qemu/migration/multifd-qpl.c
Fabiano Rosas 9f0e108901 migration/multifd: Replace p->pages with an union pointer
We want multifd to be able to handle more types of data than just ram
pages. To start decoupling multifd from pages, replace p->pages
(MultiFDPages_t) with the new type MultiFDSendData that hides the
client payload inside an union.

The general idea here is to isolate functions that *need* to handle
MultiFDPages_t and move them in the future to multifd-ram.c, while
multifd.c will stay with only the core functions that handle
MultiFDSendData/MultiFDRecvData.

Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Fabiano Rosas <farosas@suse.de>
2024-09-03 16:24:35 -03:00

769 lines
21 KiB
C

/*
* Multifd qpl compression accelerator implementation
*
* Copyright (c) 2023 Intel Corporation
*
* Authors:
* Yuan Liu<yuan1.liu@intel.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "qemu/module.h"
#include "qapi/error.h"
#include "qapi/qapi-types-migration.h"
#include "exec/ramblock.h"
#include "multifd.h"
#include "qpl/qpl.h"
/* Maximum number of retries to resubmit a job if IAA work queues are full */
#define MAX_SUBMIT_RETRY_NUM (3)
typedef struct {
/* the QPL hardware path job */
qpl_job *job;
/* indicates if fallback to software path is required */
bool fallback_sw_path;
/* output data from the software path */
uint8_t *sw_output;
/* output data length from the software path */
uint32_t sw_output_len;
} QplHwJob;
typedef struct {
/* array of hardware jobs, the number of jobs equals the number pages */
QplHwJob *hw_jobs;
/* the QPL software job for the slow path and software fallback */
qpl_job *sw_job;
/* the number of pages that the QPL needs to process at one time */
uint32_t page_num;
/* array of compressed page buffers */
uint8_t *zbuf;
/* array of compressed page lengths */
uint32_t *zlen;
/* the status of the hardware device */
bool hw_avail;
} QplData;
/**
* check_hw_avail: check if IAA hardware is available
*
* If the IAA hardware does not exist or is unavailable,
* the QPL hardware job initialization will fail.
*
* Returns true if IAA hardware is available, otherwise false.
*
* @job_size: indicates the hardware job size if hardware is available
*/
static bool check_hw_avail(uint32_t *job_size)
{
qpl_path_t path = qpl_path_hardware;
uint32_t size = 0;
qpl_job *job;
if (qpl_get_job_size(path, &size) != QPL_STS_OK) {
return false;
}
assert(size > 0);
job = g_malloc0(size);
if (qpl_init_job(path, job) != QPL_STS_OK) {
g_free(job);
return false;
}
g_free(job);
*job_size = size;
return true;
}
/**
* multifd_qpl_free_sw_job: clean up software job
*
* Free the software job resources.
*
* @qpl: pointer to the QplData structure
*/
static void multifd_qpl_free_sw_job(QplData *qpl)
{
assert(qpl);
if (qpl->sw_job) {
qpl_fini_job(qpl->sw_job);
g_free(qpl->sw_job);
qpl->sw_job = NULL;
}
}
/**
* multifd_qpl_free_jobs: clean up hardware jobs
*
* Free all hardware job resources.
*
* @qpl: pointer to the QplData structure
*/
static void multifd_qpl_free_hw_job(QplData *qpl)
{
assert(qpl);
if (qpl->hw_jobs) {
for (int i = 0; i < qpl->page_num; i++) {
qpl_fini_job(qpl->hw_jobs[i].job);
g_free(qpl->hw_jobs[i].job);
qpl->hw_jobs[i].job = NULL;
}
g_free(qpl->hw_jobs);
qpl->hw_jobs = NULL;
}
}
/**
* multifd_qpl_init_sw_job: initialize a software job
*
* Use the QPL software path to initialize a job
*
* @qpl: pointer to the QplData structure
* @errp: pointer to an error
*/
static int multifd_qpl_init_sw_job(QplData *qpl, Error **errp)
{
qpl_path_t path = qpl_path_software;
uint32_t size = 0;
qpl_job *job = NULL;
qpl_status status;
status = qpl_get_job_size(path, &size);
if (status != QPL_STS_OK) {
error_setg(errp, "qpl_get_job_size failed with error %d", status);
return -1;
}
job = g_malloc0(size);
status = qpl_init_job(path, job);
if (status != QPL_STS_OK) {
error_setg(errp, "qpl_init_job failed with error %d", status);
g_free(job);
return -1;
}
qpl->sw_job = job;
return 0;
}
/**
* multifd_qpl_init_jobs: initialize hardware jobs
*
* Use the QPL hardware path to initialize jobs
