mirror of
https://github.com/qemu/qemu.git
synced 2025-01-22 21:44:07 +08:00
48557b1383
hbitmap_reset has an unobvious property: it rounds requested region up. It may provoke bugs, like in recently fixed write-blocking mode of mirror: user calls reset on unaligned region, not keeping in mind that there are possible unrelated dirty bytes, covered by rounded-up region and information of this unrelated "dirtiness" will be lost. Make hbitmap_reset strict: assert that arguments are aligned, allowing only one exception when @start + @count == hb->orig_size. It's needed to comfort users of hbitmap_next_dirty_area, which cares about hb->orig_size. Signed-off-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com> Reviewed-by: Max Reitz <mreitz@redhat.com> Message-Id: <20190806152611.280389-1-vsementsov@virtuozzo.com> [Maintainer edit: Max's suggestions from on-list. --js] [Maintainer edit: Eric's suggestion for aligned macro. --js] Signed-off-by: John Snow <jsnow@redhat.com>
1206 lines
39 KiB
C
1206 lines
39 KiB
C
/*
|
|
* Hierarchical bitmap unit-tests.
|
|
*
|
|
* Copyright (C) 2012 Red Hat Inc.
|
|
*
|
|
* Author: Paolo Bonzini <pbonzini@redhat.com>
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
|
* See the COPYING file in the top-level directory.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu/hbitmap.h"
|
|
#include "qemu/bitmap.h"
|
|
#include "block/block.h"
|
|
|
|
#define LOG_BITS_PER_LONG (BITS_PER_LONG == 32 ? 5 : 6)
|
|
|
|
#define L1 BITS_PER_LONG
|
|
#define L2 (BITS_PER_LONG * L1)
|
|
#define L3 (BITS_PER_LONG * L2)
|
|
|
|
typedef struct TestHBitmapData {
|
|
HBitmap *hb;
|
|
HBitmap *meta;
|
|
unsigned long *bits;
|
|
size_t size;
|
|
size_t old_size;
|
|
int granularity;
|
|
} TestHBitmapData;
|
|
|
|
|
|
/* Check that the HBitmap and the shadow bitmap contain the same data,
|
|
* ignoring the same "first" bits.
|
|
*/
|
|
static void hbitmap_test_check(TestHBitmapData *data,
|
|
uint64_t first)
|
|
{
|
|
uint64_t count = 0;
|
|
size_t pos;
|
|
int bit;
|
|
HBitmapIter hbi;
|
|
int64_t i, next;
|
|
|
|
hbitmap_iter_init(&hbi, data->hb, first);
|
|
|
|
i = first;
|
|
for (;;) {
|
|
next = hbitmap_iter_next(&hbi);
|
|
if (next < 0) {
|
|
next = data->size;
|
|
}
|
|
|
|
while (i < next) {
|
|
pos = i >> LOG_BITS_PER_LONG;
|
|
bit = i & (BITS_PER_LONG - 1);
|
|
i++;
|
|
g_assert_cmpint(data->bits[pos] & (1UL << bit), ==, 0);
|
|
}
|
|
|
|
if (next == data->size) {
|
|
break;
|
|
}
|
|
|
|
pos = i >> LOG_BITS_PER_LONG;
|
|
bit = i & (BITS_PER_LONG - 1);
|
|
i++;
|
|
count++;
|
|
g_assert_cmpint(data->bits[pos] & (1UL << bit), !=, 0);
|
|
}
|
|
|
|
if (first == 0) {
|
|
g_assert_cmpint(count << data->granularity, ==, hbitmap_count(data->hb));
|
|
}
|
|
}
|
|
|
|
/* This is provided instead of a test setup function so that the sizes
|
|
are kept in the test functions (and not in main()) */
|
|
static void hbitmap_test_init(TestHBitmapData *data,
|
|
uint64_t size, int granularity)
|
|
{
|
|
size_t n;
|
|
data->hb = hbitmap_alloc(size, granularity);
|
|
|
|
n = DIV_ROUND_UP(size, BITS_PER_LONG);
|
|
if (n == 0) {
|
|
n = 1;
|
|
}
|
|
data->bits = g_new0(unsigned long, n);
|
|
data->size = size;
|
|
data->granularity = granularity;
|
|
if (size) {
|
|
hbitmap_test_check(data, 0);
|
|
}
|
|
}
|
|
|
|
static void hbitmap_test_init_meta(TestHBitmapData *data,
|
|
uint64_t size, int granularity,
|
|
int meta_chunk)
|
|
{
|
|
hbitmap_test_init(data, size, granularity);
|
|
data->meta = hbitmap_create_meta(data->hb, meta_chunk);
|
|
}
|
|
|
|
static inline size_t hbitmap_test_array_size(size_t bits)
|
|
{
|
|
size_t n = DIV_ROUND_UP(bits, BITS_PER_LONG);
|
|
return n ? n : 1;
|
|
}
|
|
|
|
static void hbitmap_test_truncate_impl(TestHBitmapData *data,
|
|
size_t size)
|
|
{
|
|
size_t n;
|
|
size_t m;
|
|
data->old_size = data->size;
|
|
data->size = size;
|
|
|
|
if (data->size == data->old_size) {
|
|
return;
|
|
}
|
|
|
|
n = hbitmap_test_array_size(size);
|
|
m = hbitmap_test_array_size(data->old_size);
|
|
data->bits = g_realloc(data->bits, sizeof(unsigned long) * n);
|
|
if (n > m) {
|
|
memset(&data->bits[m], 0x00, sizeof(unsigned long) * (n - m));
|
|
}
|
|
|
|
/* If we shrink to an uneven multiple of sizeof(unsigned long),
|
|
* scrub the leftover memory. */
|
|
if (data->size < data->old_size) {
|
|
m = size % (sizeof(unsigned long) * 8);
|
|
if (m) {
|
|
unsigned long mask = (1ULL << m) - 1;
|
|
data->bits[n-1] &= mask;
|
|
}
|
|
}
|
|
|
|
hbitmap_truncate(data->hb, size);
|
|
}
|
|
|
|
static void hbitmap_test_teardown(TestHBitmapData *data,
|
|
const void *unused)
|
|
{
|
|
if (data->hb) {
|
|
if (data->meta) {
|
|
hbitmap_free_meta(data->hb);
|
|
}
|
|
hbitmap_free(data->hb);
|
|
data->hb = NULL;
|
|
}
|
|
g_free(data->bits);
|
|
data->bits = NULL;
|
|
}
|
|
|
|
/* Set a range in the HBitmap and in the shadow "simple" bitmap.
|
|
* The two bitmaps are then tested against each other.
|
|
*/
|
|
static void hbitmap_test_set(TestHBitmapData *data,
|
|
uint64_t first, uint64_t count)
|
|
{
|
|
hbitmap_set(data->hb, first, count);
|
|
while (count-- != 0) {
|
|
size_t pos = first >> LOG_BITS_PER_LONG;
|
|
int bit = first & (BITS_PER_LONG - 1);
|
|
first++;
|
|
|
|
data->bits[pos] |= 1UL << bit;
|
|
}
|
|
|
|
if (data->granularity == 0) {
|
|
hbitmap_test_check(data, 0);
|
|
}
|
|
}
|
|
|
|
/* Reset a range in the HBitmap and in the shadow "simple" bitmap.
