mirror of
https://github.com/qemu/qemu.git
synced 2025-01-05 21:23:28 +08:00
372254c6e5
Some guest operating systems' drivers (Mac OS X in particular) fail to properly initialize the Receive Address registers (probably expecting them to be pre-initialized by an earlier component, such as a specific proprietary BIOS). This patch pre-initializes the RA registers, allowing OS X networking to function properly. Other guest operating systems are not affected, and free to (re)initialize these registers during boot. [According to the datasheet the Address Valid bits in the RA registers are cleared on PCI or software reset. This patch adds the NIC's MAC address and sets Address Valid on reset. So we diverge from real hardware behavior here. -- Stefan] Signed-off-by: Gabriel Somlo <somlo@cmu.edu> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
1325 lines
41 KiB
C
1325 lines
41 KiB
C
/*
|
|
* QEMU e1000 emulation
|
|
*
|
|
* Software developer's manual:
|
|
* http://download.intel.com/design/network/manuals/8254x_GBe_SDM.pdf
|
|
*
|
|
* Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
|
|
* Copyright (c) 2008 Qumranet
|
|
* Based on work done by:
|
|
* Copyright (c) 2007 Dan Aloni
|
|
* Copyright (c) 2004 Antony T Curtis
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
|
|
#include "hw.h"
|
|
#include "pci.h"
|
|
#include "net.h"
|
|
#include "net/checksum.h"
|
|
#include "loader.h"
|
|
#include "sysemu.h"
|
|
#include "dma.h"
|
|
|
|
#include "e1000_hw.h"
|
|
|
|
#define E1000_DEBUG
|
|
|
|
#ifdef E1000_DEBUG
|
|
enum {
|
|
DEBUG_GENERAL, DEBUG_IO, DEBUG_MMIO, DEBUG_INTERRUPT,
|
|
DEBUG_RX, DEBUG_TX, DEBUG_MDIC, DEBUG_EEPROM,
|
|
DEBUG_UNKNOWN, DEBUG_TXSUM, DEBUG_TXERR, DEBUG_RXERR,
|
|
DEBUG_RXFILTER, DEBUG_PHY, DEBUG_NOTYET,
|
|
};
|
|
#define DBGBIT(x) (1<<DEBUG_##x)
|
|
static int debugflags = DBGBIT(TXERR) | DBGBIT(GENERAL);
|
|
|
|
#define DBGOUT(what, fmt, ...) do { \
|
|
if (debugflags & DBGBIT(what)) \
|
|
fprintf(stderr, "e1000: " fmt, ## __VA_ARGS__); \
|
|
} while (0)
|
|
#else
|
|
#define DBGOUT(what, fmt, ...) do {} while (0)
|
|
#endif
|
|
|
|
#define IOPORT_SIZE 0x40
|
|
#define PNPMMIO_SIZE 0x20000
|
|
#define MIN_BUF_SIZE 60 /* Min. octets in an ethernet frame sans FCS */
|
|
|
|
/*
|
|
* HW models:
|
|
* E1000_DEV_ID_82540EM works with Windows and Linux
|
|
* E1000_DEV_ID_82573L OK with windoze and Linux 2.6.22,
|
|
* appears to perform better than 82540EM, but breaks with Linux 2.6.18
|
|
* E1000_DEV_ID_82544GC_COPPER appears to work; not well tested
|
|
* Others never tested
|
|
*/
|
|
enum { E1000_DEVID = E1000_DEV_ID_82540EM };
|
|
|
|
/*
|
|
* May need to specify additional MAC-to-PHY entries --
|
|
* Intel's Windows driver refuses to initialize unless they match
|
|
*/
|
|
enum {
|
|
PHY_ID2_INIT = E1000_DEVID == E1000_DEV_ID_82573L ? 0xcc2 :
|
|
E1000_DEVID == E1000_DEV_ID_82544GC_COPPER ? 0xc30 :
|
|
/* default to E1000_DEV_ID_82540EM */ 0xc20
|
|
};
|
|
|
|
typedef struct E1000State_st {
|
|
PCIDevice dev;
|
|
NICState *nic;
|
|
NICConf conf;
|
|
MemoryRegion mmio;
|
|
MemoryRegion io;
|
|
|
|
uint32_t mac_reg[0x8000];
|
|
uint16_t phy_reg[0x20];
|
|
uint16_t eeprom_data[64];
|
|
|
|
uint32_t rxbuf_size;
|
|
uint32_t rxbuf_min_shift;
|
|
struct e1000_tx {
|
|
unsigned char header[256];
|
|
unsigned char vlan_header[4];
|
|
/* Fields vlan and data must not be reordered or separated. */
|
|
unsigned char vlan[4];
|
|
unsigned char data[0x10000];
|
|
uint16_t size;
|
|
unsigned char sum_needed;
|
|
unsigned char vlan_needed;
|
|
uint8_t ipcss;
|
|
uint8_t ipcso;
|
|
uint16_t ipcse;
|
|
uint8_t tucss;
|
|
uint8_t tucso;
|
|
uint16_t tucse;
|
|
uint8_t hdr_len;
|
|
uint16_t mss;
|
|
uint32_t paylen;
|
|
uint16_t tso_frames;
|
|
char tse;
|
|
int8_t ip;
|
|
int8_t tcp;
|
|
char cptse; // current packet tse bit
|
|
} tx;
|
|
|
|
struct {
|
|
uint32_t val_in; // shifted in from guest driver
|
|
uint16_t bitnum_in;
|
|
uint16_t bitnum_out;
|
|
uint16_t reading;
|
|
uint32_t old_eecd;
|
|
} eecd_state;
|
|
|
|
QEMUTimer *autoneg_timer;
|
|
} E1000State;
|
|
|
|
#define defreg(x) x = (E1000_##x>>2)
|
|
enum {
|
|
defreg(CTRL), defreg(EECD), defreg(EERD), defreg(GPRC),
|
|
defreg(GPTC), defreg(ICR), defreg(ICS), defreg(IMC),
|
|
defreg(IMS), defreg(LEDCTL), defreg(MANC), defreg(MDIC),
|
|
defreg(MPC), defreg(PBA), defreg(RCTL), defreg(RDBAH),
|
|
defreg(RDBAL), defreg(RDH), defreg(RDLEN), defreg(RDT),
|
|
defreg(STATUS), defreg(SWSM), defreg(TCTL), defreg(TDBAH),
|
|
defreg(TDBAL), defreg(TDH), defreg(TDLEN), defreg(TDT),
|
|
defreg(TORH), defreg(TORL), defreg(TOTH), defreg(TOTL),
|
|
defreg(TPR), defreg(TPT), defreg(TXDCTL), defreg(WUFC),
|
|
defreg(RA), defreg(MTA), defreg(CRCERRS),defreg(VFTA),
|
|
defreg(VET),
|
|
};
|
|
|
|
static void
|
|
e1000_link_down(E1000State *s)
|
|
{
|
|
s->mac_reg[STATUS] &= ~E1000_STATUS_LU;
|
|
s->phy_reg[PHY_STATUS] &= ~MII_SR_LINK_STATUS;
|
|
}
|
|
|
|
static void
|
|
e1000_link_up(E1000State *s)
|
|
{
|
|
s->mac_reg[STATUS] |= E1000_STATUS_LU;
|
|
s->phy_reg[PHY_STATUS] |= MII_SR_LINK_STATUS;
|
|
}
|
|
|
|
static void
|
|
set_phy_ctrl(E1000State *s, int index, uint16_t val)
|
|
{
|
|
if ((val & MII_CR_AUTO_NEG_EN) && (val & MII_CR_RESTART_AUTO_NEG)) {
|
|
s->nic->nc.link_down = true;
|
|
e1000_link_down(s);
|
|
s->phy_reg[PHY_STATUS] &= ~MII_SR_AUTONEG_COMPLETE;
|
|