*
* @qpl: pointer to the QplData structure
* @size: the size of QPL hardware path job
* @errp: pointer to an error
*/
static void multifd_qpl_init_hw_job(QplData *qpl, uint32_t size, Error **errp)
{
qpl_path_t path = qpl_path_hardware;
qpl_job *job = NULL;
qpl_status status;
qpl->hw_jobs = g_new0(QplHwJob, qpl->page_num);
for (int i = 0; i < qpl->page_num; i++) {
job = g_malloc0(size);
status = qpl_init_job(path, job);
/* the job initialization should succeed after check_hw_avail */
assert(status == QPL_STS_OK);
qpl->hw_jobs[i].job = job;
}
}
/**
* multifd_qpl_init: initialize QplData structure
*
* Allocate and initialize a QplData structure
*
* Returns a QplData pointer on success or NULL on error
*
* @num: the number of pages
* @size: the page size
* @errp: pointer to an error
*/
static QplData *multifd_qpl_init(uint32_t num, uint32_t size, Error **errp)
{
uint32_t job_size = 0;
QplData *qpl;
qpl = g_new0(QplData, 1);
qpl->page_num = num;
if (multifd_qpl_init_sw_job(qpl, errp) != 0) {
g_free(qpl);
return NULL;
}
qpl->hw_avail = check_hw_avail(&job_size);
if (qpl->hw_avail) {
multifd_qpl_init_hw_job(qpl, job_size, errp);
}
qpl->zbuf = g_malloc0(size * num);
qpl->zlen = g_new0(uint32_t, num);
return qpl;
}
/**
* multifd_qpl_deinit: clean up QplData structure
*
* Free jobs, buffers and the QplData structure
*
* @qpl: pointer to the QplData structure
*/
static void multifd_qpl_deinit(QplData *qpl)
{
if (qpl) {
multifd_qpl_free_sw_job(qpl);
multifd_qpl_free_hw_job(qpl);
g_free(qpl->zbuf);
g_free(qpl->zlen);
g_free(qpl);
}
}
/**
* multifd_qpl_send_setup: set up send side
*
* Set up the channel with QPL compression.
*
* Returns 0 on success or -1 on error
*
* @p: Params for the channel being used
* @errp: pointer to an error
*/
static int multifd_qpl_send_setup(MultiFDSendParams *p, Error **errp)
{
QplData *qpl;
uint32_t page_size = multifd_ram_page_size();
uint32_t page_count = multifd_ram_page_count();
qpl = multifd_qpl_init(page_count, page_size, errp);
if (!qpl) {
return -1;
}
p->compress_data = qpl;
/*
* the page will be compressed independently and sent using an IOV. The
* additional two IOVs are used to store packet header and compressed data
* length
*/
p->iov = g_new0(struct iovec, page_count + 2);
return 0;
}
/**
* multifd_qpl_send_cleanup: clean up send side
*
* Close the channel and free memory.
*
* @p: Params for the channel being used
* @errp: pointer to an error
*/
static void multifd_qpl_send_cleanup(MultiFDSendParams *p, Error **errp)
{
multifd_qpl_deinit(p->compress_data);
p->compress_data = NULL;
g_free(p->iov);
p->iov = NULL;
}
/**
* multifd_qpl_prepare_job: prepare the job
*
* Set the QPL job parameters and properties.
*
* @job: pointer to the qpl_job structure
* @is_compression: indicates compression and decompression
* @input: pointer to the input data buffer
* @input_len: the length of the input data
* @output: pointer to the output data buffer
* @output_len: the length of the output data
*/
static void multifd_qpl_prepare_job(qpl_job *job, bool is_compression,
uint8_t *input, uint32_t input_len,
uint8_t *output, uint32_t output_len)
{
job->op = is_compression ? qpl_op_compress : qpl_op_decompress;
job->next_in_ptr = input;
job->next_out_ptr = output;
job->available_in = input_len;
job->available_out = output_len;
job->flags = QPL_FLAG_FIRST | QPL_FLAG_LAST | QPL_FLAG_OMIT_VERIFY;
/* only supports compression level 1 */
job->level = 1;
}
/**
* multifd_qpl_prepare_comp_job: prepare the compression job
*
* Set the compression job parameters and properties.
*
* @job: pointer to the qpl_job structure
* @input: pointer to the input data buffer
* @output: pointer to the output data buffer
* @size: the page size
*/
static void multifd_qpl_prepare_comp_job(qpl_job *job, uint8_t *input,
uint8_t *output, uint32_t size)
{
/*
* Set output length to less than the page size to force the job to
* fail in case it compresses to a larger size. We'll send that page
* without compression and skip the decompression operation on the
* destination.
