2], const_args[2],
|
|
label_this, small);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
tcg_out_label(s, label_next);
|
|
}
|
|
#endif
|
|
|
|
static void tcg_out_setcond(TCGContext *s, int rexw, TCGCond cond,
|
|
TCGArg dest, TCGArg arg1, TCGArg arg2,
|
|
int const_arg2, bool neg)
|
|
{
|
|
bool inv = false;
|
|
bool cleared;
|
|
|
|
switch (cond) {
|
|
case TCG_COND_NE:
|
|
inv = true;
|
|
/* fall through */
|
|
case TCG_COND_EQ:
|
|
/* If arg2 is 0, convert to LTU/GEU vs 1. */
|
|
if (const_arg2 && arg2 == 0) {
|
|
arg2 = 1;
|
|
goto do_ltu;
|
|
}
|
|
break;
|
|
|
|
case TCG_COND_LEU:
|
|
inv = true;
|
|
/* fall through */
|
|
case TCG_COND_GTU:
|
|
/* If arg2 is a register, swap for LTU/GEU. */
|
|
if (!const_arg2) {
|
|
TCGReg t = arg1;
|
|
arg1 = arg2;
|
|
arg2 = t;
|
|
goto do_ltu;
|
|
}
|
|
break;
|
|
|
|
case TCG_COND_GEU:
|
|
inv = true;
|
|
/* fall through */
|
|
case TCG_COND_LTU:
|
|
do_ltu:
|
|
/*
|
|
* Relying on the carry bit, use SBB to produce -1 if LTU, 0 if GEU.
|
|
* We can then use NEG or INC to produce the desired result.
|
|
* This is always smaller than the SETCC expansion.
|
|
*/
|
|
tcg_out_cmp(s, arg1, arg2, const_arg2, rexw);
|
|
|
|
/* X - X - C = -C = (C ? -1 : 0) */
|
|
tgen_arithr(s, ARITH_SBB + (neg ? rexw : 0), dest, dest);
|
|
if (inv && neg) {
|
|
/* ~(C ? -1 : 0) = (C ? 0 : -1) */
|
|
tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NOT, dest);
|
|
} else if (inv) {
|
|
/* (C ? -1 : 0) + 1 = (C ? 0 : 1) */
|
|
tgen_arithi(s, ARITH_ADD, dest, 1, 0);
|
|
} else if (!neg) {
|
|
/* -(C ? -1 : 0) = (C ? 1 : 0) */
|
|
tcg_out_modrm(s, OPC_GRP3_Ev, EXT3_NEG, dest);
|
|
}
|
|
return;
|
|
|
|
case TCG_COND_GE:
|
|
inv = true;
|
|
/* fall through */
|
|
case TCG_COND_LT:
|
|
/* If arg2 is 0, extract the sign bit. */
|
|
if (const_arg2 && arg2 == 0) {
|
|
tcg_out_mov(s, rexw ? TCG_TYPE_I64 : TCG_TYPE_I32, dest, arg1);
|
|
if (inv) {
|
|
tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NOT, dest);
|
|
}
|
|
tcg_out_shifti(s, (neg ? SHIFT_SAR : SHIFT_SHR) + rexw,
|
|
dest, rexw ? 63 : 31);
|
|
return;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If dest does not overlap the inputs, clearing it first is preferred.
|
|
* The XOR breaks any false dependency for the low-byte write to dest,
|
|
* and is also one byte smaller than MOVZBL.
|
|
*/
|
|
cleared = false;
|
|
if (dest != arg1 && (const_arg2 || dest != arg2)) {
|
|
tgen_arithr(s, ARITH_XOR, dest, dest);
|
|
cleared = true;
|
|
}
|
|
|
|
tcg_out_cmp(s, arg1, arg2, const_arg2, rexw);
|
|
tcg_out_modrm(s, OPC_SETCC | tcg_cond_to_jcc[cond], 0, dest);
|
|
|
|
if (!cleared) {
|
|
tcg_out_ext8u(s, dest, dest);
|
|
}
|
|
if (neg) {
|
|
tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NEG, dest);
|
|
}
|
|
}
|
|
|
|
#if TCG_TARGET_REG_BITS == 32
|
|
static void tcg_out_setcond2(TCGContext *s, const TCGArg *args,
|
|
const int *const_args)
|
|
{
|
|
TCGArg new_args[6];
|
|
TCGLabel *label_true, *label_over;
|
|
|
|
memcpy(new_args, args+1, 5*sizeof(TCGArg));
|
|
|
|
if (args[0] == args[1] || args[0] == args[2]
|
|
|| (!const_args[3] && args[0] == args[3])
|
|
|| (!const_args[4] && args[0] == args[4])) {
|
|
/* When the destination overlaps with one of the argument
|
|
registers, don't do anything tricky. */
|
|
label_true = gen_new_label();
|
|
label_over = gen_new_label();
|
|
|
|
new_args[5] = label_arg(label_true);
|
|
tcg_out_brcond2(s, new_args, const_args+1, 1);
|
|
|
|
tcg_out_movi(s, TCG_TYPE_I32, args[0], 0);
|
|
tcg_out_jxx(s, JCC_JMP, label_over, 1);
|
|
tcg_out_label(s, label_true);
|
|
|
|
tcg_out_movi(s, TCG_TYPE_I32, args[0], 1);
|
|
tcg_out_label(s, label_over);
|
|
} else {
|
|
/* When the destination does not overlap one of the arguments,
|
|
clear the destination first, jump if cond false, and emit an
|
|
increment in the true case. This results in smaller code. */
|
|
|
|
tcg_out_movi(s, TCG_TYPE_I32, args[0], 0);
|
|
|
|
label_over = gen_new_label();
|
|
new_args[4] = tcg_invert_cond(new_args[4]);
|
|
new_args[5] = label_arg(label_over);
|
|
tcg_out_brcond2(s, new_args, const_args+1, 1);
|
|
|
|
tgen_arithi(s, ARITH_ADD, args[0], 1, 0);
|
|
tcg_out_label(s, label_over);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void tcg_out_cmov(TCGContext *s, TCGCond cond, int rexw,
|
|
TCGReg dest, TCGReg v1)
|
|
{
|
|
if (have_cmov) {
|
|
tcg_out_modrm(s, OPC_CMOVCC | tcg_cond_to_jcc[cond] | rexw, dest, v1);
|
|
} else {
|
|
TCGLabel *over = gen_new_label();
|
|
tcg_out_jxx(s, tcg_cond_to_jcc[tcg_invert_cond(cond)], over, 1);
|
|
tcg_out_mov(s, TCG_TYPE_I32, dest, v1);
|
|
tcg_out_label(s, over);
|
|
}
|
|
}
|
|
|
|
static void tcg_out_movcond(TCGContext *s, int rexw, TCGCond cond,
|
|
TCGReg dest, TCGReg c1, TCGArg c2, int const_c2,
|
|
TCGReg v1)
|
|
{
|
|
tcg_out_cmp(s, c1, c2, const_c2, rexw);
|
|
tcg_out_cmov(s, cond, rexw, dest, v1);
|
|
}
|
|
|
|
static void tcg_out_ctz(TCGContext *s, int rexw, TCGReg dest, TCGReg arg1,
|
|
TCGArg arg2, bool const_a2)
|
|
{
|
|
if (have_bmi1) {
|
|
tcg_out_modrm(s, OPC_TZCNT + rexw, dest, arg1);
|
|
if (const_a2) {
|
|
tcg_debug_assert(arg2 == (rexw ? 64 : 32));
|
|
} else {
|
|
tcg_debug_assert(dest != arg2);
|
|
tcg_out_cmov(s, TCG_COND_LTU, rexw, dest, arg2);
|
|
}
|
|
} else {
|
|
tcg_debug_assert(dest != arg2);
|
|
tcg_out_modrm(s, OPC_BSF + rexw, dest, arg1);
|
|
tcg_out_cmov(s, TCG_COND_EQ, rexw, dest, arg2);
|
|
}
|
|
}
|
|
|
|
static void tcg_out_clz(TCGContext *s, int rexw, TCGReg dest, TCGReg arg1,
|
|
TCGArg arg2, bool const_a2)
|
|
{
|
|
if (have_lzcnt) {
|
|
tcg_out_modrm(s, OPC_LZCNT + rexw, dest, arg1);
|
|
if (const_a2) {
|
|
tcg_debug_assert(arg2 == (rexw ? 64 : 32));
|
|
} else {
|
|
tcg_debug_assert(dest != arg2);
|
|
tcg_out_cmov(s, TCG_COND_LTU, rexw, dest, arg2);
|
|
}
|
|
} else {
|
|
tcg_debug_assert(!const_a2);
|
|
tcg_debug_assert(dest != arg1);
|
|
tcg_debug_assert(dest != arg2);
|
|
|
|
/* Recall that the output of BSR is the index not the count. */
|
|
tcg_out_modrm(s, OPC_BSR + rexw, dest, arg1);
|
|
tgen_arithi(s, ARITH_XOR + rexw, dest, rexw ? 63 : 31, 0);
|
|
|
|
/* Since we have destroyed the flags from BSR, we have to re-test. */
|
|
tcg_out_cmp(s, arg1, 0, 1, rexw);
|
|
tcg_out_cmov(s, TCG_COND_EQ, rexw, dest, arg2);
|
|
}
|
|
}
|
|
|
|
static void tcg_out_branch(TCGContext *s, int call, const tcg_insn_unit *dest)
|
|
{
|
|
intptr_t disp = tcg_pcrel_diff(s, dest) - 5;
|
|
|
|
if (disp == (int32_t)disp) {
|
|
tcg_out_opc(s, call ? OPC_CALL_Jz : OPC_JMP_long, 0, 0, 0);
|
|
tcg_out32(s, disp);
|
|
} else {
|
|
/* rip-relative addressing into the constant pool.
|
|
This is 6 + 8 = 14 bytes, as compared to using an
|
|
immediate load 10 + 6 = 16 bytes, plus we may
|
|
be able to re-use the pool constant for more calls. */
|
|
tcg_out_opc(s, OPC_GRP5, 0, 0, 0);
|
|
tcg_out8(s, (call ? EXT5_CALLN_Ev : EXT5_JMPN_Ev) << 3 | 5);
|
|
new_pool_label(s, (uintptr_t)dest, R_386_PC32, s->code_ptr, -4);
|
|
tcg_out32(s, 0);
|
|
}
|
|
}
|
|
|
|
static void tcg_out_call(TCGContext *s, const tcg_insn_unit *dest,
|
|
const TCGHelperInfo *info)
|
|
{
|
|
tcg_out_branch(s, 1, dest);
|
|
|
|
#ifndef _WIN32
|
|
if (TCG_TARGET_REG_BITS == 32 && info->out_kind == TCG_CALL_RET_BY_REF) {
|
|
/*
|
|
* The sysv i386 abi for struct return places a reference as the
|
|
* first argument of the stack, and pops that argument with the
|
|
* return statement. Since we want to retain the aligned stack
|
|
* pointer for the callee, we do not want to actually push that
|
|
* argument before the call but rely on the normal store to the
|
|
* stack slot. But we do need to compensate for the pop in order
|
|
* to reset our correct stack pointer value.
|
|
* Pushing a garbage value back onto the stack is quickest.
|
|
*/
|
|
tcg_out_push(s, TCG_REG_EAX);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void tcg_out_jmp(TCGContext *s, const tcg_insn_unit *dest)
|
|
{
|
|
tcg_out_branch(s, 0, dest);
|
|
}
|
|
|
|
static void tcg_out_nopn(TCGContext *s, int n)
|
|
{
|
|
int i;
|
|
/* Emit 1 or 2 operand size prefixes for the standard one byte nop,
|
|
* "xchg %eax,%eax", forming "xchg %ax,%ax". All cores accept the
|
|
* duplicate prefix, and all of the interesting recent cores can
|
|
* decode and discard the duplicates in a single cycle.
|
|
*/
|
|
tcg_debug_assert(n >= 1);
|
|
for (i = 1; i < n; ++i) {
|
|
tcg_out8(s, 0x66);
|
|
}
|
|
tcg_out8(s, 0x90);
|
|
}
|
|
|
|
/* Test register R vs immediate bits I, setting Z flag for EQ/NE. */
|
|
static void __attribute__((unused))
|
|
tcg_out_testi(TCGContext *s, TCGReg r, uint32_t i)
|
|
{
|
|
/*
|
|
* This is used for testing alignment, so we can usually use testb.
|
|
* For i686, we have to use testl for %esi/%edi.
|
|
*/
|
|
if (i <= 0xff && (TCG_TARGET_REG_BITS == 64 || r < 4)) {
|
|
tcg_out_modrm(s, OPC_GRP3_Eb | P_REXB_RM, EXT3_TESTi, r);
|
|
tcg_out8(s, i);
|
|
} else {
|
|
tcg_out_modrm(s, OPC_GRP3_Ev, EXT3_TESTi, r);
|
|
tcg_out32(s, i);
|
|
}
|
|
}
|
|
|
|
typedef struct {
|
|
TCGReg base;
|
|
int index;
|
|
int ofs;
|
|
int seg;
|
|
TCGAtomAlign aa;
|
|
} HostAddress;
|
|
|
|
bool tcg_target_has_memory_bswap(MemOp memop)
|
|
{
|
|
TCGAtomAlign aa;
|
|
|
|
if (!have_movbe) {
|
|
return false;
|
|
}
|
|
if ((memop & MO_SIZE) < MO_128) {
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Reject 16-byte memop with 16-byte atomicity, i.e. VMOVDQA,
|
|
* but do allow a pair of 64-bit operations, i.e. MOVBEQ.
|
|
*/
|
|
aa = atom_and_align_for_opc(tcg_ctx, memop, MO_ATOM_IFALIGN, true);
|
|
return aa.atom < MO_128;
|
|
}
|
|
|
|
/*
|
|
* Because i686 has no register parameters and because x86_64 has xchg
|
|
* to handle addr/data register overlap, we have placed all input arguments
|
|
* before we need might need a scratch reg.
|
|
*
|
|
* Even then, a scratch is only needed for l->raddr. Rather than expose
|
|
* a general-purpose scratch when we don't actually know it's available,
|
|
* use the ra_gen hook to load into RAX if needed.