DBGOUT(PHY, "Start link auto negotiation\n");
|
|
qemu_mod_timer(s->autoneg_timer, qemu_get_clock_ms(vm_clock) + 500);
|
|
}
|
|
}
|
|
|
|
static void
|
|
e1000_autoneg_timer(void *opaque)
|
|
{
|
|
E1000State *s = opaque;
|
|
s->nic->nc.link_down = false;
|
|
e1000_link_up(s);
|
|
s->phy_reg[PHY_STATUS] |= MII_SR_AUTONEG_COMPLETE;
|
|
DBGOUT(PHY, "Auto negotiation is completed\n");
|
|
}
|
|
|
|
static void (*phyreg_writeops[])(E1000State *, int, uint16_t) = {
|
|
[PHY_CTRL] = set_phy_ctrl,
|
|
};
|
|
|
|
enum { NPHYWRITEOPS = ARRAY_SIZE(phyreg_writeops) };
|
|
|
|
enum { PHY_R = 1, PHY_W = 2, PHY_RW = PHY_R | PHY_W };
|
|
static const char phy_regcap[0x20] = {
|
|
[PHY_STATUS] = PHY_R, [M88E1000_EXT_PHY_SPEC_CTRL] = PHY_RW,
|
|
[PHY_ID1] = PHY_R, [M88E1000_PHY_SPEC_CTRL] = PHY_RW,
|
|
[PHY_CTRL] = PHY_RW, [PHY_1000T_CTRL] = PHY_RW,
|
|
[PHY_LP_ABILITY] = PHY_R, [PHY_1000T_STATUS] = PHY_R,
|
|
[PHY_AUTONEG_ADV] = PHY_RW, [M88E1000_RX_ERR_CNTR] = PHY_R,
|
|
[PHY_ID2] = PHY_R, [M88E1000_PHY_SPEC_STATUS] = PHY_R
|
|
};
|
|
|
|
static const uint16_t phy_reg_init[] = {
|
|
[PHY_CTRL] = 0x1140,
|
|
[PHY_STATUS] = 0x794d, /* link initially up with not completed autoneg */
|
|
[PHY_ID1] = 0x141, [PHY_ID2] = PHY_ID2_INIT,
|
|
[PHY_1000T_CTRL] = 0x0e00, [M88E1000_PHY_SPEC_CTRL] = 0x360,
|
|
[M88E1000_EXT_PHY_SPEC_CTRL] = 0x0d60, [PHY_AUTONEG_ADV] = 0xde1,
|
|
[PHY_LP_ABILITY] = 0x1e0, [PHY_1000T_STATUS] = 0x3c00,
|
|
[M88E1000_PHY_SPEC_STATUS] = 0xac00,
|
|
};
|
|
|
|
static const uint32_t mac_reg_init[] = {
|
|
[PBA] = 0x00100030,
|
|
[LEDCTL] = 0x602,
|
|
[CTRL] = E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 |
|
|
E1000_CTRL_SPD_1000 | E1000_CTRL_SLU,
|
|
[STATUS] = 0x80000000 | E1000_STATUS_GIO_MASTER_ENABLE |
|
|
E1000_STATUS_ASDV | E1000_STATUS_MTXCKOK |
|
|
E1000_STATUS_SPEED_1000 | E1000_STATUS_FD |
|
|
E1000_STATUS_LU,
|
|
[MANC] = E1000_MANC_EN_MNG2HOST | E1000_MANC_RCV_TCO_EN |
|
|
E1000_MANC_ARP_EN | E1000_MANC_0298_EN |
|
|
E1000_MANC_RMCP_EN,
|
|
};
|
|
|
|
static void
|
|
set_interrupt_cause(E1000State *s, int index, uint32_t val)
|
|
{
|
|
if (val && (E1000_DEVID >= E1000_DEV_ID_82547EI_MOBILE)) {
|
|
/* Only for 8257x */
|
|
val |= E1000_ICR_INT_ASSERTED;
|
|
}
|
|
s->mac_reg[ICR] = val;
|
|
s->mac_reg[ICS] = val;
|
|
qemu_set_irq(s->dev.irq[0], (s->mac_reg[IMS] & s->mac_reg[ICR]) != 0);
|
|
}
|
|
|
|
static void
|
|
set_ics(E1000State *s, int index, uint32_t val)
|
|
{
|
|
DBGOUT(INTERRUPT, "set_ics %x, ICR %x, IMR %x\n", val, s->mac_reg[ICR],
|
|
s->mac_reg[IMS]);
|
|
set_interrupt_cause(s, 0, val | s->mac_reg[ICR]);
|
|
}
|
|
|
|
static int
|
|
rxbufsize(uint32_t v)
|
|
{
|
|
v &= E1000_RCTL_BSEX | E1000_RCTL_SZ_16384 | E1000_RCTL_SZ_8192 |
|
|
E1000_RCTL_SZ_4096 | E1000_RCTL_SZ_2048 | E1000_RCTL_SZ_1024 |
|
|
E1000_RCTL_SZ_512 | E1000_RCTL_SZ_256;
|
|
switch (v) {
|
|
case E1000_RCTL_BSEX | E1000_RCTL_SZ_16384:
|
|
return 16384;
|
|
case E1000_RCTL_BSEX | E1000_RCTL_SZ_8192:
|
|
return 8192;
|
|
case E1000_RCTL_BSEX | E1000_RCTL_SZ_4096:
|
|
return 4096;
|
|
case E1000_RCTL_SZ_1024:
|
|
return 1024;
|
|
case E1000_RCTL_SZ_512:
|
|
return 512;
|
|
case E1000_RCTL_SZ_256:
|
|
return 256;
|
|
}
|
|
return 2048;
|
|
}
|
|
|
|
static void e1000_reset(void *opaque)
|
|
{
|
|
E1000State *d = opaque;
|
|
uint8_t *macaddr = d->conf.macaddr.a;
|
|
int i;
|
|
|
|
qemu_del_timer(d->autoneg_timer);
|
|
memset(d->phy_reg, 0, sizeof d->phy_reg);
|
|
memmove(d->phy_reg, phy_reg_init, sizeof phy_reg_init);
|
|
memset(d->mac_reg, 0, sizeof d->mac_reg);
|
|
memmove(d->mac_reg, mac_reg_init, sizeof mac_reg_init);
|
|
d->rxbuf_min_shift = 1;
|
|
memset(&d->tx, 0, sizeof d->tx);
|
|
|
|
if (d->nic->nc.link_down) {
|
|
e1000_link_down(d);
|
|
}
|
|
|
|
/* Some guests expect pre-initialized RAH/RAL (AddrValid flag + MACaddr) */
|
|
d->mac_reg[RA] = 0;
|
|
d->mac_reg[RA + 1] = E1000_RAH_AV;
|
|
for (i = 0; i < 4; i++) {
|
|
d->mac_reg[RA] |= macaddr[i] << (8 * i);
|
|
d->mac_reg[RA + 1] |= (i < 2) ? macaddr[i + 4] << (8 * i) : 0;
|
|
}
|
|
}
|
|
|
|
static void
|
|
set_ctrl(E1000State *s, int index, uint32_t val)
|
|
{
|
|
/* RST is self clearing */
|
|
s->mac_reg[CTRL] = val & ~E1000_CTRL_RST;
|
|
}
|
|
|
|
static void
|
|
set_rx_control(E1000State *s, int index, uint32_t val)
|
|
{
|
|
s->mac_reg[RCTL] = val;
|
|
s->rxbuf_size = rxbufsize(val);
|
|
s->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1;
|
|
DBGOUT(RX, "RCTL: %d, mac_reg[RCTL] = 0x%x\n", s->mac_reg[RDT],
|
|
s->mac_reg[RCTL]);
|
|
qemu_flush_queued_packets(&s->nic->nc);
|
|
}
|
|
|
|
static void
|
|
set_mdic(E1000State *s, int index, uint32_t val)
|
|
{
|
|
uint32_t data = val & E1000_MDIC_DATA_MASK;
|
|
uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
|
|
|
|
if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) // phy #
|
|
val = s->mac_reg[MDIC] | E1000_MDIC_ERROR;
|
|
else if (val & E1000_MDIC_OP_READ) {
|
|
DBGOUT(MDIC, "MDIC read reg 0x%x\n", addr);
|
|
if (!(phy_regcap[addr] & PHY_R)) {
|
|
DBGOUT(MDIC, "MDIC read reg %x unhandled\n", addr);
|
|
val |= E1000_MDIC_ERROR;
|
|
} else
|
|
val = (val ^ data) | s->phy_reg[addr];
|
|
} else if (val & E1000_MDIC_OP_WRITE) {
|
|
DBGOUT(MDIC, "MDIC write reg 0x%x, value 0x%x\n", addr, data);
|
|
if (!(phy_regcap[addr] & PHY_W)) {
|
|
DBGOUT(MDIC, "MDIC write reg %x unhandled\n", addr);
|
|
val |= E1000_MDIC_ERROR;
|
|
