mirror of
https://github.com/qemu/qemu.git
synced 2025-01-25 23:13:46 +08:00
6086a565b0
Clean up includes so that osdep.h is included first and headers which it implies are not included manually. This commit was created with scripts/clean-includes. Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Message-id: 1453138432-8324-1-git-send-email-peter.maydell@linaro.org Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
1392 lines
35 KiB
C
1392 lines
35 KiB
C
/*
|
|
**
|
|
** File: fmopl.c -- software implementation of FM sound generator
|
|
**
|
|
** Copyright (C) 1999,2000 Tatsuyuki Satoh , MultiArcadeMachineEmurator development
|
|
**
|
|
** Version 0.37a
|
|
**
|
|
*/
|
|
|
|
/*
|
|
preliminary :
|
|
Problem :
|
|
note:
|
|
*/
|
|
|
|
/* This version of fmopl.c is a fork of the MAME one, relicensed under the LGPL.
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#define HAS_YM3812 1
|
|
|
|
#include "qemu/osdep.h"
|
|
#include <math.h>
|
|
//#include "driver.h" /* use M.A.M.E. */
|
|
#include "fmopl.h"
|
|
|
|
#ifndef PI
|
|
#define PI 3.14159265358979323846
|
|
#endif
|
|
|
|
#ifndef ARRAY_SIZE
|
|
#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
|
|
#endif
|
|
|
|
/* -------------------- for debug --------------------- */
|
|
/* #define OPL_OUTPUT_LOG */
|
|
#ifdef OPL_OUTPUT_LOG
|
|
static FILE *opl_dbg_fp = NULL;
|
|
static FM_OPL *opl_dbg_opl[16];
|
|
static int opl_dbg_maxchip,opl_dbg_chip;
|
|
#endif
|
|
|
|
/* -------------------- preliminary define section --------------------- */
|
|
/* attack/decay rate time rate */
|
|
#define OPL_ARRATE 141280 /* RATE 4 = 2826.24ms @ 3.6MHz */
|
|
#define OPL_DRRATE 1956000 /* RATE 4 = 39280.64ms @ 3.6MHz */
|
|
|
|
#define DELTAT_MIXING_LEVEL (1) /* DELTA-T ADPCM MIXING LEVEL */
|
|
|
|
#define FREQ_BITS 24 /* frequency turn */
|
|
|
|
/* counter bits = 20 , octerve 7 */
|
|
#define FREQ_RATE (1<<(FREQ_BITS-20))
|
|
#define TL_BITS (FREQ_BITS+2)
|
|
|
|
/* final output shift , limit minimum and maximum */
|
|
#define OPL_OUTSB (TL_BITS+3-16) /* OPL output final shift 16bit */
|
|
#define OPL_MAXOUT (0x7fff<<OPL_OUTSB)
|
|
#define OPL_MINOUT (-0x8000<<OPL_OUTSB)
|
|
|
|
/* -------------------- quality selection --------------------- */
|
|
|
|
/* sinwave entries */
|
|
/* used static memory = SIN_ENT * 4 (byte) */
|
|
#define SIN_ENT 2048
|
|
|
|
/* output level entries (envelope,sinwave) */
|
|
/* envelope counter lower bits */
|
|
#define ENV_BITS 16
|
|
/* envelope output entries */
|
|
#define EG_ENT 4096
|
|
/* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */
|
|
/* used static memory = EG_ENT*4 (byte) */
|
|
|
|
#define EG_OFF ((2*EG_ENT)<<ENV_BITS) /* OFF */
|
|
#define EG_DED EG_OFF
|
|
#define EG_DST (EG_ENT<<ENV_BITS) /* DECAY START */
|
|
#define EG_AED EG_DST
|
|
#define EG_AST 0 /* ATTACK START */
|
|
|
|
#define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step */
|
|
|
|
/* LFO table entries */
|
|
#define VIB_ENT 512
|
|
#define VIB_SHIFT (32-9)
|
|
#define AMS_ENT 512
|
|
#define AMS_SHIFT (32-9)
|
|
|
|
#define VIB_RATE 256
|
|
|
|
/* -------------------- local defines , macros --------------------- */
|
|
|
|
/* register number to channel number , slot offset */
|
|
#define SLOT1 0
|
|
#define SLOT2 1
|
|
|
|
/* envelope phase */
|
|
#define ENV_MOD_RR 0x00
|
|
#define ENV_MOD_DR 0x01
|
|
#define ENV_MOD_AR 0x02
|
|
|
|
/* -------------------- tables --------------------- */
|
|
static const int slot_array[32]=
|
|
{
|
|
0, 2, 4, 1, 3, 5,-1,-1,
|
|
6, 8,10, 7, 9,11,-1,-1,
|
|
12,14,16,13,15,17,-1,-1,
|
|
-1,-1,-1,-1,-1,-1,-1,-1
|
|
};
|
|
|
|
/* key scale level */
|
|
/* table is 3dB/OCT , DV converts this in TL step at 6dB/OCT */
|
|
#define DV (EG_STEP/2)
|
|
static const UINT32 KSL_TABLE[8*16]=
|
|
{
|
|
/* OCT 0 */
|
|
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
|
|
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
|
|
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
|
|
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
|
|
/* OCT 1 */
|
|
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
|
|
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
|
|
0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV,
|
|
1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV,
|
|
/* OCT 2 */
|
|
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
|
|
0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV,
|
|
3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV,
|
|
4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV,
|
|
/* OCT 3 */
|
|
0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV,
|
|
3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV,
|
|
6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV,
|
|
7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV,
|
|
/* OCT 4 */
|
|
0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV,
|
|
6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV,
|
|
9.000/DV, 9.750/DV,10.125/DV,10.500/DV,