|
|
*/
|
|
static void hbitmap_test_reset(TestHBitmapData *data,
|
|
uint64_t first, uint64_t count)
|
|
{
|
|
hbitmap_reset(data->hb, first, count);
|
|
while (count-- != 0) {
|
|
size_t pos = first >> LOG_BITS_PER_LONG;
|
|
int bit = first & (BITS_PER_LONG - 1);
|
|
first++;
|
|
|
|
data->bits[pos] &= ~(1UL << bit);
|
|
}
|
|
|
|
if (data->granularity == 0) {
|
|
hbitmap_test_check(data, 0);
|
|
}
|
|
}
|
|
|
|
static void hbitmap_test_reset_all(TestHBitmapData *data)
|
|
{
|
|
size_t n;
|
|
|
|
hbitmap_reset_all(data->hb);
|
|
|
|
n = DIV_ROUND_UP(data->size, BITS_PER_LONG);
|
|
if (n == 0) {
|
|
n = 1;
|
|
}
|
|
memset(data->bits, 0, n * sizeof(unsigned long));
|
|
|
|
if (data->granularity == 0) {
|
|
hbitmap_test_check(data, 0);
|
|
}
|
|
}
|
|
|
|
static void hbitmap_test_check_get(TestHBitmapData *data)
|
|
{
|
|
uint64_t count = 0;
|
|
uint64_t i;
|
|
|
|
for (i = 0; i < data->size; i++) {
|
|
size_t pos = i >> LOG_BITS_PER_LONG;
|
|
int bit = i & (BITS_PER_LONG - 1);
|
|
unsigned long val = data->bits[pos] & (1UL << bit);
|
|
count += hbitmap_get(data->hb, i);
|
|
g_assert_cmpint(hbitmap_get(data->hb, i), ==, val != 0);
|
|
}
|
|
g_assert_cmpint(count, ==, hbitmap_count(data->hb));
|
|
}
|
|
|
|
static void test_hbitmap_zero(TestHBitmapData *data,
|
|
const void *unused)
|
|
{
|
|
hbitmap_test_init(data, 0, 0);
|
|
}
|
|
|
|
static void test_hbitmap_unaligned(TestHBitmapData *data,
|
|
const void *unused)
|
|
{
|
|
hbitmap_test_init(data, L3 + 23, 0);
|
|
hbitmap_test_set(data, 0, 1);
|
|
hbitmap_test_set(data, L3 + 22, 1);
|
|
}
|
|
|
|
static void test_hbitmap_iter_empty(TestHBitmapData *data,
|
|
const void *unused)
|
|
{
|
|
hbitmap_test_init(data, L1, 0);
|
|
}
|
|
|
|
static void test_hbitmap_iter_partial(TestHBitmapData *data,
|
|
const void *unused)
|
|
{
|
|
hbitmap_test_init(data, L3, 0);
|
|
hbitmap_test_set(data, 0, L3);
|
|
hbitmap_test_check(data, 1);
|
|
hbitmap_test_check(data, L1 - 1);
|
|
hbitmap_test_check(data, L1);
|
|
hbitmap_test_check(data, L1 * 2 - 1);
|
|
hbitmap_test_check(data, L2 - 1);
|
|
hbitmap_test_check(data, L2);
|
|
hbitmap_test_check(data, L2 + 1);
|
|
hbitmap_test_check(data, L2 + L1);
|
|
hbitmap_test_check(data, L2 + L1 * 2 - 1);
|
|
hbitmap_test_check(data, L2 * 2 - 1);
|
|
hbitmap_test_check(data, L2 * 2);
|
|
hbitmap_test_check(data, L2 * 2 + 1);
|
|
hbitmap_test_check(data, L2 * 2 + L1);
|
|
hbitmap_test_check(data, L2 * 2 + L1 * 2 - 1);
|
|
hbitmap_test_check(data, L3 / 2);
|
|
}
|
|
|
|
static void test_hbitmap_set_all(TestHBitmapData *data,
|
|
const void *unused)
|
|
{
|
|
hbitmap_test_init(data, L3, 0);
|
|
hbitmap_test_set(data, 0, L3);
|
|
}
|
|
|
|
static void test_hbitmap_get_all(TestHBitmapData *data,
|
|
const void *unused)
|
|
{
|
|
hbitmap_test_init(data, L3, 0);
|
|
hbitmap_test_set(data, 0, L3);
|
|
hbitmap_test_check_get(data);
|
|
}
|
|
|
|
static void test_hbitmap_get_some(TestHBitmapData *data,
|
|
const void *unused)
|
|
{
|
|
hbitmap_test_init(data, 2 * L2, 0);
|
|
hbitmap_test_set(data, 10, 1);
|
|
hbitmap_test_check_get(data);
|
|
hbitmap_test_set(data, L1 - 1, 1);
|
|
hbitmap_test_check_get(data);
|
|
hbitmap_test_set(data, L1, 1);
|
|
hbitmap_test_check_get(data);
|
|
hbitmap_test_set(data, L2 - 1, 1);
|
|
hbitmap_test_check_get(data);
|
|
hbitmap_test_set(data, L2, 1);
|
|
hbitmap_test_check_get(data);
|
|
}
|
|
|
|
static void test_hbitmap_set_one(TestHBitmapData *data,
|
|
const void *unused)
|
|
{
|
|
hbitmap_test_init(data, 2 * L2, 0);
|
|
hbitmap_test_set(data, 10, 1);
|
|
hbitmap_test_set(data, L1 - 1, 1);
|
|
hbitmap_test_set(data, L1, 1);
|
|
hbitmap_test_set(data, L2 - 1, 1);
|
|
hbitmap_test_set(data, L2, 1);
|
|
}
|
|
|
|
static void test_hbitmap_set_two_elem(TestHBitmapData *data,
|
|
const void *unused)
|
|
{
|
|
hbitmap_test_init(data, 2 * L2, 0);
|
|
hbitmap_test_set(data, L1 - 1, 2);
|
|
hbitmap_test_set(data, L1 * 2 - 1, 4);
|
|
hbitmap_test_set(data, L1 * 4, L1 + 1);
|
|
hbitmap_test_set(data, L1 * 8 - 1, L1 + 1);
|
|
hbitmap_test_set(data, L2 - 1, 2);
|
|
hbitmap_test_set(data, L2 + L1 - 1, 8);
|
|
hbitmap_test_set(data, L2 + L1 * 4, L1 + 1);
|
|
hbitmap_test_set(data, L2 + L1 * 8 - 1, L1 + 1);
|
|
}
|
|
|
|
static void test_hbitmap_set(TestHBitmapData *data,
|
|
const void *unused)
|
|
{
|
|
hbitmap_test_init(data, L3 * 2, 0);
|
|
hbitmap_test_set(data, L1 - 1, L1 + 2);
|
|
hbitmap_test_set(data, L1 * 3 - 1, L1 + 2);
|
|
hbitmap_test_set(data, L1 * 5, L1 * 2 + 1);
|
|
hbitmap_test_set(data, L1 * 8 - 1, L1 * 2 + 1);
|
|
hbitmap_test_set(data, L2 - 1, L1 + 2);
|
|
hbitmap_test_set(data, L2 + L1 * 2 - 1, L1 + 2);
|
|
hbitmap_test_set(data, L2 + L1 * 4, L1 * 2 + 1);
|
|
hbitmap_test_set(data, L2 + L1 * 7 - 1, L1 * 2 + 1);
|
|
hbitmap_test_set(data, L2 * 2 - 1, L3 * 2 - L2 * 2);
|
|
}
|
|
|
|
static void test_hbitmap_set_twice(TestHBitmapData *data,
|
|
const void *unused)
|
|
{
|
|
hbitmap_test_init(data, L1 * 3, 0);
|
|
hbitmap_test_set(data, 0, L1 * 3);
|
|