} else {
|
|
if (addr < NPHYWRITEOPS && phyreg_writeops[addr]) {
|
|
phyreg_writeops[addr](s, index, data);
|
|
}
|
|
s->phy_reg[addr] = data;
|
|
}
|
|
}
|
|
s->mac_reg[MDIC] = val | E1000_MDIC_READY;
|
|
|
|
if (val & E1000_MDIC_INT_EN) {
|
|
set_ics(s, 0, E1000_ICR_MDAC);
|
|
}
|
|
}
|
|
|
|
static uint32_t
|
|
get_eecd(E1000State *s, int index)
|
|
{
|
|
uint32_t ret = E1000_EECD_PRES|E1000_EECD_GNT | s->eecd_state.old_eecd;
|
|
|
|
DBGOUT(EEPROM, "reading eeprom bit %d (reading %d)\n",
|
|
s->eecd_state.bitnum_out, s->eecd_state.reading);
|
|
if (!s->eecd_state.reading ||
|
|
((s->eeprom_data[(s->eecd_state.bitnum_out >> 4) & 0x3f] >>
|
|
((s->eecd_state.bitnum_out & 0xf) ^ 0xf))) & 1)
|
|
ret |= E1000_EECD_DO;
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
set_eecd(E1000State *s, int index, uint32_t val)
|
|
{
|
|
uint32_t oldval = s->eecd_state.old_eecd;
|
|
|
|
s->eecd_state.old_eecd = val & (E1000_EECD_SK | E1000_EECD_CS |
|
|
E1000_EECD_DI|E1000_EECD_FWE_MASK|E1000_EECD_REQ);
|
|
if (!(E1000_EECD_CS & val)) // CS inactive; nothing to do
|
|
return;
|
|
if (E1000_EECD_CS & (val ^ oldval)) { // CS rise edge; reset state
|
|
s->eecd_state.val_in = 0;
|
|
s->eecd_state.bitnum_in = 0;
|
|
s->eecd_state.bitnum_out = 0;
|
|
s->eecd_state.reading = 0;
|
|
}
|
|
if (!(E1000_EECD_SK & (val ^ oldval))) // no clock edge
|
|
return;
|
|
if (!(E1000_EECD_SK & val)) { // falling edge
|
|
s->eecd_state.bitnum_out++;
|
|
return;
|
|
}
|
|
s->eecd_state.val_in <<= 1;
|
|
if (val & E1000_EECD_DI)
|
|
s->eecd_state.val_in |= 1;
|
|
if (++s->eecd_state.bitnum_in == 9 && !s->eecd_state.reading) {
|
|
s->eecd_state.bitnum_out = ((s->eecd_state.val_in & 0x3f)<<4)-1;
|
|
s->eecd_state.reading = (((s->eecd_state.val_in >> 6) & 7) ==
|
|
EEPROM_READ_OPCODE_MICROWIRE);
|
|
}
|
|
DBGOUT(EEPROM, "eeprom bitnum in %d out %d, reading %d\n",
|
|
s->eecd_state.bitnum_in, s->eecd_state.bitnum_out,
|
|
s->eecd_state.reading);
|
|
}
|
|
|
|
static uint32_t
|
|
flash_eerd_read(E1000State *s, int x)
|
|
{
|
|
unsigned int index, r = s->mac_reg[EERD] & ~E1000_EEPROM_RW_REG_START;
|
|
|
|
if ((s->mac_reg[EERD] & E1000_EEPROM_RW_REG_START) == 0)
|
|
return (s->mac_reg[EERD]);
|
|
|
|
if ((index = r >> E1000_EEPROM_RW_ADDR_SHIFT) > EEPROM_CHECKSUM_REG)
|
|
return (E1000_EEPROM_RW_REG_DONE | r);
|
|
|
|
return ((s->eeprom_data[index] << E1000_EEPROM_RW_REG_DATA) |
|
|
E1000_EEPROM_RW_REG_DONE | r);
|
|
}
|
|
|
|
static void
|
|
putsum(uint8_t *data, uint32_t n, uint32_t sloc, uint32_t css, uint32_t cse)
|
|
{
|
|
uint32_t sum;
|
|
|
|
if (cse && cse < n)
|
|
n = cse + 1;
|
|
if (sloc < n-1) {
|
|
sum = net_checksum_add(n-css, data+css);
|
|
cpu_to_be16wu((uint16_t *)(data + sloc),
|
|
net_checksum_finish(sum));
|
|
}
|
|
}
|
|
|
|
static inline int
|
|
vlan_enabled(E1000State *s)
|
|
{
|
|
return ((s->mac_reg[CTRL] & E1000_CTRL_VME) != 0);
|
|
}
|
|
|
|
static inline int
|
|
vlan_rx_filter_enabled(E1000State *s)
|
|
{
|
|
return ((s->mac_reg[RCTL] & E1000_RCTL_VFE) != 0);
|
|
}
|
|
|
|
static inline int
|
|
is_vlan_packet(E1000State *s, const uint8_t *buf)
|
|
{
|
|
return (be16_to_cpup((uint16_t *)(buf + 12)) ==
|
|
le16_to_cpup((uint16_t *)(s->mac_reg + VET)));
|
|
}
|
|
|
|
static inline int
|
|
is_vlan_txd(uint32_t txd_lower)
|
|
{
|
|
return ((txd_lower & E1000_TXD_CMD_VLE) != 0);
|
|
}
|
|
|
|
/* FCS aka Ethernet CRC-32. We don't get it from backends and can't
|
|
* fill it in, just pad descriptor length by 4 bytes unless guest
|
|
* told us to strip it off the packet. */
|
|
static inline int
|
|
fcs_len(E1000State *s)
|
|
{
|
|
return (s->mac_reg[RCTL] & E1000_RCTL_SECRC) ? 0 : 4;
|
|
}
|
|
|
|
static void
|
|
e1000_send_packet(E1000State *s, const uint8_t *buf, int size)
|
|
{
|
|
if (s->phy_reg[PHY_CTRL] & MII_CR_LOOPBACK) {
|
|
s->nic->nc.info->receive(&s->nic->nc, buf, size);
|
|
} else {
|
|
qemu_send_packet(&s->nic->nc, buf, size);
|
|
}
|
|
}
|
|
|
|
static void
|
|
xmit_seg(E1000State *s)
|
|
{
|
|
uint16_t len, *sp;
|
|
unsigned int frames = s->tx.tso_frames, css, sofar, n;
|
|
struct e1000_tx *tp = &s->tx;
|
|
|
|
if (tp->tse && tp->cptse) {
|
|
css = tp->ipcss;
|
|
DBGOUT(TXSUM, "frames %d size %d ipcss %d\n",
|
|
frames, tp->size, css);
|
|
if (tp->ip) { // IPv4
|
|
cpu_to_be16wu((uint16_t *)(tp->data+css+2),
|
|
tp->size - css);
|
|
cpu_to_be16wu((uint16_t *)(tp->data+css+4),
|
|
be16_to_cpup((uint16_t *)(tp->data+css+4))+frames);
|
|
} else // IPv6
|
|
cpu_to_be16wu((uint16_t *)(tp->data+css+4),
|
|
tp->size - css);
|
|
css = tp->tucss;
|
|
len = tp->size - css;
|
|
DBGOUT(TXSUM, "tcp %d tucss %d len %d\n", tp->tcp, css, len);
|
|
if (tp->tcp) {
|
|
sofar = frames * tp->mss;
|
|
cpu_to_be32wu((uint32_t *)(tp->data+css+4), // seq
|
|
be32_to_cpupu((uint32_t *)(tp->data+css+4))+sofar);
|
|
if (tp->paylen - sofar > tp->mss)
|
|
tp->data[css + 13] &= ~9; // PSH, FIN
|
|
} else // UDP
|
|
cpu_to_be16wu((uint16_t *)(tp->data+css+4), len);
|
|
if (tp->sum_needed & E1000_TXD_POPTS_TXSM) {
|
|
unsigned int phsum;
|
|
// add pseudo-header length before checksum calculation
|
|
sp = (uint16_t *)(tp->data + tp->tucso);
|
|
phsum = be16_to_cpup(sp) + len;
|
|
phsum = (phsum >> 16) + (phsum & 0xffff);
|
|
cpu_to_be16wu(sp, phsum);
|
|
}
|
|
tp->tso_frames++;
|
|
}
|
|
|
|
if (tp->sum_needed & E1000_TXD_POPTS_TXSM)
|
|
putsum(tp->data, tp->size, tp->tucso, tp->tucss, tp->tucse);