|
|
10.875/DV,11.250/DV,11.625/DV,12.000/DV,
|
|
/* OCT 5 */
|
|
0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV,
|
|
9.000/DV,10.125/DV,10.875/DV,11.625/DV,
|
|
12.000/DV,12.750/DV,13.125/DV,13.500/DV,
|
|
13.875/DV,14.250/DV,14.625/DV,15.000/DV,
|
|
/* OCT 6 */
|
|
0.000/DV, 6.000/DV, 9.000/DV,10.875/DV,
|
|
12.000/DV,13.125/DV,13.875/DV,14.625/DV,
|
|
15.000/DV,15.750/DV,16.125/DV,16.500/DV,
|
|
16.875/DV,17.250/DV,17.625/DV,18.000/DV,
|
|
/* OCT 7 */
|
|
0.000/DV, 9.000/DV,12.000/DV,13.875/DV,
|
|
15.000/DV,16.125/DV,16.875/DV,17.625/DV,
|
|
18.000/DV,18.750/DV,19.125/DV,19.500/DV,
|
|
19.875/DV,20.250/DV,20.625/DV,21.000/DV
|
|
};
|
|
#undef DV
|
|
|
|
/* sustain lebel table (3db per step) */
|
|
/* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
|
|
#define SC(db) (db*((3/EG_STEP)*(1<<ENV_BITS)))+EG_DST
|
|
static const INT32 SL_TABLE[16]={
|
|
SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
|
|
SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31)
|
|
};
|
|
#undef SC
|
|
|
|
#define TL_MAX (EG_ENT*2) /* limit(tl + ksr + envelope) + sinwave */
|
|
/* TotalLevel : 48 24 12 6 3 1.5 0.75 (dB) */
|
|
/* TL_TABLE[ 0 to TL_MAX ] : plus section */
|
|
/* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */
|
|
static INT32 *TL_TABLE;
|
|
|
|
/* pointers to TL_TABLE with sinwave output offset */
|
|
static INT32 **SIN_TABLE;
|
|
|
|
/* LFO table */
|
|
static INT32 *AMS_TABLE;
|
|
static INT32 *VIB_TABLE;
|
|
|
|
/* envelope output curve table */
|
|
/* attack + decay + OFF */
|
|
static INT32 ENV_CURVE[2*EG_ENT+1];
|
|
|
|
/* multiple table */
|
|
#define ML 2
|
|
static const UINT32 MUL_TABLE[16]= {
|
|
/* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */
|
|
0.50*ML, 1.00*ML, 2.00*ML, 3.00*ML, 4.00*ML, 5.00*ML, 6.00*ML, 7.00*ML,
|
|
8.00*ML, 9.00*ML,10.00*ML,10.00*ML,12.00*ML,12.00*ML,15.00*ML,15.00*ML
|
|
};
|
|
#undef ML
|
|
|
|
/* dummy attack / decay rate ( when rate == 0 ) */
|
|
static INT32 RATE_0[16]=
|
|
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
|
|
|
|
/* -------------------- static state --------------------- */
|
|
|
|
/* lock level of common table */
|
|
static int num_lock = 0;
|
|
|
|
/* work table */
|
|
static void *cur_chip = NULL; /* current chip point */
|
|
/* currenct chip state */
|
|
/* static OPLSAMPLE *bufL,*bufR; */
|
|
static OPL_CH *S_CH;
|
|
static OPL_CH *E_CH;
|
|
static OPL_SLOT *SLOT7_1, *SLOT7_2, *SLOT8_1, *SLOT8_2;
|
|
|
|
static INT32 outd[1];
|
|
static INT32 ams;
|
|
static INT32 vib;
|
|
static INT32 *ams_table;
|
|
static INT32 *vib_table;
|
|
static INT32 amsIncr;
|
|
static INT32 vibIncr;
|
|
static INT32 feedback2; /* connect for SLOT 2 */
|
|
|
|
/* log output level */
|
|
#define LOG_ERR 3 /* ERROR */
|
|
#define LOG_WAR 2 /* WARNING */
|
|
#define LOG_INF 1 /* INFORMATION */
|
|
|
|
//#define LOG_LEVEL LOG_INF
|
|
#define LOG_LEVEL LOG_ERR
|
|
|
|
//#define LOG(n,x) if( (n)>=LOG_LEVEL ) logerror x
|
|
#define LOG(n,x)
|
|
|
|
/* --------------------- subroutines --------------------- */
|
|
|
|
static inline int Limit( int val, int max, int min ) {
|
|
if ( val > max )
|
|
val = max;
|
|
else if ( val < min )
|
|
val = min;
|
|
|
|
return val;
|
|
}
|
|
|
|
/* status set and IRQ handling */
|
|
static inline void OPL_STATUS_SET(FM_OPL *OPL,int flag)
|
|
{
|
|
/* set status flag */
|
|
OPL->status |= flag;
|
|
if(!(OPL->status & 0x80))
|
|
{
|
|
if(OPL->status & OPL->statusmask)
|
|
{ /* IRQ on */
|
|
OPL->status |= 0x80;
|
|
/* callback user interrupt handler (IRQ is OFF to ON) */
|
|
if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,1);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* status reset and IRQ handling */
|
|
static inline void OPL_STATUS_RESET(FM_OPL *OPL,int flag)
|
|
{
|
|
/* reset status flag */
|
|
OPL->status &=~flag;
|
|
if((OPL->status & 0x80))
|
|
{
|
|
if (!(OPL->status & OPL->statusmask) )
|
|
{
|
|
OPL->status &= 0x7f;
|
|
/* callback user interrupt handler (IRQ is ON to OFF) */
|
|
if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,0);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* IRQ mask set */
|
|
static inline void OPL_STATUSMASK_SET(FM_OPL *OPL,int flag)
|
|
{
|
|
OPL->statusmask = flag;
|
|
/* IRQ handling check */
|
|
OPL_STATUS_SET(OPL,0);
|
|
OPL_STATUS_RESET(OPL,0);
|
|
}
|
|
|
|
/* ----- key on ----- */
|
|
static inline void OPL_KEYON(OPL_SLOT *SLOT)
|
|
{
|
|
/* sin wave restart */
|
|
SLOT->Cnt = 0;
|
|
/* set attack */
|
|
SLOT->evm = ENV_MOD_AR;
|
|
SLOT->evs = SLOT->evsa;
|
|
SLOT->evc = EG_AST;
|
|
SLOT->eve = EG_AED;
|
|
}
|
|
/* ----- key off ----- */
|
|
static inline void OPL_KEYOFF(OPL_SLOT *SLOT)
|
|
{
|
|
if( SLOT->evm > ENV_MOD_RR)
|
|
{
|
|
/* set envelope counter from envleope output */
|
|
SLOT->evm = ENV_MOD_RR;
|
|
if( !(SLOT->evc&EG_DST) )
|
|
//SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST;
|
|
SLOT->evc = EG_DST;
|
|
SLOT->eve = EG_DED;
|
|
SLOT->evs = SLOT->evsr;
|
|
}