hbitmap_test_set(data, L1, 1);
|
|
}
|
|
|
|
static void test_hbitmap_set_overlap(TestHBitmapData *data,
|
|
const void *unused)
|
|
{
|
|
hbitmap_test_init(data, L3 * 2, 0);
|
|
hbitmap_test_set(data, L1 - 1, L1 + 2);
|
|
hbitmap_test_set(data, L1 * 2 - 1, L1 * 2 + 2);
|
|
hbitmap_test_set(data, 0, L1 * 3);
|
|
hbitmap_test_set(data, L1 * 8 - 1, L2);
|
|
hbitmap_test_set(data, L2, L1);
|
|
hbitmap_test_set(data, L2 - L1 - 1, L1 * 8 + 2);
|
|
hbitmap_test_set(data, L2, L3 - L2 + 1);
|
|
hbitmap_test_set(data, L3 - L1, L1 * 3);
|
|
hbitmap_test_set(data, L3 - 1, 3);
|
|
hbitmap_test_set(data, L3 - 1, L2);
|
|
}
|
|
|
|
static void test_hbitmap_reset_empty(TestHBitmapData *data,
|
|
const void *unused)
|
|
{
|
|
hbitmap_test_init(data, L3, 0);
|
|
hbitmap_test_reset(data, 0, L3);
|
|
}
|
|
|
|
static void test_hbitmap_reset(TestHBitmapData *data,
|
|
const void *unused)
|
|
{
|
|
hbitmap_test_init(data, L3 * 2, 0);
|
|
hbitmap_test_set(data, L1 - 1, L1 + 2);
|
|
hbitmap_test_reset(data, L1 * 2 - 1, L1 * 2 + 2);
|
|
hbitmap_test_set(data, 0, L1 * 3);
|
|
hbitmap_test_reset(data, L1 * 8 - 1, L2);
|
|
hbitmap_test_set(data, L2, L1);
|
|
hbitmap_test_reset(data, L2 - L1 - 1, L1 * 8 + 2);
|
|
hbitmap_test_set(data, L2, L3 - L2 + 1);
|
|
hbitmap_test_reset(data, L3 - L1, L1 * 3);
|
|
hbitmap_test_set(data, L3 - 1, 3);
|
|
hbitmap_test_reset(data, L3 - 1, L2);
|
|
hbitmap_test_set(data, 0, L3 * 2);
|
|
hbitmap_test_reset(data, 0, L1);
|
|
hbitmap_test_reset(data, 0, L2);
|
|
hbitmap_test_reset(data, L3, L3);
|
|
hbitmap_test_set(data, L3 / 2, L3);
|
|
}
|
|
|
|
static void test_hbitmap_reset_all(TestHBitmapData *data,
|
|
const void *unused)
|
|
{
|
|
hbitmap_test_init(data, L3 * 2, 0);
|
|
hbitmap_test_set(data, L1 - 1, L1 + 2);
|
|
hbitmap_test_reset_all(data);
|
|
hbitmap_test_set(data, 0, L1 * 3);
|
|
hbitmap_test_reset_all(data);
|
|
hbitmap_test_set(data, L2, L1);
|
|
hbitmap_test_reset_all(data);
|
|
hbitmap_test_set(data, L2, L3 - L2 + 1);
|
|
hbitmap_test_reset_all(data);
|
|
hbitmap_test_set(data, L3 - 1, 3);
|
|
hbitmap_test_reset_all(data);
|
|
hbitmap_test_set(data, 0, L3 * 2);
|
|
hbitmap_test_reset_all(data);
|
|
hbitmap_test_set(data, L3 / 2, L3);
|
|
hbitmap_test_reset_all(data);
|
|
}
|
|
|
|
static void test_hbitmap_granularity(TestHBitmapData *data,
|
|
const void *unused)
|
|
{
|
|
/* Note that hbitmap_test_check has to be invoked manually in this test. */
|
|
hbitmap_test_init(data, L1, 1);
|
|
hbitmap_test_set(data, 0, 1);
|
|
g_assert_cmpint(hbitmap_count(data->hb), ==, 2);
|
|
hbitmap_test_check(data, 0);
|
|
hbitmap_test_set(data, 2, 1);
|
|
g_assert_cmpint(hbitmap_count(data->hb), ==, 4);
|
|
hbitmap_test_check(data, 0);
|
|
hbitmap_test_set(data, 0, 3);
|
|
g_assert_cmpint(hbitmap_count(data->hb), ==, 4);
|
|
hbitmap_test_reset(data, 0, 2);
|
|
g_assert_cmpint(hbitmap_count(data->hb), ==, 2);
|
|
}
|
|
|
|
static void test_hbitmap_iter_granularity(TestHBitmapData *data,
|
|
const void *unused)
|
|
{
|
|
HBitmapIter hbi;
|
|
|
|
/* Note that hbitmap_test_check has to be invoked manually in this test. */
|
|
hbitmap_test_init(data, 131072 << 7, 7);
|
|
hbitmap_iter_init(&hbi, data->hb, 0);
|
|
g_assert_cmpint(hbitmap_iter_next(&hbi), <, 0);
|
|
|
|
hbitmap_test_set(data, ((L2 + L1 + 1) << 7) + 8, 8);
|
|
hbitmap_iter_init(&hbi, data->hb, 0);
|
|
g_assert_cmpint(hbitmap_iter_next(&hbi), ==, (L2 + L1 + 1) << 7);
|
|
g_assert_cmpint(hbitmap_iter_next(&hbi), <, 0);
|
|
|
|
hbitmap_iter_init(&hbi, data->hb, (L2 + L1 + 2) << 7);
|
|
g_assert_cmpint(hbitmap_iter_next(&hbi), <, 0);
|
|
|
|
hbitmap_test_set(data, (131072 << 7) - 8, 8);
|
|
hbitmap_iter_init(&hbi, data->hb, 0);
|
|
g_assert_cmpint(hbitmap_iter_next(&hbi), ==, (L2 + L1 + 1) << 7);
|
|
g_assert_cmpint(hbitmap_iter_next(&hbi), ==, 131071 << 7);
|
|
g_assert_cmpint(hbitmap_iter_next(&hbi), <, 0);
|
|
|
|
hbitmap_iter_init(&hbi, data->hb, (L2 + L1 + 2) << 7);
|
|
g_assert_cmpint(hbitmap_iter_next(&hbi), ==, 131071 << 7);
|
|
g_assert_cmpint(hbitmap_iter_next(&hbi), <, 0);
|
|
}
|
|
|
|
static void hbitmap_test_set_boundary_bits(TestHBitmapData *data, ssize_t diff)
|
|
{
|
|
size_t size = data->size;
|
|
|
|
/* First bit */
|
|
hbitmap_test_set(data, 0, 1);
|
|
if (diff < 0) {
|
|
/* Last bit in new, shortened map */
|
|
hbitmap_test_set(data, size + diff - 1, 1);
|
|
|
|
/* First bit to be truncated away */
|
|
hbitmap_test_set(data, size + diff, 1);
|
|
}
|
|
/* Last bit */
|
|
hbitmap_test_set(data, size - 1, 1);
|
|
if (data->granularity == 0) {
|
|
hbitmap_test_check_get(data);
|
|
}
|
|
}
|
|
|
|
static void hbitmap_test_check_boundary_bits(TestHBitmapData *data)
|
|
{
|
|
size_t size = MIN(data->size, data->old_size);
|
|
|
|
if (data->granularity == 0) {
|
|
hbitmap_test_check_get(data);
|
|
hbitmap_test_check(data, 0);
|
|
} else {
|
|
/* If a granularity was set, note that every distinct
|
|
* (bit >> granularity) value that was set will increase
|
|
* the bit pop count by 2^granularity, not just 1.