|
|
if (tp->sum_needed & E1000_TXD_POPTS_IXSM)
|
|
putsum(tp->data, tp->size, tp->ipcso, tp->ipcss, tp->ipcse);
|
|
if (tp->vlan_needed) {
|
|
memmove(tp->vlan, tp->data, 4);
|
|
memmove(tp->data, tp->data + 4, 8);
|
|
memcpy(tp->data + 8, tp->vlan_header, 4);
|
|
e1000_send_packet(s, tp->vlan, tp->size + 4);
|
|
} else
|
|
e1000_send_packet(s, tp->data, tp->size);
|
|
s->mac_reg[TPT]++;
|
|
s->mac_reg[GPTC]++;
|
|
n = s->mac_reg[TOTL];
|
|
if ((s->mac_reg[TOTL] += s->tx.size) < n)
|
|
s->mac_reg[TOTH]++;
|
|
}
|
|
|
|
static void
|
|
process_tx_desc(E1000State *s, struct e1000_tx_desc *dp)
|
|
{
|
|
uint32_t txd_lower = le32_to_cpu(dp->lower.data);
|
|
uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D);
|
|
unsigned int split_size = txd_lower & 0xffff, bytes, sz, op;
|
|
unsigned int msh = 0xfffff, hdr = 0;
|
|
uint64_t addr;
|
|
struct e1000_context_desc *xp = (struct e1000_context_desc *)dp;
|
|
struct e1000_tx *tp = &s->tx;
|
|
|
|
if (dtype == E1000_TXD_CMD_DEXT) { // context descriptor
|
|
op = le32_to_cpu(xp->cmd_and_length);
|
|
tp->ipcss = xp->lower_setup.ip_fields.ipcss;
|
|
tp->ipcso = xp->lower_setup.ip_fields.ipcso;
|
|
tp->ipcse = le16_to_cpu(xp->lower_setup.ip_fields.ipcse);
|
|
tp->tucss = xp->upper_setup.tcp_fields.tucss;
|
|
tp->tucso = xp->upper_setup.tcp_fields.tucso;
|
|
tp->tucse = le16_to_cpu(xp->upper_setup.tcp_fields.tucse);
|
|
tp->paylen = op & 0xfffff;
|
|
tp->hdr_len = xp->tcp_seg_setup.fields.hdr_len;
|
|
tp->mss = le16_to_cpu(xp->tcp_seg_setup.fields.mss);
|
|
tp->ip = (op & E1000_TXD_CMD_IP) ? 1 : 0;
|
|
tp->tcp = (op & E1000_TXD_CMD_TCP) ? 1 : 0;
|
|
tp->tse = (op & E1000_TXD_CMD_TSE) ? 1 : 0;
|
|
tp->tso_frames = 0;
|
|
if (tp->tucso == 0) { // this is probably wrong
|
|
DBGOUT(TXSUM, "TCP/UDP: cso 0!\n");
|
|
tp->tucso = tp->tucss + (tp->tcp ? 16 : 6);
|
|
}
|
|
return;
|
|
} else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) {
|
|
// data descriptor
|
|
if (tp->size == 0) {
|
|
tp->sum_needed = le32_to_cpu(dp->upper.data) >> 8;
|
|
}
|
|
tp->cptse = ( txd_lower & E1000_TXD_CMD_TSE ) ? 1 : 0;
|
|
} else {
|
|
// legacy descriptor
|
|
tp->cptse = 0;
|
|
}
|
|
|
|
if (vlan_enabled(s) && is_vlan_txd(txd_lower) &&
|
|
(tp->cptse || txd_lower & E1000_TXD_CMD_EOP)) {
|
|
tp->vlan_needed = 1;
|
|
cpu_to_be16wu((uint16_t *)(tp->vlan_header),
|
|
le16_to_cpup((uint16_t *)(s->mac_reg + VET)));
|
|
cpu_to_be16wu((uint16_t *)(tp->vlan_header + 2),
|
|
le16_to_cpu(dp->upper.fields.special));
|
|
}
|
|
|
|
addr = le64_to_cpu(dp->buffer_addr);
|
|
if (tp->tse && tp->cptse) {
|
|
hdr = tp->hdr_len;
|
|
msh = hdr + tp->mss;
|
|
do {
|
|
bytes = split_size;
|
|
if (tp->size + bytes > msh)
|
|
bytes = msh - tp->size;
|
|
|
|
bytes = MIN(sizeof(tp->data) - tp->size, bytes);
|
|
pci_dma_read(&s->dev, addr, tp->data + tp->size, bytes);
|
|
if ((sz = tp->size + bytes) >= hdr && tp->size < hdr)
|
|
memmove(tp->header, tp->data, hdr);
|
|
tp->size = sz;
|
|
addr += bytes;
|
|
if (sz == msh) {
|
|
xmit_seg(s);
|
|
memmove(tp->data, tp->header, hdr);
|
|
tp->size = hdr;
|
|
}
|
|
} while (split_size -= bytes);
|
|
} else if (!tp->tse && tp->cptse) {
|
|
// context descriptor TSE is not set, while data descriptor TSE is set
|
|
DBGOUT(TXERR, "TCP segmentation error\n");
|
|
} else {
|
|
split_size = MIN(sizeof(tp->data) - tp->size, split_size);
|
|
pci_dma_read(&s->dev, addr, tp->data + tp->size, split_size);
|
|
tp->size += split_size;
|
|
}
|
|
|
|
if (!(txd_lower & E1000_TXD_CMD_EOP))
|
|
return;
|
|
if (!(tp->tse && tp->cptse && tp->size < hdr))
|
|
xmit_seg(s);
|
|
tp->tso_frames = 0;
|
|
tp->sum_needed = 0;
|
|
tp->vlan_needed = 0;
|
|
tp->size = 0;
|
|
tp->cptse = 0;
|
|
}
|
|
|
|
static uint32_t
|
|
txdesc_writeback(E1000State *s, dma_addr_t base, struct e1000_tx_desc *dp)
|
|
{
|
|
uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data);
|
|
|
|
if (!(txd_lower & (E1000_TXD_CMD_RS|E1000_TXD_CMD_RPS)))
|
|
return 0;
|
|
txd_upper = (le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD) &
|
|
~(E1000_TXD_STAT_EC | E1000_TXD_STAT_LC | E1000_TXD_STAT_TU);
|
|
dp->upper.data = cpu_to_le32(txd_upper);
|
|
pci_dma_write(&s->dev, base + ((char *)&dp->upper - (char *)dp),
|
|
&dp->upper, sizeof(dp->upper));
|
|
return E1000_ICR_TXDW;
|
|
}
|
|
|
|
static uint64_t tx_desc_base(E1000State *s)
|
|
{
|
|
uint64_t bah = s->mac_reg[TDBAH];
|
|
uint64_t bal = s->mac_reg[TDBAL] & ~0xf;
|
|
|
|
return (bah << 32) + bal;
|
|
}
|
|
|
|
static void
|
|
start_xmit(E1000State *s)
|
|
{
|
|
dma_addr_t base;
|
|
struct e1000_tx_desc desc;
|
|
uint32_t tdh_start = s->mac_reg[TDH], cause = E1000_ICS_TXQE;
|
|
|
|
if (!(s->mac_reg[TCTL] & E1000_TCTL_EN)) {
|
|
DBGOUT(TX, "tx disabled\n");
|
|
return;
|
|
}
|
|
|
|
while (s->mac_reg[TDH] != s->mac_reg[TDT]) {
|
|
base = tx_desc_base(s) +
|
|
sizeof(struct e1000_tx_desc) * s->mac_reg[TDH];
|
|
pci_dma_read(&s->dev, base, &desc, sizeof(desc));
|
|
|
|
DBGOUT(TX, "index %d: %p : %x %x\n", s->mac_reg[TDH],
|
|
(void *)(intptr_t)desc.buffer_addr, desc.lower.data,
|
|
desc.upper.data);
|
|
|
|
process_tx_desc(s, &desc);
|
|
cause |= txdesc_writeback(s, base, &desc);
|
|
|
|
if (++s->mac_reg[TDH] * sizeof(desc) >= s->mac_reg[TDLEN])
|
|
s->mac_reg[TDH] = 0;
|
|
/*
|
|
* the following could happen only if guest sw assigns
|
|
* bogus values to TDT/TDLEN.