|
|
*/
|
|
#if TCG_TARGET_REG_BITS == 64
|
|
static TCGReg ldst_ra_gen(TCGContext *s, const TCGLabelQemuLdst *l, int arg)
|
|
{
|
|
if (arg < 0) {
|
|
arg = TCG_REG_RAX;
|
|
}
|
|
tcg_out_movi(s, TCG_TYPE_PTR, arg, (uintptr_t)l->raddr);
|
|
return arg;
|
|
}
|
|
static const TCGLdstHelperParam ldst_helper_param = {
|
|
.ra_gen = ldst_ra_gen
|
|
};
|
|
#else
|
|
static const TCGLdstHelperParam ldst_helper_param = { };
|
|
#endif
|
|
|
|
static void tcg_out_vec_to_pair(TCGContext *s, TCGType type,
|
|
TCGReg l, TCGReg h, TCGReg v)
|
|
{
|
|
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
|
|
|
|
/* vpmov{d,q} %v, %l */
|
|
tcg_out_vex_modrm(s, OPC_MOVD_EyVy + rexw, v, 0, l);
|
|
/* vpextr{d,q} $1, %v, %h */
|
|
tcg_out_vex_modrm(s, OPC_PEXTRD + rexw, v, 0, h);
|
|
tcg_out8(s, 1);
|
|
}
|
|
|
|
static void tcg_out_pair_to_vec(TCGContext *s, TCGType type,
|
|
TCGReg v, TCGReg l, TCGReg h)
|
|
{
|
|
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
|
|
|
|
/* vmov{d,q} %l, %v */
|
|
tcg_out_vex_modrm(s, OPC_MOVD_VyEy + rexw, v, 0, l);
|
|
/* vpinsr{d,q} $1, %h, %v, %v */
|
|
tcg_out_vex_modrm(s, OPC_PINSRD + rexw, v, v, h);
|
|
tcg_out8(s, 1);
|
|
}
|
|
|
|
/*
|
|
* Generate code for the slow path for a load at the end of block
|
|
*/
|
|
static bool tcg_out_qemu_ld_slow_path(TCGContext *s, TCGLabelQemuLdst *l)
|
|
{
|
|
MemOp opc = get_memop(l->oi);
|
|
tcg_insn_unit **label_ptr = &l->label_ptr[0];
|
|
|
|
/* resolve label address */
|
|
tcg_patch32(label_ptr[0], s->code_ptr - label_ptr[0] - 4);
|
|
if (label_ptr[1]) {
|
|
tcg_patch32(label_ptr[1], s->code_ptr - label_ptr[1] - 4);
|
|
}
|
|
|
|
tcg_out_ld_helper_args(s, l, &ldst_helper_param);
|
|
tcg_out_branch(s, 1, qemu_ld_helpers[opc & MO_SIZE]);
|
|
tcg_out_ld_helper_ret(s, l, false, &ldst_helper_param);
|
|
|
|
tcg_out_jmp(s, l->raddr);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Generate code for the slow path for a store at the end of block
|
|
*/
|
|
static bool tcg_out_qemu_st_slow_path(TCGContext *s, TCGLabelQemuLdst *l)
|
|
{
|
|
MemOp opc = get_memop(l->oi);
|
|
tcg_insn_unit **label_ptr = &l->label_ptr[0];
|
|
|
|
/* resolve label address */
|
|
tcg_patch32(label_ptr[0], s->code_ptr - label_ptr[0] - 4);
|
|
if (label_ptr[1]) {
|
|
tcg_patch32(label_ptr[1], s->code_ptr - label_ptr[1] - 4);
|
|
}
|
|
|
|
tcg_out_st_helper_args(s, l, &ldst_helper_param);
|
|
tcg_out_branch(s, 1, qemu_st_helpers[opc & MO_SIZE]);
|
|
|
|
tcg_out_jmp(s, l->raddr);
|
|
return true;
|
|
}
|
|
|
|
#ifdef CONFIG_USER_ONLY
|
|
static HostAddress x86_guest_base = {
|
|
.index = -1
|
|
};
|
|
|
|
#if defined(__x86_64__) && defined(__linux__)
|
|
# include <asm/prctl.h>
|
|
# include <sys/prctl.h>
|
|
int arch_prctl(int code, unsigned long addr);
|
|
static inline int setup_guest_base_seg(void)
|
|
{
|
|
if (arch_prctl(ARCH_SET_GS, guest_base) == 0) {
|
|
return P_GS;
|
|
}
|
|
return 0;
|
|
}
|
|
#define setup_guest_base_seg setup_guest_base_seg
|
|
#elif defined(__x86_64__) && \
|
|
(defined (__FreeBSD__) || defined (__FreeBSD_kernel__))
|
|
# include <machine/sysarch.h>
|
|
static inline int setup_guest_base_seg(void)
|
|
{
|
|
if (sysarch(AMD64_SET_GSBASE, &guest_base) == 0) {
|
|
return P_GS;
|
|
}
|
|
return 0;
|
|
}
|
|
#define setup_guest_base_seg setup_guest_base_seg
|
|
#endif
|
|
#else
|
|
# define x86_guest_base (*(HostAddress *)({ qemu_build_not_reached(); NULL; }))
|
|
#endif /* CONFIG_USER_ONLY */
|
|
#ifndef setup_guest_base_seg
|
|
# define setup_guest_base_seg() 0
|
|
#endif
|
|
|
|
#define MIN_TLB_MASK_TABLE_OFS INT_MIN
|
|
|
|
/*
|
|
* For softmmu, perform the TLB load and compare.
|
|
* For useronly, perform any required alignment tests.
|
|
* In both cases, return a TCGLabelQemuLdst structure if the slow path
|
|
* is required and fill in @h with the host address for the fast path.
|
|
*/
|
|
static TCGLabelQemuLdst *prepare_host_addr(TCGContext *s, HostAddress *h,
|
|
TCGReg addrlo, TCGReg addrhi,
|
|
MemOpIdx oi, bool is_ld)
|
|
{
|
|
TCGLabelQemuLdst *ldst = NULL;
|
|
MemOp opc = get_memop(oi);
|
|
MemOp s_bits = opc & MO_SIZE;
|
|
unsigned a_mask;
|
|
|
|
if (tcg_use_softmmu) {
|
|
h->index = TCG_REG_L0;
|
|
h->ofs = 0;
|
|
h->seg = 0;
|
|
} else {
|
|
*h = x86_guest_base;
|
|
}
|
|
h->base = addrlo;
|
|
h->aa = atom_and_align_for_opc(s, opc, MO_ATOM_IFALIGN, s_bits == MO_128);
|
|
a_mask = (1 << h->aa.align) - 1;
|
|
|
|
if (tcg_use_softmmu) {
|
|
int cmp_ofs = is_ld ? offsetof(CPUTLBEntry, addr_read)
|
|
: offsetof(CPUTLBEntry, addr_write);
|
|
TCGType ttype = TCG_TYPE_I32;
|
|
TCGType tlbtype = TCG_TYPE_I32;
|
|
int trexw = 0, hrexw = 0, tlbrexw = 0;
|
|
unsigned mem_index = get_mmuidx(oi);
|
|
unsigned s_mask = (1 << s_bits) - 1;
|
|
int fast_ofs = tlb_mask_table_ofs(s, mem_index);
|
|
int tlb_mask;
|
|
|
|
ldst = new_ldst_label(s);
|
|
ldst->is_ld = is_ld;
|
|
ldst->oi = oi;
|
|
ldst->addrlo_reg = addrlo;
|
|
ldst->addrhi_reg = addrhi;
|
|
|
|
if (TCG_TARGET_REG_BITS == 64) {
|
|
ttype = s->addr_type;
|
|
trexw = (ttype == TCG_TYPE_I32 ? 0 : P_REXW);
|
|
if (TCG_TYPE_PTR == TCG_TYPE_I64) {
|
|
hrexw = P_REXW;
|
|
if (s->page_bits + s->tlb_dyn_max_bits > 32) {
|
|
tlbtype = TCG_TYPE_I64;
|
|
tlbrexw = P_REXW;
|
|
}
|
|
}
|
|
}
|
|
|
|
tcg_out_mov(s, tlbtype, TCG_REG_L0, addrlo);
|
|
tcg_out_shifti(s, SHIFT_SHR + tlbrexw, TCG_REG_L0,
|
|
s->page_bits - CPU_TLB_ENTRY_BITS);
|
|
|
|
tcg_out_modrm_offset(s, OPC_AND_GvEv + trexw, TCG_REG_L0, TCG_AREG0,
|
|
fast_ofs + offsetof(CPUTLBDescFast, mask));
|
|
|
|
tcg_out_modrm_offset(s, OPC_ADD_GvEv + hrexw, TCG_REG_L0, TCG_AREG0,
|
|
fast_ofs + offsetof(CPUTLBDescFast, table));
|
|
|
|
/*
|
|
* If the required alignment is at least as large as the access,
|
|
* simply copy the address and mask. For lesser alignments,
|
|
* check that we don't cross pages for the complete access.
|
|
*/
|
|
if (a_mask >= s_mask) {
|
|
tcg_out_mov(s, ttype, TCG_REG_L1, addrlo);
|
|
} else {
|
|
tcg_out_modrm_offset(s, OPC_LEA + trexw, TCG_REG_L1,
|
|
addrlo, s_mask - a_mask);
|
|
}
|
|
tlb_mask = s->page_mask | a_mask;
|
|
tgen_arithi(s, ARITH_AND + trexw, TCG_REG_L1, tlb_mask, 0);
|
|
|
|
/* cmp 0(TCG_REG_L0), TCG_REG_L1 */
|
|
tcg_out_modrm_offset(s, OPC_CMP_GvEv + trexw,
|
|
TCG_REG_L1, TCG_REG_L0, cmp_ofs);
|
|
|
|
/* jne slow_path */
|
|
tcg_out_opc(s, OPC_JCC_long + JCC_JNE, 0, 0, 0);
|
|
ldst->label_ptr[0] = s->code_ptr;
|
|
s->code_ptr += 4;
|
|
|
|
if (TCG_TARGET_REG_BITS == 32 && s->addr_type == TCG_TYPE_I64) {
|
|
/* cmp 4(TCG_REG_L0), addrhi */
|
|
tcg_out_modrm_offset(s, OPC_CMP_GvEv, addrhi,
|
|
TCG_REG_L0, cmp_ofs + 4);
|
|
|
|
/* jne slow_path */
|
|
tcg_out_opc(s, OPC_JCC_long + JCC_JNE, 0, 0, 0);
|
|
ldst->label_ptr[1] = s->code_ptr;
|
|
s->code_ptr += 4;
|
|
}
|
|
|
|
/* TLB Hit. */
|
|
tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_L0, TCG_REG_L0,
|
|
offsetof(CPUTLBEntry, addend));
|
|
} else if (a_mask) {
|
|
ldst = new_ldst_label(s);
|
|
|
|
ldst->is_ld = is_ld;
|
|
ldst->oi = oi;
|
|
ldst->addrlo_reg = addrlo;
|
|
ldst->addrhi_reg = addrhi;
|
|
|
|
tcg_out_testi(s, addrlo, a_mask);
|
|
/* jne slow_path */
|
|
tcg_out_opc(s, OPC_JCC_long + JCC_JNE, 0, 0, 0);
|
|
ldst->label_ptr[0] = s->code_ptr;
|
|
s->code_ptr += 4;
|
|
}
|
|
|
|
return ldst;
|
|
}
|
|
|
|
static void tcg_out_qemu_ld_direct(TCGContext *s, TCGReg datalo, TCGReg datahi,
|
|
HostAddress h, TCGType type, MemOp memop)
|
|
{
|
|
bool use_movbe = false;
|
|
int rexw = (type == TCG_TYPE_I32 ? 0 : P_REXW);
|
|
int movop = OPC_MOVL_GvEv;
|
|
|
|
/* Do big-endian loads with movbe. */
|
|
if (memop & MO_BSWAP) {
|
|
tcg_debug_assert(have_movbe);
|
|
use_movbe = true;
|
|
movop = OPC_MOVBE_GyMy;
|
|
}
|
|
|
|
switch (memop & MO_SSIZE) {
|
|
case MO_UB:
|
|
tcg_out_modrm_sib_offset(s, OPC_MOVZBL + h.seg, datalo,
|
|
h.base, h.index, 0, h.ofs);
|
|
break;
|
|
case MO_SB:
|
|
tcg_out_modrm_sib_offset(s, OPC_MOVSBL + rexw + h.seg, datalo,
|
|
h.base, h.index, 0, h.ofs);
|
|
break;
|
|
case MO_UW:
|
|
if (use_movbe) {
|
|
/* There is no extending movbe; only low 16-bits are modified. */
|
|
if (datalo != h.base && datalo != h.index) {
|
|
/* XOR breaks dependency chains. */
|
|
tgen_arithr(s, ARITH_XOR, datalo, datalo);
|
|
tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + P_DATA16 + h.seg,
|
|
datalo, h.base, h.index, 0, h.ofs);
|
|
} else {
|
|
tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + P_DATA16 + h.seg,
|
|
datalo, h.base, h.index, 0, h.ofs);
|
|
tcg_out_ext16u(s, datalo, datalo);
|
|
}
|
|
} else {
|
|
tcg_out_modrm_sib_offset(s, OPC_MOVZWL + h.seg, datalo,
|
|
h.base, h.index, 0, h.ofs);
|
|
}
|
|
break;
|
|
case MO_SW:
|
|
if (use_movbe) {
|
|
tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + P_DATA16 + h.seg,
|
|
datalo, h.base, h.index, 0, h.ofs);
|
|
tcg_out_ext16s(s, type, datalo, datalo);
|
|
} else {
|
|
tcg_out_modrm_sib_offset(s, OPC_MOVSWL + rexw + h.seg,
|
|
datalo, h.base, h.index, 0, h.ofs);
|
|
}
|
|
break;
|
|
case MO_UL:
|
|
tcg_out_modrm_sib_offset(s, movop + h.seg, datalo,
|
|
h.base, h.index, 0, h.ofs);
|
|
break;
|
|
#if TCG_TARGET_REG_BITS == 64
|
|
case MO_SL:
|
|
if (use_movbe) {
|
|
tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + h.seg, datalo,
|
|
h.base, h.index, 0, h.ofs);
|
|
tcg_out_ext32s(s, datalo, datalo);
|
|
} else {
|
|
tcg_out_modrm_sib_offset(s, OPC_MOVSLQ + h.seg, datalo,
|
|
h.base, h.index, 0, h.ofs);
|
|
}
|
|
break;
|
|
#endif
|
|
case MO_UQ:
|
|
if (TCG_TARGET_REG_BITS == 64) {
|
|
tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datalo,
|
|
h.base, h.index, 0, h.ofs);
|
|
break;
|
|
}
|
|
if (use_movbe) {
|
|
TCGReg t = datalo;
|
|
datalo = datahi;
|
|
datahi = t;
|
|
}
|
|
if (h.base == datalo || h.index == datalo) {
|
|
tcg_out_modrm_sib_offset(s, OPC_LEA, datahi,
|
|
h.base, h.index, 0, h.ofs);
|
|
tcg_out_modrm_offset(s, movop + h.seg, datalo, datahi, 0);
|
|
tcg_out_modrm_offset(s, movop + h.seg, datahi, datahi, 4);
|
|
} else {
|
|
tcg_out_modrm_sib_offset(s, movop + h.seg, datalo,
|
|
h.base, h.index, 0, h.ofs);
|
|
tcg_out_modrm_sib_offset(s, movop + h.seg, datahi,
|
|
h.base, h.index, 0, h.ofs + 4);
|
|
}
|
|
break;
|
|
|
|
case MO_128:
|
|
tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
|
|
|
|
/*
|
|
* Without 16-byte atomicity, use integer regs.
|
|
* That is where we want the data, and it allows bswaps.
|
|
*/
|
|
if (h.aa.atom < MO_128) {
|
|
if (use_movbe) {
|
|
TCGReg t = datalo;
|
|
datalo = datahi;
|
|
datahi = t;
|
|
}
|
|
if (h.base == datalo || h.index == datalo) {
|
|
tcg_out_modrm_sib_offset(s, OPC_LEA + P_REXW, datahi,
|
|
h.base, h.index, 0, h.ofs);
|
|
tcg_out_modrm_offset(s, movop + P_REXW + h.seg,
|
|
datalo, datahi, 0);
|
|
tcg_out_modrm_offset(s, movop + P_REXW + h.seg,
|
|
datahi, datahi, 8);
|
|
} else {
|
|
tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datalo,
|
|
h.base, h.index, 0, h.ofs);
|
|
tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datahi,
|
|
h.base, h.index, 0, h.ofs + 8);
|
|
}
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* With 16-byte atomicity, a vector load is required.
|
|
* If we already have 16-byte alignment, then VMOVDQA always works.
|
|
* Else if VMOVDQU has atomicity with dynamic alignment, use that.
|
|
* Else use we require a runtime test for alignment for VMOVDQA;
|
|
* use VMOVDQU on the unaligned nonatomic path for simplicity.