|
|
}
|
|
|
|
/* ---------- calcrate Envelope Generator & Phase Generator ---------- */
|
|
/* return : envelope output */
|
|
static inline UINT32 OPL_CALC_SLOT( OPL_SLOT *SLOT )
|
|
{
|
|
/* calcrate envelope generator */
|
|
if( (SLOT->evc+=SLOT->evs) >= SLOT->eve )
|
|
{
|
|
switch( SLOT->evm ){
|
|
case ENV_MOD_AR: /* ATTACK -> DECAY1 */
|
|
/* next DR */
|
|
SLOT->evm = ENV_MOD_DR;
|
|
SLOT->evc = EG_DST;
|
|
SLOT->eve = SLOT->SL;
|
|
SLOT->evs = SLOT->evsd;
|
|
break;
|
|
case ENV_MOD_DR: /* DECAY -> SL or RR */
|
|
SLOT->evc = SLOT->SL;
|
|
SLOT->eve = EG_DED;
|
|
if(SLOT->eg_typ)
|
|
{
|
|
SLOT->evs = 0;
|
|
}
|
|
else
|
|
{
|
|
SLOT->evm = ENV_MOD_RR;
|
|
SLOT->evs = SLOT->evsr;
|
|
}
|
|
break;
|
|
case ENV_MOD_RR: /* RR -> OFF */
|
|
SLOT->evc = EG_OFF;
|
|
SLOT->eve = EG_OFF+1;
|
|
SLOT->evs = 0;
|
|
break;
|
|
}
|
|
}
|
|
/* calcrate envelope */
|
|
return SLOT->TLL+ENV_CURVE[SLOT->evc>>ENV_BITS]+(SLOT->ams ? ams : 0);
|
|
}
|
|
|
|
/* set algorithm connection */
|
|
static void set_algorithm( OPL_CH *CH)
|
|
{
|
|
INT32 *carrier = &outd[0];
|
|
CH->connect1 = CH->CON ? carrier : &feedback2;
|
|
CH->connect2 = carrier;
|
|
}
|
|
|
|
/* ---------- frequency counter for operater update ---------- */
|
|
static inline void CALC_FCSLOT(OPL_CH *CH,OPL_SLOT *SLOT)
|
|
{
|
|
int ksr;
|
|
|
|
/* frequency step counter */
|
|
SLOT->Incr = CH->fc * SLOT->mul;
|
|
ksr = CH->kcode >> SLOT->KSR;
|
|
|
|
if( SLOT->ksr != ksr )
|
|
{
|
|
SLOT->ksr = ksr;
|
|
/* attack , decay rate recalcration */
|
|
SLOT->evsa = SLOT->AR[ksr];
|
|
SLOT->evsd = SLOT->DR[ksr];
|
|
SLOT->evsr = SLOT->RR[ksr];
|
|
}
|
|
SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
|
|
}
|
|
|
|
/* set multi,am,vib,EG-TYP,KSR,mul */
|
|
static inline void set_mul(FM_OPL *OPL,int slot,int v)
|
|
{
|
|
OPL_CH *CH = &OPL->P_CH[slot/2];
|
|
OPL_SLOT *SLOT = &CH->SLOT[slot&1];
|
|
|
|
SLOT->mul = MUL_TABLE[v&0x0f];
|
|
SLOT->KSR = (v&0x10) ? 0 : 2;
|
|
SLOT->eg_typ = (v&0x20)>>5;
|
|
SLOT->vib = (v&0x40);
|
|
SLOT->ams = (v&0x80);
|
|
CALC_FCSLOT(CH,SLOT);
|
|
}
|
|
|
|
/* set ksl & tl */
|
|
static inline void set_ksl_tl(FM_OPL *OPL,int slot,int v)
|
|
{
|
|
OPL_CH *CH = &OPL->P_CH[slot/2];
|
|
OPL_SLOT *SLOT = &CH->SLOT[slot&1];
|
|
int ksl = v>>6; /* 0 / 1.5 / 3 / 6 db/OCT */
|
|
|
|
SLOT->ksl = ksl ? 3-ksl : 31;
|
|
SLOT->TL = (v&0x3f)*(0.75/EG_STEP); /* 0.75db step */
|
|
|
|
if( !(OPL->mode&0x80) )
|
|
{ /* not CSM latch total level */
|
|
SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
|
|
}
|
|
}
|
|
|
|
/* set attack rate & decay rate */
|
|
static inline void set_ar_dr(FM_OPL *OPL,int slot,int v)
|
|
{
|
|
OPL_CH *CH = &OPL->P_CH[slot/2];
|
|
OPL_SLOT *SLOT = &CH->SLOT[slot&1];
|
|
int ar = v>>4;
|
|
int dr = v&0x0f;
|
|
|
|
SLOT->AR = ar ? &OPL->AR_TABLE[ar<<2] : RATE_0;
|
|
SLOT->evsa = SLOT->AR[SLOT->ksr];
|
|
if( SLOT->evm == ENV_MOD_AR ) SLOT->evs = SLOT->evsa;
|
|
|
|
SLOT->DR = dr ? &OPL->DR_TABLE[dr<<2] : RATE_0;
|
|
SLOT->evsd = SLOT->DR[SLOT->ksr];
|
|
if( SLOT->evm == ENV_MOD_DR ) SLOT->evs = SLOT->evsd;
|
|
}
|
|
|
|
/* set sustain level & release rate */
|
|
static inline void set_sl_rr(FM_OPL *OPL,int slot,int v)
|
|
{
|
|
OPL_CH *CH = &OPL->P_CH[slot/2];
|
|
OPL_SLOT *SLOT = &CH->SLOT[slot&1];
|
|
int sl = v>>4;
|
|
int rr = v & 0x0f;
|
|
|
|
SLOT->SL = SL_TABLE[sl];
|
|
if( SLOT->evm == ENV_MOD_DR ) SLOT->eve = SLOT->SL;
|
|
SLOT->RR = &OPL->DR_TABLE[rr<<2];
|
|
SLOT->evsr = SLOT->RR[SLOT->ksr];
|
|
if( SLOT->evm == ENV_MOD_RR ) SLOT->evs = SLOT->evsr;
|
|
}
|
|
|
|
/* operator output calcrator */
|
|
#define OP_OUT(slot,env,con) slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT))&(SIN_ENT-1)][env]
|
|
/* ---------- calcrate one of channel ---------- */
|
|
static inline void OPL_CALC_CH( OPL_CH *CH )
|
|
{
|
|
UINT32 env_out;
|
|
OPL_SLOT *SLOT;
|
|
|
|
feedback2 = 0;
|
|
/* SLOT 1 */
|
|
SLOT = &CH->SLOT[SLOT1];
|
|
env_out=OPL_CALC_SLOT(SLOT);
|
|
if( env_out < EG_ENT-1 )
|
|
{
|
|
/* PG */
|
|
if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
|
|
else SLOT->Cnt += SLOT->Incr;
|
|
/* connectoion */
|
|
if(CH->FB)
|
|
{
|
|
int feedback1 = (CH->op1_out[0]+CH->op1_out[1])>>CH->FB;
|
|
CH->op1_out[1] = CH->op1_out[0];
|
|
*CH->connect1 += CH->op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
|
|
}
|
|
else
|
|
{
|
|
*CH->connect1 += OP_OUT(SLOT,env_out,0);
|
|
}
|
|
}else
|
|
{
|
|
CH->op1_out[1] = CH->op1_out[0];
|
|
CH->op1_out[0] = 0;
|
|
}
|
|
/* SLOT 2 */
|
|
SLOT = &CH->SLOT[SLOT2];
|
|
env_out=OPL_CALC_SLOT(SLOT);
|
|
if( env_out < EG_ENT-1 )
|
|
{
|
|
/* PG */
|
|
if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
|
|
else SLOT->Cnt += SLOT->Incr;
|
|
/* connectoion */
|
|
outd[0] += OP_OUT(SLOT,env_out, feedback2);
|
|
}
|
|
}
|
|
|
|
/* ---------- calcrate rhythm block ---------- */
|
|
#define WHITE_NOISE_db 6.0
|
|
static inline void OPL_CALC_RH( OPL_CH *CH )
|
|
{
|
|
UINT32 env_tam,env_sd,env_top,env_hh;
|
|
