mirror of
https://github.com/qemu/qemu.git
synced 2024-12-15 23:43:31 +08:00
313e162951
Signed-off-by: Stefan Weil <sw@weilnetz.de> Reviewed-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org> Message-Id: <20230730180329.851576-1-sw@weilnetz.de> Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
1965 lines
56 KiB
C
1965 lines
56 KiB
C
/*
|
|
* QEMU Executable loader
|
|
*
|
|
* Copyright (c) 2006 Fabrice Bellard
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*
|
|
* Gunzip functionality in this file is derived from u-boot:
|
|
*
|
|
* (C) Copyright 2008 Semihalf
|
|
*
|
|
* (C) Copyright 2000-2005
|
|
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation; either version 2 of
|
|
* the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu/datadir.h"
|
|
#include "qemu/error-report.h"
|
|
#include "qapi/error.h"
|
|
#include "qapi/qapi-commands-machine.h"
|
|
#include "qapi/type-helpers.h"
|
|
#include "trace.h"
|
|
#include "hw/hw.h"
|
|
#include "disas/disas.h"
|
|
#include "migration/vmstate.h"
|
|
#include "monitor/monitor.h"
|
|
#include "sysemu/reset.h"
|
|
#include "sysemu/sysemu.h"
|
|
#include "uboot_image.h"
|
|
#include "hw/loader.h"
|
|
#include "hw/nvram/fw_cfg.h"
|
|
#include "exec/memory.h"
|
|
#include "hw/boards.h"
|
|
#include "qemu/cutils.h"
|
|
#include "sysemu/runstate.h"
|
|
#include "accel/tcg/debuginfo.h"
|
|
|
|
#include <zlib.h>
|
|
|
|
static int roms_loaded;
|
|
|
|
/* return the size or -1 if error */
|
|
int64_t get_image_size(const char *filename)
|
|
{
|
|
int fd;
|
|
int64_t size;
|
|
fd = open(filename, O_RDONLY | O_BINARY);
|
|
if (fd < 0)
|
|
return -1;
|
|
size = lseek(fd, 0, SEEK_END);
|
|
close(fd);
|
|
return size;
|
|
}
|
|
|
|
/* return the size or -1 if error */
|
|
ssize_t load_image_size(const char *filename, void *addr, size_t size)
|
|
{
|
|
int fd;
|
|
ssize_t actsize, l = 0;
|
|
|
|
fd = open(filename, O_RDONLY | O_BINARY);
|
|
if (fd < 0) {
|
|
return -1;
|
|
}
|
|
|
|
while ((actsize = read(fd, addr + l, size - l)) > 0) {
|
|
l += actsize;
|
|
}
|
|
|
|
close(fd);
|
|
|
|
return actsize < 0 ? -1 : l;
|
|
}
|
|
|
|
/* read()-like version */
|
|
ssize_t read_targphys(const char *name,
|
|
int fd, hwaddr dst_addr, size_t nbytes)
|
|
{
|
|
uint8_t *buf;
|
|
ssize_t did;
|
|
|
|
buf = g_malloc(nbytes);
|
|
did = read(fd, buf, nbytes);
|
|
if (did > 0)
|
|
rom_add_blob_fixed("read", buf, did, dst_addr);
|
|
g_free(buf);
|
|
return did;
|
|
}
|
|
|
|
ssize_t load_image_targphys(const char *filename,
|
|
hwaddr addr, uint64_t max_sz)
|
|
{
|
|
return load_image_targphys_as(filename, addr, max_sz, NULL);
|
|
}
|
|
|
|
/* return the size or -1 if error */
|
|
ssize_t load_image_targphys_as(const char *filename,
|
|
hwaddr addr, uint64_t max_sz, AddressSpace *as)
|
|
{
|
|
ssize_t size;
|
|
|
|
size = get_image_size(filename);
|
|
if (size < 0 || size > max_sz) {
|
|
return -1;
|
|
}
|
|
if (size > 0) {
|
|
if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) {
|
|
return -1;
|
|
}
|
|
}
|
|
return size;
|
|
}
|
|
|
|
ssize_t load_image_mr(const char *filename, MemoryRegion *mr)
|
|
{
|
|
ssize_t size;
|
|
|
|
if (!memory_access_is_direct(mr, false)) {
|
|
/* Can only load an image into RAM or ROM */
|
|
return -1;
|
|
}
|
|
|
|
size = get_image_size(filename);
|
|
|
|
if (size < 0 || size > memory_region_size(mr)) {
|
|
return -1;
|
|
}
|
|
if (size > 0) {
|
|
if (rom_add_file_mr(filename, mr, -1) < 0) {
|
|
return -1;
|
|
}
|
|
}
|
|
return size;
|
|
}
|
|
|
|
void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size,
|
|
const char *source)
|
|
{
|
|
const char *nulp;
|
|
char *ptr;
|
|
|
|
if (buf_size <= 0) return;
|
|
nulp = memchr(source, 0, buf_size);
|
|
if (nulp) {
|
|
rom_add_blob_fixed(name, source, (nulp - source) + 1, dest);
|
|
} else {
|
|
rom_add_blob_fixed(name, source, buf_size, dest);
|
|
ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr));
|
|
*ptr = 0;
|
|
}
|
|
}
|
|
|
|
/* A.OUT loader */
|
|
|
|
struct exec
|
|
{
|
|
uint32_t a_info; /* Use macros N_MAGIC, etc for access */
|
|
uint32_t a_text; /* length of text, in bytes */
|
|
uint32_t a_data; /* length of data, in bytes */
|
|
uint32_t a_bss; /* length of uninitialized data area, in bytes */
|
|
uint32_t a_syms; /* length of symbol table data in file, in bytes */
|
|
uint32_t a_entry; /* start address */
|
|
uint32_t a_trsize; /* length of relocation info for text, in bytes */
|
|
uint32_t a_drsize; /* length of relocation info for data, in bytes */
|
|
};
|
|
|
|
static void bswap_ahdr(struct exec *e)
|
|
{
|
|
bswap32s(&e->a_info);
|
|
bswap32s(&e->a_text);
|
|
bswap32s(&e->a_data);
|
|
bswap32s(&e->a_bss);
|
|
bswap32s(&e->a_syms);
|
|
bswap32s(&e->a_entry);
|
|
bswap32s(&e->a_trsize);
|
|
bswap32s(&e->a_drsize);
|
|
}
|
|
|
|
#define N_MAGIC(exec) ((exec).a_info & 0xffff)
|
|
#define OMAGIC 0407
|
|
#define NMAGIC 0410
|
|
#define ZMAGIC 0413
|
|
#define QMAGIC 0314
|
|
#define _N_HDROFF(x) (1024 - sizeof (struct exec))
|
|
#define N_TXTOFF(x) \
|
|
(N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \
|
|
(N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec)))
|
|
#define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0)
|
|
#define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1))
|
|
|
|
#define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text)
|
|
|
|
#define N_DATADDR(x, target_page_size) \
|
|
(N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \
|
|
: (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size)))
|
|
|
|
|
|
ssize_t load_aout(const char *filename, hwaddr addr, int max_sz,
|
|
int bswap_needed, hwaddr target_page_size)
|
|
{
|
|
int fd;
|
|
ssize_t size, ret;
|
|
struct exec e;
|
|
uint32_t magic;
|
|
|
|
fd = open(filename, O_RDONLY | O_BINARY);
|
|
if (fd < 0)
|
|
return -1;
|
|
|
|
size = read(fd, &e, sizeof(e));
|
|
if (size < 0)
|
|
goto fail;
|
|
|
|
if (bswap_needed) {
|
|
bswap_ahdr(&e);
|
|
}
|
|
|
|
magic = N_MAGIC(e);
|
|