|
|
*/
|
|
if (h.aa.align >= MO_128) {
|
|
tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQA_VxWx + h.seg,
|
|
TCG_TMP_VEC, 0,
|
|
h.base, h.index, 0, h.ofs);
|
|
} else if (cpuinfo & CPUINFO_ATOMIC_VMOVDQU) {
|
|
tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQU_VxWx + h.seg,
|
|
TCG_TMP_VEC, 0,
|
|
h.base, h.index, 0, h.ofs);
|
|
} else {
|
|
TCGLabel *l1 = gen_new_label();
|
|
TCGLabel *l2 = gen_new_label();
|
|
|
|
tcg_out_testi(s, h.base, 15);
|
|
tcg_out_jxx(s, JCC_JNE, l1, true);
|
|
|
|
tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQA_VxWx + h.seg,
|
|
TCG_TMP_VEC, 0,
|
|
h.base, h.index, 0, h.ofs);
|
|
tcg_out_jxx(s, JCC_JMP, l2, true);
|
|
|
|
tcg_out_label(s, l1);
|
|
tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQU_VxWx + h.seg,
|
|
TCG_TMP_VEC, 0,
|
|
h.base, h.index, 0, h.ofs);
|
|
tcg_out_label(s, l2);
|
|
}
|
|
tcg_out_vec_to_pair(s, TCG_TYPE_I64, datalo, datahi, TCG_TMP_VEC);
|
|
break;
|
|
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
static void tcg_out_qemu_ld(TCGContext *s, TCGReg datalo, TCGReg datahi,
|
|
TCGReg addrlo, TCGReg addrhi,
|
|
MemOpIdx oi, TCGType data_type)
|
|
{
|
|
TCGLabelQemuLdst *ldst;
|
|
HostAddress h;
|
|
|
|
ldst = prepare_host_addr(s, &h, addrlo, addrhi, oi, true);
|
|
tcg_out_qemu_ld_direct(s, datalo, datahi, h, data_type, get_memop(oi));
|
|
|
|
if (ldst) {
|
|
ldst->type = data_type;
|
|
ldst->datalo_reg = datalo;
|
|
ldst->datahi_reg = datahi;
|
|
ldst->raddr = tcg_splitwx_to_rx(s->code_ptr);
|
|
}
|
|
}
|
|
|
|
static void tcg_out_qemu_st_direct(TCGContext *s, TCGReg datalo, TCGReg datahi,
|
|
HostAddress h, MemOp memop)
|
|
{
|
|
bool use_movbe = false;
|
|
int movop = OPC_MOVL_EvGv;
|
|
|
|
/*
|
|
* Do big-endian stores with movbe or system-mode.
|
|
* User-only without movbe will have its swapping done generically.
|
|
*/
|
|
if (memop & MO_BSWAP) {
|
|
tcg_debug_assert(have_movbe);
|
|
use_movbe = true;
|
|
movop = OPC_MOVBE_MyGy;
|
|
}
|
|
|
|
switch (memop & MO_SIZE) {
|
|
case MO_8:
|
|
/* This is handled with constraints on INDEX_op_qemu_st8_i32. */
|
|
tcg_debug_assert(TCG_TARGET_REG_BITS == 64 || datalo < 4);
|
|
tcg_out_modrm_sib_offset(s, OPC_MOVB_EvGv + P_REXB_R + h.seg,
|
|
datalo, h.base, h.index, 0, h.ofs);
|
|
break;
|
|
case MO_16:
|
|
tcg_out_modrm_sib_offset(s, movop + P_DATA16 + h.seg, datalo,
|
|
h.base, h.index, 0, h.ofs);
|
|
break;
|
|
case MO_32:
|
|
tcg_out_modrm_sib_offset(s, movop + h.seg, datalo,
|
|
h.base, h.index, 0, h.ofs);
|
|
break;
|
|
case MO_64:
|
|
if (TCG_TARGET_REG_BITS == 64) {
|
|
tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datalo,
|
|
h.base, h.index, 0, h.ofs);
|
|
} else {
|
|
if (use_movbe) {
|
|
TCGReg t = datalo;
|
|
datalo = datahi;
|
|
datahi = t;
|
|
}
|
|
tcg_out_modrm_sib_offset(s, movop + h.seg, datalo,
|
|
h.base, h.index, 0, h.ofs);
|
|
tcg_out_modrm_sib_offset(s, movop + h.seg, datahi,
|
|
h.base, h.index, 0, h.ofs + 4);
|
|
}
|
|
break;
|
|
|
|
case MO_128:
|
|
tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
|
|
|
|
/*
|
|
* Without 16-byte atomicity, use integer regs.
|
|
* That is where we have the data, and it allows bswaps.
|
|
*/
|
|
if (h.aa.atom < MO_128) {
|
|
if (use_movbe) {
|
|
TCGReg t = datalo;
|
|
datalo = datahi;
|
|
datahi = t;
|
|
}
|
|
tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datalo,
|
|
h.base, h.index, 0, h.ofs);
|
|
tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datahi,
|
|
h.base, h.index, 0, h.ofs + 8);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* With 16-byte atomicity, a vector store is required.
|
|
* If we already have 16-byte alignment, then VMOVDQA always works.
|
|
* Else if VMOVDQU has atomicity with dynamic alignment, use that.
|
|
* Else use we require a runtime test for alignment for VMOVDQA;
|
|
* use VMOVDQU on the unaligned nonatomic path for simplicity.
|
|
*/
|
|
tcg_out_pair_to_vec(s, TCG_TYPE_I64, TCG_TMP_VEC, datalo, datahi);
|
|
if (h.aa.align >= MO_128) {
|
|
tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQA_WxVx + h.seg,
|
|
TCG_TMP_VEC, 0,
|
|
h.base, h.index, 0, h.ofs);
|
|
} else if (cpuinfo & CPUINFO_ATOMIC_VMOVDQU) {
|
|
tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQU_WxVx + h.seg,
|
|
TCG_TMP_VEC, 0,
|
|
h.base, h.index, 0, h.ofs);
|
|
} else {
|
|
TCGLabel *l1 = gen_new_label();
|
|
TCGLabel *l2 = gen_new_label();
|
|
|
|
tcg_out_testi(s, h.base, 15);
|
|
tcg_out_jxx(s, JCC_JNE, l1, true);
|
|
|
|
tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQA_WxVx + h.seg,
|
|
TCG_TMP_VEC, 0,
|
|
h.base, h.index, 0, h.ofs);
|
|
tcg_out_jxx(s, JCC_JMP, l2, true);
|
|
|
|
tcg_out_label(s, l1);
|
|
tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQU_WxVx + h.seg,
|
|
TCG_TMP_VEC, 0,
|
|
h.base, h.index, 0, h.ofs);
|
|
tcg_out_label(s, l2);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
static void tcg_out_qemu_st(TCGContext *s, TCGReg datalo, TCGReg datahi,
|
|
TCGReg addrlo, TCGReg addrhi,
|
|
MemOpIdx oi, TCGType data_type)
|
|
{
|
|
TCGLabelQemuLdst *ldst;
|
|
HostAddress h;
|
|
|
|
ldst = prepare_host_addr(s, &h, addrlo, addrhi, oi, false);
|
|
tcg_out_qemu_st_direct(s, datalo, datahi, h, get_memop(oi));
|
|
|
|
if (ldst) {
|
|
ldst->type = data_type;
|
|
ldst->datalo_reg = datalo;
|
|
ldst->datahi_reg = datahi;
|
|
ldst->raddr = tcg_splitwx_to_rx(s->code_ptr);
|
|
}
|
|
}
|
|
|
|
static void tcg_out_exit_tb(TCGContext *s, uintptr_t a0)
|
|
{
|
|
/* Reuse the zeroing that exists for goto_ptr. */
|
|
if (a0 == 0) {
|
|
tcg_out_jmp(s, tcg_code_gen_epilogue);
|
|
} else {
|
|
tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_EAX, a0);
|
|
tcg_out_jmp(s, tb_ret_addr);
|
|
}
|
|
}
|
|
|
|
static void tcg_out_goto_tb(TCGContext *s, int which)
|
|
{
|
|
/*
|
|
* Jump displacement must be aligned for atomic patching;
|
|
* see if we need to add extra nops before jump
|
|
*/
|
|
int gap = QEMU_ALIGN_PTR_UP(s->code_ptr + 1, 4) - s->code_ptr;
|
|
if (gap != 1) {
|
|
tcg_out_nopn(s, gap - 1);
|
|
}
|
|
tcg_out8(s, OPC_JMP_long); /* jmp im */
|
|
set_jmp_insn_offset(s, which);
|
|
tcg_out32(s, 0);
|
|
set_jmp_reset_offset(s, which);
|
|
}
|
|
|
|
void tb_target_set_jmp_target(const TranslationBlock *tb, int n,
|
|
uintptr_t jmp_rx, uintptr_t jmp_rw)
|
|
{
|
|
/* patch the branch destination */
|
|
uintptr_t addr = tb->jmp_target_addr[n];
|
|
qatomic_set((int32_t *)jmp_rw, addr - (jmp_rx + 4));
|
|
/* no need to flush icache explicitly */
|
|
}
|
|
|
|
static inline void tcg_out_op(TCGContext *s, TCGOpcode opc,
|
|
const TCGArg args[TCG_MAX_OP_ARGS],
|
|
const int const_args[TCG_MAX_OP_ARGS])
|
|
{
|
|
TCGArg a0, a1, a2;
|
|
int c, const_a2, vexop, rexw = 0;
|
|
|
|
#if TCG_TARGET_REG_BITS == 64
|
|
# define OP_32_64(x) \
|
|
case glue(glue(INDEX_op_, x), _i64): \
|
|
rexw = P_REXW; /* FALLTHRU */ \
|
|
case glue(glue(INDEX_op_, x), _i32)
|
|
#else
|
|
# define OP_32_64(x) \
|
|
case glue(glue(INDEX_op_, x), _i32)
|
|
#endif
|
|
|
|
/* Hoist the loads of the most common arguments. */
|
|
a0 = args[0];
|
|
a1 = args[1];
|
|
a2 = args[2];
|
|
const_a2 = const_args[2];
|
|
|
|
switch (opc) {
|
|
case INDEX_op_goto_ptr:
|
|
/* jmp to the given host address (could be epilogue) */
|
|
tcg_out_modrm(s, OPC_GRP5, EXT5_JMPN_Ev, a0);
|
|
break;
|
|
case INDEX_op_br:
|
|
tcg_out_jxx(s, JCC_JMP, arg_label(a0), 0);
|
|
break;
|
|
OP_32_64(ld8u):
|
|
/* Note that we can ignore REXW for the zero-extend to 64-bit. */
|
|
tcg_out_modrm_offset(s, OPC_MOVZBL, a0, a1, a2);
|
|
break;
|
|
OP_32_64(ld8s):
|
|
tcg_out_modrm_offset(s, OPC_MOVSBL + rexw, a0, a1, a2);
|
|
break;
|
|
OP_32_64(ld16u):
|
|
/* Note that we can ignore REXW for the zero-extend to 64-bit. */
|
|
tcg_out_modrm_offset(s, OPC_MOVZWL, a0, a1, a2);
|
|
break;
|
|
OP_32_64(ld16s):
|
|
tcg_out_modrm_offset(s, OPC_MOVSWL + rexw, a0, a1, a2);
|
|
break;
|
|
#if TCG_TARGET_REG_BITS == 64
|
|
case INDEX_op_ld32u_i64:
|
|
#endif
|
|
case INDEX_op_ld_i32:
|
|
tcg_out_ld(s, TCG_TYPE_I32, a0, a1, a2);
|
|
break;
|
|
|
|
OP_32_64(st8):
|
|
if (const_args[0]) {
|
|
tcg_out_modrm_offset(s, OPC_MOVB_EvIz, 0, a1, a2);
|
|
tcg_out8(s, a0);
|
|
} else {
|
|
tcg_out_modrm_offset(s, OPC_MOVB_EvGv | P_REXB_R, a0, a1, a2);
|
|
}
|
|
break;
|
|
OP_32_64(st16):
|
|
if (const_args[0]) {
|
|
tcg_out_modrm_offset(s, OPC_MOVL_EvIz | P_DATA16, 0, a1, a2);
|
|
tcg_out16(s, a0);
|
|
} else {
|
|
tcg_out_modrm_offset(s, OPC_MOVL_EvGv | P_DATA16, a0, a1, a2);
|
|
}
|
|
break;
|
|
#if TCG_TARGET_REG_BITS == 64
|
|
case INDEX_op_st32_i64:
|
|
#endif
|
|
case INDEX_op_st_i32:
|
|
if (const_args[0]) {
|
|
tcg_out_modrm_offset(s, OPC_MOVL_EvIz, 0, a1, a2);
|
|
tcg_out32(s, a0);
|
|
} else {
|
|
tcg_out_st(s, TCG_TYPE_I32, a0, a1, a2);
|
|
}
|
|
break;
|
|
|
|
OP_32_64(add):
|
|
/* For 3-operand addition, use LEA. */
|
|
if (a0 != a1) {
|
|
TCGArg c3 = 0;
|
|
if (const_a2) {
|
|
c3 = a2, a2 = -1;
|
|
} else if (a0 == a2) {
|
|
/* Watch out for dest = src + dest, since we've removed
|
|
the matching constraint on the add. */
|
|