int whitenoise = (rand()&1)*(WHITE_NOISE_db/EG_STEP);
|
|
INT32 tone8;
|
|
|
|
OPL_SLOT *SLOT;
|
|
int env_out;
|
|
|
|
/* BD : same as FM serial mode and output level is large */
|
|
feedback2 = 0;
|
|
/* SLOT 1 */
|
|
SLOT = &CH[6].SLOT[SLOT1];
|
|
env_out=OPL_CALC_SLOT(SLOT);
|
|
if( env_out < EG_ENT-1 )
|
|
{
|
|
/* PG */
|
|
if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
|
|
else SLOT->Cnt += SLOT->Incr;
|
|
/* connectoion */
|
|
if(CH[6].FB)
|
|
{
|
|
int feedback1 = (CH[6].op1_out[0]+CH[6].op1_out[1])>>CH[6].FB;
|
|
CH[6].op1_out[1] = CH[6].op1_out[0];
|
|
feedback2 = CH[6].op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
|
|
}
|
|
else
|
|
{
|
|
feedback2 = OP_OUT(SLOT,env_out,0);
|
|
}
|
|
}else
|
|
{
|
|
feedback2 = 0;
|
|
CH[6].op1_out[1] = CH[6].op1_out[0];
|
|
CH[6].op1_out[0] = 0;
|
|
}
|
|
/* SLOT 2 */
|
|
SLOT = &CH[6].SLOT[SLOT2];
|
|
env_out=OPL_CALC_SLOT(SLOT);
|
|
if( env_out < EG_ENT-1 )
|
|
{
|
|
/* PG */
|
|
if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
|
|
else SLOT->Cnt += SLOT->Incr;
|
|
/* connectoion */
|
|
outd[0] += OP_OUT(SLOT,env_out, feedback2)*2;
|
|
}
|
|
|
|
// SD (17) = mul14[fnum7] + white noise
|
|
// TAM (15) = mul15[fnum8]
|
|
// TOP (18) = fnum6(mul18[fnum8]+whitenoise)
|
|
// HH (14) = fnum7(mul18[fnum8]+whitenoise) + white noise
|
|
env_sd =OPL_CALC_SLOT(SLOT7_2) + whitenoise;
|
|
env_tam=OPL_CALC_SLOT(SLOT8_1);
|
|
env_top=OPL_CALC_SLOT(SLOT8_2);
|
|
env_hh =OPL_CALC_SLOT(SLOT7_1) + whitenoise;
|
|
|
|
/* PG */
|
|
if(SLOT7_1->vib) SLOT7_1->Cnt += (2*SLOT7_1->Incr*vib/VIB_RATE);
|
|
else SLOT7_1->Cnt += 2*SLOT7_1->Incr;
|
|
if(SLOT7_2->vib) SLOT7_2->Cnt += ((CH[7].fc*8)*vib/VIB_RATE);
|
|
else SLOT7_2->Cnt += (CH[7].fc*8);
|
|
if(SLOT8_1->vib) SLOT8_1->Cnt += (SLOT8_1->Incr*vib/VIB_RATE);
|
|
else SLOT8_1->Cnt += SLOT8_1->Incr;
|
|
if(SLOT8_2->vib) SLOT8_2->Cnt += ((CH[8].fc*48)*vib/VIB_RATE);
|
|
else SLOT8_2->Cnt += (CH[8].fc*48);
|
|
|
|
tone8 = OP_OUT(SLOT8_2,whitenoise,0 );
|
|
|
|
/* SD */
|
|
if( env_sd < EG_ENT-1 )
|
|
outd[0] += OP_OUT(SLOT7_1,env_sd, 0)*8;
|
|
/* TAM */
|
|
if( env_tam < EG_ENT-1 )
|
|
outd[0] += OP_OUT(SLOT8_1,env_tam, 0)*2;
|
|
/* TOP-CY */
|
|
if( env_top < EG_ENT-1 )
|
|
outd[0] += OP_OUT(SLOT7_2,env_top,tone8)*2;
|
|
/* HH */
|
|
if( env_hh < EG_ENT-1 )
|
|
outd[0] += OP_OUT(SLOT7_2,env_hh,tone8)*2;
|
|
}
|
|
|
|
/* ----------- initialize time tabls ----------- */
|
|
static void init_timetables( FM_OPL *OPL , int ARRATE , int DRRATE )
|
|
{
|
|
int i;
|
|
double rate;
|
|
|
|
/* make attack rate & decay rate tables */
|
|
for (i = 0;i < 4;i++) OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0;
|
|
for (i = 4;i <= 60;i++){
|
|
rate = OPL->freqbase; /* frequency rate */
|
|
if( i < 60 ) rate *= 1.0+(i&3)*0.25; /* b0-1 : x1 , x1.25 , x1.5 , x1.75 */
|
|
rate *= 1<<((i>>2)-1); /* b2-5 : shift bit */
|
|
rate *= (double)(EG_ENT<<ENV_BITS);
|
|
OPL->AR_TABLE[i] = rate / ARRATE;
|
|
OPL->DR_TABLE[i] = rate / DRRATE;
|
|
}
|
|
for (i = 60; i < ARRAY_SIZE(OPL->AR_TABLE); i++)
|
|
{
|
|
OPL->AR_TABLE[i] = EG_AED-1;
|
|
OPL->DR_TABLE[i] = OPL->DR_TABLE[60];
|
|
}
|
|
#if 0
|
|
for (i = 0;i < 64 ;i++){ /* make for overflow area */
|
|
LOG(LOG_WAR, ("rate %2d , ar %f ms , dr %f ms\n", i,
|
|
((double)(EG_ENT<<ENV_BITS) / OPL->AR_TABLE[i]) * (1000.0 / OPL->rate),
|
|
((double)(EG_ENT<<ENV_BITS) / OPL->DR_TABLE[i]) * (1000.0 / OPL->rate) ));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* ---------- generic table initialize ---------- */
|
|
static int OPLOpenTable( void )
|
|
{
|
|
int s,t;
|
|
double rate;
|
|
int i,j;
|
|
double pom;
|
|
|
|
/* allocate dynamic tables */
|
|
if( (TL_TABLE = malloc(TL_MAX*2*sizeof(INT32))) == NULL)
|
|
return 0;
|
|
if( (SIN_TABLE = malloc(SIN_ENT*4 *sizeof(INT32 *))) == NULL)
|
|
{
|
|
free(TL_TABLE);
|
|
return 0;
|
|
}
|
|
if( (AMS_TABLE = malloc(AMS_ENT*2 *sizeof(INT32))) == NULL)
|
|
{
|
|
free(TL_TABLE);
|
|
free(SIN_TABLE);
|
|
return 0;
|
|
}
|
|
if( (VIB_TABLE = malloc(VIB_ENT*2 *sizeof(INT32))) == NULL)
|
|
{
|
|
free(TL_TABLE);
|
|
free(SIN_TABLE);
|
|
free(AMS_TABLE);
|
|
return 0;
|
|
}
|
|
/* make total level table */
|
|
for (t = 0;t < EG_ENT-1 ;t++){
|
|
rate = ((1<<TL_BITS)-1)/pow(10,EG_STEP*t/20); /* dB -> voltage */
|
|
TL_TABLE[ t] = (int)rate;
|
|
TL_TABLE[TL_MAX+t] = -TL_TABLE[t];
|
|
/* LOG(LOG_INF,("TotalLevel(%3d) = %x\n",t,TL_TABLE[t]));*/
|
|
}
|
|
/* fill volume off area */
|
|
for ( t = EG_ENT-1; t < TL_MAX ;t++){
|
|
TL_TABLE[t] = TL_TABLE[TL_MAX+t] = 0;
|
|
}
|
|
|
|
/* make sinwave table (total level offet) */
|
|
/* degree 0 = degree 180 = off */
|
|
SIN_TABLE[0] = SIN_TABLE[SIN_ENT/2] = &TL_TABLE[EG_ENT-1];
|
|
for (s = 1;s <= SIN_ENT/4;s++){
|
|
pom = sin(2*PI*s/SIN_ENT); /* sin */
|
|
pom = 20*log10(1/pom); /* decibel */
|
|
j = pom / EG_STEP; /* TL_TABLE steps */
|
|
|
|
/* degree 0 - 90 , degree 180 - 90 : plus section */
|
|
SIN_TABLE[ s] = SIN_TABLE[SIN_ENT/2-s] = &TL_TABLE[j];
|
|