switch (magic) {
|
|
case ZMAGIC:
|
|
case QMAGIC:
|
|
case OMAGIC:
|
|
if (e.a_text + e.a_data > max_sz)
|
|
goto fail;
|
|
lseek(fd, N_TXTOFF(e), SEEK_SET);
|
|
size = read_targphys(filename, fd, addr, e.a_text + e.a_data);
|
|
if (size < 0)
|
|
goto fail;
|
|
break;
|
|
case NMAGIC:
|
|
if (N_DATADDR(e, target_page_size) + e.a_data > max_sz)
|
|
goto fail;
|
|
lseek(fd, N_TXTOFF(e), SEEK_SET);
|
|
size = read_targphys(filename, fd, addr, e.a_text);
|
|
if (size < 0)
|
|
goto fail;
|
|
ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size),
|
|
e.a_data);
|
|
if (ret < 0)
|
|
goto fail;
|
|
size += ret;
|
|
break;
|
|
default:
|
|
goto fail;
|
|
}
|
|
close(fd);
|
|
return size;
|
|
fail:
|
|
close(fd);
|
|
return -1;
|
|
}
|
|
|
|
/* ELF loader */
|
|
|
|
static void *load_at(int fd, off_t offset, size_t size)
|
|
{
|
|
void *ptr;
|
|
if (lseek(fd, offset, SEEK_SET) < 0)
|
|
return NULL;
|
|
ptr = g_malloc(size);
|
|
if (read(fd, ptr, size) != size) {
|
|
g_free(ptr);
|
|
return NULL;
|
|
}
|
|
return ptr;
|
|
}
|
|
|
|
#ifdef ELF_CLASS
|
|
#undef ELF_CLASS
|
|
#endif
|
|
|
|
#define ELF_CLASS ELFCLASS32
|
|
#include "elf.h"
|
|
|
|
#define SZ 32
|
|
#define elf_word uint32_t
|
|
#define elf_sword int32_t
|
|
#define bswapSZs bswap32s
|
|
#include "hw/elf_ops.h"
|
|
|
|
#undef elfhdr
|
|
#undef elf_phdr
|
|
#undef elf_shdr
|
|
#undef elf_sym
|
|
#undef elf_rela
|
|
#undef elf_note
|
|
#undef elf_word
|
|
#undef elf_sword
|
|
#undef bswapSZs
|
|
#undef SZ
|
|
#define elfhdr elf64_hdr
|
|
#define elf_phdr elf64_phdr
|
|
#define elf_note elf64_note
|
|
#define elf_shdr elf64_shdr
|
|
#define elf_sym elf64_sym
|
|
#define elf_rela elf64_rela
|
|
#define elf_word uint64_t
|
|
#define elf_sword int64_t
|
|
#define bswapSZs bswap64s
|
|
#define SZ 64
|
|
#include "hw/elf_ops.h"
|
|
|
|
const char *load_elf_strerror(ssize_t error)
|
|
{
|
|
switch (error) {
|
|
case 0:
|
|
return "No error";
|
|
case ELF_LOAD_FAILED:
|
|
return "Failed to load ELF";
|
|
case ELF_LOAD_NOT_ELF:
|
|
return "The image is not ELF";
|
|
case ELF_LOAD_WRONG_ARCH:
|
|
return "The image is from incompatible architecture";
|
|
case ELF_LOAD_WRONG_ENDIAN:
|
|
return "The image has incorrect endianness";
|
|
case ELF_LOAD_TOO_BIG:
|
|
return "The image segments are too big to load";
|
|
default:
|
|
return "Unknown error";
|
|
}
|
|
}
|
|
|
|
void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp)
|
|
{
|
|
int fd;
|
|
uint8_t e_ident_local[EI_NIDENT];
|
|
uint8_t *e_ident;
|
|
size_t hdr_size, off;
|
|
bool is64l;
|
|
|
|
if (!hdr) {
|
|
hdr = e_ident_local;
|
|
}
|
|
e_ident = hdr;
|
|
|
|
fd = open(filename, O_RDONLY | O_BINARY);
|
|
if (fd < 0) {
|
|
error_setg_errno(errp, errno, "Failed to open file: %s", filename);
|
|
return;
|
|
}
|
|
if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) {
|
|
error_setg_errno(errp, errno, "Failed to read file: %s", filename);
|
|
goto fail;
|
|
}
|
|
if (e_ident[0] != ELFMAG0 ||
|
|
e_ident[1] != ELFMAG1 ||
|
|
e_ident[2] != ELFMAG2 ||
|
|
e_ident[3] != ELFMAG3) {
|
|
error_setg(errp, "Bad ELF magic");
|
|
goto fail;
|
|
}
|
|
|
|
is64l = e_ident[EI_CLASS] == ELFCLASS64;
|
|
hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr);
|
|
if (is64) {
|
|
*is64 = is64l;
|
|
}
|
|
|
|
off = EI_NIDENT;
|
|
while (hdr != e_ident_local && off < hdr_size) {
|
|
size_t br = read(fd, hdr + off, hdr_size - off);
|
|
switch (br) {
|
|
case 0:
|
|
error_setg(errp, "File too short: %s", filename);
|
|
goto fail;
|
|
case -1:
|
|
error_setg_errno(errp, errno, "Failed to read file: %s",
|
|
filename);
|
|
goto fail;
|
|
}
|
|
off += br;
|
|
}
|
|
|
|
fail:
|
|
close(fd);
|
|
}
|
|
|
|
/* return < 0 if error, otherwise the number of bytes loaded in memory */
|
|
ssize_t load_elf(const char *filename,
|
|
uint64_t (*elf_note_fn)(void *, void *, bool),
|
|
uint64_t (*translate_fn)(void *, uint64_t),
|
|
void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
|
|
uint64_t *highaddr, uint32_t *pflags, int big_endian,
|
|
int elf_machine, int clear_lsb, int data_swab)
|
|
{
|
|
return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque,
|
|
pentry, lowaddr, highaddr, pflags, big_endian,
|
|
elf_machine, clear_lsb, data_swab, NULL);
|
|
}
|
|
|
|
/* return < 0 if error, otherwise the number of bytes loaded in memory */
|
|
ssize_t load_elf_as(const char *filename,
|
|
uint64_t (*elf_note_fn)(void *, void *, bool),
|
|
uint64_t (*translate_fn)(void *, uint64_t),
|
|
void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
|
|
uint64_t *highaddr, uint32_t *pflags, int big_endian,
|
|
int elf_machine, int clear_lsb, int data_swab,
|
|
AddressSpace *as)
|
|
{
|
|
return load_elf_ram(filename, elf_note_fn, translate_fn, translate_opaque,
|
|
pentry, lowaddr, highaddr, pflags, big_endian,
|
|
elf_machine, clear_lsb, data_swab, as, true);
|
|
}
|
|
|
|
/* return < 0 if error, otherwise the number of bytes loaded in memory */
|
|
ssize_t load_elf_ram(const char *filename,
|
|
uint64_t (*elf_note_fn)(void *, void *, bool),
|
|
uint64_t (*translate_fn)(void *, uint64_t),
|
|
void *translate_opaque, uint64_t *pentry,
|
|
uint64_t *lowaddr, uint64_t *highaddr, uint32_t *pflags,
|
|
int big_endian, int elf_machine, int clear_lsb,
|
|
int data_swab, AddressSpace *as, bool load_rom)
|
|
{
|
|
return load_elf_ram_sym(filename, elf_note_fn,
|
|
translate_fn, translate_opaque,
|
|
pentry, lowaddr, highaddr, pflags, big_endian,
|
|
elf_machine, clear_lsb, data_swab, as,
|
|
load_rom, NULL);
|
|
}
|
|
|
|
/* return < 0 if error, otherwise the number of bytes loaded in memory */
|
|
ssize_t load_elf_ram_sym(const char *filename,
|
|
uint64_t (*elf_note_fn)(void *, void *, bool),
|
|
uint64_t (*translate_fn)(void *, uint64_t),
|
|
void *translate_opaque, uint64_t *pentry,
|
|
uint64_t *lowaddr, uint64_t *highaddr,
|
|
uint32_t *pflags, int big_endian, int elf_machine,
|
|
int clear_lsb, int data_swab,
|
|
AddressSpace *as, bool load_rom, symbol_fn_t sym_cb)