tgen_arithr(s, ARITH_ADD + rexw, a0, a1);
|
|
break;
|
|
}
|
|
|
|
tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, a1, a2, 0, c3);
|
|
break;
|
|
}
|
|
c = ARITH_ADD;
|
|
goto gen_arith;
|
|
OP_32_64(sub):
|
|
c = ARITH_SUB;
|
|
goto gen_arith;
|
|
OP_32_64(and):
|
|
c = ARITH_AND;
|
|
goto gen_arith;
|
|
OP_32_64(or):
|
|
c = ARITH_OR;
|
|
goto gen_arith;
|
|
OP_32_64(xor):
|
|
c = ARITH_XOR;
|
|
goto gen_arith;
|
|
gen_arith:
|
|
if (const_a2) {
|
|
tgen_arithi(s, c + rexw, a0, a2, 0);
|
|
} else {
|
|
tgen_arithr(s, c + rexw, a0, a2);
|
|
}
|
|
break;
|
|
|
|
OP_32_64(andc):
|
|
if (const_a2) {
|
|
tcg_out_mov(s, rexw ? TCG_TYPE_I64 : TCG_TYPE_I32, a0, a1);
|
|
tgen_arithi(s, ARITH_AND + rexw, a0, ~a2, 0);
|
|
} else {
|
|
tcg_out_vex_modrm(s, OPC_ANDN + rexw, a0, a2, a1);
|
|
}
|
|
break;
|
|
|
|
OP_32_64(mul):
|
|
if (const_a2) {
|
|
int32_t val;
|
|
val = a2;
|
|
if (val == (int8_t)val) {
|
|
tcg_out_modrm(s, OPC_IMUL_GvEvIb + rexw, a0, a0);
|
|
tcg_out8(s, val);
|
|
} else {
|
|
tcg_out_modrm(s, OPC_IMUL_GvEvIz + rexw, a0, a0);
|
|
tcg_out32(s, val);
|
|
}
|
|
} else {
|
|
tcg_out_modrm(s, OPC_IMUL_GvEv + rexw, a0, a2);
|
|
}
|
|
break;
|
|
|
|
OP_32_64(div2):
|
|
tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_IDIV, args[4]);
|
|
break;
|
|
OP_32_64(divu2):
|
|
tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_DIV, args[4]);
|
|
break;
|
|
|
|
OP_32_64(shl):
|
|
/* For small constant 3-operand shift, use LEA. */
|
|
if (const_a2 && a0 != a1 && (a2 - 1) < 3) {
|
|
if (a2 - 1 == 0) {
|
|
/* shl $1,a1,a0 -> lea (a1,a1),a0 */
|
|
tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, a1, a1, 0, 0);
|
|
} else {
|
|
/* shl $n,a1,a0 -> lea 0(,a1,n),a0 */
|
|
tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, -1, a1, a2, 0);
|
|
}
|
|
break;
|
|
}
|
|
c = SHIFT_SHL;
|
|
vexop = OPC_SHLX;
|
|
goto gen_shift_maybe_vex;
|
|
OP_32_64(shr):
|
|
c = SHIFT_SHR;
|
|
vexop = OPC_SHRX;
|
|
goto gen_shift_maybe_vex;
|
|
OP_32_64(sar):
|
|
c = SHIFT_SAR;
|
|
vexop = OPC_SARX;
|
|
goto gen_shift_maybe_vex;
|
|
OP_32_64(rotl):
|
|
c = SHIFT_ROL;
|
|
goto gen_shift;
|
|
OP_32_64(rotr):
|
|
c = SHIFT_ROR;
|
|
goto gen_shift;
|
|
gen_shift_maybe_vex:
|
|
if (have_bmi2) {
|
|
if (!const_a2) {
|
|
tcg_out_vex_modrm(s, vexop + rexw, a0, a2, a1);
|
|
break;
|
|
}
|
|
tcg_out_mov(s, rexw ? TCG_TYPE_I64 : TCG_TYPE_I32, a0, a1);
|
|
}
|
|
/* FALLTHRU */
|
|
gen_shift:
|
|
if (const_a2) {
|
|
tcg_out_shifti(s, c + rexw, a0, a2);
|
|
} else {
|
|
tcg_out_modrm(s, OPC_SHIFT_cl + rexw, c, a0);
|
|
}
|
|
break;
|
|
|
|
OP_32_64(ctz):
|
|
tcg_out_ctz(s, rexw, args[0], args[1], args[2], const_args[2]);
|
|
break;
|
|
OP_32_64(clz):
|
|
tcg_out_clz(s, rexw, args[0], args[1], args[2], const_args[2]);
|
|
break;
|
|
OP_32_64(ctpop):
|
|
tcg_out_modrm(s, OPC_POPCNT + rexw, a0, a1);
|
|
break;
|
|
|
|
OP_32_64(brcond):
|
|
tcg_out_brcond(s, rexw, a2, a0, a1, const_args[1],
|
|
arg_label(args[3]), 0);
|
|
break;
|
|
OP_32_64(setcond):
|
|
tcg_out_setcond(s, rexw, args[3], a0, a1, a2, const_a2, false);
|
|
break;
|
|
OP_32_64(negsetcond):
|
|
tcg_out_setcond(s, rexw, args[3], a0, a1, a2, const_a2, true);
|
|
break;
|
|
OP_32_64(movcond):
|
|
tcg_out_movcond(s, rexw, args[5], a0, a1, a2, const_a2, args[3]);
|
|
break;
|
|
|
|
OP_32_64(bswap16):
|
|
if (a2 & TCG_BSWAP_OS) {
|
|
/* Output must be sign-extended. */
|
|
if (rexw) {
|
|
tcg_out_bswap64(s, a0);
|
|
tcg_out_shifti(s, SHIFT_SAR + rexw, a0, 48);
|
|
} else {
|
|
tcg_out_bswap32(s, a0);
|
|
tcg_out_shifti(s, SHIFT_SAR, a0, 16);
|
|
}
|
|
} else if ((a2 & (TCG_BSWAP_IZ | TCG_BSWAP_OZ)) == TCG_BSWAP_OZ) {
|
|
/* Output must be zero-extended, but input isn't. */
|
|
tcg_out_bswap32(s, a0);
|
|
tcg_out_shifti(s, SHIFT_SHR, a0, 16);
|
|
} else {
|
|
tcg_out_rolw_8(s, a0);
|
|
}
|
|
break;
|
|
OP_32_64(bswap32):
|
|
tcg_out_bswap32(s, a0);
|
|
if (rexw && (a2 & TCG_BSWAP_OS)) {
|
|
tcg_out_ext32s(s, a0, a0);
|
|
}
|
|
break;
|
|
|
|
OP_32_64(neg):
|
|
tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NEG, a0);
|
|
break;
|
|
OP_32_64(not):
|
|
tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NOT, a0);
|
|
break;
|
|
|
|
case INDEX_op_qemu_ld_a64_i32:
|
|
if (TCG_TARGET_REG_BITS == 32) {
|
|
tcg_out_qemu_ld(s, a0, -1, a1, a2, args[3], TCG_TYPE_I32);
|
|
break;
|
|
}
|
|
/* fall through */
|
|
case INDEX_op_qemu_ld_a32_i32:
|
|
tcg_out_qemu_ld(s, a0, -1, a1, -1, a2, TCG_TYPE_I32);
|
|
break;
|
|
case INDEX_op_qemu_ld_a32_i64:
|
|
if (TCG_TARGET_REG_BITS == 64) {
|
|
tcg_out_qemu_ld(s, a0, -1, a1, -1, a2, TCG_TYPE_I64);
|
|
} else {
|
|
tcg_out_qemu_ld(s, a0, a1, a2, -1, args[3], TCG_TYPE_I64);
|
|
}
|
|
break;
|
|
case INDEX_op_qemu_ld_a64_i64:
|
|
if (TCG_TARGET_REG_BITS == 64) {
|
|
tcg_out_qemu_ld(s, a0, -1, a1, -1, a2, TCG_TYPE_I64);
|
|
} else {
|
|
tcg_out_qemu_ld(s, a0, a1, a2, args[3], args[4], TCG_TYPE_I64);
|
|
}
|
|
break;
|
|
case INDEX_op_qemu_ld_a32_i128:
|
|
case INDEX_op_qemu_ld_a64_i128:
|
|
tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
|
|
tcg_out_qemu_ld(s, a0, a1, a2, -1, args[3], TCG_TYPE_I128);
|
|
break;
|
|
|
|
case INDEX_op_qemu_st_a64_i32:
|
|
case INDEX_op_qemu_st8_a64_i32:
|
|
if (TCG_TARGET_REG_BITS == 32) {
|
|
tcg_out_qemu_st(s, a0, -1, a1, a2, args[3], TCG_TYPE_I32);
|
|
break;
|
|
}
|
|
/* fall through */
|
|
case INDEX_op_qemu_st_a32_i32:
|
|
case INDEX_op_qemu_st8_a32_i32:
|
|
tcg_out_qemu_st(s, a0, -1, a1, -1, a2, TCG_TYPE_I32);
|
|
break;
|
|
case INDEX_op_qemu_st_a32_i64:
|
|
if (TCG_TARGET_REG_BITS == 64) {
|
|
tcg_out_qemu_st(s, a0, -1, a1, -1, a2, TCG_TYPE_I64);
|
|
} else {
|
|
tcg_out_qemu_st(s, a0, a1, a2, -1, args[3], TCG_TYPE_I64);
|
|
}
|
|
break;
|
|
case INDEX_op_qemu_st_a64_i64:
|
|
if (TCG_TARGET_REG_BITS == 64) {
|
|
tcg_out_qemu_st(s, a0, -1, a1, -1, a2, TCG_TYPE_I64);
|
|
} else {
|
|
tcg_out_qemu_st(s, a0, a1, a2, args[3], args[4], TCG_TYPE_I64);
|
|
}
|
|
break;
|
|
case INDEX_op_qemu_st_a32_i128:
|
|
case INDEX_op_qemu_st_a64_i128:
|
|
tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
|
|
tcg_out_qemu_st(s, a0, a1, a2, -1, args[3], TCG_TYPE_I128);
|
|
break;
|
|
|
|
OP_32_64(mulu2):
|
|
tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_MUL, args[3]);
|
|
break;
|
|
OP_32_64(muls2):
|
|
tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_IMUL, args[3]);
|
|
break;
|
|
OP_32_64(add2):
|
|
if (const_args[4]) {
|
|
tgen_arithi(s, ARITH_ADD + rexw, a0, args[4], 1);
|
|
} else {
|
|
tgen_arithr(s, ARITH_ADD + rexw, a0, args[4]);
|
|
}
|
|
if (const_args[5]) {
|
|
tgen_arithi(s, ARITH_ADC + rexw, a1, args[5], 1);
|
|
} else {
|
|
tgen_arithr(s, ARITH_ADC + rexw, a1, args[5]);
|
|
}
|
|
break;
|
|
OP_32_64(sub2):
|
|
if (const_args[4]) {
|
|
tgen_arithi(s, ARITH_SUB + rexw, a0, args[4], 1);
|
|
} else {
|
|
tgen_arithr(s, ARITH_SUB + rexw, a0, args[4]);
|
|
}
|
|
if (const_args[5]) {
|
|
tgen_arithi(s, ARITH_SBB + rexw, a1, args[5], 1);
|
|
} else {
|
|
tgen_arithr(s, ARITH_SBB + rexw, a1, args[5]);
|
|
}
|
|
break;
|
|
|
|
#if TCG_TARGET_REG_BITS == 32
|
|
case INDEX_op_brcond2_i32:
|
|
tcg_out_brcond2(s, args, const_args, 0);
|
|
break;
|
|
case INDEX_op_setcond2_i32:
|
|
tcg_out_setcond2(s, args, const_args);
|
|
break;
|
|
#else /* TCG_TARGET_REG_BITS == 64 */
|
|
case INDEX_op_ld32s_i64:
|
|
tcg_out_modrm_offset(s, OPC_MOVSLQ, a0, a1, a2);
|
|
break;
|
|
case INDEX_op_ld_i64:
|
|
tcg_out_ld(s, TCG_TYPE_I64, a0, a1, a2);
|
|
break;
|
|
case INDEX_op_st_i64:
|
|
if (const_args[0]) {
|
|
tcg_out_modrm_offset(s, OPC_MOVL_EvIz | P_REXW, 0, a1, a2);
|
|
tcg_out32(s, a0);
|
|
} else {
|
|
tcg_out_st(s, TCG_TYPE_I64, a0, a1, a2);
|
|
}
|
|
break;
|
|
|
|
case INDEX_op_bswap64_i64:
|
|
tcg_out_bswap64(s, a0);
|
|
break;
|
|
case INDEX_op_extrh_i64_i32:
|
|
tcg_out_shifti(s, SHIFT_SHR + P_REXW, a0, 32);
|
|
break;
|
|
#endif
|
|
|
|
OP_32_64(deposit):
|
|
if (args[3] == 0 && args[4] == 8) {
|
|
/* load bits 0..7 */
|
|
if (const_a2) {
|
|
tcg_out_opc(s, OPC_MOVB_Ib | P_REXB_RM | LOWREGMASK(a0),
|
|
0, a0, 0);
|
|
tcg_out8(s, a2);
|
|
} else {
|
|
tcg_out_modrm(s, OPC_MOVB_EvGv | P_REXB_R | P_REXB_RM, a2, a0);
|
|
}
|
|
} else if (TCG_TARGET_REG_BITS == 32 && args[3] == 8 && args[4] == 8) {
|
|
/* load bits 8..15 */
|
|
if (const_a2) {
|
|
tcg_out8(s, OPC_MOVB_Ib + a0 + 4);
|
|
tcg_out8(s, a2);
|
|
} else {
|
|
tcg_out_modrm(s, OPC_MOVB_EvGv, a2, a0 + 4);
|
|
}
|
|
} else if (args[3] == 0 && args[4] == 16) {
|
|
/* load bits 0..15 */
|
|
if (const_a2) {
|
|
tcg_out_opc(s, OPC_MOVL_Iv | P_DATA16 | LOWREGMASK(a0),
|
|
0, a0, 0);
|
|
tcg_out16(s, a2);
|
|
} else {
|
|
tcg_out_modrm(s, OPC_MOVL_EvGv | P_DATA16, a2, a0);
|
|
}
|
|
} else {
|
|
g_assert_not_reached();
|
|
}
|
|
break;
|
|
|
|
case INDEX_op_extract_i64:
|
|
if (a2 + args[3] == 32) {
|
|
/* This is a 32-bit zero-extending right shift. */
|
|
tcg_out_mov(s, TCG_TYPE_I32, a0, a1);
|
|
tcg_out_shifti(s, SHIFT_SHR, a0, a2);
|
|
break;
|
|
}
|
|
/* FALLTHRU */
|
|
case INDEX_op_extract_i32:
|
|
/* On the off-chance that we can use the high-byte registers.