|
|
*
|
|
* The hbitmap_test_check facility does not currently tolerate
|
|
* non-zero granularities, so test the boundaries and the population
|
|
* count manually.
|
|
*/
|
|
g_assert(hbitmap_get(data->hb, 0));
|
|
g_assert(hbitmap_get(data->hb, size - 1));
|
|
g_assert_cmpint(2 << data->granularity, ==, hbitmap_count(data->hb));
|
|
}
|
|
}
|
|
|
|
/* Generic truncate test. */
|
|
static void hbitmap_test_truncate(TestHBitmapData *data,
|
|
size_t size,
|
|
ssize_t diff,
|
|
int granularity)
|
|
{
|
|
hbitmap_test_init(data, size, granularity);
|
|
hbitmap_test_set_boundary_bits(data, diff);
|
|
hbitmap_test_truncate_impl(data, size + diff);
|
|
hbitmap_test_check_boundary_bits(data);
|
|
}
|
|
|
|
static void test_hbitmap_truncate_nop(TestHBitmapData *data,
|
|
const void *unused)
|
|
{
|
|
hbitmap_test_truncate(data, L2, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* Grow by an amount smaller than the granularity, without crossing
|
|
* a granularity alignment boundary. Effectively a NOP.
|
|
*/
|
|
static void test_hbitmap_truncate_grow_negligible(TestHBitmapData *data,
|
|
const void *unused)
|
|
{
|
|
size_t size = L2 - 1;
|
|
size_t diff = 1;
|
|
int granularity = 1;
|
|
|
|
hbitmap_test_truncate(data, size, diff, granularity);
|
|
}
|
|
|
|
/**
|
|
* Shrink by an amount smaller than the granularity, without crossing
|
|
* a granularity alignment boundary. Effectively a NOP.
|
|
*/
|
|
static void test_hbitmap_truncate_shrink_negligible(TestHBitmapData *data,
|
|
const void *unused)
|
|
{
|
|
size_t size = L2;
|
|
ssize_t diff = -1;
|
|
int granularity = 1;
|
|
|
|
hbitmap_test_truncate(data, size, diff, granularity);
|
|
}
|
|
|
|
/**
|
|
* Grow by an amount smaller than the granularity, but crossing over
|
|
* a granularity alignment boundary.
|
|
*/
|
|
static void test_hbitmap_truncate_grow_tiny(TestHBitmapData *data,
|
|
const void *unused)
|
|
{
|
|
size_t size = L2 - 2;
|
|
ssize_t diff = 1;
|
|
int granularity = 1;
|
|
|
|
hbitmap_test_truncate(data, size, diff, granularity);
|
|
}
|
|
|
|
/**
|
|
* Shrink by an amount smaller than the granularity, but crossing over
|
|
* a granularity alignment boundary.
|
|
*/
|
|
static void test_hbitmap_truncate_shrink_tiny(TestHBitmapData *data,
|
|
const void *unused)
|
|
{
|
|
size_t size = L2 - 1;
|
|
ssize_t diff = -1;
|
|
int granularity = 1;
|
|
|
|
hbitmap_test_truncate(data, size, diff, granularity);
|
|
}
|
|
|
|
/**
|
|
* Grow by an amount smaller than sizeof(long), and not crossing over
|
|
* a sizeof(long) alignment boundary.
|
|
*/
|
|
static void test_hbitmap_truncate_grow_small(TestHBitmapData *data,
|
|
const void *unused)
|
|
{
|
|
size_t size = L2 + 1;
|
|
size_t diff = sizeof(long) / 2;
|
|
|
|
hbitmap_test_truncate(data, size, diff, 0);
|
|
}
|
|
|
|
/**
|
|
* Shrink by an amount smaller than sizeof(long), and not crossing over
|
|
* a sizeof(long) alignment boundary.
|
|
*/
|
|
static void test_hbitmap_truncate_shrink_small(TestHBitmapData *data,
|
|
const void *unused)
|
|
{
|
|
size_t size = L2;
|
|
size_t diff = sizeof(long) / 2;
|
|
|
|
hbitmap_test_truncate(data, size, -diff, 0);
|
|
}
|
|
|
|
/**
|
|
* Grow by an amount smaller than sizeof(long), while crossing over
|
|
* a sizeof(long) alignment boundary.
|
|
*/
|
|
static void test_hbitmap_truncate_grow_medium(TestHBitmapData *data,
|
|
const void *unused)
|
|
{
|
|
size_t size = L2 - 1;
|
|
size_t diff = sizeof(long) / 2;
|
|
|
|
hbitmap_test_truncate(data, size, diff, 0);
|
|
}
|
|
|
|
/**
|
|
* Shrink by an amount smaller than sizeof(long), while crossing over
|
|
* a sizeof(long) alignment boundary.
|
|
*/
|
|
static void test_hbitmap_truncate_shrink_medium(TestHBitmapData *data,
|
|
const void *unused)
|
|
{
|
|
size_t size = L2 + 1;
|
|
size_t diff = sizeof(long) / 2;
|
|
|
|
hbitmap_test_truncate(data, size, -diff, 0);
|
|
}
|
|
|
|
/**
|
|
* Grow by an amount larger than sizeof(long).
|
|
*/
|
|
static void test_hbitmap_truncate_grow_large(TestHBitmapData *data,
|
|
const void *unused)
|
|
{
|
|
size_t size = L2;
|
|
size_t diff = 8 * sizeof(long);
|
|
|
|
hbitmap_test_truncate(data, size, diff, 0);
|
|
}
|
|
|
|
/**
|
|
* Shrink by an amount larger than sizeof(long).