/* degree 180 - 270 , degree 360 - 270 : minus section */
|
|
SIN_TABLE[SIN_ENT/2+s] = SIN_TABLE[SIN_ENT -s] = &TL_TABLE[TL_MAX+j];
|
|
/* LOG(LOG_INF,("sin(%3d) = %f:%f db\n",s,pom,(double)j * EG_STEP));*/
|
|
}
|
|
for (s = 0;s < SIN_ENT;s++)
|
|
{
|
|
SIN_TABLE[SIN_ENT*1+s] = s<(SIN_ENT/2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT];
|
|
SIN_TABLE[SIN_ENT*2+s] = SIN_TABLE[s % (SIN_ENT/2)];
|
|
SIN_TABLE[SIN_ENT*3+s] = (s/(SIN_ENT/4))&1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT*2+s];
|
|
}
|
|
|
|
/* envelope counter -> envelope output table */
|
|
for (i=0; i<EG_ENT; i++)
|
|
{
|
|
/* ATTACK curve */
|
|
pom = pow( ((double)(EG_ENT-1-i)/EG_ENT) , 8 ) * EG_ENT;
|
|
/* if( pom >= EG_ENT ) pom = EG_ENT-1; */
|
|
ENV_CURVE[i] = (int)pom;
|
|
/* DECAY ,RELEASE curve */
|
|
ENV_CURVE[(EG_DST>>ENV_BITS)+i]= i;
|
|
}
|
|
/* off */
|
|
ENV_CURVE[EG_OFF>>ENV_BITS]= EG_ENT-1;
|
|
/* make LFO ams table */
|
|
for (i=0; i<AMS_ENT; i++)
|
|
{
|
|
pom = (1.0+sin(2*PI*i/AMS_ENT))/2; /* sin */
|
|
AMS_TABLE[i] = (1.0/EG_STEP)*pom; /* 1dB */
|
|
AMS_TABLE[AMS_ENT+i] = (4.8/EG_STEP)*pom; /* 4.8dB */
|
|
}
|
|
/* make LFO vibrate table */
|
|
for (i=0; i<VIB_ENT; i++)
|
|
{
|
|
/* 100cent = 1seminote = 6% ?? */
|
|
pom = (double)VIB_RATE*0.06*sin(2*PI*i/VIB_ENT); /* +-100sect step */
|
|
VIB_TABLE[i] = VIB_RATE + (pom*0.07); /* +- 7cent */
|
|
VIB_TABLE[VIB_ENT+i] = VIB_RATE + (pom*0.14); /* +-14cent */
|
|
/* LOG(LOG_INF,("vib %d=%d\n",i,VIB_TABLE[VIB_ENT+i])); */
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
|
|
static void OPLCloseTable( void )
|
|
{
|
|
free(TL_TABLE);
|
|
free(SIN_TABLE);
|
|
free(AMS_TABLE);
|
|
free(VIB_TABLE);
|
|
}
|
|
|
|
/* CSM Key Control */
|
|
static inline void CSMKeyControll(OPL_CH *CH)
|
|
{
|
|
OPL_SLOT *slot1 = &CH->SLOT[SLOT1];
|
|
OPL_SLOT *slot2 = &CH->SLOT[SLOT2];
|
|
/* all key off */
|
|
OPL_KEYOFF(slot1);
|
|
OPL_KEYOFF(slot2);
|
|
/* total level latch */
|
|
slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
|
|
slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
|
|
/* key on */
|
|
CH->op1_out[0] = CH->op1_out[1] = 0;
|
|
OPL_KEYON(slot1);
|
|
OPL_KEYON(slot2);
|
|
}
|
|
|
|
/* ---------- opl initialize ---------- */
|
|
static void OPL_initialize(FM_OPL *OPL)
|
|
{
|
|
int fn;
|
|
|
|
/* frequency base */
|
|
OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / OPL->rate) / 72 : 0;
|
|
/* Timer base time */
|
|
OPL->TimerBase = 1.0/((double)OPL->clock / 72.0 );
|
|
/* make time tables */
|
|
init_timetables( OPL , OPL_ARRATE , OPL_DRRATE );
|
|
/* make fnumber -> increment counter table */
|
|
for( fn=0 ; fn < 1024 ; fn++ )
|
|
{
|
|
OPL->FN_TABLE[fn] = OPL->freqbase * fn * FREQ_RATE * (1<<7) / 2;
|
|
}
|
|
/* LFO freq.table */
|
|
OPL->amsIncr = OPL->rate ? (double)AMS_ENT*(1<<AMS_SHIFT) / OPL->rate * 3.7 * ((double)OPL->clock/3600000) : 0;
|
|
OPL->vibIncr = OPL->rate ? (double)VIB_ENT*(1<<VIB_SHIFT) / OPL->rate * 6.4 * ((double)OPL->clock/3600000) : 0;
|
|
}
|
|
|
|
/* ---------- write a OPL registers ---------- */
|
|
static void OPLWriteReg(FM_OPL *OPL, int r, int v)
|
|
{
|
|
OPL_CH *CH;
|
|
int slot;
|
|
int block_fnum;
|
|
|
|
switch(r&0xe0)
|
|
{
|
|
case 0x00: /* 00-1f:control */
|
|
switch(r&0x1f)
|
|
{
|
|
case 0x01:
|
|
/* wave selector enable */
|
|
if(OPL->type&OPL_TYPE_WAVESEL)
|
|
{
|
|
OPL->wavesel = v&0x20;
|
|
if(!OPL->wavesel)
|
|
{
|
|
/* preset compatible mode */
|
|
int c;
|
|
for(c=0;c<OPL->max_ch;c++)
|
|
{
|
|
OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0];
|
|
OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0];
|
|
}
|
|
}
|
|
}
|
|
return;
|
|
case 0x02: /* Timer 1 */
|
|
OPL->T[0] = (256-v)*4;
|
|
break;
|
|
case 0x03: /* Timer 2 */
|
|
OPL->T[1] = (256-v)*16;
|
|
return;
|
|
case 0x04: /* IRQ clear / mask and Timer enable */
|
|
if(v&0x80)
|
|
{ /* IRQ flag clear */
|
|
OPL_STATUS_RESET(OPL,0x7f);
|
|
}
|
|
else
|
|
{ /* set IRQ mask ,timer enable*/
|
|
UINT8 st1 = v&1;
|
|
UINT8 st2 = (v>>1)&1;
|
|
/* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */
|
|
OPL_STATUS_RESET(OPL,v&0x78);
|
|
OPL_STATUSMASK_SET(OPL,((~v)&0x78)|0x01);
|
|
/* timer 2 */
|
|
if(OPL->st[1] != st2)
|
|
{
|
|
double interval = st2 ? (double)OPL->T[1]*OPL->TimerBase : 0.0;
|
|
OPL->st[1] = st2;
|
|
if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+1,interval);
|
|
}
|
|
/* timer 1 */
|
|
if(OPL->st[0] != st1)
|
|
{
|
|
double interval = st1 ? (double)OPL->T[0]*OPL->TimerBase : 0.0;
|
|
OPL->st[0] = st1;
|
|
if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+0,interval);
|
|
}
|
|
}
|
|
return;
|
|
#if BUILD_Y8950
|
|
case 0x06: /* Key Board OUT */
|
|
if(OPL->type&OPL_TYPE_KEYBOARD)
|
|
{
|
|
if(OPL->keyboardhandler_w)
|
|
OPL->keyboardhandler_w(OPL->keyboard_param,v);
|
|
else
|
|
LOG(LOG_WAR,("OPL:write unmapped KEYBOARD port\n"));
|
|
}
|
|
return;
|
|
case 0x07: /* DELTA-T control : START,REC,MEMDATA,REPT,SPOFF,x,x,RST */
|
|
if(OPL->type&OPL_TYPE_ADPCM)
|
|
YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v);
|
|
return;
|
|
case 0x08: /* MODE,DELTA-T : CSM,NOTESEL,x,x,smpl,da/ad,64k,rom */
|
|
OPL->mode = v;
|
|
v&=0x1f; /* for DELTA-T unit */
|
|
case 0x09: /* START ADD */
|
|
case 0x0a:
|
|
case 0x0b: /* STOP ADD */
|
|
case 0x0c:
|
|
case 0x0d: /* PRESCALE */
|
|
case 0x0e:
|
|
case 0x0f: /* ADPCM data */
|
|
case 0x10: /* DELTA-N */
|
|
case 0x11: /* DELTA-N */
|
|
case 0x12: /* EG-CTRL */
|
|
if(OPL->type&OPL_TYPE_ADPCM)
|
|
YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v);
|
|
return;
|
|
#if 0
|
|
case 0x15: /* DAC data */
|
|
case 0x16:
|
|
case 0x17: /* SHIFT */
|
|
return;
|
|
case 0x18: /* I/O CTRL (Direction) */
|
|
if(OPL->type&OPL_TYPE_IO)
|
|
OPL->portDirection = v&0x0f;
|
|
return;
|
|
case 0x19: /* I/O DATA */
|
|
if(OPL->type&OPL_TYPE_IO)
|
|
{
|
|
OPL->portLatch = v;
|
|
if(OPL->porthandler_w)
|
|
OPL->porthandler_w(OPL->port_param,v&OPL->portDirection);
|
|
}
|
|
return;
|
|
case 0x1a: /* PCM data */
|
|
return;
|
|
#endif
|
|
#endif
|
|
}
|
|
break;
|
|
case 0x20: /* am,vib,ksr,eg type,mul */
|
|
slot = slot_array[r&0x1f];
|
|
if(slot == -1) return;
|
|
set_mul(OPL,slot,v);
|
|
return;
|
|
case 0x40:
|
|
slot = slot_array[r&0x1f];
|
|
if(slot == -1) return;
|
|
set_ksl_tl(OPL,slot,v);
|
|
return;
|
|
case 0x60:
|
|
slot = slot_array[r&0x1f];
|
|
if(slot == -1) return;
|
|
set_ar_dr(OPL,slot,v);
|
|
return;
|
|
case 0x80:
|
|
slot = slot_array[r&0x1f];
|
|
if(slot == -1) return;
|
|
set_sl_rr(OPL,slot,v);
|
|
return;
|
|
case 0xa0:
|
|
switch(r)
|
|
{
|
|
case 0xbd:
|
|
/* amsep,vibdep,r,bd,sd,tom,tc,hh */
|
|
{
|
|
UINT8 rkey = OPL->rhythm^v;
|
|
OPL->ams_table = &AMS_TABLE[v&0x80 ? AMS_ENT : 0];
|
|
OPL->vib_table = &VIB_TABLE[v&0x40 ? VIB_ENT : 0];
|
|
OPL->rhythm = v&0x3f;
|
|
if(OPL->rhythm&0x20)
|
|
{
|
|
#if 0
|
|
usrintf_showmessage("OPL Rhythm mode select");
|
|
#endif
|
|
/* BD key on/off */
|
|
if(rkey&0x10)
|
|
{
|
|
if(v&0x10)
|
|
{
|
|
OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0;
|
|
OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT1]);
|
|
OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT2]);
|
|
}
|
|
else
|
|
{
|
|
OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1]);
|
|
OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2]);
|
|
}
|
|
}
|
|
/* SD key on/off */
|
|
if(rkey&0x08)
|
|
{
|
|
if(v&0x08) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT2]);
|
|
else OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2]);
|
|
}/* TAM key on/off */
|
|
if(rkey&0x04)
|
|
{
|
|
if(v&0x04) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT1]);
|
|
else OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1]);
|
|
}
|
|
/* TOP-CY key on/off */
|
|
if(rkey&0x02)
|
|
{
|
|
if(v&0x02) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT2]);
|
|
else OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2]);
|
|
}
|
|
/* HH key on/off */
|
|
if(rkey&0x01)
|
|
{
|
|
if(v&0x01) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT1]);
|
|
else OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1]);
|
|
}
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
/* keyon,block,fnum */
|
|
if( (r&0x0f) > 8) return;
|
|
CH = &OPL->P_CH[r&0x0f];
|
|
if(!(r&0x10))
|
|
{ /* a0-a8 */
|
|
block_fnum = (CH->block_fnum&0x1f00) | v;
|
|
}
|
|
else
|
|
{ /* b0-b8 */
|
|
int keyon = (v>>5)&1;
|
|
block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff);
|
|
if(CH->keyon != keyon)
|
|
{
|
|
if( (CH->keyon=keyon) )
|
|
{
|
|
CH->op1_out[0] = CH->op1_out[1] = 0;
|
|
OPL_KEYON(&CH->SLOT[SLOT1]);
|
|
OPL_KEYON(&CH->SLOT[SLOT2]);
|
|
}
|
|
else
|
|
{
|
|
OPL_KEYOFF(&CH->SLOT[SLOT1]);
|
|
OPL_KEYOFF(&CH->SLOT[SLOT2]);
|
|
}
|
|
}
|
|
}
|
|
/* update */
|
|
if(CH->block_fnum != block_fnum)
|
|
{
|
|
int blockRv = 7-(block_fnum>>10);
|
|
int fnum = block_fnum&0x3ff;
|
|
CH->block_fnum = block_fnum;
|
|
|
|
CH->ksl_base = KSL_TABLE[block_fnum>>6];
|
|
CH->fc = OPL->FN_TABLE[fnum]>>blockRv;
|
|
CH->kcode = CH->block_fnum>>9;
|
|
if( (OPL->mode&0x40) && CH->block_fnum&0x100) CH->kcode |=1;
|
|
CALC_FCSLOT(CH,&CH->SLOT[SLOT1]);
|
|
CALC_FCSLOT(CH,&CH->SLOT[SLOT2]);
|
|
}
|
|
return;
|
|
case 0xc0:
|
|
/* FB,C */
|
|
if( (r&0x0f) > 8) return;
|
|
CH = &OPL->P_CH[r&0x0f];
|
|
{
|
|
int feedback = (v>>1)&7;
|
|
CH->FB = feedback ? (8+1) - feedback : 0;
|
|
CH->CON = v&1;
|
|
set_algorithm(CH);
|
|
}
|
|
return;
|
|
case 0xe0: /* wave type */
|
|
slot = slot_array[r&0x1f];
|
|
if(slot == -1) return;
|
|
CH = &OPL->P_CH[slot/2];
|
|
if(OPL->wavesel)
|
|
{
|
|
/* LOG(LOG_INF,("OPL SLOT %d wave select %d\n",slot,v&3)); */
|
|
CH->SLOT[slot&1].wavetable = &SIN_TABLE[(v&0x03)*SIN_ENT];
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* lock/unlock for common table */
|
|
static int OPL_LockTable(void)
|
|
{
|
|
num_lock++;
|
|
if(num_lock>1) return 0;
|
|
/* first time */
|
|
cur_chip = NULL;
|
|
/* allocate total level table (128kb space) */
|
|
if( !OPLOpenTable() )
|
|
{
|
|
num_lock--;