|
|
Otherwise we emit the same ext16 + shift pattern that we
|
|
would have gotten from the normal tcg-op.c expansion. */
|
|
tcg_debug_assert(a2 == 8 && args[3] == 8);
|
|
if (a1 < 4 && a0 < 8) {
|
|
tcg_out_modrm(s, OPC_MOVZBL, a0, a1 + 4);
|
|
} else {
|
|
tcg_out_ext16u(s, a0, a1);
|
|
tcg_out_shifti(s, SHIFT_SHR, a0, 8);
|
|
}
|
|
break;
|
|
|
|
case INDEX_op_sextract_i32:
|
|
/* We don't implement sextract_i64, as we cannot sign-extend to
|
|
64-bits without using the REX prefix that explicitly excludes
|
|
access to the high-byte registers. */
|
|
tcg_debug_assert(a2 == 8 && args[3] == 8);
|
|
if (a1 < 4 && a0 < 8) {
|
|
tcg_out_modrm(s, OPC_MOVSBL, a0, a1 + 4);
|
|
} else {
|
|
tcg_out_ext16s(s, TCG_TYPE_I32, a0, a1);
|
|
tcg_out_shifti(s, SHIFT_SAR, a0, 8);
|
|
}
|
|
break;
|
|
|
|
OP_32_64(extract2):
|
|
/* Note that SHRD outputs to the r/m operand. */
|
|
tcg_out_modrm(s, OPC_SHRD_Ib + rexw, a2, a0);
|
|
tcg_out8(s, args[3]);
|
|
break;
|
|
|
|
case INDEX_op_mb:
|
|
tcg_out_mb(s, a0);
|
|
break;
|
|
case INDEX_op_mov_i32: /* Always emitted via tcg_out_mov. */
|
|
case INDEX_op_mov_i64:
|
|
case INDEX_op_call: /* Always emitted via tcg_out_call. */
|
|
case INDEX_op_exit_tb: /* Always emitted via tcg_out_exit_tb. */
|
|
case INDEX_op_goto_tb: /* Always emitted via tcg_out_goto_tb. */
|
|
case INDEX_op_ext8s_i32: /* Always emitted via tcg_reg_alloc_op. */
|
|
case INDEX_op_ext8s_i64:
|
|
case INDEX_op_ext8u_i32:
|
|
case INDEX_op_ext8u_i64:
|
|
case INDEX_op_ext16s_i32:
|
|
case INDEX_op_ext16s_i64:
|
|
case INDEX_op_ext16u_i32:
|
|
case INDEX_op_ext16u_i64:
|
|
case INDEX_op_ext32s_i64:
|
|
case INDEX_op_ext32u_i64:
|
|
case INDEX_op_ext_i32_i64:
|
|
case INDEX_op_extu_i32_i64:
|
|
case INDEX_op_extrl_i64_i32:
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
#undef OP_32_64
|
|
}
|
|
|
|
static void tcg_out_vec_op(TCGContext *s, TCGOpcode opc,
|
|
unsigned vecl, unsigned vece,
|
|
const TCGArg args[TCG_MAX_OP_ARGS],
|
|
const int const_args[TCG_MAX_OP_ARGS])
|
|
{
|
|
static int const add_insn[4] = {
|
|
OPC_PADDB, OPC_PADDW, OPC_PADDD, OPC_PADDQ
|
|
};
|
|
static int const ssadd_insn[4] = {
|
|
OPC_PADDSB, OPC_PADDSW, OPC_UD2, OPC_UD2
|
|
};
|
|
static int const usadd_insn[4] = {
|
|
OPC_PADDUB, OPC_PADDUW, OPC_UD2, OPC_UD2
|
|
};
|
|
static int const sub_insn[4] = {
|
|
OPC_PSUBB, OPC_PSUBW, OPC_PSUBD, OPC_PSUBQ
|
|
};
|
|
static int const sssub_insn[4] = {
|
|
OPC_PSUBSB, OPC_PSUBSW, OPC_UD2, OPC_UD2
|
|
};
|
|
static int const ussub_insn[4] = {
|
|
OPC_PSUBUB, OPC_PSUBUW, OPC_UD2, OPC_UD2
|
|
};
|
|
static int const mul_insn[4] = {
|
|
OPC_UD2, OPC_PMULLW, OPC_PMULLD, OPC_VPMULLQ
|
|
};
|
|
static int const shift_imm_insn[4] = {
|
|
OPC_UD2, OPC_PSHIFTW_Ib, OPC_PSHIFTD_Ib, OPC_PSHIFTQ_Ib
|
|
};
|
|
static int const cmpeq_insn[4] = {
|
|
OPC_PCMPEQB, OPC_PCMPEQW, OPC_PCMPEQD, OPC_PCMPEQQ
|
|
};
|
|
static int const cmpgt_insn[4] = {
|
|
OPC_PCMPGTB, OPC_PCMPGTW, OPC_PCMPGTD, OPC_PCMPGTQ
|
|
};
|
|
static int const punpckl_insn[4] = {
|
|
OPC_PUNPCKLBW, OPC_PUNPCKLWD, OPC_PUNPCKLDQ, OPC_PUNPCKLQDQ
|
|
};
|
|
static int const punpckh_insn[4] = {
|
|
OPC_PUNPCKHBW, OPC_PUNPCKHWD, OPC_PUNPCKHDQ, OPC_PUNPCKHQDQ
|
|
};
|
|
static int const packss_insn[4] = {
|
|
OPC_PACKSSWB, OPC_PACKSSDW, OPC_UD2, OPC_UD2
|
|
};
|
|
static int const packus_insn[4] = {
|
|
OPC_PACKUSWB, OPC_PACKUSDW, OPC_UD2, OPC_UD2
|
|
};
|
|
static int const smin_insn[4] = {
|
|
OPC_PMINSB, OPC_PMINSW, OPC_PMINSD, OPC_VPMINSQ
|
|
};
|
|
static int const smax_insn[4] = {
|
|
OPC_PMAXSB, OPC_PMAXSW, OPC_PMAXSD, OPC_VPMAXSQ
|
|
};
|
|
static int const umin_insn[4] = {
|
|
OPC_PMINUB, OPC_PMINUW, OPC_PMINUD, OPC_VPMINUQ
|
|
};
|
|
static int const umax_insn[4] = {
|
|
OPC_PMAXUB, OPC_PMAXUW, OPC_PMAXUD, OPC_VPMAXUQ
|
|
};
|
|
static int const rotlv_insn[4] = {
|
|
OPC_UD2, OPC_UD2, OPC_VPROLVD, OPC_VPROLVQ
|
|
};
|
|
static int const rotrv_insn[4] = {
|
|
OPC_UD2, OPC_UD2, OPC_VPRORVD, OPC_VPRORVQ
|
|
};
|
|
static int const shlv_insn[4] = {
|
|
OPC_UD2, OPC_VPSLLVW, OPC_VPSLLVD, OPC_VPSLLVQ
|
|
};
|
|
static int const shrv_insn[4] = {
|
|
OPC_UD2, OPC_VPSRLVW, OPC_VPSRLVD, OPC_VPSRLVQ
|
|
};
|
|
static int const sarv_insn[4] = {
|
|
OPC_UD2, OPC_VPSRAVW, OPC_VPSRAVD, OPC_VPSRAVQ
|
|
};
|
|
static int const shls_insn[4] = {
|
|
OPC_UD2, OPC_PSLLW, OPC_PSLLD, OPC_PSLLQ
|
|
};
|
|
static int const shrs_insn[4] = {
|
|
OPC_UD2, OPC_PSRLW, OPC_PSRLD, OPC_PSRLQ
|
|
};
|
|
static int const sars_insn[4] = {
|
|
OPC_UD2, OPC_PSRAW, OPC_PSRAD, OPC_VPSRAQ
|
|
};
|
|
static int const vpshldi_insn[4] = {
|
|
OPC_UD2, OPC_VPSHLDW, OPC_VPSHLDD, OPC_VPSHLDQ
|
|
};
|
|
static int const vpshldv_insn[4] = {
|
|
OPC_UD2, OPC_VPSHLDVW, OPC_VPSHLDVD, OPC_VPSHLDVQ
|
|
};
|
|
static int const vpshrdv_insn[4] = {
|
|
OPC_UD2, OPC_VPSHRDVW, OPC_VPSHRDVD, OPC_VPSHRDVQ
|
|
};
|
|
static int const abs_insn[4] = {
|
|
OPC_PABSB, OPC_PABSW, OPC_PABSD, OPC_VPABSQ
|
|
};
|
|
|
|
TCGType type = vecl + TCG_TYPE_V64;
|
|
int insn, sub;
|
|
TCGArg a0, a1, a2, a3;
|
|
|
|
a0 = args[0];
|
|
a1 = args[1];
|
|
a2 = args[2];
|
|
|
|
switch (opc) {
|
|
case INDEX_op_add_vec:
|
|
insn = add_insn[vece];
|
|
goto gen_simd;
|
|
case INDEX_op_ssadd_vec:
|
|
insn = ssadd_insn[vece];
|
|
goto gen_simd;
|
|
case INDEX_op_usadd_vec:
|
|
insn = usadd_insn[vece];
|
|
goto gen_simd;
|
|
case INDEX_op_sub_vec:
|
|
insn = sub_insn[vece];
|
|
goto gen_simd;
|
|
case INDEX_op_sssub_vec:
|
|
insn = sssub_insn[vece];
|
|
goto gen_simd;
|
|
case INDEX_op_ussub_vec:
|
|
insn = ussub_insn[vece];
|
|
goto gen_simd;
|
|
case INDEX_op_mul_vec:
|
|
insn = mul_insn[vece];
|
|
goto gen_simd;
|
|
case INDEX_op_and_vec:
|
|
insn = OPC_PAND;
|
|
goto gen_simd;
|
|
case INDEX_op_or_vec:
|
|
insn = OPC_POR;
|
|
goto gen_simd;
|
|
case INDEX_op_xor_vec:
|
|
insn = OPC_PXOR;
|
|
goto gen_simd;
|
|
case INDEX_op_smin_vec:
|
|
insn = smin_insn[vece];
|
|
goto gen_simd;
|
|
case INDEX_op_umin_vec:
|
|
insn = umin_insn[vece];
|
|
goto gen_simd;
|
|
case INDEX_op_smax_vec:
|
|
insn = smax_insn[vece];
|
|
goto gen_simd;
|
|
case INDEX_op_umax_vec:
|
|
insn = umax_insn[vece];
|
|
goto gen_simd;
|
|
case INDEX_op_shlv_vec:
|
|
insn = shlv_insn[vece];
|
|
goto gen_simd;
|
|
case INDEX_op_shrv_vec:
|
|
insn = shrv_insn[vece];
|
|
goto gen_simd;
|
|
case INDEX_op_sarv_vec:
|
|
insn = sarv_insn[vece];
|
|
goto gen_simd;
|
|
case INDEX_op_rotlv_vec:
|
|
insn = rotlv_insn[vece];
|
|
goto gen_simd;
|
|
case INDEX_op_rotrv_vec:
|
|
insn = rotrv_insn[vece];
|
|
goto gen_simd;
|
|
case INDEX_op_shls_vec:
|
|
insn = shls_insn[vece];
|
|
goto gen_simd;
|
|
case INDEX_op_shrs_vec:
|
|
insn = shrs_insn[vece];
|
|
goto gen_simd;
|
|
case INDEX_op_sars_vec:
|
|
insn = sars_insn[vece];
|
|
goto gen_simd;
|
|
case INDEX_op_x86_punpckl_vec:
|
|
insn = punpckl_insn[vece];
|
|
goto gen_simd;
|
|
case INDEX_op_x86_punpckh_vec:
|
|
insn = punpckh_insn[vece];
|
|
goto gen_simd;
|
|
case INDEX_op_x86_packss_vec:
|
|
insn = packss_insn[vece];
|
|
goto gen_simd;
|
|
case INDEX_op_x86_packus_vec:
|
|
insn = packus_insn[vece];
|
|
goto gen_simd;
|
|
case INDEX_op_x86_vpshldv_vec:
|
|
insn = vpshldv_insn[vece];
|
|
a1 = a2;
|
|
a2 = args[3];
|
|
goto gen_simd;
|
|
case INDEX_op_x86_vpshrdv_vec:
|
|
insn = vpshrdv_insn[vece];
|
|
a1 = a2;
|
|
a2 = args[3];
|
|
goto gen_simd;
|
|
#if TCG_TARGET_REG_BITS == 32
|
|
case INDEX_op_dup2_vec:
|
|
/* First merge the two 32-bit inputs to a single 64-bit element. */
|
|
tcg_out_vex_modrm(s, OPC_PUNPCKLDQ, a0, a1, a2);
|
|
/* Then replicate the 64-bit elements across the rest of the vector. */
|
|
if (type != TCG_TYPE_V64) {
|
|
tcg_out_dup_vec(s, type, MO_64, a0, a0);
|
|
}
|
|
break;
|
|
#endif
|
|
case INDEX_op_abs_vec:
|
|
insn = abs_insn[vece];
|
|
a2 = a1;
|
|
a1 = 0;
|
|
goto gen_simd;
|
|
gen_simd:
|
|
tcg_debug_assert(insn != OPC_UD2);
|
|
if (type == TCG_TYPE_V256) {
|
|
insn |= P_VEXL;
|
|
}
|
|
tcg_out_vex_modrm(s, insn, a0, a1, a2);
|
|
break;
|
|
|
|
case INDEX_op_cmp_vec:
|
|
sub = args[3];
|
|
if (sub == TCG_COND_EQ) {
|
|
insn = cmpeq_insn[vece];
|
|
} else if (sub == TCG_COND_GT) {
|
|
insn = cmpgt_insn[vece];
|
|
} else {
|
|
g_assert_not_reached();
|
|
}
|
|
goto gen_simd;
|
|
|
|
case INDEX_op_andc_vec:
|
|
insn = OPC_PANDN;
|
|
if (type == TCG_TYPE_V256) {
|
|
insn |= P_VEXL;
|
|
}
|
|
tcg_out_vex_modrm(s, insn, a0, a2, a1);
|
|
break;
|
|
|
|
case INDEX_op_shli_vec:
|
|
insn = shift_imm_insn[vece];
|
|
sub = 6;
|
|
goto gen_shift;
|
|
case INDEX_op_shri_vec:
|
|
insn = shift_imm_insn[vece];
|
|
sub = 2;
|
|
goto gen_shift;
|
|
case INDEX_op_sari_vec:
|
|
if (vece == MO_64) {
|
|
insn = OPC_PSHIFTD_Ib | P_VEXW | P_EVEX;
|
|
} else {
|
|
insn = shift_imm_insn[vece];
|
|
}
|
|
sub = 4;
|
|
goto gen_shift;
|
|
case INDEX_op_rotli_vec:
|
|
insn = OPC_PSHIFTD_Ib | P_EVEX; /* VPROL[DQ] */
|
|
if (vece == MO_64) {
|
|
insn |= P_VEXW;
|
|
}
|
|
sub = 1;
|
|
goto gen_shift;
|
|
gen_shift:
|
|
tcg_debug_assert(vece != MO_8);
|
|
if (type == TCG_TYPE_V256) {
|
|
insn |= P_VEXL;
|
|
}
|
|
tcg_out_vex_modrm(s, insn, sub, a0, a1);
|
|
tcg_out8(s, a2);
|
|
break;
|
|
|
|
case INDEX_op_ld_vec:
|
|
tcg_out_ld(s, type, a0, a1, a2);
|
|
break;
|
|
case INDEX_op_st_vec:
|
|
tcg_out_st(s, type, a0, a1, a2);
|
|
break;
|
|
case INDEX_op_dupm_vec:
|
|
tcg_out_dupm_vec(s, type, vece, a0, a1, a2);
|
|
break;
|
|
|
|
case INDEX_op_x86_shufps_vec:
|
|
insn = OPC_SHUFPS;
|
|
sub = args[3];
|
|
goto gen_simd_imm8;
|
|
case INDEX_op_x86_blend_vec:
|
|
if (vece == MO_16) {
|
|
insn = OPC_PBLENDW;
|
|
} else if (vece == MO_32) {
|
|
insn = (have_avx2 ? OPC_VPBLENDD : OPC_BLENDPS);
|
|
} else {
|
|
g_assert_not_reached();
|
|
}
|
|
sub = args[3];
|
|
goto gen_simd_imm8;
|
|
case INDEX_op_x86_vperm2i128_vec:
|
|
insn = OPC_VPERM2I128;
|
|
sub = args[3];
|
|
goto gen_simd_imm8;
|
|
case INDEX_op_x86_vpshldi_vec:
|
|
insn = vpshldi_insn[vece];
|
|
sub = args[3];
|
|
goto gen_simd_imm8;
|
|
|
|
case INDEX_op_not_vec:
|
|
insn = OPC_VPTERNLOGQ;
|
|
a2 = a1;
|
|
sub = 0x33; /* !B */
|
|
goto gen_simd_imm8;
|
|
case INDEX_op_nor_vec:
|
|
insn = OPC_VPTERNLOGQ;
|
|
sub = 0x11; /* norCB */
|
|
goto gen_simd_imm8;
|
|
case INDEX_op_nand_vec:
|
|
insn = OPC_VPTERNLOGQ;
|
|
sub = 0x77; /* nandCB */
|
|
goto gen_simd_imm8;
|
|
case INDEX_op_eqv_vec:
|
|
insn = OPC_VPTERNLOGQ;
|
|
sub = 0x99; /* xnorCB */
|
|
goto gen_simd_imm8;
|
|
case INDEX_op_orc_vec:
|
|
insn = OPC_VPTERNLOGQ;
|
|
sub = 0xdd; /* orB!C */
|
|
goto gen_simd_imm8;
|
|
|
|
case INDEX_op_bitsel_vec:
|
|
insn = OPC_VPTERNLOGQ;
|
|
a3 = args[3];
|
|
if (a0 == a1) {
|
|
a1 = a2;
|
|
a2 = a3;
|
|
sub = 0xca; /* A?B:C */
|
|
} else if (a0 == a2) {
|
|
a2 = a3;
|
|
sub = 0xe2; /* B?A:C */
|
|
} else {
|
|
tcg_out_mov(s, type, a0, a3);
|
|
sub = 0xb8; /* B?C:A */
|
|
}
|
|
goto gen_simd_imm8;
|
|
|
|
gen_simd_imm8:
|
|