|
|
*/
|
|
static void test_hbitmap_truncate_shrink_large(TestHBitmapData *data,
|
|
const void *unused)
|
|
{
|
|
size_t size = L2;
|
|
size_t diff = 8 * sizeof(long);
|
|
|
|
hbitmap_test_truncate(data, size, -diff, 0);
|
|
}
|
|
|
|
static void hbitmap_check_meta(TestHBitmapData *data,
|
|
int64_t start, int count)
|
|
{
|
|
int64_t i;
|
|
|
|
for (i = 0; i < data->size; i++) {
|
|
if (i >= start && i < start + count) {
|
|
g_assert(hbitmap_get(data->meta, i));
|
|
} else {
|
|
g_assert(!hbitmap_get(data->meta, i));
|
|
}
|
|
}
|
|
}
|
|
|
|
static void hbitmap_test_meta(TestHBitmapData *data,
|
|
int64_t start, int count,
|
|
int64_t check_start, int check_count)
|
|
{
|
|
hbitmap_reset_all(data->hb);
|
|
hbitmap_reset_all(data->meta);
|
|
|
|
/* Test "unset" -> "unset" will not update meta. */
|
|
hbitmap_reset(data->hb, start, count);
|
|
hbitmap_check_meta(data, 0, 0);
|
|
|
|
/* Test "unset" -> "set" will update meta */
|
|
hbitmap_set(data->hb, start, count);
|
|
hbitmap_check_meta(data, check_start, check_count);
|
|
|
|
/* Test "set" -> "set" will not update meta */
|
|
hbitmap_reset_all(data->meta);
|
|
hbitmap_set(data->hb, start, count);
|
|
hbitmap_check_meta(data, 0, 0);
|
|
|
|
/* Test "set" -> "unset" will update meta */
|
|
hbitmap_reset_all(data->meta);
|
|
hbitmap_reset(data->hb, start, count);
|
|
hbitmap_check_meta(data, check_start, check_count);
|
|
}
|
|
|
|
static void hbitmap_test_meta_do(TestHBitmapData *data, int chunk_size)
|
|
{
|
|
uint64_t size = chunk_size * 100;
|
|
hbitmap_test_init_meta(data, size, 0, chunk_size);
|
|
|
|
hbitmap_test_meta(data, 0, 1, 0, chunk_size);
|
|
hbitmap_test_meta(data, 0, chunk_size, 0, chunk_size);
|
|
hbitmap_test_meta(data, chunk_size - 1, 1, 0, chunk_size);
|
|
hbitmap_test_meta(data, chunk_size - 1, 2, 0, chunk_size * 2);
|
|
hbitmap_test_meta(data, chunk_size - 1, chunk_size + 1, 0, chunk_size * 2);
|
|
hbitmap_test_meta(data, chunk_size - 1, chunk_size + 2, 0, chunk_size * 3);
|
|
hbitmap_test_meta(data, 7 * chunk_size - 1, chunk_size + 2,
|
|
6 * chunk_size, chunk_size * 3);
|
|
hbitmap_test_meta(data, size - 1, 1, size - chunk_size, chunk_size);
|
|
hbitmap_test_meta(data, 0, size, 0, size);
|
|
}
|
|
|
|
static void test_hbitmap_meta_byte(TestHBitmapData *data, const void *unused)
|
|
{
|
|
hbitmap_test_meta_do(data, BITS_PER_BYTE);
|
|
}
|
|
|
|
static void test_hbitmap_meta_word(TestHBitmapData *data, const void *unused)
|
|
{
|
|
hbitmap_test_meta_do(data, BITS_PER_LONG);
|
|
}
|
|
|
|
static void test_hbitmap_meta_sector(TestHBitmapData *data, const void *unused)
|
|
{
|
|
hbitmap_test_meta_do(data, BDRV_SECTOR_SIZE * BITS_PER_BYTE);
|
|
}
|
|
|
|
/**
|
|
* Create an HBitmap and test set/unset.
|
|
*/
|
|
static void test_hbitmap_meta_one(TestHBitmapData *data, const void *unused)
|
|
{
|
|
int i;
|
|
int64_t offsets[] = {
|
|
0, 1, L1 - 1, L1, L1 + 1, L2 - 1, L2, L2 + 1, L3 - 1, L3, L3 + 1
|
|
};
|
|
|
|
hbitmap_test_init_meta(data, L3 * 2, 0, 1);
|
|
for (i = 0; i < ARRAY_SIZE(offsets); i++) {
|
|
hbitmap_test_meta(data, offsets[i], 1, offsets[i], 1);
|
|
hbitmap_test_meta(data, offsets[i], L1, offsets[i], L1);
|
|
hbitmap_test_meta(data, offsets[i], L2, offsets[i], L2);
|
|
}
|
|
}
|
|
|
|
static void test_hbitmap_serialize_align(TestHBitmapData *data,
|
|
const void *unused)
|
|
{
|
|
int r;
|
|
|
|
hbitmap_test_init(data, L3 * 2, 3);
|
|
g_assert(hbitmap_is_serializable(data->hb));
|
|
|
|
r = hbitmap_serialization_align(data->hb);
|
|
g_assert_cmpint(r, ==, 64 << 3);
|
|
}
|
|
|
|
static void test_hbitmap_meta_zero(TestHBitmapData *data, const void *unused)
|
|
{
|
|
hbitmap_test_init_meta(data, 0, 0, 1);
|
|
|
|
hbitmap_check_meta(data, 0, 0);
|
|
}
|
|
|
|
static void hbitmap_test_serialize_range(TestHBitmapData *data,
|
|
uint8_t *buf, size_t buf_size,
|
|
uint64_t pos, uint64_t count)
|
|
{
|
|
size_t i;
|
|
unsigned long *el = (unsigned long *)buf;
|
|
|
|
assert(hbitmap_granularity(data->hb) == 0);
|
|
hbitmap_reset_all(data->hb);
|
|
memset(buf, 0, buf_size);
|
|
if (count) {
|
|
hbitmap_set(data->hb, pos, count);
|
|
}
|
|
|
|
g_assert(hbitmap_is_serializable(data->hb));
|
|
hbitmap_serialize_part(data->hb, buf, 0, data->size);
|
|
|
|
/* Serialized buffer is inherently LE, convert it back manually to test */
|
|
for (i = 0; i < buf_size / sizeof(unsigned long); i++) {
|
|