|
|
{
|
|
int fd, data_order, target_data_order, must_swab;
|
|
ssize_t ret = ELF_LOAD_FAILED;
|
|
uint8_t e_ident[EI_NIDENT];
|
|
|
|
fd = open(filename, O_RDONLY | O_BINARY);
|
|
if (fd < 0) {
|
|
perror(filename);
|
|
return -1;
|
|
}
|
|
if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident))
|
|
goto fail;
|
|
if (e_ident[0] != ELFMAG0 ||
|
|
e_ident[1] != ELFMAG1 ||
|
|
e_ident[2] != ELFMAG2 ||
|
|
e_ident[3] != ELFMAG3) {
|
|
ret = ELF_LOAD_NOT_ELF;
|
|
goto fail;
|
|
}
|
|
#if HOST_BIG_ENDIAN
|
|
data_order = ELFDATA2MSB;
|
|
#else
|
|
data_order = ELFDATA2LSB;
|
|
#endif
|
|
must_swab = data_order != e_ident[EI_DATA];
|
|
if (big_endian) {
|
|
target_data_order = ELFDATA2MSB;
|
|
} else {
|
|
target_data_order = ELFDATA2LSB;
|
|
}
|
|
|
|
if (target_data_order != e_ident[EI_DATA]) {
|
|
ret = ELF_LOAD_WRONG_ENDIAN;
|
|
goto fail;
|
|
}
|
|
|
|
lseek(fd, 0, SEEK_SET);
|
|
if (e_ident[EI_CLASS] == ELFCLASS64) {
|
|
ret = load_elf64(filename, fd, elf_note_fn,
|
|
translate_fn, translate_opaque, must_swab,
|
|
pentry, lowaddr, highaddr, pflags, elf_machine,
|
|
clear_lsb, data_swab, as, load_rom, sym_cb);
|
|
} else {
|
|
ret = load_elf32(filename, fd, elf_note_fn,
|
|
translate_fn, translate_opaque, must_swab,
|
|
pentry, lowaddr, highaddr, pflags, elf_machine,
|
|
clear_lsb, data_swab, as, load_rom, sym_cb);
|
|
}
|
|
|
|
if (ret != ELF_LOAD_FAILED) {
|
|
debuginfo_report_elf(filename, fd, 0);
|
|
}
|
|
|
|
fail:
|
|
close(fd);
|
|
return ret;
|
|
}
|
|
|
|
static void bswap_uboot_header(uboot_image_header_t *hdr)
|
|
{
|
|
#if !HOST_BIG_ENDIAN
|
|
bswap32s(&hdr->ih_magic);
|
|
bswap32s(&hdr->ih_hcrc);
|
|
bswap32s(&hdr->ih_time);
|
|
bswap32s(&hdr->ih_size);
|
|
bswap32s(&hdr->ih_load);
|
|
bswap32s(&hdr->ih_ep);
|
|
bswap32s(&hdr->ih_dcrc);
|
|
#endif
|
|
}
|
|
|
|
|
|
#define ZALLOC_ALIGNMENT 16
|
|
|
|
static void *zalloc(void *x, unsigned items, unsigned size)
|
|
{
|
|
void *p;
|
|
|
|
size *= items;
|
|
size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1);
|
|
|
|
p = g_malloc(size);
|
|
|
|
return (p);
|
|
}
|
|
|
|
static void zfree(void *x, void *addr)
|
|
{
|
|
g_free(addr);
|
|
}
|
|
|
|
|
|
#define HEAD_CRC 2
|
|
#define EXTRA_FIELD 4
|
|
#define ORIG_NAME 8
|
|
#define COMMENT 0x10
|
|
#define RESERVED 0xe0
|
|
|
|
#define DEFLATED 8
|
|
|
|
ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen)
|
|
{
|
|
z_stream s;
|
|
ssize_t dstbytes;
|
|
int r, i, flags;
|
|
|
|
/* skip header */
|
|
i = 10;
|
|
if (srclen < 4) {
|
|
goto toosmall;
|
|
}
|
|
flags = src[3];
|
|
if (src[2] != DEFLATED || (flags & RESERVED) != 0) {
|
|
puts ("Error: Bad gzipped data\n");
|
|
return -1;
|
|
}
|
|
if ((flags & EXTRA_FIELD) != 0) {
|
|
if (srclen < 12) {
|
|
goto toosmall;
|
|
}
|
|
i = 12 + src[10] + (src[11] << 8);
|
|
}
|
|
if ((flags & ORIG_NAME) != 0) {
|
|
while (i < srclen && src[i++] != 0) {
|
|
/* do nothing */
|
|
}
|
|
}
|
|
if ((flags & COMMENT) != 0) {
|
|
while (i < srclen && src[i++] != 0) {
|
|
/* do nothing */
|
|
}
|
|
}
|
|
if ((flags & HEAD_CRC) != 0) {
|
|
i += 2;
|
|
}
|
|
if (i >= srclen) {
|
|
goto toosmall;
|
|
}
|
|
|
|
s.zalloc = zalloc;
|
|
s.zfree = zfree;
|
|
|
|
r = inflateInit2(&s, -MAX_WBITS);
|
|
if (r != Z_OK) {
|
|
printf ("Error: inflateInit2() returned %d\n", r);
|
|
return (-1);
|
|
}
|
|
s.next_in = src + i;
|
|
s.avail_in = srclen - i;
|
|
s.next_out = dst;
|
|
s.avail_out = dstlen;
|
|
r = inflate(&s, Z_FINISH);
|
|
if (r != Z_OK && r != Z_STREAM_END) {
|
|
printf ("Error: inflate() returned %d\n", r);
|
|
return -1;
|
|
}
|
|
dstbytes = s.next_out - (unsigned char *) dst;
|
|
inflateEnd(&s);
|
|
|
|
return dstbytes;
|
|
|
|
toosmall:
|
|
puts("Error: gunzip out of data in header\n");
|
|
return -1;
|
|
}
|
|
|
|
/* Load a U-Boot image. */
|
|
static ssize_t load_uboot_image(const char *filename, hwaddr *ep,
|
|
hwaddr *loadaddr, int *is_linux,
|
|
uint8_t image_type,
|
|
uint64_t (*translate_fn)(void *, uint64_t),
|
|
void *translate_opaque, AddressSpace *as)
|
|
{
|
|
int fd;
|
|
ssize_t size;
|
|
hwaddr address;
|
|
uboot_image_header_t h;
|
|
uboot_image_header_t *hdr = &h;
|
|
uint8_t *data = NULL;
|
|
int ret = -1;
|
|
int do_uncompress = 0;
|
|
|
|
fd = open(filename, O_RDONLY | O_BINARY);
|
|
if (fd < 0)
|
|
return -1;
|
|
|
|
size = read(fd, hdr, sizeof(uboot_image_header_t));
|
|
if (size < sizeof(uboot_image_header_t)) {
|
|
goto out;
|
|
}
|
|
|
|
bswap_uboot_header(hdr);
|
|
|
|
if (hdr->ih_magic != IH_MAGIC)
|
|
goto out;
|
|
|
|
if (hdr->ih_type != image_type) {
|
|
if (!(image_type == IH_TYPE_KERNEL &&
|
|
hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) {
|
|
fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type,
|
|
image_type);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/* TODO: Implement other image types. */
|
|
switch (hdr->ih_type) {
|
|
case IH_TYPE_KERNEL_NOLOAD:
|
|
if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) {
|
|
fprintf(stderr, "this image format (kernel_noload) cannot be "
|
|
"loaded on this machine type");
|
|
goto out;
|
|
}
|
|
|
|
hdr->ih_load = *loadaddr + sizeof(*hdr);
|
|
hdr->ih_ep += hdr->ih_load;
|
|
/* fall through */
|
|
case IH_TYPE_KERNEL:
|
|
address = hdr->ih_load;
|
|
if (translate_fn) {
|
|
address = translate_fn(translate_opaque, address);
|
|
}
|
|
if (loadaddr) {
|
|
*loadaddr = hdr->ih_load;
|
|
}
|
|
|
|
switch (hdr->ih_comp) {
|
|
case IH_COMP_NONE:
|
|
break;
|
|
case IH_COMP_GZIP:
|
|
do_uncompress = 1;
|
|
break;
|
|
default:
|
|
fprintf(stderr,
|
|
"Unable to load u-boot images with compression type %d\n",
|
|
hdr->ih_comp);
|
|
goto out;
|
|
}
|
|
|
|
if (ep) {
|
|
*ep = hdr->ih_ep;
|
|
}
|
|
|
|
/* TODO: Check CPU type. */
|
|
if (is_linux) {
|
|
if (hdr->ih_os == IH_OS_LINUX) {
|
|
*is_linux = 1;
|
|
} else if (hdr->ih_os == IH_OS_VXWORKS) {
|
|
/*
|
|
* VxWorks 7 uses the same boot interface as the Linux kernel
|
|
* on Arm (64-bit only), PowerPC and RISC-V architectures.