|
|
* there's nothing too intelligent we could do about this.
|
|
*/
|
|
if (s->mac_reg[TDH] == tdh_start) {
|
|
DBGOUT(TXERR, "TDH wraparound @%x, TDT %x, TDLEN %x\n",
|
|
tdh_start, s->mac_reg[TDT], s->mac_reg[TDLEN]);
|
|
break;
|
|
}
|
|
}
|
|
set_ics(s, 0, cause);
|
|
}
|
|
|
|
static int
|
|
receive_filter(E1000State *s, const uint8_t *buf, int size)
|
|
{
|
|
static const uint8_t bcast[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
|
|
static const int mta_shift[] = {4, 3, 2, 0};
|
|
uint32_t f, rctl = s->mac_reg[RCTL], ra[2], *rp;
|
|
|
|
if (is_vlan_packet(s, buf) && vlan_rx_filter_enabled(s)) {
|
|
uint16_t vid = be16_to_cpup((uint16_t *)(buf + 14));
|
|
uint32_t vfta = le32_to_cpup((uint32_t *)(s->mac_reg + VFTA) +
|
|
((vid >> 5) & 0x7f));
|
|
if ((vfta & (1 << (vid & 0x1f))) == 0)
|
|
return 0;
|
|
}
|
|
|
|
if (rctl & E1000_RCTL_UPE) // promiscuous
|
|
return 1;
|
|
|
|
if ((buf[0] & 1) && (rctl & E1000_RCTL_MPE)) // promiscuous mcast
|
|
return 1;
|
|
|
|
if ((rctl & E1000_RCTL_BAM) && !memcmp(buf, bcast, sizeof bcast))
|
|
return 1;
|
|
|
|
for (rp = s->mac_reg + RA; rp < s->mac_reg + RA + 32; rp += 2) {
|
|
if (!(rp[1] & E1000_RAH_AV))
|
|
continue;
|
|
ra[0] = cpu_to_le32(rp[0]);
|
|
ra[1] = cpu_to_le32(rp[1]);
|
|
if (!memcmp(buf, (uint8_t *)ra, 6)) {
|
|
DBGOUT(RXFILTER,
|
|
"unicast match[%d]: %02x:%02x:%02x:%02x:%02x:%02x\n",
|
|
(int)(rp - s->mac_reg - RA)/2,
|
|
buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]);
|
|
return 1;
|
|
}
|
|
}
|
|
DBGOUT(RXFILTER, "unicast mismatch: %02x:%02x:%02x:%02x:%02x:%02x\n",
|
|
buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]);
|
|
|
|
f = mta_shift[(rctl >> E1000_RCTL_MO_SHIFT) & 3];
|
|
f = (((buf[5] << 8) | buf[4]) >> f) & 0xfff;
|
|
if (s->mac_reg[MTA + (f >> 5)] & (1 << (f & 0x1f)))
|
|
return 1;
|
|
DBGOUT(RXFILTER,
|
|
"dropping, inexact filter mismatch: %02x:%02x:%02x:%02x:%02x:%02x MO %d MTA[%d] %x\n",
|
|
buf[0], buf[1], buf[2], buf[3], buf[4], buf[5],
|
|
(rctl >> E1000_RCTL_MO_SHIFT) & 3, f >> 5,
|
|
s->mac_reg[MTA + (f >> 5)]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
e1000_set_link_status(NetClientState *nc)
|
|
{
|
|
E1000State *s = DO_UPCAST(NICState, nc, nc)->opaque;
|
|
uint32_t old_status = s->mac_reg[STATUS];
|
|
|
|
if (nc->link_down) {
|
|
e1000_link_down(s);
|
|
} else {
|
|
e1000_link_up(s);
|
|
}
|
|
|
|
if (s->mac_reg[STATUS] != old_status)
|
|
set_ics(s, 0, E1000_ICR_LSC);
|
|
}
|
|
|
|
static bool e1000_has_rxbufs(E1000State *s, size_t total_size)
|
|
{
|
|
int bufs;
|
|
/* Fast-path short packets */
|
|
if (total_size <= s->rxbuf_size) {
|
|
return s->mac_reg[RDH] != s->mac_reg[RDT];
|
|
}
|
|
if (s->mac_reg[RDH] < s->mac_reg[RDT]) {
|
|
bufs = s->mac_reg[RDT] - s->mac_reg[RDH];
|
|
} else if (s->mac_reg[RDH] > s->mac_reg[RDT]) {
|
|
bufs = s->mac_reg[RDLEN] / sizeof(struct e1000_rx_desc) +
|
|
s->mac_reg[RDT] - s->mac_reg[RDH];
|
|
} else {
|
|
return false;
|
|
}
|
|
return total_size <= bufs * s->rxbuf_size;
|
|
}
|
|
|
|
static int
|
|
e1000_can_receive(NetClientState *nc)
|
|
{
|
|
E1000State *s = DO_UPCAST(NICState, nc, nc)->opaque;
|
|
|
|
return (s->mac_reg[RCTL] & E1000_RCTL_EN) && e1000_has_rxbufs(s, 1);
|
|
}
|
|
|
|
static uint64_t rx_desc_base(E1000State *s)
|
|
{
|
|
uint64_t bah = s->mac_reg[RDBAH];
|
|
uint64_t bal = s->mac_reg[RDBAL] & ~0xf;
|
|
|
|
return (bah << 32) + bal;
|
|
}
|
|
|
|
static ssize_t
|
|
e1000_receive(NetClientState *nc, const uint8_t *buf, size_t size)
|
|
{
|
|
E1000State *s = DO_UPCAST(NICState, nc, nc)->opaque;
|
|
struct e1000_rx_desc desc;
|
|
dma_addr_t base;
|
|
unsigned int n, rdt;
|
|
uint32_t rdh_start;
|
|
uint16_t vlan_special = 0;
|
|
uint8_t vlan_status = 0, vlan_offset = 0;
|
|
uint8_t min_buf[MIN_BUF_SIZE];
|
|
size_t desc_offset;
|
|
size_t desc_size;
|
|
size_t total_size;
|
|
|
|
if (!(s->mac_reg[RCTL] & E1000_RCTL_EN))
|
|
return -1;
|
|
|
|
/* Pad to minimum Ethernet frame length */
|
|
if (size < sizeof(min_buf)) {
|
|
memcpy(min_buf, buf, size);
|
|
memset(&min_buf[size], 0, sizeof(min_buf) - size);
|
|
buf = min_buf;
|
|
size = sizeof(min_buf);
|
|
}
|
|
|
|
if (!receive_filter(s, buf, size))
|
|
return size;
|
|
|
|
if (vlan_enabled(s) && is_vlan_packet(s, buf)) {
|
|
vlan_special = cpu_to_le16(be16_to_cpup((uint16_t *)(buf + 14)));
|
|
memmove((uint8_t *)buf + 4, buf, 12);
|
|
vlan_status = E1000_RXD_STAT_VP;
|
|
vlan_offset = 4;
|
|
size -= 4;
|
|
}
|
|
|
|
rdh_start = s->mac_reg[RDH];
|
|
desc_offset = 0;
|
|
total_size = size + fcs_len(s);
|
|
if (!e1000_has_rxbufs(s, total_size)) {
|
|
set_ics(s, 0, E1000_ICS_RXO);
|
|
return -1;
|
|
}
|
|
do {
|
|
desc_size = total_size - desc_offset;
|
|
if (desc_size > s->rxbuf_size) {
|
|
desc_size = s->rxbuf_size;
|
|
}
|
|
base = rx_desc_base(s) + sizeof(desc) * s->mac_reg[RDH];
|
|
pci_dma_read(&s->dev, base, &desc, sizeof(desc));
|
|
desc.special = vlan_special;
|
|
desc.status |= (vlan_status | E1000_RXD_STAT_DD);
|
|
if (desc.buffer_addr) {
|
|
if (desc_offset < size) {
|
|
size_t copy_size = size - desc_offset;
|
|
if (copy_size > s->rxbuf_size) {
|
|
copy_size = s->rxbuf_size;
|
|
}
|
|
pci_dma_write(&s->dev, le64_to_cpu(desc.buffer_addr),
|
|
buf + desc_offset + vlan_offset, copy_size);
|
|
}
|
|
desc_offset += desc_size;
|
|
desc.length = cpu_to_le16(desc_size);
|
|
if (desc_offset >= total_size) {
|
|
desc.status |= E1000_RXD_STAT_EOP | E1000_RXD_STAT_IXSM;
|
|
} else {
|
|
/* Guest zeroing out status is not a hardware requirement.