el[i] = (BITS_PER_LONG == 32 ? le32_to_cpu(el[i]) : le64_to_cpu(el[i]));
|
|
}
|
|
|
|
for (i = 0; i < data->size; i++) {
|
|
int is_set = test_bit(i, (unsigned long *)buf);
|
|
if (i >= pos && i < pos + count) {
|
|
g_assert(is_set);
|
|
} else {
|
|
g_assert(!is_set);
|
|
}
|
|
}
|
|
|
|
/* Re-serialize for deserialization testing */
|
|
memset(buf, 0, buf_size);
|
|
hbitmap_serialize_part(data->hb, buf, 0, data->size);
|
|
hbitmap_reset_all(data->hb);
|
|
|
|
g_assert(hbitmap_is_serializable(data->hb));
|
|
hbitmap_deserialize_part(data->hb, buf, 0, data->size, true);
|
|
|
|
for (i = 0; i < data->size; i++) {
|
|
int is_set = hbitmap_get(data->hb, i);
|
|
if (i >= pos && i < pos + count) {
|
|
g_assert(is_set);
|
|
} else {
|
|
g_assert(!is_set);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void test_hbitmap_serialize_basic(TestHBitmapData *data,
|
|
const void *unused)
|
|
{
|
|
int i, j;
|
|
size_t buf_size;
|
|
uint8_t *buf;
|
|
uint64_t positions[] = { 0, 1, L1 - 1, L1, L2 - 1, L2, L2 + 1, L3 - 1 };
|
|
int num_positions = ARRAY_SIZE(positions);
|
|
|
|
hbitmap_test_init(data, L3, 0);
|
|
g_assert(hbitmap_is_serializable(data->hb));
|
|
buf_size = hbitmap_serialization_size(data->hb, 0, data->size);
|
|
buf = g_malloc0(buf_size);
|
|
|
|
for (i = 0; i < num_positions; i++) {
|
|
for (j = 0; j < num_positions; j++) {
|
|
hbitmap_test_serialize_range(data, buf, buf_size,
|
|
positions[i],
|
|
MIN(positions[j], L3 - positions[i]));
|
|
}
|
|
}
|
|
|
|
g_free(buf);
|
|
}
|
|
|
|
static void test_hbitmap_serialize_part(TestHBitmapData *data,
|
|
const void *unused)
|
|
{
|
|
int i, j, k;
|
|
size_t buf_size;
|
|
uint8_t *buf;
|
|
uint64_t positions[] = { 0, 1, L1 - 1, L1, L2 - 1, L2, L2 + 1, L3 - 1 };
|
|
int num_positions = ARRAY_SIZE(positions);
|
|
|
|
hbitmap_test_init(data, L3, 0);
|
|
buf_size = L2;
|
|
buf = g_malloc0(buf_size);
|
|
|
|
for (i = 0; i < num_positions; i++) {
|
|
hbitmap_set(data->hb, positions[i], 1);
|
|
}
|
|
|
|
g_assert(hbitmap_is_serializable(data->hb));
|
|
|
|
for (i = 0; i < data->size; i += buf_size) {
|
|
unsigned long *el = (unsigned long *)buf;
|
|
hbitmap_serialize_part(data->hb, buf, i, buf_size);
|
|
for (j = 0; j < buf_size / sizeof(unsigned long); j++) {
|
|
el[j] = (BITS_PER_LONG == 32 ? le32_to_cpu(el[j]) : le64_to_cpu(el[j]));
|
|
}
|
|
|
|
for (j = 0; j < buf_size; j++) {
|
|
bool should_set = false;
|
|
for (k = 0; k < num_positions; k++) {
|
|
if (positions[k] == j + i) {
|
|
should_set = true;
|
|
break;
|
|
}
|
|
}
|
|
g_assert_cmpint(should_set, ==, test_bit(j, (unsigned long *)buf));
|
|
}
|
|
}
|
|
|
|
g_free(buf);
|
|
}
|
|
|
|
static void test_hbitmap_serialize_zeroes(TestHBitmapData *data,
|
|
const void *unused)
|
|
{
|
|
int i;
|
|
HBitmapIter iter;
|
|
int64_t next;
|
|
uint64_t min_l1 = MAX(L1, 64);
|
|
uint64_t positions[] = { 0, min_l1, L2, L3 - min_l1};
|
|
int num_positions = ARRAY_SIZE(positions);
|
|
|
|
hbitmap_test_init(data, L3, 0);
|
|
|
|
for (i = 0; i < num_positions; i++) {
|
|
hbitmap_set(data->hb, positions[i], L1);
|
|
}
|
|
|
|
g_assert(hbitmap_is_serializable(data->hb));
|
|
|
|
for (i = 0; i < num_positions; i++) {
|
|
hbitmap_deserialize_zeroes(data->hb, positions[i], min_l1, true);
|
|
hbitmap_iter_init(&iter, data->hb, 0);
|
|
next = hbitmap_iter_next(&iter);
|
|
if (i == num_positions - 1) {
|
|
g_assert_cmpint(next, ==, -1);
|
|
} else {
|
|
g_assert_cmpint(next, ==, positions[i + 1]);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void hbitmap_test_add(const char *testpath,
|
|
void (*test_func)(TestHBitmapData *data, const void *user_data))
|
|
{
|
|
g_test_add(testpath, TestHBitmapData, NULL, NULL, test_func,
|
|
hbitmap_test_teardown);
|
|
}
|
|
|
|
static void test_hbitmap_iter_and_reset(TestHBitmapData *data,
|
|
const void *unused)
|
|
{
|
|
HBitmapIter hbi;
|
|
|
|
hbitmap_test_init(data, L1 * 2, 0);
|
|
hbitmap_set(data->hb, 0, data->size);
|
|
|
|
hbitmap_iter_init(&hbi, data->hb, BITS_PER_LONG - 1);
|
|
|
|
hbitmap_iter_next(&hbi);
|
|
|
|
hbitmap_reset_all(data->hb);
|
|
hbitmap_iter_next(&hbi);
|
|
}
|
|
|
|
static void test_hbitmap_next_zero_check_range(TestHBitmapData *data,
|
|
uint64_t start,
|
|
uint64_t count)
|
|
{
|
|
int64_t ret1 = hbitmap_next_zero(data->hb, start, count);
|
|
int64_t ret2 = start;
|
|
int64_t end = start >= data->size || data->size - start < count ?