*/
multifd_qpl_prepare_job(job, true, input, size, output, size - 1);
}
/**
* multifd_qpl_prepare_decomp_job: prepare the decompression job
*
* Set the decompression job parameters and properties.
*
* @job: pointer to the qpl_job structure
* @input: pointer to the input data buffer
* @len: the length of the input data
* @output: pointer to the output data buffer
* @size: the page size
*/
static void multifd_qpl_prepare_decomp_job(qpl_job *job, uint8_t *input,
uint32_t len, uint8_t *output,
uint32_t size)
{
multifd_qpl_prepare_job(job, false, input, len, output, size);
}
/**
* multifd_qpl_fill_iov: fill in the IOV
*
* Fill in the QPL packet IOV
*
* @p: Params for the channel being used
* @data: pointer to the IOV data
* @len: The length of the IOV data
*/
static void multifd_qpl_fill_iov(MultiFDSendParams *p, uint8_t *data,
uint32_t len)
{
p->iov[p->iovs_num].iov_base = data;
p->iov[p->iovs_num].iov_len = len;
p->iovs_num++;
p->next_packet_size += len;
}
/**
* multifd_qpl_fill_packet: fill the compressed page into the QPL packet
*
* Fill the compressed page length and IOV into the QPL packet
*
* @idx: The index of the compressed length array
* @p: Params for the channel being used
* @data: pointer to the compressed page buffer
* @len: The length of the compressed page
*/
static void multifd_qpl_fill_packet(uint32_t idx, MultiFDSendParams *p,
uint8_t *data, uint32_t len)
{
QplData *qpl = p->compress_data;
qpl->zlen[idx] = cpu_to_be32(len);
multifd_qpl_fill_iov(p, data, len);
}
/**
* multifd_qpl_submit_job: submit a job to the hardware
*
* Submit a QPL hardware job to the IAA device
*
* Returns true if the job is submitted successfully, otherwise false.
*
* @job: pointer to the qpl_job structure
*/
static bool multifd_qpl_submit_job(qpl_job *job)
{
qpl_status status;
uint32_t num = 0;
retry:
status = qpl_submit_job(job);
if (status == QPL_STS_QUEUES_ARE_BUSY_ERR) {
if (num < MAX_SUBMIT_RETRY_NUM) {
num++;
goto retry;
}
}
return (status == QPL_STS_OK);
}
/**
* multifd_qpl_compress_pages_slow_path: compress pages using slow path
*
* Compress the pages using software. If compression fails, the uncompressed
* page will be sent.
*
* @p: Params for the channel being used
*/
static void multifd_qpl_compress_pages_slow_path(MultiFDSendParams *p)
{
QplData *qpl = p->compress_data;
MultiFDPages_t *pages = &p->data->u.ram;
uint32_t size = p->page_size;
qpl_job *job = qpl->sw_job;
uint8_t *zbuf = qpl->zbuf;
uint8_t *buf;
for (int i = 0; i < pages->normal_num; i++) {
buf = pages->block->host + pages->offset[i];
multifd_qpl_prepare_comp_job(job, buf, zbuf, size);
if (qpl_execute_job(job) == QPL_STS_OK) {
multifd_qpl_fill_packet(i, p, zbuf, job->total_out);
} else {
/* send the uncompressed page */
multifd_qpl_fill_packet(i, p, buf, size);
}
zbuf += size;
}
}
/**
* multifd_qpl_compress_pages: compress pages
*
* Submit the pages to the IAA hardware for compression. If hardware
* compression fails, it falls back to software compression. If software
* compression also fails, the uncompressed page is sent.
*
* @p: Params for the channel being used
*/
static void multifd_qpl_compress_pages(MultiFDSendParams *p)
{
QplData *qpl = p->compress_data;
MultiFDPages_t *pages = &p->data->u.ram;
uint32_t size = p->page_size;
QplHwJob *hw_job;
uint8_t *buf;
uint8_t *zbuf;
for (int i = 0; i < pages->normal_num; i++) {
buf = pages->block->host + pages->offset[i];
zbuf = qpl->zbuf + (size * i);
hw_job = &qpl->hw_jobs[i];
multifd_qpl_prepare_comp_job(hw_job->job, buf, zbuf, size);
if (multifd_qpl_submit_job(hw_job->job)) {
hw_job->fallback_sw_path = false;
} else {
/*
* The IAA work queue is full, any immediate subsequent job
* submission is likely to fail, sending the page via the QPL
* software path at this point gives us a better chance of
* finding the queue open for the next pages.