tcg_debug_assert(insn != OPC_UD2);
|
|
if (type == TCG_TYPE_V256) {
|
|
insn |= P_VEXL;
|
|
}
|
|
tcg_out_vex_modrm(s, insn, a0, a1, a2);
|
|
tcg_out8(s, sub);
|
|
break;
|
|
|
|
case INDEX_op_x86_vpblendvb_vec:
|
|
insn = OPC_VPBLENDVB;
|
|
if (type == TCG_TYPE_V256) {
|
|
insn |= P_VEXL;
|
|
}
|
|
tcg_out_vex_modrm(s, insn, a0, a1, a2);
|
|
tcg_out8(s, args[3] << 4);
|
|
break;
|
|
|
|
case INDEX_op_x86_psrldq_vec:
|
|
tcg_out_vex_modrm(s, OPC_GRP14, 3, a0, a1);
|
|
tcg_out8(s, a2);
|
|
break;
|
|
|
|
case INDEX_op_mov_vec: /* Always emitted via tcg_out_mov. */
|
|
case INDEX_op_dup_vec: /* Always emitted via tcg_out_dup_vec. */
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
static TCGConstraintSetIndex tcg_target_op_def(TCGOpcode op)
|
|
{
|
|
switch (op) {
|
|
case INDEX_op_goto_ptr:
|
|
return C_O0_I1(r);
|
|
|
|
case INDEX_op_ld8u_i32:
|
|
case INDEX_op_ld8u_i64:
|
|
case INDEX_op_ld8s_i32:
|
|
case INDEX_op_ld8s_i64:
|
|
case INDEX_op_ld16u_i32:
|
|
case INDEX_op_ld16u_i64:
|
|
case INDEX_op_ld16s_i32:
|
|
case INDEX_op_ld16s_i64:
|
|
case INDEX_op_ld_i32:
|
|
case INDEX_op_ld32u_i64:
|
|
case INDEX_op_ld32s_i64:
|
|
case INDEX_op_ld_i64:
|
|
return C_O1_I1(r, r);
|
|
|
|
case INDEX_op_st8_i32:
|
|
case INDEX_op_st8_i64:
|
|
return C_O0_I2(qi, r);
|
|
|
|
case INDEX_op_st16_i32:
|
|
case INDEX_op_st16_i64:
|
|
case INDEX_op_st_i32:
|
|
case INDEX_op_st32_i64:
|
|
return C_O0_I2(ri, r);
|
|
|
|
case INDEX_op_st_i64:
|
|
return C_O0_I2(re, r);
|
|
|
|
case INDEX_op_add_i32:
|
|
case INDEX_op_add_i64:
|
|
return C_O1_I2(r, r, re);
|
|
|
|
case INDEX_op_sub_i32:
|
|
case INDEX_op_sub_i64:
|
|
case INDEX_op_mul_i32:
|
|
case INDEX_op_mul_i64:
|
|
case INDEX_op_or_i32:
|
|
case INDEX_op_or_i64:
|
|
case INDEX_op_xor_i32:
|
|
case INDEX_op_xor_i64:
|
|
return C_O1_I2(r, 0, re);
|
|
|
|
case INDEX_op_and_i32:
|
|
case INDEX_op_and_i64:
|
|
return C_O1_I2(r, 0, reZ);
|
|
|
|
case INDEX_op_andc_i32:
|
|
case INDEX_op_andc_i64:
|
|
return C_O1_I2(r, r, rI);
|
|
|
|
case INDEX_op_shl_i32:
|
|
case INDEX_op_shl_i64:
|
|
case INDEX_op_shr_i32:
|
|
case INDEX_op_shr_i64:
|
|
case INDEX_op_sar_i32:
|
|
case INDEX_op_sar_i64:
|
|
return have_bmi2 ? C_O1_I2(r, r, ri) : C_O1_I2(r, 0, ci);
|
|
|
|
case INDEX_op_rotl_i32:
|
|
case INDEX_op_rotl_i64:
|
|
case INDEX_op_rotr_i32:
|
|
case INDEX_op_rotr_i64:
|
|
return C_O1_I2(r, 0, ci);
|
|
|
|
case INDEX_op_brcond_i32:
|
|
case INDEX_op_brcond_i64:
|
|
return C_O0_I2(r, re);
|
|
|
|
case INDEX_op_bswap16_i32:
|
|
case INDEX_op_bswap16_i64:
|
|
case INDEX_op_bswap32_i32:
|
|
case INDEX_op_bswap32_i64:
|
|
case INDEX_op_bswap64_i64:
|
|
case INDEX_op_neg_i32:
|
|
case INDEX_op_neg_i64:
|
|
case INDEX_op_not_i32:
|
|
case INDEX_op_not_i64:
|
|
case INDEX_op_extrh_i64_i32:
|
|
return C_O1_I1(r, 0);
|
|
|
|
case INDEX_op_ext8s_i32:
|
|
case INDEX_op_ext8s_i64:
|
|
case INDEX_op_ext8u_i32:
|
|
case INDEX_op_ext8u_i64:
|
|
return C_O1_I1(r, q);
|
|
|
|
case INDEX_op_ext16s_i32:
|
|
case INDEX_op_ext16s_i64:
|
|
case INDEX_op_ext16u_i32:
|
|
case INDEX_op_ext16u_i64:
|
|
case INDEX_op_ext32s_i64:
|
|
case INDEX_op_ext32u_i64:
|
|
case INDEX_op_ext_i32_i64:
|
|
case INDEX_op_extu_i32_i64:
|
|
case INDEX_op_extrl_i64_i32:
|
|
case INDEX_op_extract_i32:
|
|
case INDEX_op_extract_i64:
|
|
case INDEX_op_sextract_i32:
|
|
case INDEX_op_ctpop_i32:
|
|
case INDEX_op_ctpop_i64:
|
|
return C_O1_I1(r, r);
|
|
|
|
case INDEX_op_extract2_i32:
|
|
case INDEX_op_extract2_i64:
|
|
return C_O1_I2(r, 0, r);
|
|
|
|
case INDEX_op_deposit_i32:
|
|
case INDEX_op_deposit_i64:
|
|
return C_O1_I2(q, 0, qi);
|
|
|
|
case INDEX_op_setcond_i32:
|
|
case INDEX_op_setcond_i64:
|
|
case INDEX_op_negsetcond_i32:
|
|
case INDEX_op_negsetcond_i64:
|
|
return C_O1_I2(q, r, re);
|
|
|
|
case INDEX_op_movcond_i32:
|
|
case INDEX_op_movcond_i64:
|
|
return C_O1_I4(r, r, re, r, 0);
|
|
|
|
case INDEX_op_div2_i32:
|
|
case INDEX_op_div2_i64:
|
|
case INDEX_op_divu2_i32:
|
|
case INDEX_op_divu2_i64:
|
|
return C_O2_I3(a, d, 0, 1, r);
|
|
|
|
case INDEX_op_mulu2_i32:
|
|
case INDEX_op_mulu2_i64:
|
|
case INDEX_op_muls2_i32:
|
|
case INDEX_op_muls2_i64:
|
|
return C_O2_I2(a, d, a, r);
|
|
|
|
case INDEX_op_add2_i32:
|
|
case INDEX_op_add2_i64:
|
|
case INDEX_op_sub2_i32:
|
|
case INDEX_op_sub2_i64:
|
|
return C_N1_O1_I4(r, r, 0, 1, re, re);
|
|
|
|
case INDEX_op_ctz_i32:
|
|
case INDEX_op_ctz_i64:
|
|
return have_bmi1 ? C_N1_I2(r, r, rW) : C_N1_I2(r, r, r);
|
|
|
|
case INDEX_op_clz_i32:
|
|
case INDEX_op_clz_i64:
|
|
return have_lzcnt ? C_N1_I2(r, r, rW) : C_N1_I2(r, r, r);
|
|
|
|
case INDEX_op_qemu_ld_a32_i32:
|
|
return C_O1_I1(r, L);
|
|
case INDEX_op_qemu_ld_a64_i32:
|
|
return TCG_TARGET_REG_BITS == 64 ? C_O1_I1(r, L) : C_O1_I2(r, L, L);
|
|
|
|
case INDEX_op_qemu_st_a32_i32:
|
|
return C_O0_I2(L, L);
|
|
case INDEX_op_qemu_st_a64_i32:
|
|
return TCG_TARGET_REG_BITS == 64 ? C_O0_I2(L, L) : C_O0_I3(L, L, L);
|
|
case INDEX_op_qemu_st8_a32_i32:
|
|
return C_O0_I2(s, L);
|
|
case INDEX_op_qemu_st8_a64_i32:
|
|
return TCG_TARGET_REG_BITS == 64 ? C_O0_I2(s, L) : C_O0_I3(s, L, L);
|
|
|
|
case INDEX_op_qemu_ld_a32_i64:
|
|
return TCG_TARGET_REG_BITS == 64 ? C_O1_I1(r, L) : C_O2_I1(r, r, L);
|
|
case INDEX_op_qemu_ld_a64_i64:
|
|
return TCG_TARGET_REG_BITS == 64 ? C_O1_I1(r, L) : C_O2_I2(r, r, L, L);
|
|
|
|
case INDEX_op_qemu_st_a32_i64:
|
|
return TCG_TARGET_REG_BITS == 64 ? C_O0_I2(L, L) : C_O0_I3(L, L, L);
|
|
case INDEX_op_qemu_st_a64_i64:
|
|
return TCG_TARGET_REG_BITS == 64 ? C_O0_I2(L, L) : C_O0_I4(L, L, L, L);
|
|
|
|
case INDEX_op_qemu_ld_a32_i128:
|
|
case INDEX_op_qemu_ld_a64_i128:
|
|
tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
|
|
return C_O2_I1(r, r, L);
|
|
case INDEX_op_qemu_st_a32_i128:
|
|
case INDEX_op_qemu_st_a64_i128:
|
|
tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
|
|
return C_O0_I3(L, L, L);
|
|
|
|
case INDEX_op_brcond2_i32:
|
|
return C_O0_I4(r, r, ri, ri);
|
|
|
|
case INDEX_op_setcond2_i32:
|
|
return C_O1_I4(r, r, r, ri, ri);
|
|
|
|
case INDEX_op_ld_vec:
|
|
case INDEX_op_dupm_vec:
|
|
return C_O1_I1(x, r);
|
|
|
|
case INDEX_op_st_vec:
|
|
return C_O0_I2(x, r);
|
|
|
|
case INDEX_op_add_vec:
|
|
case INDEX_op_sub_vec:
|
|
case INDEX_op_mul_vec:
|
|
case INDEX_op_and_vec:
|
|
case INDEX_op_or_vec:
|
|
case INDEX_op_xor_vec:
|
|
case INDEX_op_andc_vec:
|
|
case INDEX_op_orc_vec:
|
|
case INDEX_op_nand_vec:
|
|
case INDEX_op_nor_vec:
|
|
case INDEX_op_eqv_vec:
|
|
case INDEX_op_ssadd_vec:
|
|
case INDEX_op_usadd_vec:
|
|
case INDEX_op_sssub_vec:
|
|
case INDEX_op_ussub_vec:
|
|
case INDEX_op_smin_vec:
|
|
case INDEX_op_umin_vec:
|
|
case INDEX_op_smax_vec:
|
|
case INDEX_op_umax_vec:
|
|
case INDEX_op_shlv_vec:
|
|
case INDEX_op_shrv_vec:
|
|
case INDEX_op_sarv_vec:
|
|
case INDEX_op_rotlv_vec:
|
|
case INDEX_op_rotrv_vec:
|
|
case INDEX_op_shls_vec:
|
|
case INDEX_op_shrs_vec:
|
|
case INDEX_op_sars_vec:
|
|
case INDEX_op_cmp_vec:
|
|
case INDEX_op_x86_shufps_vec:
|
|
case INDEX_op_x86_blend_vec:
|
|
case INDEX_op_x86_packss_vec:
|
|
case INDEX_op_x86_packus_vec:
|
|
case INDEX_op_x86_vperm2i128_vec:
|
|
case INDEX_op_x86_punpckl_vec:
|
|
case INDEX_op_x86_punpckh_vec:
|
|
case INDEX_op_x86_vpshldi_vec:
|
|
#if TCG_TARGET_REG_BITS == 32
|
|
case INDEX_op_dup2_vec:
|
|
#endif
|
|
return C_O1_I2(x, x, x);
|
|
|
|
case INDEX_op_abs_vec:
|
|
case INDEX_op_dup_vec:
|
|
case INDEX_op_not_vec:
|
|
case INDEX_op_shli_vec:
|
|
case INDEX_op_shri_vec:
|
|
case INDEX_op_sari_vec:
|
|
case INDEX_op_rotli_vec:
|
|
case INDEX_op_x86_psrldq_vec:
|
|
return C_O1_I1(x, x);
|
|
|
|
case INDEX_op_x86_vpshldv_vec:
|
|
case INDEX_op_x86_vpshrdv_vec:
|
|
return C_O1_I3(x, 0, x, x);
|
|
|
|
case INDEX_op_bitsel_vec:
|
|
case INDEX_op_x86_vpblendvb_vec:
|
|
return C_O1_I3(x, x, x, x);
|
|
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
int tcg_can_emit_vec_op(TCGOpcode opc, TCGType type, unsigned vece)
|
|
{
|
|
switch (opc) {
|
|
case INDEX_op_add_vec:
|
|
case INDEX_op_sub_vec:
|
|
case INDEX_op_and_vec:
|
|
case INDEX_op_or_vec:
|
|
case INDEX_op_xor_vec:
|
|
case INDEX_op_andc_vec:
|
|
case INDEX_op_orc_vec:
|
|
case INDEX_op_nand_vec:
|
|
case INDEX_op_nor_vec:
|
|
case INDEX_op_eqv_vec:
|
|
case INDEX_op_not_vec:
|
|
case INDEX_op_bitsel_vec:
|
|
return 1;
|
|
case INDEX_op_cmp_vec:
|
|
case INDEX_op_cmpsel_vec:
|
|
return -1;
|
|
|
|
case INDEX_op_rotli_vec:
|
|
return have_avx512vl && vece >= MO_32 ? 1 : -1;
|
|
|
|
case INDEX_op_shli_vec:
|
|
case INDEX_op_shri_vec:
|
|
/* We must expand the operation for MO_8. */
|
|
return vece == MO_8 ? -1 : 1;
|
|
|
|
case INDEX_op_sari_vec:
|
|
switch (vece) {
|
|
case MO_8:
|
|
return -1;
|
|
case MO_16:
|
|
case MO_32:
|
|
return 1;
|
|
case MO_64:
|
|
if (have_avx512vl) {
|
|
return 1;
|
|
}
|
|
/*
|
|
* We can emulate this for MO_64, but it does not pay off
|
|
* unless we're producing at least 4 values.
|
|
*/
|
|
return type >= TCG_TYPE_V256 ? -1 : 0;
|
|
}
|
|
return 0;
|
|
|
|
case INDEX_op_shls_vec:
|
|
case INDEX_op_shrs_vec:
|
|
return vece >= MO_16;
|
|
case INDEX_op_sars_vec:
|
|
switch (vece) {
|
|
case MO_16:
|
|
case MO_32:
|
|
return 1;
|
|
case MO_64:
|
|
return have_avx512vl;
|
|
}
|
|
return 0;
|
|
case INDEX_op_rotls_vec:
|
|
return vece >= MO_16 ? -1 : 0;
|
|
|
|
case INDEX_op_shlv_vec:
|
|
case INDEX_op_shrv_vec:
|
|
switch (vece) {
|
|
case MO_16:
|
|
return have_avx512bw;
|
|
case MO_32:
|
|
case MO_64:
|
|
return have_avx2;
|
|
}
|
|
return 0;
|
|
case INDEX_op_sarv_vec:
|
|
switch (vece) {
|
|
case MO_16:
|
|
return have_avx512bw;
|
|
case MO_32:
|
|
return have_avx2;
|
|
case MO_64:
|
|
return have_avx512vl;
|
|
}
|
|
return 0;
|
|
case INDEX_op_rotlv_vec:
|
|
case INDEX_op_rotrv_vec:
|
|
switch (vece) {
|
|
case MO_16:
|
|
return have_avx512vbmi2 ? -1 : 0;
|
|
case MO_32:
|
|
case MO_64:
|
|
return have_avx512vl ? 1 : have_avx2 ? -1 : 0;
|
|
}
|
|
return 0;
|
|
|
|
case INDEX_op_mul_vec:
|
|
switch (vece) {
|
|
case MO_8:
|
|
return -1;
|
|
case MO_64:
|
|
return have_avx512dq;
|
|
}
|
|
return 1;
|
|
|
|
case INDEX_op_ssadd_vec:
|
|
case INDEX_op_usadd_vec:
|
|
case INDEX_op_sssub_vec:
|
|
case INDEX_op_ussub_vec:
|
|
return vece <= MO_16;
|
|
case INDEX_op_smin_vec:
|
|
case INDEX_op_smax_vec:
|
|
case INDEX_op_umin_vec:
|
|
case INDEX_op_umax_vec:
|
|
case INDEX_op_abs_vec:
|
|
return vece <= MO_32 || have_avx512vl;
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static void expand_vec_shi(TCGType type, unsigned vece, TCGOpcode opc,
|
|
TCGv_vec v0, TCGv_vec v1, TCGArg imm)
|
|
{
|
|
TCGv_vec t1, t2;
|
|
|
|
tcg_debug_assert(vece == MO_8);
|
|
|
|
t1 = tcg_temp_new_vec(type);
|
|
t2 = tcg_temp_new_vec(type);
|
|
|
|
/*
|
|
* Unpack to W, shift, and repack. Tricky bits:
|
|
* (1) Use punpck*bw x,x to produce DDCCBBAA,
|
|
* i.e. duplicate in other half of the 16-bit lane.