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void OPL_UnLockTable(void)
|
|
{
|
|
if(num_lock) num_lock--;
|
|
if(num_lock) return;
|
|
/* last time */
|
|
cur_chip = NULL;
|
|
OPLCloseTable();
|
|
}
|
|
|
|
#if (BUILD_YM3812 || BUILD_YM3526)
|
|
/*******************************************************************************/
|
|
/* YM3812 local section */
|
|
/*******************************************************************************/
|
|
|
|
/* ---------- update one of chip ----------- */
|
|
void YM3812UpdateOne(FM_OPL *OPL, INT16 *buffer, int length)
|
|
{
|
|
int i;
|
|
int data;
|
|
OPLSAMPLE *buf = buffer;
|
|
UINT32 amsCnt = OPL->amsCnt;
|
|
UINT32 vibCnt = OPL->vibCnt;
|
|
UINT8 rhythm = OPL->rhythm&0x20;
|
|
OPL_CH *CH,*R_CH;
|
|
|
|
if( (void *)OPL != cur_chip ){
|
|
cur_chip = (void *)OPL;
|
|
/* channel pointers */
|
|
S_CH = OPL->P_CH;
|
|
E_CH = &S_CH[9];
|
|
/* rhythm slot */
|
|
SLOT7_1 = &S_CH[7].SLOT[SLOT1];
|
|
SLOT7_2 = &S_CH[7].SLOT[SLOT2];
|
|
SLOT8_1 = &S_CH[8].SLOT[SLOT1];
|
|
SLOT8_2 = &S_CH[8].SLOT[SLOT2];
|
|
/* LFO state */
|
|
amsIncr = OPL->amsIncr;
|
|
vibIncr = OPL->vibIncr;
|
|
ams_table = OPL->ams_table;
|
|
vib_table = OPL->vib_table;
|
|
}
|
|
R_CH = rhythm ? &S_CH[6] : E_CH;
|
|
for( i=0; i < length ; i++ )
|
|
{
|
|
/* channel A channel B channel C */
|
|
/* LFO */
|
|
ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
|
|
vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
|
|
outd[0] = 0;
|
|
/* FM part */
|
|
for(CH=S_CH ; CH < R_CH ; CH++)
|
|
OPL_CALC_CH(CH);
|
|
/* Rythn part */
|
|
if(rhythm)
|
|
OPL_CALC_RH(S_CH);
|
|
/* limit check */
|
|
data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
|
|
/* store to sound buffer */
|
|
buf[i] = data >> OPL_OUTSB;
|
|
}
|
|
|
|
OPL->amsCnt = amsCnt;
|
|
OPL->vibCnt = vibCnt;
|
|
#ifdef OPL_OUTPUT_LOG
|
|
if(opl_dbg_fp)
|
|
{
|
|
for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
|
|
if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
|
|
fprintf(opl_dbg_fp,"%c%c%c",0x20+opl_dbg_chip,length&0xff,length/256);
|
|
}
|
|
#endif
|
|
}
|
|
#endif /* (BUILD_YM3812 || BUILD_YM3526) */
|
|
|
|
#if BUILD_Y8950
|
|
|
|
void Y8950UpdateOne(FM_OPL *OPL, INT16 *buffer, int length)
|
|
{
|
|
int i;
|
|
int data;
|
|
OPLSAMPLE *buf = buffer;
|
|
UINT32 amsCnt = OPL->amsCnt;
|
|
UINT32 vibCnt = OPL->vibCnt;
|
|
UINT8 rhythm = OPL->rhythm&0x20;
|
|
OPL_CH *CH,*R_CH;
|
|
YM_DELTAT *DELTAT = OPL->deltat;
|
|
|
|
/* setup DELTA-T unit */
|
|
YM_DELTAT_DECODE_PRESET(DELTAT);
|
|
|
|
if( (void *)OPL != cur_chip ){
|
|
cur_chip = (void *)OPL;
|
|
/* channel pointers */
|
|
S_CH = OPL->P_CH;
|
|
E_CH = &S_CH[9];
|
|
/* rhythm slot */
|
|
SLOT7_1 = &S_CH[7].SLOT[SLOT1];
|
|
SLOT7_2 = &S_CH[7].SLOT[SLOT2];
|
|
SLOT8_1 = &S_CH[8].SLOT[SLOT1];
|
|
SLOT8_2 = &S_CH[8].SLOT[SLOT2];
|
|
/* LFO state */
|
|
amsIncr = OPL->amsIncr;
|
|
vibIncr = OPL->vibIncr;
|
|
ams_table = OPL->ams_table;
|
|
vib_table = OPL->vib_table;
|
|
}
|
|
R_CH = rhythm ? &S_CH[6] : E_CH;
|
|
for( i=0; i < length ; i++ )
|
|
{
|
|
/* channel A channel B channel C */
|
|
/* LFO */
|
|
ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
|
|
vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
|
|
outd[0] = 0;
|
|
/* deltaT ADPCM */
|
|
if( DELTAT->portstate )
|
|
YM_DELTAT_ADPCM_CALC(DELTAT);
|
|
/* FM part */
|
|
for(CH=S_CH ; CH < R_CH ; CH++)
|
|
OPL_CALC_CH(CH);
|
|
/* Rythn part */
|
|
if(rhythm)
|
|
OPL_CALC_RH(S_CH);
|
|
/* limit check */
|
|
data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
|
|
/* store to sound buffer */
|
|
buf[i] = data >> OPL_OUTSB;
|
|
}
|
|
OPL->amsCnt = amsCnt;
|
|
OPL->vibCnt = vibCnt;
|
|
/* deltaT START flag */
|
|
if( !DELTAT->portstate )
|
|
OPL->status &= 0xfe;
|
|
}
|
|
#endif
|
|
|
|
/* ---------- reset one of chip ---------- */
|
|
void OPLResetChip(FM_OPL *OPL)
|
|
{
|
|
int c,s;
|
|
int i;
|
|
|
|
/* reset chip */
|
|
OPL->mode = 0; /* normal mode */
|
|
OPL_STATUS_RESET(OPL,0x7f);
|
|
/* reset with register write */
|
|
OPLWriteReg(OPL,0x01,0); /* wabesel disable */
|
|
OPLWriteReg(OPL,0x02,0); /* Timer1 */
|
|
OPLWriteReg(OPL,0x03,0); /* Timer2 */
|
|
OPLWriteReg(OPL,0x04,0); /* IRQ mask clear */
|
|
for(i = 0xff ; i >= 0x20 ; i-- ) OPLWriteReg(OPL,i,0);
|
|
/* reset operator parameter */
|
|
for( c = 0 ; c < OPL->max_ch ; c++ )
|
|
{
|
|
OPL_CH *CH = &OPL->P_CH[c];
|
|
/* OPL->P_CH[c].PAN = OPN_CENTER; */
|
|
for(s = 0 ; s < 2 ; s++ )
|
|
{
|
|
/* wave table */
|
|
CH->SLOT[s].wavetable = &SIN_TABLE[0];
|
|
/* CH->SLOT[s].evm = ENV_MOD_RR; */
|
|
CH->SLOT[s].evc = EG_OFF;
|
|
CH->SLOT[s].eve = EG_OFF+1;
|
|
CH->SLOT[s].evs = 0;
|
|
}
|
|
}
|
|
#if BUILD_Y8950
|
|
if(OPL->type&OPL_TYPE_ADPCM)
|
|
{
|
|
YM_DELTAT *DELTAT = OPL->deltat;
|
|
|
|
DELTAT->freqbase = OPL->freqbase;
|
|
DELTAT->output_pointer = outd;
|
|
DELTAT->portshift = 5;
|
|
DELTAT->output_range = DELTAT_MIXING_LEVEL<<TL_BITS;
|
|
