mirror of
https://github.com/qemu/qemu.git
synced 2024-12-29 23:23:55 +08:00
068a5ea02f
Iterating over the list without using atomics is undefined behaviour, since the list can be modified concurrently by other threads (e.g. every time a new thread is created in user-mode). Fix it by implementing the CPU list as an RCU QTAILQ. This requires a little bit of extra work to traverse list in reverse order (see previous patch), but other than that the conversion is trivial. Signed-off-by: Emilio G. Cota <cota@braap.org> Message-Id: <20180819091335.22863-12-cota@braap.org> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
354 lines
10 KiB
C
354 lines
10 KiB
C
/*
|
|
* CPU thread main loop - common bits for user and system mode emulation
|
|
*
|
|
* Copyright (c) 2003-2005 Fabrice Bellard
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu/main-loop.h"
|
|
#include "exec/cpu-common.h"
|
|
#include "qom/cpu.h"
|
|
#include "sysemu/cpus.h"
|
|
|
|
static QemuMutex qemu_cpu_list_lock;
|
|
static QemuCond exclusive_cond;
|
|
static QemuCond exclusive_resume;
|
|
static QemuCond qemu_work_cond;
|
|
|
|
/* >= 1 if a thread is inside start_exclusive/end_exclusive. Written
|
|
* under qemu_cpu_list_lock, read with atomic operations.
|
|
*/
|
|
static int pending_cpus;
|
|
|
|
void qemu_init_cpu_list(void)
|
|
{
|
|
/* This is needed because qemu_init_cpu_list is also called by the
|
|
* child process in a fork. */
|
|
pending_cpus = 0;
|
|
|
|
qemu_mutex_init(&qemu_cpu_list_lock);
|
|
qemu_cond_init(&exclusive_cond);
|
|
qemu_cond_init(&exclusive_resume);
|
|
qemu_cond_init(&qemu_work_cond);
|
|
}
|
|
|
|
void cpu_list_lock(void)
|
|
{
|
|
qemu_mutex_lock(&qemu_cpu_list_lock);
|
|
}
|
|
|
|
void cpu_list_unlock(void)
|
|
{
|
|
qemu_mutex_unlock(&qemu_cpu_list_lock);
|
|
}
|
|
|
|
static bool cpu_index_auto_assigned;
|
|
|
|
static int cpu_get_free_index(void)
|
|
{
|
|
CPUState *some_cpu;
|
|
int cpu_index = 0;
|
|
|
|
cpu_index_auto_assigned = true;
|
|
CPU_FOREACH(some_cpu) {
|
|
cpu_index++;
|
|
}
|
|
return cpu_index;
|
|
}
|
|
|
|
static void finish_safe_work(CPUState *cpu)
|
|
{
|
|
cpu_exec_start(cpu);
|
|
cpu_exec_end(cpu);
|
|
}
|
|
|
|
void cpu_list_add(CPUState *cpu)
|
|
{
|
|
qemu_mutex_lock(&qemu_cpu_list_lock);
|
|
if (cpu->cpu_index == UNASSIGNED_CPU_INDEX) {
|
|
cpu->cpu_index = cpu_get_free_index();
|
|
assert(cpu->cpu_index != UNASSIGNED_CPU_INDEX);
|
|
} else {
|
|
assert(!cpu_index_auto_assigned);
|
|
}
|
|
QTAILQ_INSERT_TAIL_RCU(&cpus, cpu, node);
|
|
qemu_mutex_unlock(&qemu_cpu_list_lock);
|
|
|
|
finish_safe_work(cpu);
|
|
}
|
|
|
|
void cpu_list_remove(CPUState *cpu)
|
|
{
|
|
qemu_mutex_lock(&qemu_cpu_list_lock);
|
|
if (!QTAILQ_IN_USE(cpu, node)) {
|
|
/* there is nothing to undo since cpu_exec_init() hasn't been called */
|
|
qemu_mutex_unlock(&qemu_cpu_list_lock);
|
|
return;
|
|
}
|
|
|
|
assert(!(cpu_index_auto_assigned && cpu != QTAILQ_LAST(&cpus, CPUTailQ)));
|
|
|
|
QTAILQ_REMOVE_RCU(&cpus, cpu, node);
|
|
cpu->cpu_index = UNASSIGNED_CPU_INDEX;
|
|
qemu_mutex_unlock(&qemu_cpu_list_lock);
|
|
}
|
|
|
|
struct qemu_work_item {
|
|
struct qemu_work_item *next;
|
|
run_on_cpu_func func;
|
|
run_on_cpu_data data;
|
|
bool free, exclusive, done;
|
|
};
|
|
|
|
static void queue_work_on_cpu(CPUState *cpu, struct qemu_work_item *wi)
|
|
{
|
|
qemu_mutex_lock(&cpu->work_mutex);
|
|