|
|
Clear EOP in case guest didn't do it. */
|
|
desc.status &= ~E1000_RXD_STAT_EOP;
|
|
}
|
|
} else { // as per intel docs; skip descriptors with null buf addr
|
|
DBGOUT(RX, "Null RX descriptor!!\n");
|
|
}
|
|
pci_dma_write(&s->dev, base, &desc, sizeof(desc));
|
|
|
|
if (++s->mac_reg[RDH] * sizeof(desc) >= s->mac_reg[RDLEN])
|
|
s->mac_reg[RDH] = 0;
|
|
/* see comment in start_xmit; same here */
|
|
if (s->mac_reg[RDH] == rdh_start) {
|
|
DBGOUT(RXERR, "RDH wraparound @%x, RDT %x, RDLEN %x\n",
|
|
rdh_start, s->mac_reg[RDT], s->mac_reg[RDLEN]);
|
|
set_ics(s, 0, E1000_ICS_RXO);
|
|
return -1;
|
|
}
|
|
} while (desc_offset < total_size);
|
|
|
|
s->mac_reg[GPRC]++;
|
|
s->mac_reg[TPR]++;
|
|
/* TOR - Total Octets Received:
|
|
* This register includes bytes received in a packet from the <Destination
|
|
* Address> field through the <CRC> field, inclusively.
|
|
*/
|
|
n = s->mac_reg[TORL] + size + /* Always include FCS length. */ 4;
|
|
if (n < s->mac_reg[TORL])
|
|
s->mac_reg[TORH]++;
|
|
s->mac_reg[TORL] = n;
|
|
|
|
n = E1000_ICS_RXT0;
|
|
if ((rdt = s->mac_reg[RDT]) < s->mac_reg[RDH])
|
|
rdt += s->mac_reg[RDLEN] / sizeof(desc);
|
|
if (((rdt - s->mac_reg[RDH]) * sizeof(desc)) <= s->mac_reg[RDLEN] >>
|
|
s->rxbuf_min_shift)
|
|
n |= E1000_ICS_RXDMT0;
|
|
|
|
set_ics(s, 0, n);
|
|
|
|
return size;
|
|
}
|
|
|
|
static uint32_t
|
|
mac_readreg(E1000State *s, int index)
|
|
{
|
|
return s->mac_reg[index];
|
|
}
|
|
|
|
static uint32_t
|
|
mac_icr_read(E1000State *s, int index)
|
|
{
|
|
uint32_t ret = s->mac_reg[ICR];
|
|
|
|
DBGOUT(INTERRUPT, "ICR read: %x\n", ret);
|
|
set_interrupt_cause(s, 0, 0);
|
|
return ret;
|
|
}
|
|
|
|
static uint32_t
|
|
mac_read_clr4(E1000State *s, int index)
|
|
{
|
|
uint32_t ret = s->mac_reg[index];
|
|
|
|
s->mac_reg[index] = 0;
|
|
return ret;
|
|
}
|
|
|
|
static uint32_t
|
|
mac_read_clr8(E1000State *s, int index)
|
|
{
|
|
uint32_t ret = s->mac_reg[index];
|
|
|
|
s->mac_reg[index] = 0;
|
|
s->mac_reg[index-1] = 0;
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
mac_writereg(E1000State *s, int index, uint32_t val)
|
|
{
|
|
s->mac_reg[index] = val;
|
|
}
|
|
|
|
static void
|
|
set_rdt(E1000State *s, int index, uint32_t val)
|
|
{
|
|
s->mac_reg[index] = val & 0xffff;
|
|
if (e1000_has_rxbufs(s, 1)) {
|
|
qemu_flush_queued_packets(&s->nic->nc);
|
|
}
|
|
}
|
|
|
|
static void
|
|
set_16bit(E1000State *s, int index, uint32_t val)
|
|
{
|
|
s->mac_reg[index] = val & 0xffff;
|
|
}
|
|
|
|
static void
|
|
set_dlen(E1000State *s, int index, uint32_t val)
|
|
{
|
|
s->mac_reg[index] = val & 0xfff80;
|
|
}
|
|
|
|
static void
|
|
set_tctl(E1000State *s, int index, uint32_t val)
|
|
{
|
|
s->mac_reg[index] = val;
|
|
s->mac_reg[TDT] &= 0xffff;
|
|
start_xmit(s);
|
|
}
|
|
|
|
static void
|
|
set_icr(E1000State *s, int index, uint32_t val)
|
|
{
|
|
DBGOUT(INTERRUPT, "set_icr %x\n", val);
|
|
set_interrupt_cause(s, 0, s->mac_reg[ICR] & ~val);
|
|
}
|
|
|
|
static void
|
|
set_imc(E1000State *s, int index, uint32_t val)
|
|
{
|
|
s->mac_reg[IMS] &= ~val;
|
|
set_ics(s, 0, 0);
|
|
}
|
|
|
|
static void
|
|
set_ims(E1000State *s, int index, uint32_t val)
|
|
{
|
|
s->mac_reg[IMS] |= val;
|
|
set_ics(s, 0, 0);
|
|
}
|
|
|
|
#define getreg(x) [x] = mac_readreg
|
|
static uint32_t (*macreg_readops[])(E1000State *, int) = {
|
|
getreg(PBA), getreg(RCTL), getreg(TDH), getreg(TXDCTL),
|
|
getreg(WUFC), getreg(TDT), getreg(CTRL), getreg(LEDCTL),
|
|
getreg(MANC), getreg(MDIC), getreg(SWSM), getreg(STATUS),
|
|
getreg(TORL), getreg(TOTL), getreg(IMS), getreg(TCTL),
|
|
getreg(RDH), getreg(RDT), getreg(VET), getreg(ICS),
|
|
getreg(TDBAL), getreg(TDBAH), getreg(RDBAH), getreg(RDBAL),
|
|
getreg(TDLEN), getreg(RDLEN),
|
|
|
|
[TOTH] = mac_read_clr8, [TORH] = mac_read_clr8, [GPRC] = mac_read_clr4,
|
|
[GPTC] = mac_read_clr4, [TPR] = mac_read_clr4, [TPT] = mac_read_clr4,
|
|
[ICR] = mac_icr_read, [EECD] = get_eecd, [EERD] = flash_eerd_read,
|
|
[CRCERRS ... MPC] = &mac_readreg,
|
|
[RA ... RA+31] = &mac_readreg,
|
|
[MTA ... MTA+127] = &mac_readreg,
|
|
[VFTA ... VFTA+127] = &mac_readreg,
|
|
};
|
|
enum { NREADOPS = ARRAY_SIZE(macreg_readops) };
|
|
|
|
#define putreg(x) [x] = mac_writereg
|
|
static void (*macreg_writeops[])(E1000State *, int, uint32_t) = {
|
|
putreg(PBA), putreg(EERD), putreg(SWSM), putreg(WUFC),
|
|
putreg(TDBAL), putreg(TDBAH), putreg(TXDCTL), putreg(RDBAH),
|
|
putreg(RDBAL), putreg(LEDCTL), putreg(VET),
|
|
[TDLEN] = set_dlen, [RDLEN] = set_dlen, [TCTL] = set_tctl,
|
|
[TDT] = set_tctl, [MDIC] = set_mdic, [ICS] = set_ics,
|
|
[TDH] = set_16bit, [RDH] = set_16bit, [RDT] = set_rdt,
|
|
[IMC] = set_imc, [IMS] = set_ims, [ICR] = set_icr,
|
|
[EECD] = set_eecd, [RCTL] = set_rx_control, [CTRL] = set_ctrl,
|
|
[RA ... RA+31] = &mac_writereg,
|
|
[MTA ... MTA+127] = &mac_writereg,
|
|
[VFTA ... VFTA+127] = &mac_writereg,
|
|
};
|
|
|
|
enum { NWRITEOPS = ARRAY_SIZE(macreg_writeops) };
|
|
|
|
static void
|
|
e1000_mmio_write(void *opaque, hwaddr addr, uint64_t val,
|
|
unsigned size)
|
|