|
|
*/
|
|
switch (hdr->ih_arch) {
|
|
case IH_ARCH_ARM64:
|
|
case IH_ARCH_PPC:
|
|
case IH_ARCH_RISCV:
|
|
*is_linux = 1;
|
|
break;
|
|
default:
|
|
*is_linux = 0;
|
|
break;
|
|
}
|
|
} else {
|
|
*is_linux = 0;
|
|
}
|
|
}
|
|
|
|
break;
|
|
case IH_TYPE_RAMDISK:
|
|
address = *loadaddr;
|
|
break;
|
|
default:
|
|
fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type);
|
|
goto out;
|
|
}
|
|
|
|
data = g_malloc(hdr->ih_size);
|
|
|
|
if (read(fd, data, hdr->ih_size) != hdr->ih_size) {
|
|
fprintf(stderr, "Error reading file\n");
|
|
goto out;
|
|
}
|
|
|
|
if (do_uncompress) {
|
|
uint8_t *compressed_data;
|
|
size_t max_bytes;
|
|
ssize_t bytes;
|
|
|
|
compressed_data = data;
|
|
max_bytes = UBOOT_MAX_GUNZIP_BYTES;
|
|
data = g_malloc(max_bytes);
|
|
|
|
bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size);
|
|
g_free(compressed_data);
|
|
if (bytes < 0) {
|
|
fprintf(stderr, "Unable to decompress gzipped image!\n");
|
|
goto out;
|
|
}
|
|
hdr->ih_size = bytes;
|
|
}
|
|
|
|
rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as);
|
|
|
|
ret = hdr->ih_size;
|
|
|
|
out:
|
|
g_free(data);
|
|
close(fd);
|
|
return ret;
|
|
}
|
|
|
|
ssize_t load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr,
|
|
int *is_linux,
|
|
uint64_t (*translate_fn)(void *, uint64_t),
|
|
void *translate_opaque)
|
|
{
|
|
return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
|
|
translate_fn, translate_opaque, NULL);
|
|
}
|
|
|
|
ssize_t load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr,
|
|
int *is_linux,
|
|
uint64_t (*translate_fn)(void *, uint64_t),
|
|
void *translate_opaque, AddressSpace *as)
|
|
{
|
|
return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
|
|
translate_fn, translate_opaque, as);
|
|
}
|
|
|
|
/* Load a ramdisk. */
|
|
ssize_t load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz)
|
|
{
|
|
return load_ramdisk_as(filename, addr, max_sz, NULL);
|
|
}
|
|
|
|
ssize_t load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz,
|
|
AddressSpace *as)
|
|
{
|
|
return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK,
|
|
NULL, NULL, as);
|
|
}
|
|
|
|
/* Load a gzip-compressed kernel to a dynamically allocated buffer. */
|
|
ssize_t load_image_gzipped_buffer(const char *filename, uint64_t max_sz,
|
|
uint8_t **buffer)
|
|
{
|
|
uint8_t *compressed_data = NULL;
|
|
uint8_t *data = NULL;
|
|
gsize len;
|
|
ssize_t bytes;
|
|
int ret = -1;
|
|
|
|
if (!g_file_get_contents(filename, (char **) &compressed_data, &len,
|
|
NULL)) {
|
|
goto out;
|
|
}
|
|
|
|
/* Is it a gzip-compressed file? */
|
|
if (len < 2 ||
|
|
compressed_data[0] != 0x1f ||
|
|
compressed_data[1] != 0x8b) {
|
|
goto out;
|
|
}
|
|
|
|
if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) {
|
|
max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES;
|
|
}
|
|
|
|
data = g_malloc(max_sz);
|
|
bytes = gunzip(data, max_sz, compressed_data, len);
|
|
if (bytes < 0) {
|
|
fprintf(stderr, "%s: unable to decompress gzipped kernel file\n",
|
|
filename);
|
|
goto out;
|
|
}
|
|
|
|
/* trim to actual size and return to caller */
|
|
*buffer = g_realloc(data, bytes);
|
|
ret = bytes;
|
|
/* ownership has been transferred to caller */
|
|
data = NULL;
|
|
|
|
out:
|
|
g_free(compressed_data);
|
|
g_free(data);
|
|
return ret;
|
|
}
|
|
|
|
/* Load a gzip-compressed kernel. */
|
|
ssize_t load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz)
|
|
{
|
|
ssize_t bytes;
|
|
uint8_t *data;
|
|
|
|
bytes = load_image_gzipped_buffer(filename, max_sz, &data);
|
|
if (bytes != -1) {
|
|
rom_add_blob_fixed(filename, data, bytes, addr);
|
|
g_free(data);
|
|
}
|
|
return bytes;
|
|
}
|
|
|
|
/* The PE/COFF MS-DOS stub magic number */
|
|
#define EFI_PE_MSDOS_MAGIC "MZ"
|
|
|
|
/*
|
|
* The Linux header magic number for a EFI PE/COFF
|
|
* image targeting an unspecified architecture.
|
|
*/
|
|
#define EFI_PE_LINUX_MAGIC "\xcd\x23\x82\x81"
|
|
|
|
/*
|
|
* Bootable Linux kernel images may be packaged as EFI zboot images, which are
|
|
* self-decompressing executables when loaded via EFI. The compressed payload
|
|
* can also be extracted from the image and decompressed by a non-EFI loader.
|
|
*
|
|
* The de facto specification for this format is at the following URL:
|
|
*
|
|
* https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/firmware/efi/libstub/zboot-header.S
|
|
*
|
|
* This definition is based on Linux upstream commit 29636a5ce87beba.
|
|
*/
|
|
struct linux_efi_zboot_header {
|
|
uint8_t msdos_magic[2]; /* PE/COFF 'MZ' magic number */
|
|
uint8_t reserved0[2];
|
|
uint8_t zimg[4]; /* "zimg" for Linux EFI zboot images */
|
|
uint32_t payload_offset; /* LE offset to compressed payload */
|
|
uint32_t payload_size; /* LE size of the compressed payload */
|
|
uint8_t reserved1[8];
|
|
char compression_type[32]; /* Compression type, NUL terminated */
|
|
uint8_t linux_magic[4]; /* Linux header magic */
|
|
uint32_t pe_header_offset; /* LE offset to the PE header */
|
|
};
|
|
|
|
/*
|
|
* Check whether *buffer points to a Linux EFI zboot image in memory.
|
|
*
|
|
* If it does, attempt to decompress it to a new buffer, and free the old one.
|
|
* If any of this fails, return an error to the caller.
|
|
*
|
|
* If the image is not a Linux EFI zboot image, do nothing and return success.
|
|
*/
|
|
ssize_t unpack_efi_zboot_image(uint8_t **buffer, int *size)
|
|
{
|
|
const struct linux_efi_zboot_header *header;
|
|
uint8_t *data = NULL;
|
|
int ploff, plsize;
|
|
ssize_t bytes;
|
|
|
|
/* ignore if this is too small to be a EFI zboot image */
|
|
if (*size < sizeof(*header)) {
|
|
return 0;
|
|
}
|
|
|
|
header = (struct linux_efi_zboot_header *)*buffer;
|
|
|
|
/* ignore if this is not a Linux EFI zboot image */
|
|
if (memcmp(&header->msdos_magic, EFI_PE_MSDOS_MAGIC, 2) != 0 ||
|
|
memcmp(&header->zimg, "zimg", 4) != 0 ||
|
|
memcmp(&header->linux_magic, EFI_PE_LINUX_MAGIC, 4) != 0) {
|
|
return 0;
|
|
}
|
|
|
|
if (strcmp(header->compression_type, "gzip") != 0) {
|
|
fprintf(stderr,
|
|
"unable to handle EFI zboot image with \"%.*s\" compression\n",
|
|
(int)sizeof(header->compression_type) - 1,
|
|
header->compression_type);
|
|
return -1;
|
|
}
|
|
|
|
ploff = ldl_le_p(&header->payload_offset);
|
|
plsize = ldl_le_p(&header->payload_size);
|
|
|
|
if (ploff < 0 || plsize < 0 || ploff + plsize > *size) {
|
|
fprintf(stderr, "unable to handle corrupt EFI zboot image\n");
|
|
return -1;
|
|
}
|
|
|
|
data = g_malloc(LOAD_IMAGE_MAX_GUNZIP_BYTES);
|
|
bytes = gunzip(data, LOAD_IMAGE_MAX_GUNZIP_BYTES, *buffer + ploff, plsize);
|
|
if (bytes < 0) {
|
|
fprintf(stderr, "failed to decompress EFI zboot image\n");
|
|
g_free(data);
|
|
return -1;
|
|
}
|
|
|
|
g_free(*buffer);
|
|
*buffer = g_realloc(data, bytes);
|
|
*size = bytes;
|
|
return bytes;
|
|
}
|
|
|
|
/*
|
|
* Functions for reboot-persistent memory regions.
|
|
* - used for vga bios and option roms.
|
|
* - also linux kernel (-kernel / -initrd).
|
|
*/
|
|
|
|
typedef struct Rom Rom;
|
|
|
|
struct Rom {
|
|
char *name;
|
|
char *path;
|
|
|
|
/* datasize is the amount of memory allocated in "data". If datasize is less
|
|
* than romsize, it means that the area from datasize to romsize is filled
|
|
* with zeros.