|
|
data->size : start + count;
|
|
|
|
for ( ; ret2 < end && hbitmap_get(data->hb, ret2); ret2++) {
|
|
;
|
|
}
|
|
if (ret2 == end) {
|
|
ret2 = -1;
|
|
}
|
|
|
|
g_assert_cmpint(ret1, ==, ret2);
|
|
}
|
|
|
|
static void test_hbitmap_next_zero_check(TestHBitmapData *data, int64_t start)
|
|
{
|
|
test_hbitmap_next_zero_check_range(data, start, UINT64_MAX);
|
|
}
|
|
|
|
static void test_hbitmap_next_zero_do(TestHBitmapData *data, int granularity)
|
|
{
|
|
hbitmap_test_init(data, L3, granularity);
|
|
test_hbitmap_next_zero_check(data, 0);
|
|
test_hbitmap_next_zero_check(data, L3 - 1);
|
|
test_hbitmap_next_zero_check_range(data, 0, 1);
|
|
test_hbitmap_next_zero_check_range(data, L3 - 1, 1);
|
|
|
|
hbitmap_set(data->hb, L2, 1);
|
|
test_hbitmap_next_zero_check(data, 0);
|
|
test_hbitmap_next_zero_check(data, L2 - 1);
|
|
test_hbitmap_next_zero_check(data, L2);
|
|
test_hbitmap_next_zero_check(data, L2 + 1);
|
|
test_hbitmap_next_zero_check_range(data, 0, 1);
|
|
test_hbitmap_next_zero_check_range(data, 0, L2);
|
|
test_hbitmap_next_zero_check_range(data, L2 - 1, 1);
|
|
test_hbitmap_next_zero_check_range(data, L2 - 1, 2);
|
|
test_hbitmap_next_zero_check_range(data, L2, 1);
|
|
test_hbitmap_next_zero_check_range(data, L2 + 1, 1);
|
|
|
|
hbitmap_set(data->hb, L2 + 5, L1);
|
|
test_hbitmap_next_zero_check(data, 0);
|
|
test_hbitmap_next_zero_check(data, L2 + 1);
|
|
test_hbitmap_next_zero_check(data, L2 + 2);
|
|
test_hbitmap_next_zero_check(data, L2 + 5);
|
|
test_hbitmap_next_zero_check(data, L2 + L1 - 1);
|
|
test_hbitmap_next_zero_check(data, L2 + L1);
|
|
test_hbitmap_next_zero_check_range(data, L2, 6);
|
|
test_hbitmap_next_zero_check_range(data, L2 + 1, 3);
|
|
test_hbitmap_next_zero_check_range(data, L2 + 4, L1);
|
|
test_hbitmap_next_zero_check_range(data, L2 + 5, L1);
|
|
|
|
hbitmap_set(data->hb, L2 * 2, L3 - L2 * 2);
|
|
test_hbitmap_next_zero_check(data, L2 * 2 - L1);
|
|
test_hbitmap_next_zero_check(data, L2 * 2 - 2);
|
|
test_hbitmap_next_zero_check(data, L2 * 2 - 1);
|
|
test_hbitmap_next_zero_check(data, L2 * 2);
|
|
test_hbitmap_next_zero_check(data, L3 - 1);
|
|
test_hbitmap_next_zero_check_range(data, L2 * 2 - L1, L1 + 1);
|
|
test_hbitmap_next_zero_check_range(data, L2 * 2, L2);
|
|
|
|
hbitmap_set(data->hb, 0, L3);
|
|
test_hbitmap_next_zero_check(data, 0);
|
|
}
|
|
|
|
static void test_hbitmap_next_zero_0(TestHBitmapData *data, const void *unused)
|
|
{
|
|
test_hbitmap_next_zero_do(data, 0);
|
|
}
|
|
|
|
static void test_hbitmap_next_zero_4(TestHBitmapData *data, const void *unused)
|
|
{
|
|
test_hbitmap_next_zero_do(data, 4);
|
|
}
|
|
|
|
static void test_hbitmap_next_zero_after_truncate(TestHBitmapData *data,
|
|
const void *unused)
|
|
{
|
|
hbitmap_test_init(data, L1, 0);
|
|
hbitmap_test_truncate_impl(data, L1 * 2);
|
|
hbitmap_set(data->hb, 0, L1);
|
|
test_hbitmap_next_zero_check(data, 0);
|
|
}
|
|
|
|
static void test_hbitmap_next_dirty_area_check(TestHBitmapData *data,
|
|
uint64_t offset,
|
|
uint64_t count)
|
|
{
|
|
uint64_t off1, off2;
|
|
uint64_t len1 = 0, len2;
|
|
bool ret1, ret2;
|
|
int64_t end;
|
|
|
|
off1 = offset;
|
|
len1 = count;
|
|
ret1 = hbitmap_next_dirty_area(data->hb, &off1, &len1);
|
|
|
|
end = offset > data->size || data->size - offset < count ? data->size :
|
|
offset + count;
|
|
|
|
for (off2 = offset; off2 < end && !hbitmap_get(data->hb, off2); off2++) {
|
|
;
|
|
}
|
|
|
|
for (len2 = 1; off2 + len2 < end && hbitmap_get(data->hb, off2 + len2);
|
|
len2++) {
|
|
;
|
|
}
|
|
|
|
ret2 = off2 < end;
|
|
if (!ret2) {
|
|
/* leave unchanged */
|
|
off2 = offset;
|
|
len2 = count;
|
|
}
|
|
|
|
g_assert_cmpint(ret1, ==, ret2);
|
|
g_assert_cmpint(off1, ==, off2);
|
|
g_assert_cmpint(len1, ==, len2);
|
|
}
|
|
|
|
static void test_hbitmap_next_dirty_area_do(TestHBitmapData *data,
|
|
int granularity)
|
|
{
|
|
hbitmap_test_init(data, L3, granularity);
|
|
test_hbitmap_next_dirty_area_check(data, 0, UINT64_MAX);
|
|
test_hbitmap_next_dirty_area_check(data, 0, 1);
|
|
test_hbitmap_next_dirty_area_check(data, L3 - 1, 1);
|
|
|
|
hbitmap_set(data->hb, L2, 1);
|
|
test_hbitmap_next_dirty_area_check(data, 0, 1);
|
|
test_hbitmap_next_dirty_area_check(data, 0, L2);
|
|
test_hbitmap_next_dirty_area_check(data, 0, UINT64_MAX);
|
|
test_hbitmap_next_dirty_area_check(data, L2 - 1, UINT64_MAX);
|
|
test_hbitmap_next_dirty_area_check(data, L2 - 1, 1);
|
|
test_hbitmap_next_dirty_area_check(data, L2 - 1, 2);
|
|
test_hbitmap_next_dirty_area_check(data, L2 - 1, 3);
|
|
test_hbitmap_next_dirty_area_check(data, L2, UINT64_MAX);
|
|
test_hbitmap_next_dirty_area_check(data, L2, 1);
|
|
test_hbitmap_next_dirty_area_check(data, L2 + 1, 1);
|
|
|
|
hbitmap_set(data->hb, L2 + 5, L1);
|
|
test_hbitmap_next_dirty_area_check(data, 0, UINT64_MAX);
|
|
test_hbitmap_next_dirty_area_check(data, L2 - 2, 8);
|
|
test_hbitmap_next_dirty_area_check(data, L2 + 1, 5);
|
|
test_hbitmap_next_dirty_area_check(data, L2 + 1, 3);
|
|
test_hbitmap_next_dirty_area_check(data, L2 + 4, L1);
|
|
test_hbitmap_next_dirty_area_check(data, L2 + 5, L1);
|
|
test_hbitmap_next_dirty_area_check(data, L2 + 7, L1);
|
|
test_hbitmap_next_dirty_area_check(data, L2 + L1, L1);
|
|
test_hbitmap_next_dirty_area_check(data, L2, 0);
|
|
test_hbitmap_next_dirty_area_check(data, L2 + 1, 0);