{
|
|
E1000State *s = opaque;
|
|
unsigned int index = (addr & 0x1ffff) >> 2;
|
|
|
|
if (index < NWRITEOPS && macreg_writeops[index]) {
|
|
macreg_writeops[index](s, index, val);
|
|
} else if (index < NREADOPS && macreg_readops[index]) {
|
|
DBGOUT(MMIO, "e1000_mmio_writel RO %x: 0x%04"PRIx64"\n", index<<2, val);
|
|
} else {
|
|
DBGOUT(UNKNOWN, "MMIO unknown write addr=0x%08x,val=0x%08"PRIx64"\n",
|
|
index<<2, val);
|
|
}
|
|
}
|
|
|
|
static uint64_t
|
|
e1000_mmio_read(void *opaque, hwaddr addr, unsigned size)
|
|
{
|
|
E1000State *s = opaque;
|
|
unsigned int index = (addr & 0x1ffff) >> 2;
|
|
|
|
if (index < NREADOPS && macreg_readops[index])
|
|
{
|
|
return macreg_readops[index](s, index);
|
|
}
|
|
DBGOUT(UNKNOWN, "MMIO unknown read addr=0x%08x\n", index<<2);
|
|
return 0;
|
|
}
|
|
|
|
static const MemoryRegionOps e1000_mmio_ops = {
|
|
.read = e1000_mmio_read,
|
|
.write = e1000_mmio_write,
|
|
.endianness = DEVICE_LITTLE_ENDIAN,
|
|
.impl = {
|
|
.min_access_size = 4,
|
|
.max_access_size = 4,
|
|
},
|
|
};
|
|
|
|
static uint64_t e1000_io_read(void *opaque, hwaddr addr,
|
|
unsigned size)
|
|
{
|
|
E1000State *s = opaque;
|
|
|
|
(void)s;
|
|
return 0;
|
|
}
|
|
|
|
static void e1000_io_write(void *opaque, hwaddr addr,
|
|
uint64_t val, unsigned size)
|
|
{
|
|
E1000State *s = opaque;
|
|
|
|
(void)s;
|
|
}
|
|
|
|
static const MemoryRegionOps e1000_io_ops = {
|
|
.read = e1000_io_read,
|
|
.write = e1000_io_write,
|
|
.endianness = DEVICE_LITTLE_ENDIAN,
|
|
};
|
|
|
|
static bool is_version_1(void *opaque, int version_id)
|
|
{
|
|
return version_id == 1;
|
|
}
|
|
|
|
static int e1000_post_load(void *opaque, int version_id)
|
|
{
|
|
E1000State *s = opaque;
|
|
|
|
/* nc.link_down can't be migrated, so infer link_down according
|
|
* to link status bit in mac_reg[STATUS] */
|
|
s->nic->nc.link_down = (s->mac_reg[STATUS] & E1000_STATUS_LU) == 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const VMStateDescription vmstate_e1000 = {
|
|
.name = "e1000",
|
|
.version_id = 2,
|
|
.minimum_version_id = 1,
|
|
.minimum_version_id_old = 1,
|
|
.post_load = e1000_post_load,
|
|
.fields = (VMStateField []) {
|
|
VMSTATE_PCI_DEVICE(dev, E1000State),
|
|
VMSTATE_UNUSED_TEST(is_version_1, 4), /* was instance id */
|
|
VMSTATE_UNUSED(4), /* Was mmio_base. */
|
|
VMSTATE_UINT32(rxbuf_size, E1000State),
|
|
VMSTATE_UINT32(rxbuf_min_shift, E1000State),
|
|
VMSTATE_UINT32(eecd_state.val_in, E1000State),
|
|
VMSTATE_UINT16(eecd_state.bitnum_in, E1000State),
|
|
VMSTATE_UINT16(eecd_state.bitnum_out, E1000State),
|
|
VMSTATE_UINT16(eecd_state.reading, E1000State),
|
|
VMSTATE_UINT32(eecd_state.old_eecd, E1000State),
|
|
VMSTATE_UINT8(tx.ipcss, E1000State),
|
|
VMSTATE_UINT8(tx.ipcso, E1000State),
|
|
VMSTATE_UINT16(tx.ipcse, E1000State),
|
|
VMSTATE_UINT8(tx.tucss, E1000State),
|
|
VMSTATE_UINT8(tx.tucso, E1000State),
|
|
VMSTATE_UINT16(tx.tucse, E1000State),
|
|
VMSTATE_UINT32(tx.paylen, E1000State),
|
|
VMSTATE_UINT8(tx.hdr_len, E1000State),
|
|
VMSTATE_UINT16(tx.mss, E1000State),
|
|
VMSTATE_UINT16(tx.size, E1000State),
|
|
VMSTATE_UINT16(tx.tso_frames, E1000State),
|
|
VMSTATE_UINT8(tx.sum_needed, E1000State),
|
|
VMSTATE_INT8(tx.ip, E1000State),
|
|
VMSTATE_INT8(tx.tcp, E1000State),
|
|
VMSTATE_BUFFER(tx.header, E1000State),
|
|
VMSTATE_BUFFER(tx.data, E1000State),
|
|
VMSTATE_UINT16_ARRAY(eeprom_data, E1000State, 64),
|
|
VMSTATE_UINT16_ARRAY(phy_reg, E1000State, 0x20),
|
|
VMSTATE_UINT32(mac_reg[CTRL], E1000State),
|
|
VMSTATE_UINT32(mac_reg[EECD], E1000State),
|
|
VMSTATE_UINT32(mac_reg[EERD], E1000State),
|
|
VMSTATE_UINT32(mac_reg[GPRC], E1000State),
|
|
VMSTATE_UINT32(mac_reg[GPTC], E1000State),
|
|
VMSTATE_UINT32(mac_reg[ICR], E1000State),
|
|
VMSTATE_UINT32(mac_reg[ICS], E1000State),
|
|
VMSTATE_UINT32(mac_reg[IMC], E1000State),
|
|
VMSTATE_UINT32(mac_reg[IMS], E1000State),
|
|
VMSTATE_UINT32(mac_reg[LEDCTL], E1000State),
|
|
VMSTATE_UINT32(mac_reg[MANC], E1000State),
|
|
VMSTATE_UINT32(mac_reg[MDIC], E1000State),
|
|
VMSTATE_UINT32(mac_reg[MPC], E1000State),
|
|
VMSTATE_UINT32(mac_reg[PBA], E1000State),
|
|
VMSTATE_UINT32(mac_reg[RCTL], E1000State),
|
|
VMSTATE_UINT32(mac_reg[RDBAH], E1000State),
|
|
VMSTATE_UINT32(mac_reg[RDBAL], E1000State),
|
|
VMSTATE_UINT32(mac_reg[RDH], E1000State),
|
|
VMSTATE_UINT32(mac_reg[RDLEN], E1000State),
|
|
VMSTATE_UINT32(mac_reg[RDT], E1000State),
|
|
VMSTATE_UINT32(mac_reg[STATUS], E1000State),
|
|
VMSTATE_UINT32(mac_reg[SWSM], E1000State),
|
|
VMSTATE_UINT32(mac_reg[TCTL], E1000State),
|
|
VMSTATE_UINT32(mac_reg[TDBAH], E1000State),
|
|
VMSTATE_UINT32(mac_reg[TDBAL], E1000State),
|
|
VMSTATE_UINT32(mac_reg[TDH], E1000State),
|
|
VMSTATE_UINT32(mac_reg[TDLEN], E1000State),
|
|
VMSTATE_UINT32(mac_reg[TDT], E1000State),
|
|
VMSTATE_UINT32(mac_reg[TORH], E1000State),
|
|
VMSTATE_UINT32(mac_reg[TORL], E1000State),
|
|
VMSTATE_UINT32(mac_reg[TOTH], E1000State),
|
|
VMSTATE_UINT32(mac_reg[TOTL], E1000State),
|
|
VMSTATE_UINT32(mac_reg[TPR], E1000State),
|
|
VMSTATE_UINT32(mac_reg[TPT], E1000State),