|
|
*/
|
|
size_t romsize;
|
|
size_t datasize;
|
|
|
|
uint8_t *data;
|
|
MemoryRegion *mr;
|
|
AddressSpace *as;
|
|
int isrom;
|
|
char *fw_dir;
|
|
char *fw_file;
|
|
GMappedFile *mapped_file;
|
|
|
|
bool committed;
|
|
|
|
hwaddr addr;
|
|
QTAILQ_ENTRY(Rom) next;
|
|
};
|
|
|
|
static FWCfgState *fw_cfg;
|
|
static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms);
|
|
|
|
/*
|
|
* rom->data can be heap-allocated or memory-mapped (e.g. when added with
|
|
* rom_add_elf_program())
|
|
*/
|
|
static void rom_free_data(Rom *rom)
|
|
{
|
|
if (rom->mapped_file) {
|
|
g_mapped_file_unref(rom->mapped_file);
|
|
rom->mapped_file = NULL;
|
|
} else {
|
|
g_free(rom->data);
|
|
}
|
|
|
|
rom->data = NULL;
|
|
}
|
|
|
|
static void rom_free(Rom *rom)
|
|
{
|
|
rom_free_data(rom);
|
|
g_free(rom->path);
|
|
g_free(rom->name);
|
|
g_free(rom->fw_dir);
|
|
g_free(rom->fw_file);
|
|
g_free(rom);
|
|
}
|
|
|
|
static inline bool rom_order_compare(Rom *rom, Rom *item)
|
|
{
|
|
return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) ||
|
|
(rom->as == item->as && rom->addr >= item->addr);
|
|
}
|
|
|
|
static void rom_insert(Rom *rom)
|
|
{
|
|
Rom *item;
|
|
|
|
if (roms_loaded) {
|
|
hw_error ("ROM images must be loaded at startup\n");
|
|
}
|
|
|
|
/* The user didn't specify an address space, this is the default */
|
|
if (!rom->as) {
|
|
rom->as = &address_space_memory;
|
|
}
|
|
|
|
rom->committed = false;
|
|
|
|
/* List is ordered by load address in the same address space */
|
|
QTAILQ_FOREACH(item, &roms, next) {
|
|
if (rom_order_compare(rom, item)) {
|
|
continue;
|
|
}
|
|
QTAILQ_INSERT_BEFORE(item, rom, next);
|
|
return;
|
|
}
|
|
QTAILQ_INSERT_TAIL(&roms, rom, next);
|
|
}
|
|
|
|
static void fw_cfg_resized(const char *id, uint64_t length, void *host)
|
|
{
|
|
if (fw_cfg) {
|
|
fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length);
|
|
}
|
|
}
|
|
|
|
static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro)
|
|
{
|
|
void *data;
|
|
|
|
rom->mr = g_malloc(sizeof(*rom->mr));
|
|
memory_region_init_resizeable_ram(rom->mr, owner, name,
|
|
rom->datasize, rom->romsize,
|
|
fw_cfg_resized,
|
|
&error_fatal);
|
|
memory_region_set_readonly(rom->mr, ro);
|
|
vmstate_register_ram_global(rom->mr);
|
|
|
|
data = memory_region_get_ram_ptr(rom->mr);
|
|
memcpy(data, rom->data, rom->datasize);
|
|
|
|
return data;
|
|
}
|
|
|
|
ssize_t rom_add_file(const char *file, const char *fw_dir,
|
|
hwaddr addr, int32_t bootindex,
|
|
bool option_rom, MemoryRegion *mr,
|
|
AddressSpace *as)
|
|
{
|
|
MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
|
|
Rom *rom;
|
|
ssize_t rc;
|
|
int fd = -1;
|
|
char devpath[100];
|
|
|
|
if (as && mr) {
|
|
fprintf(stderr, "Specifying an Address Space and Memory Region is " \
|
|
"not valid when loading a rom\n");
|
|
/* We haven't allocated anything so we don't need any cleanup */
|
|
return -1;
|
|
}
|
|
|
|
rom = g_malloc0(sizeof(*rom));
|
|
rom->name = g_strdup(file);
|
|
rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name);
|
|
rom->as = as;
|
|
if (rom->path == NULL) {
|
|
rom->path = g_strdup(file);
|
|
}
|
|
|
|
fd = open(rom->path, O_RDONLY | O_BINARY);
|
|
if (fd == -1) {
|
|
fprintf(stderr, "Could not open option rom '%s': %s\n",
|
|
rom->path, strerror(errno));
|
|
goto err;
|
|
}
|
|
|
|
if (fw_dir) {
|
|
rom->fw_dir = g_strdup(fw_dir);
|
|
rom->fw_file = g_strdup(file);
|
|
}
|
|
rom->addr = addr;
|
|
rom->romsize = lseek(fd, 0, SEEK_END);
|
|
if (rom->romsize == -1) {
|
|
fprintf(stderr, "rom: file %-20s: get size error: %s\n",
|
|
rom->name, strerror(errno));
|
|
goto err;
|
|
}
|
|
|
|
rom->datasize = rom->romsize;
|
|
rom->data = g_malloc0(rom->datasize);
|
|
lseek(fd, 0, SEEK_SET);
|
|
rc = read(fd, rom->data, rom->datasize);
|
|
if (rc != rom->datasize) {
|
|
fprintf(stderr, "rom: file %-20s: read error: rc=%zd (expected %zd)\n",
|
|
rom->name, rc, rom->datasize);
|
|
goto err;
|
|
}
|
|
close(fd);
|
|
rom_insert(rom);
|
|
if (rom->fw_file && fw_cfg) {
|
|
const char *basename;
|
|
char fw_file_name[FW_CFG_MAX_FILE_PATH];
|
|
void *data;
|
|
|
|
basename = strrchr(rom->fw_file, '/');
|
|
if (basename) {
|
|
basename++;
|
|
} else {
|
|
basename = rom->fw_file;
|
|
}
|
|
snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir,
|
|
basename);
|
|
snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
|
|
|
|
if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) {
|
|
data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true);
|
|
} else {
|
|
data = rom->data;
|
|
}
|
|
|
|
fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize);
|
|
} else {
|
|
if (mr) {
|
|
rom->mr = mr;
|
|
snprintf(devpath, sizeof(devpath), "/rom@%s", file);
|
|
} else {
|
|
snprintf(devpath, sizeof(devpath), "/rom@" HWADDR_FMT_plx, addr);
|
|
}
|
|
}
|
|
|
|
add_boot_device_path(bootindex, NULL, devpath);
|
|
return 0;
|
|
|
|
err:
|
|
if (fd != -1)
|
|
close(fd);
|
|
|
|
rom_free(rom);
|
|
return -1;
|
|
}
|
|
|
|
MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len,
|
|
size_t max_len, hwaddr addr, const char *fw_file_name,
|
|
FWCfgCallback fw_callback, void *callback_opaque,
|
|
AddressSpace *as, bool read_only)
|
|
{
|
|
MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
|
|
Rom *rom;
|
|
MemoryRegion *mr = NULL;
|
|
|
|
rom = g_malloc0(sizeof(*rom));
|
|
rom->name = g_strdup(name);
|
|
rom->as = as;
|
|
rom->addr = addr;
|
|
rom->romsize = max_len ? max_len : len;
|
|
rom->datasize = len;
|
|
g_assert(rom->romsize >= rom->datasize);
|
|
rom->data = g_malloc0(rom->datasize);
|
|
memcpy(rom->data, blob, len);
|
|
rom_insert(rom);
|
|
if (fw_file_name && fw_cfg) {
|
|
char devpath[100];
|
|
void *data;
|
|
|
|
if (read_only) {
|
|
snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
|
|
} else {
|
|
snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name);
|
|
}
|
|
|
|
if (mc->rom_file_has_mr) {
|
|
data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only);
|
|
mr = rom->mr;
|
|
} else {
|
|
data = rom->data;
|
|
}
|
|
|
|
fw_cfg_add_file_callback(fw_cfg, fw_file_name,
|
|
fw_callback, NULL, callback_opaque,
|
|
data, rom->datasize, read_only);
|
|
}
|
|
return mr;
|
|
}
|
|
|
|
/* This function is specific for elf program because we don't need to allocate
|
|
* all the rom. We just allocate the first part and the rest is just zeros. This
|
|
* is why romsize and datasize are different. Also, this function takes its own
|
|
* reference to "mapped_file", so we don't have to allocate and copy the buffer.