|
|
* (2) For right-shift, add 8 so that the high half of the lane
|
|
* becomes zero. For left-shift, and left-rotate, we must
|
|
* shift up and down again.
|
|
* (3) Step 2 leaves high half zero such that PACKUSWB
|
|
* (pack with unsigned saturation) does not modify
|
|
* the quantity.
|
|
*/
|
|
vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8,
|
|
tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(v1));
|
|
vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8,
|
|
tcgv_vec_arg(t2), tcgv_vec_arg(v1), tcgv_vec_arg(v1));
|
|
|
|
if (opc != INDEX_op_rotli_vec) {
|
|
imm += 8;
|
|
}
|
|
if (opc == INDEX_op_shri_vec) {
|
|
tcg_gen_shri_vec(MO_16, t1, t1, imm);
|
|
tcg_gen_shri_vec(MO_16, t2, t2, imm);
|
|
} else {
|
|
tcg_gen_shli_vec(MO_16, t1, t1, imm);
|
|
tcg_gen_shli_vec(MO_16, t2, t2, imm);
|
|
tcg_gen_shri_vec(MO_16, t1, t1, 8);
|
|
tcg_gen_shri_vec(MO_16, t2, t2, 8);
|
|
}
|
|
|
|
vec_gen_3(INDEX_op_x86_packus_vec, type, MO_8,
|
|
tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t2));
|
|
tcg_temp_free_vec(t1);
|
|
tcg_temp_free_vec(t2);
|
|
}
|
|
|
|
static void expand_vec_sari(TCGType type, unsigned vece,
|
|
TCGv_vec v0, TCGv_vec v1, TCGArg imm)
|
|
{
|
|
TCGv_vec t1, t2;
|
|
|
|
switch (vece) {
|
|
case MO_8:
|
|
/* Unpack to W, shift, and repack, as in expand_vec_shi. */
|
|
t1 = tcg_temp_new_vec(type);
|
|
t2 = tcg_temp_new_vec(type);
|
|
vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8,
|
|
tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(v1));
|
|
vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8,
|
|
tcgv_vec_arg(t2), tcgv_vec_arg(v1), tcgv_vec_arg(v1));
|
|
tcg_gen_sari_vec(MO_16, t1, t1, imm + 8);
|
|
tcg_gen_sari_vec(MO_16, t2, t2, imm + 8);
|
|
vec_gen_3(INDEX_op_x86_packss_vec, type, MO_8,
|
|
tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t2));
|
|
tcg_temp_free_vec(t1);
|
|
tcg_temp_free_vec(t2);
|
|
break;
|
|
|
|
case MO_64:
|
|
t1 = tcg_temp_new_vec(type);
|
|
if (imm <= 32) {
|
|
/*
|
|
* We can emulate a small sign extend by performing an arithmetic
|
|
* 32-bit shift and overwriting the high half of a 64-bit logical
|
|
* shift. Note that the ISA says shift of 32 is valid, but TCG
|
|
* does not, so we have to bound the smaller shift -- we get the
|
|
* same result in the high half either way.
|
|
*/
|
|
tcg_gen_sari_vec(MO_32, t1, v1, MIN(imm, 31));
|
|
tcg_gen_shri_vec(MO_64, v0, v1, imm);
|
|
vec_gen_4(INDEX_op_x86_blend_vec, type, MO_32,
|
|
tcgv_vec_arg(v0), tcgv_vec_arg(v0),
|
|
tcgv_vec_arg(t1), 0xaa);
|
|
} else {
|
|
/* Otherwise we will need to use a compare vs 0 to produce
|
|
* the sign-extend, shift and merge.
|
|
*/
|
|
tcg_gen_cmp_vec(TCG_COND_GT, MO_64, t1,
|
|
tcg_constant_vec(type, MO_64, 0), v1);
|
|
tcg_gen_shri_vec(MO_64, v0, v1, imm);
|
|
tcg_gen_shli_vec(MO_64, t1, t1, 64 - imm);
|
|
tcg_gen_or_vec(MO_64, v0, v0, t1);
|
|
}
|
|
tcg_temp_free_vec(t1);
|
|
break;
|
|
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
static void expand_vec_rotli(TCGType type, unsigned vece,
|
|
TCGv_vec v0, TCGv_vec v1, TCGArg imm)
|
|
{
|
|
TCGv_vec t;
|
|
|
|
if (vece == MO_8) {
|
|
expand_vec_shi(type, vece, INDEX_op_rotli_vec, v0, v1, imm);
|
|
return;
|
|
}
|
|
|
|
if (have_avx512vbmi2) {
|
|
vec_gen_4(INDEX_op_x86_vpshldi_vec, type, vece,
|
|
tcgv_vec_arg(v0), tcgv_vec_arg(v1), tcgv_vec_arg(v1), imm);
|
|
return;
|
|
}
|
|
|
|
t = tcg_temp_new_vec(type);
|
|
tcg_gen_shli_vec(vece, t, v1, imm);
|
|
tcg_gen_shri_vec(vece, v0, v1, (8 << vece) - imm);
|
|
tcg_gen_or_vec(vece, v0, v0, t);
|
|
tcg_temp_free_vec(t);
|
|
}
|
|
|
|
static void expand_vec_rotv(TCGType type, unsigned vece, TCGv_vec v0,
|
|
TCGv_vec v1, TCGv_vec sh, bool right)
|
|
{
|
|
TCGv_vec t;
|
|
|
|
if (have_avx512vbmi2) {
|
|
vec_gen_4(right ? INDEX_op_x86_vpshrdv_vec : INDEX_op_x86_vpshldv_vec,
|
|
type, vece, tcgv_vec_arg(v0), tcgv_vec_arg(v1),
|
|
tcgv_vec_arg(v1), tcgv_vec_arg(sh));
|
|
return;
|
|
}
|
|
|
|
t = tcg_temp_new_vec(type);
|
|
tcg_gen_dupi_vec(vece, t, 8 << vece);
|
|
tcg_gen_sub_vec(vece, t, t, sh);
|
|
if (right) {
|
|
tcg_gen_shlv_vec(vece, t, v1, t);
|
|
tcg_gen_shrv_vec(vece, v0, v1, sh);
|
|
} else {
|
|
tcg_gen_shrv_vec(vece, t, v1, t);
|
|
tcg_gen_shlv_vec(vece, v0, v1, sh);
|
|
}
|
|
tcg_gen_or_vec(vece, v0, v0, t);
|
|
tcg_temp_free_vec(t);
|
|
}
|
|
|
|
static void expand_vec_rotls(TCGType type, unsigned vece,
|
|
TCGv_vec v0, TCGv_vec v1, TCGv_i32 lsh)
|
|
{
|
|
TCGv_vec t = tcg_temp_new_vec(type);
|
|
|
|
tcg_debug_assert(vece != MO_8);
|
|
|
|
if (vece >= MO_32 ? have_avx512vl : have_avx512vbmi2) {
|
|
tcg_gen_dup_i32_vec(vece, t, lsh);
|
|
if (vece >= MO_32) {
|
|
tcg_gen_rotlv_vec(vece, v0, v1, t);
|
|
} else {
|
|
expand_vec_rotv(type, vece, v0, v1, t, false);
|
|
}
|
|
} else {
|
|
TCGv_i32 rsh = tcg_temp_new_i32();
|
|
|
|
tcg_gen_neg_i32(rsh, lsh);
|
|
tcg_gen_andi_i32(rsh, rsh, (8 << vece) - 1);
|
|
tcg_gen_shls_vec(vece, t, v1, lsh);
|
|
tcg_gen_shrs_vec(vece, v0, v1, rsh);
|
|
tcg_gen_or_vec(vece, v0, v0, t);
|
|
|
|
tcg_temp_free_i32(rsh);
|
|
}
|
|
|
|
tcg_temp_free_vec(t);
|
|
}
|
|
|
|
static void expand_vec_mul(TCGType type, unsigned vece,
|
|
TCGv_vec v0, TCGv_vec v1, TCGv_vec v2)
|
|
{
|
|
TCGv_vec t1, t2, t3, t4, zero;
|
|
|
|
tcg_debug_assert(vece == MO_8);
|
|
|
|
/*
|
|
* Unpack v1 bytes to words, 0 | x.
|
|
* Unpack v2 bytes to words, y | 0.
|
|
* This leaves the 8-bit result, x * y, with 8 bits of right padding.
|
|
* Shift logical right by 8 bits to clear the high 8 bytes before
|
|
* using an unsigned saturated pack.
|
|
*
|
|
* The difference between the V64, V128 and V256 cases is merely how
|
|
* we distribute the expansion between temporaries.
|
|
*/
|
|
switch (type) {
|
|
case TCG_TYPE_V64:
|
|
t1 = tcg_temp_new_vec(TCG_TYPE_V128);
|
|
t2 = tcg_temp_new_vec(TCG_TYPE_V128);
|
|
zero = tcg_constant_vec(TCG_TYPE_V128, MO_8, 0);
|
|
vec_gen_3(INDEX_op_x86_punpckl_vec, TCG_TYPE_V128, MO_8,
|
|
tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(zero));
|
|
vec_gen_3(INDEX_op_x86_punpckl_vec, TCG_TYPE_V128, MO_8,
|
|
tcgv_vec_arg(t2), tcgv_vec_arg(zero), tcgv_vec_arg(v2));
|
|
tcg_gen_mul_vec(MO_16, t1, t1, t2);
|
|
tcg_gen_shri_vec(MO_16, t1, t1, 8);
|
|
vec_gen_3(INDEX_op_x86_packus_vec, TCG_TYPE_V128, MO_8,
|
|
tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t1));
|
|
tcg_temp_free_vec(t1);
|
|
tcg_temp_free_vec(t2);
|
|
break;
|
|
|
|
case TCG_TYPE_V128:
|
|
case TCG_TYPE_V256:
|
|
t1 = tcg_temp_new_vec(type);
|
|
t2 = tcg_temp_new_vec(type);
|
|
t3 = tcg_temp_new_vec(type);
|
|
t4 = tcg_temp_new_vec(type);
|
|
zero = tcg_constant_vec(TCG_TYPE_V128, MO_8, 0);
|
|
vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8,
|
|
tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(zero));
|
|
vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8,
|
|
tcgv_vec_arg(t2), tcgv_vec_arg(zero), tcgv_vec_arg(v2));
|
|
vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8,
|
|
tcgv_vec_arg(t3), tcgv_vec_arg(v1), tcgv_vec_arg(zero));
|
|
vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8,
|
|
tcgv_vec_arg(t4), tcgv_vec_arg(zero), tcgv_vec_arg(v2));
|
|
tcg_gen_mul_vec(MO_16, t1, t1, t2);
|
|
tcg_gen_mul_vec(MO_16, t3, t3, t4);
|
|
tcg_gen_shri_vec(MO_16, t1, t1, 8);
|
|
tcg_gen_shri_vec(MO_16, t3, t3, 8);
|
|
vec_gen_3(INDEX_op_x86_packus_vec, type, MO_8,
|
|
tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t3));
|
|
tcg_temp_free_vec(t1);
|
|
tcg_temp_free_vec(t2);
|
|
tcg_temp_free_vec(t3);
|
|
tcg_temp_free_vec(t4);
|
|
break;
|
|
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
static bool expand_vec_cmp_noinv(TCGType type, unsigned vece, TCGv_vec v0,
|
|
TCGv_vec v1, TCGv_vec v2, TCGCond cond)
|
|
{
|
|
enum {
|
|
NEED_INV = 1,
|
|
NEED_SWAP = 2,
|
|
NEED_BIAS = 4,
|
|
NEED_UMIN = 8,
|
|
NEED_UMAX = 16,
|
|
};
|
|
TCGv_vec t1, t2, t3;
|
|
uint8_t fixup;
|
|
|
|
switch (cond) {
|
|
case TCG_COND_EQ:
|
|
case TCG_COND_GT:
|
|
fixup = 0;
|
|
break;
|
|
case TCG_COND_NE:
|
|
case TCG_COND_LE:
|
|
fixup = NEED_INV;
|
|
break;
|
|
case TCG_COND_LT:
|
|
fixup = NEED_SWAP;
|
|
break;
|
|
case TCG_COND_GE:
|
|
fixup = NEED_SWAP | NEED_INV;
|
|
break;
|
|
case TCG_COND_LEU:
|
|
if (tcg_can_emit_vec_op(INDEX_op_umin_vec, type, vece)) {
|
|
fixup = NEED_UMIN;
|
|
} else {
|
|
fixup = NEED_BIAS | NEED_INV;
|
|
}
|
|
break;
|
|
case TCG_COND_GTU:
|
|
if (tcg_can_emit_vec_op(INDEX_op_umin_vec, type, vece)) {
|
|
fixup = NEED_UMIN | NEED_INV;
|
|
} else {
|
|
fixup = NEED_BIAS;
|
|
}
|
|
break;
|
|
case TCG_COND_GEU:
|
|
if (tcg_can_emit_vec_op(INDEX_op_umax_vec, type, vece)) {
|
|
fixup = NEED_UMAX;
|
|
} else {
|
|
fixup = NEED_BIAS | NEED_SWAP | NEED_INV;
|
|
}
|
|
break;
|
|
case TCG_COND_LTU:
|
|
if (tcg_can_emit_vec_op(INDEX_op_umax_vec, type, vece)) {
|
|
fixup = NEED_UMAX | NEED_INV;
|
|
} else {
|
|
fixup = NEED_BIAS | NEED_SWAP;
|
|
}
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
if (fixup & NEED_INV) {
|
|
cond = tcg_invert_cond(cond);
|
|
}
|
|
if (fixup & NEED_SWAP) {
|
|
t1 = v1, v1 = v2, v2 = t1;
|
|
cond = tcg_swap_cond(cond);
|
|
}
|
|
|
|
t1 = t2 = NULL;
|
|
if (fixup & (NEED_UMIN | NEED_UMAX)) {
|
|
t1 = tcg_temp_new_vec(type);
|
|
if (fixup & NEED_UMIN) {
|
|
tcg_gen_umin_vec(vece, t1, v1, v2);
|
|
} else {
|
|
tcg_gen_umax_vec(vece, t1, v1, v2);
|
|
}
|
|
v2 = t1;
|
|
cond = TCG_COND_EQ;
|
|
} else if (fixup & NEED_BIAS) {
|
|
t1 = tcg_temp_new_vec(type);
|
|
t2 = tcg_temp_new_vec(type);
|
|
t3 = tcg_constant_vec(type, vece, 1ull << ((8 << vece) - 1));
|
|
tcg_gen_sub_vec(vece, t1, v1, t3);
|
|
tcg_gen_sub_vec(vece, t2, v2, t3);
|
|
v1 = t1;
|
|
v2 = t2;
|
|
cond = tcg_signed_cond(cond);
|
|
}
|
|
|
|
tcg_debug_assert(cond == TCG_COND_EQ || cond == TCG_COND_GT);
|
|
/* Expand directly; do not recurse. */
|
|
vec_gen_4(INDEX_op_cmp_vec, type, vece,
|
|
tcgv_vec_arg(v0), tcgv_vec_arg(v1), tcgv_vec_arg(v2), cond);
|
|
|
|
if (t1) {
|
|
tcg_temp_free_vec(t1);
|
|
if (t2) {
|
|
tcg_temp_free_vec(t2);
|
|
}
|
|
}
|
|
return fixup & NEED_INV;
|
|
}
|
|
|
|
static void expand_vec_cmp(TCGType type, unsigned vece, TCGv_vec v0,
|
|
TCGv_vec v1, TCGv_vec v2, TCGCond cond)
|
|
{
|
|
if (expand_vec_cmp_noinv(type, vece, v0, v1, v2, cond)) {
|
|
tcg_gen_not_vec(vece, v0, v0);
|
|
}
|
|
}
|
|
|
|
static void expand_vec_cmpsel(TCGType type, unsigned vece, TCGv_vec v0,
|
|
TCGv_vec c1, TCGv_vec c2,
|
|
TCGv_vec v3, TCGv_vec v4, TCGCond cond)
|
|
{
|
|
TCGv_vec t = tcg_temp_new_vec(type);
|
|
|
|
if (expand_vec_cmp_noinv(type, vece, t, c1, c2, cond)) {
|
|
/* Invert the sense of the compare by swapping arguments. */
|
|
TCGv_vec x;
|
|
x = v3, v3 = v4, v4 = x;
|
|
}
|
|
vec_gen_4(INDEX_op_x86_vpblendvb_vec, type, vece,
|
|
tcgv_vec_arg(v0), tcgv_vec_arg(v4),
|
|
tcgv_vec_arg(v3), tcgv_vec_arg(t));
|
|
tcg_temp_free_vec(t);
|
|
}
|
|
|
|
void tcg_expand_vec_op(TCGOpcode opc, TCGType type, unsigned vece,
|
|
TCGArg a0, ...)