*/
hw_job->fallback_sw_path = true;
multifd_qpl_prepare_comp_job(qpl->sw_job, buf, zbuf, size);
if (qpl_execute_job(qpl->sw_job) == QPL_STS_OK) {
hw_job->sw_output = zbuf;
hw_job->sw_output_len = qpl->sw_job->total_out;
} else {
hw_job->sw_output = buf;
hw_job->sw_output_len = size;
}
}
}
for (int i = 0; i < pages->normal_num; i++) {
buf = pages->block->host + pages->offset[i];
zbuf = qpl->zbuf + (size * i);
hw_job = &qpl->hw_jobs[i];
if (hw_job->fallback_sw_path) {
multifd_qpl_fill_packet(i, p, hw_job->sw_output,
hw_job->sw_output_len);
continue;
}
if (qpl_wait_job(hw_job->job) == QPL_STS_OK) {
multifd_qpl_fill_packet(i, p, zbuf, hw_job->job->total_out);
} else {
/* send the uncompressed page */
multifd_qpl_fill_packet(i, p, buf, size);
}
}
}
/**
* multifd_qpl_send_prepare: prepare data to be able to send
*
* Create a compressed buffer with all the pages that we are going to
* send.
*
* Returns 0 on success or -1 on error
*
* @p: Params for the channel being used
* @errp: pointer to an error
*/
static int multifd_qpl_send_prepare(MultiFDSendParams *p, Error **errp)
{
QplData *qpl = p->compress_data;
MultiFDPages_t *pages = &p->data->u.ram;
uint32_t len = 0;
if (!multifd_send_prepare_common(p)) {
goto out;
}
/* The first IOV is used to store the compressed page lengths */
len = pages->normal_num * sizeof(uint32_t);
multifd_qpl_fill_iov(p, (uint8_t *) qpl->zlen, len);
if (qpl->hw_avail) {
multifd_qpl_compress_pages(p);
} else {
multifd_qpl_compress_pages_slow_path(p);
}
out:
p->flags |= MULTIFD_FLAG_QPL;
multifd_send_fill_packet(p);
return 0;
}
/**
* multifd_qpl_recv_setup: set up receive side
*
* Create the compressed channel and buffer.
*
* Returns 0 on success or -1 on error
*
* @p: Params for the channel being used
* @errp: pointer to an error
*/
static int multifd_qpl_recv_setup(MultiFDRecvParams *p, Error **errp)
{
QplData *qpl;
uint32_t page_size = multifd_ram_page_size();
uint32_t page_count = multifd_ram_page_count();
qpl = multifd_qpl_init(page_count, page_size, errp);
if (!qpl) {
return -1;
}
p->compress_data = qpl;
return 0;
}
/**
* multifd_qpl_recv_cleanup: set up receive side
*
* Close the channel and free memory.
*
* @p: Params for the channel being used
*/
static void multifd_qpl_recv_cleanup(MultiFDRecvParams *p)
{
multifd_qpl_deinit(p->compress_data);
p->compress_data = NULL;
}
/**
* multifd_qpl_process_and_check_job: process and check a QPL job
*
* Process the job and check whether the job output length is the
* same as the specified length
*
* Returns true if the job execution succeeded and the output length
* is equal to the specified length, otherwise false.
*
* @job: pointer to the qpl_job structure
* @is_hardware: indicates whether the job is a hardware job
* @len: Specified output length
* @errp: pointer to an error
*/
static bool multifd_qpl_process_and_check_job(qpl_job *job, bool is_hardware,
uint32_t len, Error **errp)
{
qpl_status status;
status = (is_hardware ? qpl_wait_job(job) : qpl_execute_job(job));
if (status != QPL_STS_OK) {
error_setg(errp, "qpl job failed with error %d", status);
return false;
}
if (job->total_out != len) {
error_setg(errp, "qpl decompressed len %u, expected len %u",
job->total_out, len);
return false;
}
return true;
}
/**
* multifd_qpl_decompress_pages_slow_path: decompress pages using slow path
*
* Decompress the pages using software
*
* Returns 0 on success or -1 on error
*
* @p: Params for the channel being used
* @errp: pointer to an error
*/
static int multifd_qpl_decompress_pages_slow_path(MultiFDRecvParams *p,
Error **errp)
{
QplData *qpl = p->compress_data;
uint32_t size = p->page_size;
qpl_job *job = qpl->sw_job;
uint8_t *zbuf = qpl->zbuf;
uint8_t *addr;
uint32_t len;
for (int i = 0; i < p->normal_num; i++) {
len = qpl->zlen[i];
addr = p->host + p->normal[i];
/* the page is uncompressed, load it */
if (len == size) {
memcpy(addr, zbuf, size);
zbuf += size;
continue;
}
multifd_qpl_prepare_decomp_job(job, zbuf, len, addr, size);
if (!multifd_qpl_process_and_check_job(job, false, size, errp)) {
return -1;
}
zbuf += len;
}
return 0;
}
/**
* multifd_qpl_decompress_pages: decompress pages
*
* Decompress the pages using the IAA hardware. If hardware
* decompression fails, it falls back to software decompression.