|
|
*/
|
|
int rom_add_elf_program(const char *name, GMappedFile *mapped_file, void *data,
|
|
size_t datasize, size_t romsize, hwaddr addr,
|
|
AddressSpace *as)
|
|
{
|
|
Rom *rom;
|
|
|
|
rom = g_malloc0(sizeof(*rom));
|
|
rom->name = g_strdup(name);
|
|
rom->addr = addr;
|
|
rom->datasize = datasize;
|
|
rom->romsize = romsize;
|
|
rom->data = data;
|
|
rom->as = as;
|
|
|
|
if (mapped_file && data) {
|
|
g_mapped_file_ref(mapped_file);
|
|
rom->mapped_file = mapped_file;
|
|
}
|
|
|
|
rom_insert(rom);
|
|
return 0;
|
|
}
|
|
|
|
ssize_t rom_add_vga(const char *file)
|
|
{
|
|
return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL);
|
|
}
|
|
|
|
ssize_t rom_add_option(const char *file, int32_t bootindex)
|
|
{
|
|
return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL);
|
|
}
|
|
|
|
static void rom_reset(void *unused)
|
|
{
|
|
Rom *rom;
|
|
|
|
QTAILQ_FOREACH(rom, &roms, next) {
|
|
if (rom->fw_file) {
|
|
continue;
|
|
}
|
|
/*
|
|
* We don't need to fill in the RAM with ROM data because we'll fill
|
|
* the data in during the next incoming migration in all cases. Note
|
|
* that some of those RAMs can actually be modified by the guest.
|
|
*/
|
|
if (runstate_check(RUN_STATE_INMIGRATE)) {
|
|
if (rom->data && rom->isrom) {
|
|
/*
|
|
* Free it so that a rom_reset after migration doesn't
|
|
* overwrite a potentially modified 'rom'.
|
|
*/
|
|
rom_free_data(rom);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (rom->data == NULL) {
|
|
continue;
|
|
}
|
|
if (rom->mr) {
|
|
void *host = memory_region_get_ram_ptr(rom->mr);
|
|
memcpy(host, rom->data, rom->datasize);
|
|
memset(host + rom->datasize, 0, rom->romsize - rom->datasize);
|
|
} else {
|
|
address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED,
|
|
rom->data, rom->datasize);
|
|
address_space_set(rom->as, rom->addr + rom->datasize, 0,
|
|
rom->romsize - rom->datasize,
|
|
MEMTXATTRS_UNSPECIFIED);
|
|
}
|
|
if (rom->isrom) {
|
|
/* rom needs to be written only once */
|
|
rom_free_data(rom);
|
|
}
|
|
/*
|
|
* The rom loader is really on the same level as firmware in the guest
|
|
* shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure
|
|
* that the instruction cache for that new region is clear, so that the
|
|
* CPU definitely fetches its instructions from the just written data.
|
|
*/
|
|
cpu_flush_icache_range(rom->addr, rom->datasize);
|
|
|
|
trace_loader_write_rom(rom->name, rom->addr, rom->datasize, rom->isrom);
|
|
}
|
|
}
|
|
|
|
/* Return true if two consecutive ROMs in the ROM list overlap */
|
|
static bool roms_overlap(Rom *last_rom, Rom *this_rom)
|
|
{
|
|
if (!last_rom) {
|
|
return false;
|
|
}
|
|
return last_rom->as == this_rom->as &&
|
|
last_rom->addr + last_rom->romsize > this_rom->addr;
|
|
}
|
|
|
|
static const char *rom_as_name(Rom *rom)
|
|
{
|
|
const char *name = rom->as ? rom->as->name : NULL;
|
|
return name ?: "anonymous";
|
|
}
|
|
|
|
static void rom_print_overlap_error_header(void)
|
|
{
|
|
error_report("Some ROM regions are overlapping");
|
|
error_printf(
|
|
"These ROM regions might have been loaded by "
|
|
"direct user request or by default.\n"
|
|
"They could be BIOS/firmware images, a guest kernel, "
|
|
"initrd or some other file loaded into guest memory.\n"
|
|
"Check whether you intended to load all this guest code, and "
|
|
"whether it has been built to load to the correct addresses.\n");
|
|
}
|
|
|
|
static void rom_print_one_overlap_error(Rom *last_rom, Rom *rom)
|
|
{
|
|
error_printf(
|
|
"\nThe following two regions overlap (in the %s address space):\n",
|
|
rom_as_name(rom));
|
|
error_printf(
|
|
" %s (addresses 0x" HWADDR_FMT_plx " - 0x" HWADDR_FMT_plx ")\n",
|
|
last_rom->name, last_rom->addr, last_rom->addr + last_rom->romsize);
|
|
error_printf(
|
|
" %s (addresses 0x" HWADDR_FMT_plx " - 0x" HWADDR_FMT_plx ")\n",
|
|
rom->name, rom->addr, rom->addr + rom->romsize);
|
|
}
|
|
|
|
int rom_check_and_register_reset(void)
|
|
{
|
|
MemoryRegionSection section;
|
|
Rom *rom, *last_rom = NULL;
|
|
bool found_overlap = false;
|
|
|
|
QTAILQ_FOREACH(rom, &roms, next) {
|
|
if (rom->fw_file) {
|
|
continue;
|
|
}
|
|
if (!rom->mr) {
|
|
if (roms_overlap(last_rom, rom)) {
|
|
if (!found_overlap) {
|
|
found_overlap = true;
|
|
rom_print_overlap_error_header();
|
|
}
|
|
rom_print_one_overlap_error(last_rom, rom);
|
|
/* Keep going through the list so we report all overlaps */
|
|
}
|
|
last_rom = rom;
|
|
}
|
|
section = memory_region_find(rom->mr ? rom->mr : get_system_memory(),
|
|
rom->addr, 1);
|
|
rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr);
|
|
memory_region_unref(section.mr);
|
|
}
|
|
if (found_overlap) {
|
|
return -1;
|
|
}
|
|
|
|
qemu_register_reset(rom_reset, NULL);
|
|
roms_loaded = 1;
|
|
return 0;
|
|
}
|
|
|
|
void rom_set_fw(FWCfgState *f)
|
|
{
|
|
fw_cfg = f;
|
|
}
|
|
|
|
void rom_set_order_override(int order)
|
|
{
|
|
if (!fw_cfg)
|
|
return;
|
|
fw_cfg_set_order_override(fw_cfg, order);
|
|
}
|
|
|
|
void rom_reset_order_override(void)
|
|
{
|
|
if (!fw_cfg)
|
|
return;
|
|
fw_cfg_reset_order_override(fw_cfg);
|
|
}
|
|
|
|
void rom_transaction_begin(void)
|
|
{
|
|
Rom *rom;
|
|
|
|
/* Ignore ROMs added without the transaction API */
|
|
QTAILQ_FOREACH(rom, &roms, next) {
|
|
rom->committed = true;
|
|
}
|
|
}
|
|
|
|
void rom_transaction_end(bool commit)
|
|
{
|
|
Rom *rom;
|
|
Rom *tmp;
|
|
|
|
QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) {
|
|
if (rom->committed) {
|
|
continue;
|
|
}
|
|
if (commit) {
|
|
rom->committed = true;
|
|
} else {
|
|
QTAILQ_REMOVE(&roms, rom, next);
|
|
rom_free(rom);
|
|
}
|
|
}
|
|
}
|
|
|
|
static Rom *find_rom(hwaddr addr, size_t size)
|
|
{
|
|
Rom *rom;
|
|
|
|
QTAILQ_FOREACH(rom, &roms, next) {
|
|
if (rom->fw_file) {
|
|
continue;
|
|
}
|
|
if (rom->mr) {
|
|
continue;
|
|
}
|
|
if (rom->addr > addr) {
|
|
continue;
|
|
}
|
|
if (rom->addr + rom->romsize < addr + size) {
|
|
continue;
|
|
}
|
|
return rom;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
typedef struct RomSec {
|
|
hwaddr base;
|
|
int se; /* start/end flag */
|
|
} RomSec;
|
|
|
|
|
|
/*
|
|
* Sort into address order. We break ties between rom-startpoints
|
|
* and rom-endpoints in favour of the startpoint, by sorting the 0->1
|
|
* transition before the 1->0 transition. Either way round would
|
|
* work, but this way saves a little work later by avoiding
|
|
* dealing with "gaps" of 0 length.