|
|
{
|
|
va_list va;
|
|
TCGArg a2;
|
|
TCGv_vec v0, v1, v2, v3, v4;
|
|
|
|
va_start(va, a0);
|
|
v0 = temp_tcgv_vec(arg_temp(a0));
|
|
v1 = temp_tcgv_vec(arg_temp(va_arg(va, TCGArg)));
|
|
a2 = va_arg(va, TCGArg);
|
|
|
|
switch (opc) {
|
|
case INDEX_op_shli_vec:
|
|
case INDEX_op_shri_vec:
|
|
expand_vec_shi(type, vece, opc, v0, v1, a2);
|
|
break;
|
|
|
|
case INDEX_op_sari_vec:
|
|
expand_vec_sari(type, vece, v0, v1, a2);
|
|
break;
|
|
|
|
case INDEX_op_rotli_vec:
|
|
expand_vec_rotli(type, vece, v0, v1, a2);
|
|
break;
|
|
|
|
case INDEX_op_rotls_vec:
|
|
expand_vec_rotls(type, vece, v0, v1, temp_tcgv_i32(arg_temp(a2)));
|
|
break;
|
|
|
|
case INDEX_op_rotlv_vec:
|
|
v2 = temp_tcgv_vec(arg_temp(a2));
|
|
expand_vec_rotv(type, vece, v0, v1, v2, false);
|
|
break;
|
|
case INDEX_op_rotrv_vec:
|
|
v2 = temp_tcgv_vec(arg_temp(a2));
|
|
expand_vec_rotv(type, vece, v0, v1, v2, true);
|
|
break;
|
|
|
|
case INDEX_op_mul_vec:
|
|
v2 = temp_tcgv_vec(arg_temp(a2));
|
|
expand_vec_mul(type, vece, v0, v1, v2);
|
|
break;
|
|
|
|
case INDEX_op_cmp_vec:
|
|
v2 = temp_tcgv_vec(arg_temp(a2));
|
|
expand_vec_cmp(type, vece, v0, v1, v2, va_arg(va, TCGArg));
|
|
break;
|
|
|
|
case INDEX_op_cmpsel_vec:
|
|
v2 = temp_tcgv_vec(arg_temp(a2));
|
|
v3 = temp_tcgv_vec(arg_temp(va_arg(va, TCGArg)));
|
|
v4 = temp_tcgv_vec(arg_temp(va_arg(va, TCGArg)));
|
|
expand_vec_cmpsel(type, vece, v0, v1, v2, v3, v4, va_arg(va, TCGArg));
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
va_end(va);
|
|
}
|
|
|
|
static const int tcg_target_callee_save_regs[] = {
|
|
#if TCG_TARGET_REG_BITS == 64
|
|
TCG_REG_RBP,
|
|
TCG_REG_RBX,
|
|
#if defined(_WIN64)
|
|
TCG_REG_RDI,
|
|
TCG_REG_RSI,
|
|
#endif
|
|
TCG_REG_R12,
|
|
TCG_REG_R13,
|
|
TCG_REG_R14, /* Currently used for the global env. */
|
|
TCG_REG_R15,
|
|
#else
|
|
TCG_REG_EBP, /* Currently used for the global env. */
|
|
TCG_REG_EBX,
|
|
TCG_REG_ESI,
|
|
TCG_REG_EDI,
|
|
#endif
|
|
};
|
|
|
|
/* Compute frame size via macros, to share between tcg_target_qemu_prologue
|
|
and tcg_register_jit. */
|
|
|
|
#define PUSH_SIZE \
|
|
((1 + ARRAY_SIZE(tcg_target_callee_save_regs)) \
|
|
* (TCG_TARGET_REG_BITS / 8))
|
|
|
|
#define FRAME_SIZE \
|
|
((PUSH_SIZE \
|
|
+ TCG_STATIC_CALL_ARGS_SIZE \
|
|
+ CPU_TEMP_BUF_NLONGS * sizeof(long) \
|
|
+ TCG_TARGET_STACK_ALIGN - 1) \
|
|
& ~(TCG_TARGET_STACK_ALIGN - 1))
|
|
|
|
/* Generate global QEMU prologue and epilogue code */
|
|
static void tcg_target_qemu_prologue(TCGContext *s)
|
|
{
|
|
int i, stack_addend;
|
|
|
|
/* TB prologue */
|
|
|
|
/* Reserve some stack space, also for TCG temps. */
|
|
stack_addend = FRAME_SIZE - PUSH_SIZE;
|
|
tcg_set_frame(s, TCG_REG_CALL_STACK, TCG_STATIC_CALL_ARGS_SIZE,
|
|
CPU_TEMP_BUF_NLONGS * sizeof(long));
|
|
|
|
/* Save all callee saved registers. */
|
|
for (i = 0; i < ARRAY_SIZE(tcg_target_callee_save_regs); i++) {
|
|
tcg_out_push(s, tcg_target_callee_save_regs[i]);
|
|
}
|
|
|
|
if (!tcg_use_softmmu && guest_base) {
|
|
int seg = setup_guest_base_seg();
|
|
if (seg != 0) {
|
|
x86_guest_base.seg = seg;
|
|
} else if (guest_base == (int32_t)guest_base) {
|
|
x86_guest_base.ofs = guest_base;
|
|
} else {
|
|
assert(TCG_TARGET_REG_BITS == 64);
|
|
/* Choose R12 because, as a base, it requires a SIB byte. */
|
|
x86_guest_base.index = TCG_REG_R12;
|
|
tcg_out_movi(s, TCG_TYPE_PTR, x86_guest_base.index, guest_base);
|
|
tcg_regset_set_reg(s->reserved_regs, x86_guest_base.index);
|
|
}
|
|
}
|
|
|
|
if (TCG_TARGET_REG_BITS == 32) {
|
|
tcg_out_ld(s, TCG_TYPE_PTR, TCG_AREG0, TCG_REG_ESP,
|
|
(ARRAY_SIZE(tcg_target_callee_save_regs) + 1) * 4);
|
|
tcg_out_addi(s, TCG_REG_ESP, -stack_addend);
|
|
/* jmp *tb. */
|
|
tcg_out_modrm_offset(s, OPC_GRP5, EXT5_JMPN_Ev, TCG_REG_ESP,
|
|
(ARRAY_SIZE(tcg_target_callee_save_regs) + 2) * 4
|
|
+ stack_addend);
|
|
} else {
|
|
tcg_out_mov(s, TCG_TYPE_PTR, TCG_AREG0, tcg_target_call_iarg_regs[0]);
|
|
tcg_out_addi(s, TCG_REG_ESP, -stack_addend);
|
|
/* jmp *tb. */
|
|
tcg_out_modrm(s, OPC_GRP5, EXT5_JMPN_Ev, tcg_target_call_iarg_regs[1]);
|
|
}
|
|
|
|
/*
|
|
* Return path for goto_ptr. Set return value to 0, a-la exit_tb,
|
|
* and fall through to the rest of the epilogue.
|
|
*/
|
|
tcg_code_gen_epilogue = tcg_splitwx_to_rx(s->code_ptr);
|
|
tcg_out_movi(s, TCG_TYPE_REG, TCG_REG_EAX, 0);
|
|
|
|
/* TB epilogue */
|
|
tb_ret_addr = tcg_splitwx_to_rx(s->code_ptr);
|
|
|
|
tcg_out_addi(s, TCG_REG_CALL_STACK, stack_addend);
|
|
|
|
if (have_avx2) {
|
|
tcg_out_vex_opc(s, OPC_VZEROUPPER, 0, 0, 0, 0);
|
|
}
|
|
for (i = ARRAY_SIZE(tcg_target_callee_save_regs) - 1; i >= 0; i--) {
|
|
tcg_out_pop(s, tcg_target_callee_save_regs[i]);
|
|
}
|
|
tcg_out_opc(s, OPC_RET, 0, 0, 0);
|
|
}
|
|
|
|
static void tcg_out_tb_start(TCGContext *s)
|
|
{
|
|
/* nothing to do */
|
|
}
|
|
|
|
static void tcg_out_nop_fill(tcg_insn_unit *p, int count)
|
|
{
|
|
memset(p, 0x90, count);
|
|
}
|
|
|
|
static void tcg_target_init(TCGContext *s)
|
|
{
|
|
tcg_target_available_regs[TCG_TYPE_I32] = ALL_GENERAL_REGS;
|
|
if (TCG_TARGET_REG_BITS == 64) {
|
|
tcg_target_available_regs[TCG_TYPE_I64] = ALL_GENERAL_REGS;
|
|
}
|
|
if (have_avx1) {
|
|
tcg_target_available_regs[TCG_TYPE_V64] = ALL_VECTOR_REGS;
|
|
tcg_target_available_regs[TCG_TYPE_V128] = ALL_VECTOR_REGS;
|
|
}
|
|
if (have_avx2) {
|
|
tcg_target_available_regs[TCG_TYPE_V256] = ALL_VECTOR_REGS;
|
|
}
|
|
|
|
tcg_target_call_clobber_regs = ALL_VECTOR_REGS;
|
|
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_EAX);
|
|
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_EDX);
|
|
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_ECX);
|
|
if (TCG_TARGET_REG_BITS == 64) {
|
|
#if !defined(_WIN64)
|
|
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_RDI);
|
|
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_RSI);
|
|
#endif
|
|
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R8);
|
|
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R9);
|
|
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R10);
|
|
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R11);
|
|
}
|
|
|
|
s->reserved_regs = 0;
|
|
tcg_regset_set_reg(s->reserved_regs, TCG_REG_CALL_STACK);
|
|
tcg_regset_set_reg(s->reserved_regs, TCG_TMP_VEC);
|
|
#ifdef _WIN64
|
|
/* These are call saved, and we don't save them, so don't use them. */
|
|
tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM6);
|
|
tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM7);
|
|
tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM8);
|
|
tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM9);
|
|
tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM10);
|
|
tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM11);
|
|
tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM12);
|
|
tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM13);
|
|
tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM14);
|
|
tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM15);
|
|
#endif
|
|
}
|
|
|
|
typedef struct {
|
|
DebugFrameHeader h;
|
|
uint8_t fde_def_cfa[4];
|
|
uint8_t fde_reg_ofs[14];
|
|
} DebugFrame;
|
|
|
|
/* We're expecting a 2 byte uleb128 encoded value. */
|
|
QEMU_BUILD_BUG_ON(FRAME_SIZE >= (1 << 14));
|
|
|
|
#if !defined(__ELF__)
|
|
/* Host machine without ELF. */
|
|
#elif TCG_TARGET_REG_BITS == 64
|
|
#define ELF_HOST_MACHINE EM_X86_64
|
|
static const DebugFrame debug_frame = {
|
|
.h.cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */
|
|
.h.cie.id = -1,
|
|
.h.cie.version = 1,
|
|
.h.cie.code_align = 1,
|
|
.h.cie.data_align = 0x78, /* sleb128 -8 */
|
|
.h.cie.return_column = 16,
|
|
|
|
/* Total FDE size does not include the "len" member. */
|
|
.h.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, h.fde.cie_offset),
|
|
|
|
.fde_def_cfa = {
|
|
12, 7, /* DW_CFA_def_cfa %rsp, ... */
|
|
(FRAME_SIZE & 0x7f) | 0x80, /* ... uleb128 FRAME_SIZE */
|
|
(FRAME_SIZE >> 7)
|
|
},
|
|
.fde_reg_ofs = {
|
|
0x90, 1, /* DW_CFA_offset, %rip, -8 */
|
|
/* The following ordering must match tcg_target_callee_save_regs. */
|
|
0x86, 2, /* DW_CFA_offset, %rbp, -16 */
|
|
0x83, 3, /* DW_CFA_offset, %rbx, -24 */
|
|
0x8c, 4, /* DW_CFA_offset, %r12, -32 */
|
|
0x8d, 5, /* DW_CFA_offset, %r13, -40 */
|
|
0x8e, 6, /* DW_CFA_offset, %r14, -48 */
|
|
0x8f, 7, /* DW_CFA_offset, %r15, -56 */
|
|
}
|
|
};
|
|
#else
|
|
#define ELF_HOST_MACHINE EM_386
|
|
static const DebugFrame debug_frame = {
|
|
.h.cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */
|
|
.h.cie.id = -1,
|
|
.h.cie.version = 1,
|
|
.h.cie.code_align = 1,
|
|
.h.cie.data_align = 0x7c, /* sleb128 -4 */
|
|
.h.cie.return_column = 8,
|
|
|
|
/* Total FDE size does not include the "len" member. */
|
|
.h.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, h.fde.cie_offset),
|
|
|
|
.fde_def_cfa = {
|
|
12, 4, /* DW_CFA_def_cfa %esp, ... */
|
|
(FRAME_SIZE & 0x7f) | 0x80, /* ... uleb128 FRAME_SIZE */
|
|
(FRAME_SIZE >> 7)
|
|
},
|
|
.fde_reg_ofs = {
|
|
0x88, 1, /* DW_CFA_offset, %eip, -4 */
|
|
/* The following ordering must match tcg_target_callee_save_regs. */
|
|
0x85, 2, /* DW_CFA_offset, %ebp, -8 */
|
|
0x83, 3, /* DW_CFA_offset, %ebx, -12 */
|
|
0x86, 4, /* DW_CFA_offset, %esi, -16 */
|
|
0x87, 5, /* DW_CFA_offset, %edi, -20 */
|
|
}
|
|
};
|
|
#endif
|
|
|
|
#if defined(ELF_HOST_MACHINE)
|
|
void tcg_register_jit(const void *buf, size_t buf_size)
|
|
{
|
|
tcg_register_jit_int(buf, buf_size, &debug_frame, sizeof(debug_frame));
|
|
}
|
|
#endif
|