|
|
VMSTATE_UINT32(mac_reg[TXDCTL], E1000State),
|
|
VMSTATE_UINT32(mac_reg[WUFC], E1000State),
|
|
VMSTATE_UINT32(mac_reg[VET], E1000State),
|
|
VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, RA, 32),
|
|
VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, MTA, 128),
|
|
VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, VFTA, 128),
|
|
VMSTATE_END_OF_LIST()
|
|
}
|
|
};
|
|
|
|
static const uint16_t e1000_eeprom_template[64] = {
|
|
0x0000, 0x0000, 0x0000, 0x0000, 0xffff, 0x0000, 0x0000, 0x0000,
|
|
0x3000, 0x1000, 0x6403, E1000_DEVID, 0x8086, E1000_DEVID, 0x8086, 0x3040,
|
|
0x0008, 0x2000, 0x7e14, 0x0048, 0x1000, 0x00d8, 0x0000, 0x2700,
|
|
0x6cc9, 0x3150, 0x0722, 0x040b, 0x0984, 0x0000, 0xc000, 0x0706,
|
|
0x1008, 0x0000, 0x0f04, 0x7fff, 0x4d01, 0xffff, 0xffff, 0xffff,
|
|
0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
|
|
0x0100, 0x4000, 0x121c, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
|
|
0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0x0000,
|
|
};
|
|
|
|
/* PCI interface */
|
|
|
|
static void
|
|
e1000_mmio_setup(E1000State *d)
|
|
{
|
|
int i;
|
|
const uint32_t excluded_regs[] = {
|
|
E1000_MDIC, E1000_ICR, E1000_ICS, E1000_IMS,
|
|
E1000_IMC, E1000_TCTL, E1000_TDT, PNPMMIO_SIZE
|
|
};
|
|
|
|
memory_region_init_io(&d->mmio, &e1000_mmio_ops, d, "e1000-mmio",
|
|
PNPMMIO_SIZE);
|
|
memory_region_add_coalescing(&d->mmio, 0, excluded_regs[0]);
|
|
for (i = 0; excluded_regs[i] != PNPMMIO_SIZE; i++)
|
|
memory_region_add_coalescing(&d->mmio, excluded_regs[i] + 4,
|
|
excluded_regs[i+1] - excluded_regs[i] - 4);
|
|
memory_region_init_io(&d->io, &e1000_io_ops, d, "e1000-io", IOPORT_SIZE);
|
|
}
|
|
|
|
static void
|
|
e1000_cleanup(NetClientState *nc)
|
|
{
|
|
E1000State *s = DO_UPCAST(NICState, nc, nc)->opaque;
|
|
|
|
s->nic = NULL;
|
|
}
|
|
|
|
static void
|
|
pci_e1000_uninit(PCIDevice *dev)
|
|
{
|
|
E1000State *d = DO_UPCAST(E1000State, dev, dev);
|
|
|
|
qemu_del_timer(d->autoneg_timer);
|
|
qemu_free_timer(d->autoneg_timer);
|
|
memory_region_destroy(&d->mmio);
|
|
memory_region_destroy(&d->io);
|
|
qemu_del_net_client(&d->nic->nc);
|
|
}
|
|
|
|
static NetClientInfo net_e1000_info = {
|
|
.type = NET_CLIENT_OPTIONS_KIND_NIC,
|
|
.size = sizeof(NICState),
|
|
.can_receive = e1000_can_receive,
|
|
.receive = e1000_receive,
|
|
.cleanup = e1000_cleanup,
|
|
.link_status_changed = e1000_set_link_status,
|
|
};
|
|
|
|
static int pci_e1000_init(PCIDevice *pci_dev)
|
|
{
|
|
E1000State *d = DO_UPCAST(E1000State, dev, pci_dev);
|
|
uint8_t *pci_conf;
|
|
uint16_t checksum = 0;
|
|
int i;
|
|
uint8_t *macaddr;
|
|
|
|
pci_conf = d->dev.config;
|
|
|
|
/* TODO: RST# value should be 0, PCI spec 6.2.4 */
|
|
pci_conf[PCI_CACHE_LINE_SIZE] = 0x10;
|
|
|
|
pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */
|
|
|
|
e1000_mmio_setup(d);
|
|
|
|
pci_register_bar(&d->dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &d->mmio);
|
|
|
|
pci_register_bar(&d->dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &d->io);
|
|
|
|
memmove(d->eeprom_data, e1000_eeprom_template,
|
|
sizeof e1000_eeprom_template);
|
|
qemu_macaddr_default_if_unset(&d->conf.macaddr);
|
|
macaddr = d->conf.macaddr.a;
|
|
for (i = 0; i < 3; i++)
|
|
d->eeprom_data[i] = (macaddr[2*i+1]<<8) | macaddr[2*i];
|
|
for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
|
|
checksum += d->eeprom_data[i];
|
|
checksum = (uint16_t) EEPROM_SUM - checksum;
|
|
d->eeprom_data[EEPROM_CHECKSUM_REG] = checksum;
|
|
|
|
d->nic = qemu_new_nic(&net_e1000_info, &d->conf,
|
|
object_get_typename(OBJECT(d)), d->dev.qdev.id, d);
|
|
|
|
qemu_format_nic_info_str(&d->nic->nc, macaddr);
|
|
|
|
add_boot_device_path(d->conf.bootindex, &pci_dev->qdev, "/ethernet-phy@0");
|
|
|
|
d->autoneg_timer = qemu_new_timer_ms(vm_clock, e1000_autoneg_timer, d);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void qdev_e1000_reset(DeviceState *dev)
|
|
{
|
|
E1000State *d = DO_UPCAST(E1000State, dev.qdev, dev);
|
|
e1000_reset(d);
|
|
}
|
|
|
|
static Property e1000_properties[] = {
|
|
DEFINE_NIC_PROPERTIES(E1000State, conf),
|
|
DEFINE_PROP_END_OF_LIST(),
|
|
};
|
|
|
|
static void e1000_class_init(ObjectClass *klass, void *data)
|
|
{
|
|
DeviceClass *dc = DEVICE_CLASS(klass);
|
|
PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
|
|
|
|
k->init = pci_e1000_init;
|
|
k->exit = pci_e1000_uninit;
|
|
k->romfile = "pxe-e1000.rom";
|
|
k->vendor_id = PCI_VENDOR_ID_INTEL;
|
|
k->device_id = E1000_DEVID;
|
|
k->revision = 0x03;
|
|
k->class_id = PCI_CLASS_NETWORK_ETHERNET;
|
|
dc->desc = "Intel Gigabit Ethernet";
|
|
dc->reset = qdev_e1000_reset;
|
|
dc->vmsd = &vmstate_e1000;
|
|
dc->props = e1000_properties;
|
|
}
|
|
|
|
static TypeInfo e1000_info = {
|
|
.name = "e1000",
|
|
.parent = TYPE_PCI_DEVICE,
|
|
.instance_size = sizeof(E1000State),
|
|
.class_init = e1000_class_init,
|
|
};
|
|
|
|
static void e1000_register_types(void)
|
|
{
|
|
type_register_static(&e1000_info);
|
|
}
|
|
|
|
type_init(e1000_register_types)
|