|
|
*/
|
|
static gint sort_secs(gconstpointer a, gconstpointer b)
|
|
{
|
|
RomSec *ra = (RomSec *) a;
|
|
RomSec *rb = (RomSec *) b;
|
|
|
|
if (ra->base == rb->base) {
|
|
return ra->se - rb->se;
|
|
}
|
|
return ra->base > rb->base ? 1 : -1;
|
|
}
|
|
|
|
static GList *add_romsec_to_list(GList *secs, hwaddr base, int se)
|
|
{
|
|
RomSec *cand = g_new(RomSec, 1);
|
|
cand->base = base;
|
|
cand->se = se;
|
|
return g_list_prepend(secs, cand);
|
|
}
|
|
|
|
RomGap rom_find_largest_gap_between(hwaddr base, size_t size)
|
|
{
|
|
Rom *rom;
|
|
RomSec *cand;
|
|
RomGap res = {0, 0};
|
|
hwaddr gapstart = base;
|
|
GList *it, *secs = NULL;
|
|
int count = 0;
|
|
|
|
QTAILQ_FOREACH(rom, &roms, next) {
|
|
/* Ignore blobs being loaded to special places */
|
|
if (rom->mr || rom->fw_file) {
|
|
continue;
|
|
}
|
|
/* ignore anything finishing below base */
|
|
if (rom->addr + rom->romsize <= base) {
|
|
continue;
|
|
}
|
|
/* ignore anything starting above the region */
|
|
if (rom->addr >= base + size) {
|
|
continue;
|
|
}
|
|
|
|
/* Save the start and end of each relevant ROM */
|
|
secs = add_romsec_to_list(secs, rom->addr, 1);
|
|
|
|
if (rom->addr + rom->romsize < base + size) {
|
|
secs = add_romsec_to_list(secs, rom->addr + rom->romsize, -1);
|
|
}
|
|
}
|
|
|
|
/* sentinel */
|
|
secs = add_romsec_to_list(secs, base + size, 1);
|
|
|
|
secs = g_list_sort(secs, sort_secs);
|
|
|
|
for (it = g_list_first(secs); it; it = g_list_next(it)) {
|
|
cand = (RomSec *) it->data;
|
|
if (count == 0 && count + cand->se == 1) {
|
|
size_t gap = cand->base - gapstart;
|
|
if (gap > res.size) {
|
|
res.base = gapstart;
|
|
res.size = gap;
|
|
}
|
|
} else if (count == 1 && count + cand->se == 0) {
|
|
gapstart = cand->base;
|
|
}
|
|
count += cand->se;
|
|
}
|
|
|
|
g_list_free_full(secs, g_free);
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* Copies memory from registered ROMs to dest. Any memory that is contained in
|
|
* a ROM between addr and addr + size is copied. Note that this can involve
|
|
* multiple ROMs, which need not start at addr and need not end at addr + size.
|
|
*/
|
|
int rom_copy(uint8_t *dest, hwaddr addr, size_t size)
|
|
{
|
|
hwaddr end = addr + size;
|
|
uint8_t *s, *d = dest;
|
|
size_t l = 0;
|
|
Rom *rom;
|
|
|
|
QTAILQ_FOREACH(rom, &roms, next) {
|
|
if (rom->fw_file) {
|
|
continue;
|
|
}
|
|
if (rom->mr) {
|
|
continue;
|
|
}
|
|
if (rom->addr + rom->romsize < addr) {
|
|
continue;
|
|
}
|
|
if (rom->addr > end || rom->addr < addr) {
|
|
break;
|
|
}
|
|
|
|
d = dest + (rom->addr - addr);
|
|
s = rom->data;
|
|
l = rom->datasize;
|
|
|
|
if ((d + l) > (dest + size)) {
|
|
l = dest - d;
|
|
}
|
|
|
|
if (l > 0) {
|
|
memcpy(d, s, l);
|
|
}
|
|
|
|
if (rom->romsize > rom->datasize) {
|
|
/* If datasize is less than romsize, it means that we didn't
|
|
* allocate all the ROM because the trailing data are only zeros.
|
|
*/
|
|
|
|
d += l;
|
|
l = rom->romsize - rom->datasize;
|
|
|
|
if ((d + l) > (dest + size)) {
|
|
/* Rom size doesn't fit in the destination area. Adjust to avoid
|
|
* overflow.
|
|
*/
|
|
l = dest - d;
|
|
}
|
|
|
|
if (l > 0) {
|
|
memset(d, 0x0, l);
|
|
}
|
|
}
|
|
}
|
|
|
|
return (d + l) - dest;
|
|
}
|
|
|
|
void *rom_ptr(hwaddr addr, size_t size)
|
|
{
|
|
Rom *rom;
|
|
|
|
rom = find_rom(addr, size);
|
|
if (!rom || !rom->data)
|
|
return NULL;
|
|
return rom->data + (addr - rom->addr);
|
|
}
|
|
|
|
typedef struct FindRomCBData {
|
|
size_t size; /* Amount of data we want from ROM, in bytes */
|
|
MemoryRegion *mr; /* MR at the unaliased guest addr */
|
|
hwaddr xlat; /* Offset of addr within mr */
|
|
void *rom; /* Output: rom data pointer, if found */
|
|
} FindRomCBData;
|
|
|
|
static bool find_rom_cb(Int128 start, Int128 len, const MemoryRegion *mr,
|
|
hwaddr offset_in_region, void *opaque)
|
|
{
|
|
FindRomCBData *cbdata = opaque;
|
|
hwaddr alias_addr;
|
|
|
|
if (mr != cbdata->mr) {
|
|
return false;
|
|
}
|
|
|
|
alias_addr = int128_get64(start) + cbdata->xlat - offset_in_region;
|
|
cbdata->rom = rom_ptr(alias_addr, cbdata->size);
|
|
if (!cbdata->rom) {
|
|
return false;
|
|
}
|
|
/* Found a match, stop iterating */
|
|
return true;
|
|
}
|
|
|
|
void *rom_ptr_for_as(AddressSpace *as, hwaddr addr, size_t size)
|
|
{
|
|
/*
|
|
* Find any ROM data for the given guest address range. If there
|
|
* is a ROM blob then return a pointer to the host memory
|
|
* corresponding to 'addr'; otherwise return NULL.
|
|
*
|
|
* We look not only for ROM blobs that were loaded directly to
|
|
* addr, but also for ROM blobs that were loaded to aliases of
|
|
* that memory at other addresses within the AddressSpace.
|
|
*
|
|
* Note that we do not check @as against the 'as' member in the
|
|
* 'struct Rom' returned by rom_ptr(). The Rom::as is the
|
|
* AddressSpace which the rom blob should be written to, whereas
|
|
* our @as argument is the AddressSpace which we are (effectively)
|
|
* reading from, and the same underlying RAM will often be visible
|
|
* in multiple AddressSpaces. (A common example is a ROM blob
|
|
* written to the 'system' address space but then read back via a
|
|
* CPU's cpu->as pointer.) This does mean we might potentially
|
|
* return a false-positive match if a ROM blob was loaded into an
|
|
* AS which is entirely separate and distinct from the one we're
|
|
* querying, but this issue exists also for rom_ptr() and hasn't
|
|
* caused any problems in practice.
|
|
*/
|
|
FlatView *fv;
|
|
void *rom;
|
|
hwaddr len_unused;
|
|
FindRomCBData cbdata = {};
|
|
|
|
/* Easy case: there's data at the actual address */
|
|
rom = rom_ptr(addr, size);
|
|
if (rom) {
|
|
return rom;
|
|
}
|
|
|
|
RCU_READ_LOCK_GUARD();
|
|
|
|
fv = address_space_to_flatview(as);
|
|
cbdata.mr = flatview_translate(fv, addr, &cbdata.xlat, &len_unused,
|
|
false, MEMTXATTRS_UNSPECIFIED);
|
|
if (!cbdata.mr) {
|
|
/* Nothing at this address, so there can't be any aliasing */
|
|
return NULL;
|
|
}
|
|
cbdata.size = size;
|
|
flatview_for_each_range(fv, find_rom_cb, &cbdata);
|
|
return cbdata.rom;
|
|
}
|
|
|
|
HumanReadableText *qmp_x_query_roms(Error **errp)
|
|
{
|
|
Rom *rom;
|
|
g_autoptr(GString) buf = g_string_new("");
|
|
|
|
QTAILQ_FOREACH(rom, &roms, next) {
|
|
if (rom->mr) {
|
|
g_string_append_printf(buf, "%s"
|
|
" size=0x%06zx name=\"%s\"\n",
|
|
memory_region_name(rom->mr),
|
|
rom->romsize,
|
|
rom->name);
|
|
} else if (!rom->fw_file) {
|
|
g_string_append_printf(buf, "addr=" HWADDR_FMT_plx
|
|
" size=0x%06zx mem=%s name=\"%s\"\n",
|
|
rom->addr, rom->romsize,
|
|
rom->isrom ? "rom" : "ram",
|
|
rom->name);
|
|
} else {
|
|
g_string_append_printf(buf, "fw=%s/%s"
|
|
" size=0x%06zx name=\"%s\"\n",
|
|
rom->fw_dir,
|
|
rom->fw_file,
|
|
rom->romsize,
|
|
rom->name);
|
|
}
|
|
}
|
|
|
|
return human_readable_text_from_str(buf);
|
|
}
|
|
|
|
typedef enum HexRecord HexRecord;
|
|
enum HexRecord {
|
|
DATA_RECORD = 0,
|
|
EOF_RECORD,
|
|
EXT_SEG_ADDR_RECORD,
|
|
START_SEG_ADDR_RECORD,
|
|
EXT_LINEAR_ADDR_RECORD,
|
|
START_LINEAR_ADDR_RECORD,
|
|
};
|
|
|
|
/* Each record contains a 16-bit address which is combined with the upper 16
|
|
* bits of the implicit "next address" to form a 32-bit address.