YM_DELTAT_ADPCM_Reset(DELTAT,0);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* ---------- Create one of vietual YM3812 ---------- */
|
|
/* 'rate' is sampling rate and 'bufsiz' is the size of the */
|
|
FM_OPL *OPLCreate(int type, int clock, int rate)
|
|
{
|
|
char *ptr;
|
|
FM_OPL *OPL;
|
|
int state_size;
|
|
int max_ch = 9; /* normaly 9 channels */
|
|
|
|
if( OPL_LockTable() ==-1) return NULL;
|
|
/* allocate OPL state space */
|
|
state_size = sizeof(FM_OPL);
|
|
state_size += sizeof(OPL_CH)*max_ch;
|
|
#if BUILD_Y8950
|
|
if(type&OPL_TYPE_ADPCM) state_size+= sizeof(YM_DELTAT);
|
|
#endif
|
|
/* allocate memory block */
|
|
ptr = malloc(state_size);
|
|
if(ptr==NULL) return NULL;
|
|
/* clear */
|
|
memset(ptr,0,state_size);
|
|
OPL = (FM_OPL *)ptr; ptr+=sizeof(FM_OPL);
|
|
OPL->P_CH = (OPL_CH *)ptr; ptr+=sizeof(OPL_CH)*max_ch;
|
|
#if BUILD_Y8950
|
|
if(type&OPL_TYPE_ADPCM) OPL->deltat = (YM_DELTAT *)ptr; ptr+=sizeof(YM_DELTAT);
|
|
#endif
|
|
/* set channel state pointer */
|
|
OPL->type = type;
|
|
OPL->clock = clock;
|
|
OPL->rate = rate;
|
|
OPL->max_ch = max_ch;
|
|
/* init grobal tables */
|
|
OPL_initialize(OPL);
|
|
/* reset chip */
|
|
OPLResetChip(OPL);
|
|
#ifdef OPL_OUTPUT_LOG
|
|
if(!opl_dbg_fp)
|
|
{
|
|
opl_dbg_fp = fopen("opllog.opl","wb");
|
|
opl_dbg_maxchip = 0;
|
|
}
|
|
if(opl_dbg_fp)
|
|
{
|
|
opl_dbg_opl[opl_dbg_maxchip] = OPL;
|
|
fprintf(opl_dbg_fp,"%c%c%c%c%c%c",0x00+opl_dbg_maxchip,
|
|
type,
|
|
clock&0xff,
|
|
(clock/0x100)&0xff,
|
|
(clock/0x10000)&0xff,
|
|
(clock/0x1000000)&0xff);
|
|
opl_dbg_maxchip++;
|
|
}
|
|
#endif
|
|
return OPL;
|
|
}
|
|
|
|
/* ---------- Destroy one of vietual YM3812 ---------- */
|
|
void OPLDestroy(FM_OPL *OPL)
|
|
{
|
|
#ifdef OPL_OUTPUT_LOG
|
|
if(opl_dbg_fp)
|
|
{
|
|
fclose(opl_dbg_fp);
|
|
opl_dbg_fp = NULL;
|
|
}
|
|
#endif
|
|
OPL_UnLockTable();
|
|
free(OPL);
|
|
}
|
|
|
|
/* ---------- Option handlers ---------- */
|
|
|
|
void OPLSetTimerHandler(FM_OPL *OPL,OPL_TIMERHANDLER TimerHandler,int channelOffset)
|
|
{
|
|
OPL->TimerHandler = TimerHandler;
|
|
OPL->TimerParam = channelOffset;
|
|
}
|
|
void OPLSetIRQHandler(FM_OPL *OPL,OPL_IRQHANDLER IRQHandler,int param)
|
|
{
|
|
OPL->IRQHandler = IRQHandler;
|
|
OPL->IRQParam = param;
|
|
}
|
|
void OPLSetUpdateHandler(FM_OPL *OPL,OPL_UPDATEHANDLER UpdateHandler,int param)
|
|
{
|
|
OPL->UpdateHandler = UpdateHandler;
|
|
OPL->UpdateParam = param;
|
|
}
|
|
#if BUILD_Y8950
|
|
void OPLSetPortHandler(FM_OPL *OPL,OPL_PORTHANDLER_W PortHandler_w,OPL_PORTHANDLER_R PortHandler_r,int param)
|
|
{
|
|
OPL->porthandler_w = PortHandler_w;
|
|
OPL->porthandler_r = PortHandler_r;
|
|
OPL->port_param = param;
|
|
}
|
|
|
|
void OPLSetKeyboardHandler(FM_OPL *OPL,OPL_PORTHANDLER_W KeyboardHandler_w,OPL_PORTHANDLER_R KeyboardHandler_r,int param)
|
|
{
|
|
OPL->keyboardhandler_w = KeyboardHandler_w;
|
|
OPL->keyboardhandler_r = KeyboardHandler_r;
|
|
OPL->keyboard_param = param;
|
|
}
|
|
#endif
|
|
/* ---------- YM3812 I/O interface ---------- */
|
|
int OPLWrite(FM_OPL *OPL,int a,int v)
|
|
{
|
|
if( !(a&1) )
|
|
{ /* address port */
|
|
OPL->address = v & 0xff;
|
|
}
|
|
else
|
|
{ /* data port */
|
|
if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0);
|
|
#ifdef OPL_OUTPUT_LOG
|
|
if(opl_dbg_fp)
|
|
{
|
|
for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
|
|
if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
|
|
fprintf(opl_dbg_fp,"%c%c%c",0x10+opl_dbg_chip,OPL->address,v);
|
|
}
|
|
#endif
|
|
OPLWriteReg(OPL,OPL->address,v);
|
|
}
|
|
return OPL->status>>7;
|
|
}
|
|
|
|
unsigned char OPLRead(FM_OPL *OPL,int a)
|
|
{
|
|
if( !(a&1) )
|
|
{ /* status port */
|
|
return OPL->status & (OPL->statusmask|0x80);
|
|
}
|
|
/* data port */
|
|
switch(OPL->address)
|
|
{
|
|
case 0x05: /* KeyBoard IN */
|
|
if(OPL->type&OPL_TYPE_KEYBOARD)
|
|
{
|
|
if(OPL->keyboardhandler_r)
|
|
return OPL->keyboardhandler_r(OPL->keyboard_param);
|
|
else {
|
|
LOG(LOG_WAR,("OPL:read unmapped KEYBOARD port\n"));
|
|
}
|
|
}
|
|
return 0;
|
|
#if 0
|
|
case 0x0f: /* ADPCM-DATA */
|
|
return 0;
|
|
#endif
|
|
case 0x19: /* I/O DATA */
|
|
if(OPL->type&OPL_TYPE_IO)
|
|
{
|
|
if(OPL->porthandler_r)
|
|
return OPL->porthandler_r(OPL->port_param);
|
|
else {
|
|
LOG(LOG_WAR,("OPL:read unmapped I/O port\n"));
|
|
}
|
|
}
|
|
return 0;
|
|
case 0x1a: /* PCM-DATA */
|
|
return 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int OPLTimerOver(FM_OPL *OPL,int c)
|
|
{
|
|
if( c )
|
|
{ /* Timer B */
|
|
OPL_STATUS_SET(OPL,0x20);
|
|
}
|
|
else
|
|
{ /* Timer A */
|
|
OPL_STATUS_SET(OPL,0x40);
|
|
/* CSM mode key,TL control */
|
|
if( OPL->mode & 0x80 )
|
|
{ /* CSM mode total level latch and auto key on */
|
|
int ch;
|
|
if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0);
|
|
for(ch=0;ch<9;ch++)
|
|
CSMKeyControll( &OPL->P_CH[ch] );
|
|
}
|
|
}
|
|
/* reload timer */
|
|
if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+c,(double)OPL->T[c]*OPL->TimerBase);
|
|
return OPL->status>>7;
|
|
}
|