|
|
|
|
hbitmap_set(data->hb, L2 * 2, L3 - L2 * 2);
|
|
test_hbitmap_next_dirty_area_check(data, 0, UINT64_MAX);
|
|
test_hbitmap_next_dirty_area_check(data, L2, UINT64_MAX);
|
|
test_hbitmap_next_dirty_area_check(data, L2 + 1, UINT64_MAX);
|
|
test_hbitmap_next_dirty_area_check(data, L2 + 5 + L1 - 1, UINT64_MAX);
|
|
test_hbitmap_next_dirty_area_check(data, L2 + 5 + L1, 5);
|
|
test_hbitmap_next_dirty_area_check(data, L2 * 2 - L1, L1 + 1);
|
|
test_hbitmap_next_dirty_area_check(data, L2 * 2, L2);
|
|
|
|
hbitmap_set(data->hb, 0, L3);
|
|
test_hbitmap_next_dirty_area_check(data, 0, UINT64_MAX);
|
|
}
|
|
|
|
static void test_hbitmap_next_dirty_area_0(TestHBitmapData *data,
|
|
const void *unused)
|
|
{
|
|
test_hbitmap_next_dirty_area_do(data, 0);
|
|
}
|
|
|
|
static void test_hbitmap_next_dirty_area_1(TestHBitmapData *data,
|
|
const void *unused)
|
|
{
|
|
test_hbitmap_next_dirty_area_do(data, 1);
|
|
}
|
|
|
|
static void test_hbitmap_next_dirty_area_4(TestHBitmapData *data,
|
|
const void *unused)
|
|
{
|
|
test_hbitmap_next_dirty_area_do(data, 4);
|
|
}
|
|
|
|
static void test_hbitmap_next_dirty_area_after_truncate(TestHBitmapData *data,
|
|
const void *unused)
|
|
{
|
|
hbitmap_test_init(data, L1, 0);
|
|
hbitmap_test_truncate_impl(data, L1 * 2);
|
|
hbitmap_set(data->hb, L1 + 1, 1);
|
|
test_hbitmap_next_dirty_area_check(data, 0, UINT64_MAX);
|
|
}
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
g_test_init(&argc, &argv, NULL);
|
|
hbitmap_test_add("/hbitmap/size/0", test_hbitmap_zero);
|
|
hbitmap_test_add("/hbitmap/size/unaligned", test_hbitmap_unaligned);
|
|
hbitmap_test_add("/hbitmap/iter/empty", test_hbitmap_iter_empty);
|
|
hbitmap_test_add("/hbitmap/iter/partial", test_hbitmap_iter_partial);
|
|
hbitmap_test_add("/hbitmap/iter/granularity", test_hbitmap_iter_granularity);
|
|
hbitmap_test_add("/hbitmap/get/all", test_hbitmap_get_all);
|
|
hbitmap_test_add("/hbitmap/get/some", test_hbitmap_get_some);
|
|
hbitmap_test_add("/hbitmap/set/all", test_hbitmap_set_all);
|
|
hbitmap_test_add("/hbitmap/set/one", test_hbitmap_set_one);
|
|
hbitmap_test_add("/hbitmap/set/two-elem", test_hbitmap_set_two_elem);
|
|
hbitmap_test_add("/hbitmap/set/general", test_hbitmap_set);
|
|
hbitmap_test_add("/hbitmap/set/twice", test_hbitmap_set_twice);
|
|
hbitmap_test_add("/hbitmap/set/overlap", test_hbitmap_set_overlap);
|
|
hbitmap_test_add("/hbitmap/reset/empty", test_hbitmap_reset_empty);
|
|
hbitmap_test_add("/hbitmap/reset/general", test_hbitmap_reset);
|
|
hbitmap_test_add("/hbitmap/reset/all", test_hbitmap_reset_all);
|
|
hbitmap_test_add("/hbitmap/granularity", test_hbitmap_granularity);
|
|
|
|
hbitmap_test_add("/hbitmap/truncate/nop", test_hbitmap_truncate_nop);
|
|
hbitmap_test_add("/hbitmap/truncate/grow/negligible",
|
|
test_hbitmap_truncate_grow_negligible);
|
|
hbitmap_test_add("/hbitmap/truncate/shrink/negligible",
|
|
test_hbitmap_truncate_shrink_negligible);
|
|
hbitmap_test_add("/hbitmap/truncate/grow/tiny",
|
|
test_hbitmap_truncate_grow_tiny);
|
|
hbitmap_test_add("/hbitmap/truncate/shrink/tiny",
|
|
test_hbitmap_truncate_shrink_tiny);
|
|
hbitmap_test_add("/hbitmap/truncate/grow/small",
|
|
test_hbitmap_truncate_grow_small);
|
|
hbitmap_test_add("/hbitmap/truncate/shrink/small",
|
|
test_hbitmap_truncate_shrink_small);
|
|
hbitmap_test_add("/hbitmap/truncate/grow/medium",
|
|
test_hbitmap_truncate_grow_medium);
|
|
hbitmap_test_add("/hbitmap/truncate/shrink/medium",
|
|
test_hbitmap_truncate_shrink_medium);
|
|
hbitmap_test_add("/hbitmap/truncate/grow/large",
|
|
test_hbitmap_truncate_grow_large);
|
|
hbitmap_test_add("/hbitmap/truncate/shrink/large",
|
|
test_hbitmap_truncate_shrink_large);
|
|
|
|
hbitmap_test_add("/hbitmap/meta/zero", test_hbitmap_meta_zero);
|
|
hbitmap_test_add("/hbitmap/meta/one", test_hbitmap_meta_one);
|
|
hbitmap_test_add("/hbitmap/meta/byte", test_hbitmap_meta_byte);
|
|
hbitmap_test_add("/hbitmap/meta/word", test_hbitmap_meta_word);
|
|
hbitmap_test_add("/hbitmap/meta/sector", test_hbitmap_meta_sector);
|
|
|
|
hbitmap_test_add("/hbitmap/serialize/align",
|
|
test_hbitmap_serialize_align);
|
|
hbitmap_test_add("/hbitmap/serialize/basic",
|
|
test_hbitmap_serialize_basic);
|
|
hbitmap_test_add("/hbitmap/serialize/part",
|
|
test_hbitmap_serialize_part);
|
|
hbitmap_test_add("/hbitmap/serialize/zeroes",
|
|
test_hbitmap_serialize_zeroes);
|
|
|
|
hbitmap_test_add("/hbitmap/iter/iter_and_reset",
|
|
test_hbitmap_iter_and_reset);
|
|
|
|
hbitmap_test_add("/hbitmap/next_zero/next_zero_0",
|
|
test_hbitmap_next_zero_0);
|
|
hbitmap_test_add("/hbitmap/next_zero/next_zero_4",
|
|
test_hbitmap_next_zero_4);
|
|
hbitmap_test_add("/hbitmap/next_zero/next_zero_after_truncate",
|
|
test_hbitmap_next_zero_after_truncate);
|
|
|
|
hbitmap_test_add("/hbitmap/next_dirty_area/next_dirty_area_0",
|
|
test_hbitmap_next_dirty_area_0);
|
|
hbitmap_test_add("/hbitmap/next_dirty_area/next_dirty_area_1",
|
|
test_hbitmap_next_dirty_area_1);
|
|
hbitmap_test_add("/hbitmap/next_dirty_area/next_dirty_area_4",
|
|
test_hbitmap_next_dirty_area_4);
|
|
hbitmap_test_add("/hbitmap/next_dirty_area/next_dirty_area_after_truncate",
|
|
test_hbitmap_next_dirty_area_after_truncate);
|
|
|
|
g_test_run();
|
|
|
|
return 0;
|
|
}
|