|
|
*/
|
|
#define NEXT_ADDR_MASK 0xffff0000
|
|
|
|
#define DATA_FIELD_MAX_LEN 0xff
|
|
#define LEN_EXCEPT_DATA 0x5
|
|
/* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) +
|
|
* sizeof(checksum) */
|
|
typedef struct {
|
|
uint8_t byte_count;
|
|
uint16_t address;
|
|
uint8_t record_type;
|
|
uint8_t data[DATA_FIELD_MAX_LEN];
|
|
uint8_t checksum;
|
|
} HexLine;
|
|
|
|
/* return 0 or -1 if error */
|
|
static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c,
|
|
uint32_t *index, const bool in_process)
|
|
{
|
|
/* +-------+---------------+-------+---------------------+--------+
|
|
* | byte | |record | | |
|
|
* | count | address | type | data |checksum|
|
|
* +-------+---------------+-------+---------------------+--------+
|
|
* ^ ^ ^ ^ ^ ^
|
|
* |1 byte | 2 bytes |1 byte | 0-255 bytes | 1 byte |
|
|
*/
|
|
uint8_t value = 0;
|
|
uint32_t idx = *index;
|
|
/* ignore space */
|
|
if (g_ascii_isspace(c)) {
|
|
return true;
|
|
}
|
|
if (!g_ascii_isxdigit(c) || !in_process) {
|
|
return false;
|
|
}
|
|
value = g_ascii_xdigit_value(c);
|
|
value = (idx & 0x1) ? (value & 0xf) : (value << 4);
|
|
if (idx < 2) {
|
|
line->byte_count |= value;
|
|
} else if (2 <= idx && idx < 6) {
|
|
line->address <<= 4;
|
|
line->address += g_ascii_xdigit_value(c);
|
|
} else if (6 <= idx && idx < 8) {
|
|
line->record_type |= value;
|
|
} else if (8 <= idx && idx < 8 + 2 * line->byte_count) {
|
|
line->data[(idx - 8) >> 1] |= value;
|
|
} else if (8 + 2 * line->byte_count <= idx &&
|
|
idx < 10 + 2 * line->byte_count) {
|
|
line->checksum |= value;
|
|
} else {
|
|
return false;
|
|
}
|
|
*our_checksum += value;
|
|
++(*index);
|
|
return true;
|
|
}
|
|
|
|
typedef struct {
|
|
const char *filename;
|
|
HexLine line;
|
|
uint8_t *bin_buf;
|
|
hwaddr *start_addr;
|
|
int total_size;
|
|
uint32_t next_address_to_write;
|
|
uint32_t current_address;
|
|
uint32_t current_rom_index;
|
|
uint32_t rom_start_address;
|
|
AddressSpace *as;
|
|
bool complete;
|
|
} HexParser;
|
|
|
|
/* return size or -1 if error */
|
|
static int handle_record_type(HexParser *parser)
|
|
{
|
|
HexLine *line = &(parser->line);
|
|
switch (line->record_type) {
|
|
case DATA_RECORD:
|
|
parser->current_address =
|
|
(parser->next_address_to_write & NEXT_ADDR_MASK) | line->address;
|
|
/* verify this is a contiguous block of memory */
|
|
if (parser->current_address != parser->next_address_to_write) {
|
|
if (parser->current_rom_index != 0) {
|
|
rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
|
|
parser->current_rom_index,
|
|
parser->rom_start_address, parser->as);
|
|
}
|
|
parser->rom_start_address = parser->current_address;
|
|
parser->current_rom_index = 0;
|
|
}
|
|
|
|
/* copy from line buffer to output bin_buf */
|
|
memcpy(parser->bin_buf + parser->current_rom_index, line->data,
|
|
line->byte_count);
|
|
parser->current_rom_index += line->byte_count;
|
|
parser->total_size += line->byte_count;
|
|
/* save next address to write */
|
|
parser->next_address_to_write =
|
|
parser->current_address + line->byte_count;
|
|
break;
|
|
|
|
case EOF_RECORD:
|
|
if (parser->current_rom_index != 0) {
|
|
rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
|
|
parser->current_rom_index,
|
|
parser->rom_start_address, parser->as);
|
|
}
|
|
parser->complete = true;
|
|
return parser->total_size;
|
|
case EXT_SEG_ADDR_RECORD:
|
|
case EXT_LINEAR_ADDR_RECORD:
|
|
if (line->byte_count != 2 && line->address != 0) {
|
|
return -1;
|
|
}
|
|
|
|
if (parser->current_rom_index != 0) {
|
|
rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
|
|
parser->current_rom_index,
|
|
parser->rom_start_address, parser->as);
|
|
}
|
|
|
|
/* save next address to write,
|
|
* in case of non-contiguous block of memory */
|
|
parser->next_address_to_write = (line->data[0] << 12) |
|
|
(line->data[1] << 4);
|
|
if (line->record_type == EXT_LINEAR_ADDR_RECORD) {
|
|
parser->next_address_to_write <<= 12;
|
|
}
|
|
|
|
parser->rom_start_address = parser->next_address_to_write;
|
|
parser->current_rom_index = 0;
|
|
break;
|
|
|
|
case START_SEG_ADDR_RECORD:
|
|
if (line->byte_count != 4 && line->address != 0) {
|
|
return -1;
|
|
}
|
|
|
|
/* x86 16-bit CS:IP segmented addressing */
|
|
*(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) +
|
|
((line->data[2] << 8) | line->data[3]);
|
|
break;
|
|
|
|
case START_LINEAR_ADDR_RECORD:
|
|
if (line->byte_count != 4 && line->address != 0) {
|
|
return -1;
|
|
}
|
|
|
|
*(parser->start_addr) = ldl_be_p(line->data);
|
|
break;
|
|
|
|
default:
|
|
return -1;
|
|
}
|
|
|
|
return parser->total_size;
|
|
}
|
|
|
|
/* return size or -1 if error */
|
|
static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob,
|
|
size_t hex_blob_size, AddressSpace *as)
|
|
{
|
|
bool in_process = false; /* avoid re-enter and
|
|
* check whether record begin with ':' */
|
|
uint8_t *end = hex_blob + hex_blob_size;
|
|
uint8_t our_checksum = 0;
|
|
uint32_t record_index = 0;
|
|
HexParser parser = {
|
|
.filename = filename,
|
|
.bin_buf = g_malloc(hex_blob_size),
|
|
.start_addr = addr,
|
|
.as = as,
|
|
.complete = false
|
|
};
|
|
|
|
rom_transaction_begin();
|
|
|
|
for (; hex_blob < end && !parser.complete; ++hex_blob) {
|
|
switch (*hex_blob) {
|
|
case '\r':
|
|
case '\n':
|
|
if (!in_process) {
|
|
break;
|
|
}
|
|
|
|
in_process = false;
|
|
if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 !=
|
|
record_index ||
|
|
our_checksum != 0) {
|
|
parser.total_size = -1;
|
|
goto out;
|
|
}
|
|
|
|
if (handle_record_type(&parser) == -1) {
|
|
parser.total_size = -1;
|
|
goto out;
|
|
}
|
|
break;
|
|
|
|
/* start of a new record. */
|
|
case ':':
|
|
memset(&parser.line, 0, sizeof(HexLine));
|
|
in_process = true;
|
|
record_index = 0;
|
|
break;
|
|
|
|
/* decoding lines */
|
|
default:
|
|
if (!parse_record(&parser.line, &our_checksum, *hex_blob,
|
|
&record_index, in_process)) {
|
|
parser.total_size = -1;
|
|
goto out;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
out:
|
|
g_free(parser.bin_buf);
|
|
rom_transaction_end(parser.total_size != -1);
|
|
return parser.total_size;
|
|
}
|
|
|
|
/* return size or -1 if error */
|
|
ssize_t load_targphys_hex_as(const char *filename, hwaddr *entry,
|
|
AddressSpace *as)
|
|
{
|
|
gsize hex_blob_size;
|
|
gchar *hex_blob;
|
|
ssize_t total_size = 0;
|
|
|
|
if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) {
|
|
return -1;
|
|
}
|
|
|
|
total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob,
|
|
hex_blob_size, as);
|
|
|
|
g_free(hex_blob);
|
|
return total_size;
|
|
}
|