if (cpu->queued_work_first == NULL) {
|
|
cpu->queued_work_first = wi;
|
|
} else {
|
|
cpu->queued_work_last->next = wi;
|
|
}
|
|
cpu->queued_work_last = wi;
|
|
wi->next = NULL;
|
|
wi->done = false;
|
|
qemu_mutex_unlock(&cpu->work_mutex);
|
|
|
|
qemu_cpu_kick(cpu);
|
|
}
|
|
|
|
void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
|
|
QemuMutex *mutex)
|
|
{
|
|
struct qemu_work_item wi;
|
|
|
|
if (qemu_cpu_is_self(cpu)) {
|
|
func(cpu, data);
|
|
return;
|
|
}
|
|
|
|
wi.func = func;
|
|
wi.data = data;
|
|
wi.done = false;
|
|
wi.free = false;
|
|
wi.exclusive = false;
|
|
|
|
queue_work_on_cpu(cpu, &wi);
|
|
while (!atomic_mb_read(&wi.done)) {
|
|
CPUState *self_cpu = current_cpu;
|
|
|
|
qemu_cond_wait(&qemu_work_cond, mutex);
|
|
current_cpu = self_cpu;
|
|
}
|
|
}
|
|
|
|
void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data)
|
|
{
|
|
struct qemu_work_item *wi;
|
|
|
|
wi = g_malloc0(sizeof(struct qemu_work_item));
|
|
wi->func = func;
|
|
wi->data = data;
|
|
wi->free = true;
|
|
|
|
queue_work_on_cpu(cpu, wi);
|
|
}
|
|
|
|
/* Wait for pending exclusive operations to complete. The CPU list lock
|
|
must be held. */
|
|
static inline void exclusive_idle(void)
|
|
{
|
|
while (pending_cpus) {
|
|
qemu_cond_wait(&exclusive_resume, &qemu_cpu_list_lock);
|
|
}
|
|
}
|
|
|
|
/* Start an exclusive operation.
|
|
Must only be called from outside cpu_exec. */
|
|
void start_exclusive(void)
|
|
{
|
|
CPUState *other_cpu;
|
|
int running_cpus;
|
|
|
|
qemu_mutex_lock(&qemu_cpu_list_lock);
|
|
exclusive_idle();
|
|
|
|
/* Make all other cpus stop executing. */
|
|
atomic_set(&pending_cpus, 1);
|
|
|
|
/* Write pending_cpus before reading other_cpu->running. */
|
|
smp_mb();
|
|
running_cpus = 0;
|
|
CPU_FOREACH(other_cpu) {
|
|
if (atomic_read(&other_cpu->running)) {
|
|
other_cpu->has_waiter = true;
|
|
running_cpus++;
|
|
qemu_cpu_kick(other_cpu);
|
|
}
|
|
}
|
|
|
|
atomic_set(&pending_cpus, running_cpus + 1);
|
|
while (pending_cpus > 1) {
|
|
qemu_cond_wait(&exclusive_cond, &qemu_cpu_list_lock);
|
|
}
|
|
|
|
/* Can release mutex, no one will enter another exclusive
|
|
* section until end_exclusive resets pending_cpus to 0.
|
|
*/
|
|
qemu_mutex_unlock(&qemu_cpu_list_lock);
|
|
}
|
|
|
|
/* Finish an exclusive operation. */
|
|
void end_exclusive(void)
|
|
{
|
|
qemu_mutex_lock(&qemu_cpu_list_lock);
|
|
atomic_set(&pending_cpus, 0);
|
|
qemu_cond_broadcast(&exclusive_resume);
|
|
qemu_mutex_unlock(&qemu_cpu_list_lock);
|
|
}
|
|
|
|
/* Wait for exclusive ops to finish, and begin cpu execution. */
|
|
void cpu_exec_start(CPUState *cpu)
|
|
{
|
|
atomic_set(&cpu->running, true);
|
|
|
|
/* Write cpu->running before reading pending_cpus. */
|
|
smp_mb();
|
|
|
|
/* 1. start_exclusive saw cpu->running == true and pending_cpus >= 1.
|
|
* After taking the lock we'll see cpu->has_waiter == true and run---not
|
|
* for long because start_exclusive kicked us. cpu_exec_end will
|
|
* decrement pending_cpus and signal the waiter.
|
|
*
|
|
* 2. start_exclusive saw cpu->running == false but pending_cpus >= 1.
|
|
* This includes the case when an exclusive item is running now.
|
|
* Then we'll see cpu->has_waiter == false and wait for the item to
|
|
* complete.
|
|
*
|
|
* 3. pending_cpus == 0. Then start_exclusive is definitely going to
|
|
* see cpu->running == true, and it will kick the CPU.