*
* Returns 0 on success or -1 on error
*
* @p: Params for the channel being used
* @errp: pointer to an error
*/
static int multifd_qpl_decompress_pages(MultiFDRecvParams *p, Error **errp)
{
QplData *qpl = p->compress_data;
uint32_t size = p->page_size;
uint8_t *zbuf = qpl->zbuf;
uint8_t *addr;
uint32_t len;
qpl_job *job;
for (int i = 0; i < p->normal_num; i++) {
addr = p->host + p->normal[i];
len = qpl->zlen[i];
/* the page is uncompressed if received length equals the page size */
if (len == size) {
memcpy(addr, zbuf, size);
zbuf += size;
continue;
}
job = qpl->hw_jobs[i].job;
multifd_qpl_prepare_decomp_job(job, zbuf, len, addr, size);
if (multifd_qpl_submit_job(job)) {
qpl->hw_jobs[i].fallback_sw_path = false;
} else {
/*
* The IAA work queue is full, any immediate subsequent job
* submission is likely to fail, sending the page via the QPL
* software path at this point gives us a better chance of
* finding the queue open for the next pages.
*/
qpl->hw_jobs[i].fallback_sw_path = true;
job = qpl->sw_job;
multifd_qpl_prepare_decomp_job(job, zbuf, len, addr, size);
if (!multifd_qpl_process_and_check_job(job, false, size, errp)) {
return -1;
}
}
zbuf += len;
}
for (int i = 0; i < p->normal_num; i++) {
/* ignore pages that have already been processed */
if (qpl->zlen[i] == size || qpl->hw_jobs[i].fallback_sw_path) {
continue;
}
job = qpl->hw_jobs[i].job;
if (!multifd_qpl_process_and_check_job(job, true, size, errp)) {
return -1;
}
}
return 0;
}
/**
* multifd_qpl_recv: read the data from the channel into actual pages
*
* Read the compressed buffer, and uncompress it into the actual
* pages.
*
* Returns 0 on success or -1 on error
*
* @p: Params for the channel being used
* @errp: pointer to an error
*/
static int multifd_qpl_recv(MultiFDRecvParams *p, Error **errp)
{
QplData *qpl = p->compress_data;
uint32_t in_size = p->next_packet_size;
uint32_t flags = p->flags & MULTIFD_FLAG_COMPRESSION_MASK;
uint32_t len = 0;
uint32_t zbuf_len = 0;
int ret;
if (flags != MULTIFD_FLAG_QPL) {
error_setg(errp, "multifd %u: flags received %x flags expected %x",
p->id, flags, MULTIFD_FLAG_QPL);
return -1;
}
multifd_recv_zero_page_process(p);
if (!p->normal_num) {
assert(in_size == 0);
return 0;
}
/* read compressed page lengths */
len = p->normal_num * sizeof(uint32_t);
assert(len < in_size);
ret = qio_channel_read_all(p->c, (void *) qpl->zlen, len, errp);
if (ret != 0) {
return ret;
}
for (int i = 0; i < p->normal_num; i++) {
qpl->zlen[i] = be32_to_cpu(qpl->zlen[i]);
assert(qpl->zlen[i] <= p->page_size);
zbuf_len += qpl->zlen[i];
}
/* read compressed pages */
assert(in_size == len + zbuf_len);
ret = qio_channel_read_all(p->c, (void *) qpl->zbuf, zbuf_len, errp);
if (ret != 0) {
return ret;
}
if (qpl->hw_avail) {
return multifd_qpl_decompress_pages(p, errp);
}
return multifd_qpl_decompress_pages_slow_path(p, errp);
}
static MultiFDMethods multifd_qpl_ops = {
.send_setup = multifd_qpl_send_setup,
.send_cleanup = multifd_qpl_send_cleanup,
.send_prepare = multifd_qpl_send_prepare,
.recv_setup = multifd_qpl_recv_setup,
.recv_cleanup = multifd_qpl_recv_cleanup,
.recv = multifd_qpl_recv,
};
static void multifd_qpl_register(void)
{
multifd_register_ops(MULTIFD_COMPRESSION_QPL, &multifd_qpl_ops);
}
migration_init(multifd_qpl_register);