|
|
*/
|
|
if (unlikely(atomic_read(&pending_cpus))) {
|
|
qemu_mutex_lock(&qemu_cpu_list_lock);
|
|
if (!cpu->has_waiter) {
|
|
/* Not counted in pending_cpus, let the exclusive item
|
|
* run. Since we have the lock, just set cpu->running to true
|
|
* while holding it; no need to check pending_cpus again.
|
|
*/
|
|
atomic_set(&cpu->running, false);
|
|
exclusive_idle();
|
|
/* Now pending_cpus is zero. */
|
|
atomic_set(&cpu->running, true);
|
|
} else {
|
|
/* Counted in pending_cpus, go ahead and release the
|
|
* waiter at cpu_exec_end.
|
|
*/
|
|
}
|
|
qemu_mutex_unlock(&qemu_cpu_list_lock);
|
|
}
|
|
}
|
|
|
|
/* Mark cpu as not executing, and release pending exclusive ops. */
|
|
void cpu_exec_end(CPUState *cpu)
|
|
{
|
|
atomic_set(&cpu->running, false);
|
|
|
|
/* Write cpu->running before reading pending_cpus. */
|
|
smp_mb();
|
|
|
|
/* 1. start_exclusive saw cpu->running == true. Then it will increment
|
|
* pending_cpus and wait for exclusive_cond. After taking the lock
|
|
* we'll see cpu->has_waiter == true.
|
|
*
|
|
* 2. start_exclusive saw cpu->running == false but here pending_cpus >= 1.
|
|
* This includes the case when an exclusive item started after setting
|
|
* cpu->running to false and before we read pending_cpus. Then we'll see
|
|
* cpu->has_waiter == false and not touch pending_cpus. The next call to
|
|
* cpu_exec_start will run exclusive_idle if still necessary, thus waiting
|
|
* for the item to complete.
|
|
*
|
|
* 3. pending_cpus == 0. Then start_exclusive is definitely going to
|
|
* see cpu->running == false, and it can ignore this CPU until the
|
|
* next cpu_exec_start.
|
|
*/
|
|
if (unlikely(atomic_read(&pending_cpus))) {
|
|
qemu_mutex_lock(&qemu_cpu_list_lock);
|
|
if (cpu->has_waiter) {
|
|
cpu->has_waiter = false;
|
|
atomic_set(&pending_cpus, pending_cpus - 1);
|
|
if (pending_cpus == 1) {
|
|
qemu_cond_signal(&exclusive_cond);
|
|
}
|
|
}
|
|
qemu_mutex_unlock(&qemu_cpu_list_lock);
|
|
}
|
|
}
|
|
|
|
void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func,
|
|
run_on_cpu_data data)
|
|
{
|
|
struct qemu_work_item *wi;
|
|
|
|
wi = g_malloc0(sizeof(struct qemu_work_item));
|
|
wi->func = func;
|
|
wi->data = data;
|
|
wi->free = true;
|
|
wi->exclusive = true;
|
|
|
|
queue_work_on_cpu(cpu, wi);
|
|
}
|
|
|
|
void process_queued_cpu_work(CPUState *cpu)
|
|
{
|
|
struct qemu_work_item *wi;
|
|
|
|
if (cpu->queued_work_first == NULL) {
|
|
return;
|
|
}
|
|
|
|
qemu_mutex_lock(&cpu->work_mutex);
|
|
while (cpu->queued_work_first != NULL) {
|
|
wi = cpu->queued_work_first;
|
|
cpu->queued_work_first = wi->next;
|
|
if (!cpu->queued_work_first) {
|
|
cpu->queued_work_last = NULL;
|
|
}
|
|
qemu_mutex_unlock(&cpu->work_mutex);
|
|
if (wi->exclusive) {
|
|
/* Running work items outside the BQL avoids the following deadlock:
|
|
* 1) start_exclusive() is called with the BQL taken while another
|
|
* CPU is running; 2) cpu_exec in the other CPU tries to takes the
|
|
* BQL, so it goes to sleep; start_exclusive() is sleeping too, so
|
|
* neither CPU can proceed.
|
|
*/
|
|
qemu_mutex_unlock_iothread();
|
|
start_exclusive();
|
|
wi->func(cpu, wi->data);
|
|
end_exclusive();
|
|
qemu_mutex_lock_iothread();
|
|
} else {
|
|
wi->func(cpu, wi->data);
|
|
}
|
|
qemu_mutex_lock(&cpu->work_mutex);
|
|
if (wi->free) {
|
|
g_free(wi);
|
|
} else {
|
|
atomic_mb_set(&wi->done, true);
|
|
}
|
|
}
|
|
qemu_mutex_unlock(&cpu->work_mutex);
|
|
qemu_cond_broadcast(&qemu_work_cond);
|
|
}
|