mirror of
https://github.com/qemu/qemu.git
synced 2025-01-21 04:53:26 +08:00
5e66daec9e
When running Linux on a machine with GICv2, the kernel can crash while processing an interrupt and can subsequently start a kdump kernel from the active interrupt handler. In such a case, the crashed kernel might not gracefully signal the end of interrupt to the GICv2 hardware. The kdump kernel will however try to reset the GIC state on startup to get the controller into a sane state, in particular the kernel writes ones to GICD_ICACTIVERn and wipes out GICC_APRn to make sure that no interrupt is active. The patch adds a logic to recalculate the running priority when GICC_APRn/GICC_NSAPRn is written which makes sure that the mentioned reset works with the GICv2 emulation in QEMU too and the kdump kernel starts receiving interrupts. The described scenario can be reproduced on an AArch64 QEMU virt machine with a kdump-enabled Linux system by using the softdog module. The kdump kernel will hang at some point because QEMU still thinks the running priority is that of the timer interrupt and asserts no new interrupts to the system: $ modprobe softdog soft_margin=10 soft_panic=1 $ cat > /dev/watchdog [Press Enter to start the watchdog, wait for its timeout and observe that the kdump kernel hangs on startup.] Signed-off-by: Petr Pavlu <petr.pavlu@suse.com> Message-id: 20220113151916.17978-3-ppavlu@suse.cz Reviewed-by: Peter Maydell <peter.maydell@linaro.org> Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2158 lines
66 KiB
C
2158 lines
66 KiB
C
/*
|
|
* ARM Generic/Distributed Interrupt Controller
|
|
*
|
|
* Copyright (c) 2006-2007 CodeSourcery.
|
|
* Written by Paul Brook
|
|
*
|
|
* This code is licensed under the GPL.
|
|
*/
|
|
|
|
/* This file contains implementation code for the RealView EB interrupt
|
|
* controller, MPCore distributed interrupt controller and ARMv7-M
|
|
* Nested Vectored Interrupt Controller.
|
|
* It is compiled in two ways:
|
|
* (1) as a standalone file to produce a sysbus device which is a GIC
|
|
* that can be used on the realview board and as one of the builtin
|
|
* private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
|
|
* (2) by being directly #included into armv7m_nvic.c to produce the
|
|
* armv7m_nvic device.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "hw/irq.h"
|
|
#include "hw/sysbus.h"
|
|
#include "gic_internal.h"
|
|
#include "qapi/error.h"
|
|
#include "hw/core/cpu.h"
|
|
#include "qemu/log.h"
|
|
#include "qemu/module.h"
|
|
#include "trace.h"
|
|
#include "sysemu/kvm.h"
|
|
#include "sysemu/qtest.h"
|
|
|
|
/* #define DEBUG_GIC */
|
|
|
|
#ifdef DEBUG_GIC
|
|
#define DEBUG_GIC_GATE 1
|
|
#else
|
|
#define DEBUG_GIC_GATE 0
|
|
#endif
|
|
|
|
#define DPRINTF(fmt, ...) do { \
|
|
if (DEBUG_GIC_GATE) { \
|
|
fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
|
|
} \
|
|
} while (0)
|
|
|
|
static const uint8_t gic_id_11mpcore[] = {
|
|
0x00, 0x00, 0x00, 0x00, 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
|
|
};
|
|
|
|
static const uint8_t gic_id_gicv1[] = {
|
|
0x04, 0x00, 0x00, 0x00, 0x90, 0xb3, 0x1b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
|
|
};
|
|
|
|
static const uint8_t gic_id_gicv2[] = {
|
|
0x04, 0x00, 0x00, 0x00, 0x90, 0xb4, 0x2b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
|
|
};
|
|
|
|
static inline int gic_get_current_cpu(GICState *s)
|
|
{
|
|
if (!qtest_enabled() && s->num_cpu > 1) {
|
|
return current_cpu->cpu_index;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline int gic_get_current_vcpu(GICState *s)
|
|
{
|
|
return gic_get_current_cpu(s) + GIC_NCPU;
|
|
}
|
|
|
|
/* Return true if this GIC config has interrupt groups, which is
|
|
* true if we're a GICv2, or a GICv1 with the security extensions.
|
|
*/
|
|
static inline bool gic_has_groups(GICState *s)
|
|
{
|
|
return s->revision == 2 || s->security_extn;
|
|
}
|
|
|
|
static inline bool gic_cpu_ns_access(GICState *s, int cpu, MemTxAttrs attrs)
|
|
{
|
|
return !gic_is_vcpu(cpu) && s->security_extn && !attrs.secure;
|
|
}
|
|
|
|
static inline void gic_get_best_irq(GICState *s, int cpu,
|
|
int *best_irq, int *best_prio, int *group)
|
|
{
|
|
int irq;
|
|
int cm = 1 << cpu;
|
|
|
|
*best_irq = 1023;
|
|
*best_prio = 0x100;
|
|
|
|
for (irq = 0; irq < s->num_irq; irq++) {
|
|
if (GIC_DIST_TEST_ENABLED(irq, cm) && gic_test_pending(s, irq, cm) &&
|
|
(!GIC_DIST_TEST_ACTIVE(irq, cm)) &&
|
|
(irq < GIC_INTERNAL || GIC_DIST_TARGET(irq) & cm)) {
|
|
if (GIC_DIST_GET_PRIORITY(irq, cpu) < *best_prio) {
|
|
*best_prio = GIC_DIST_GET_PRIORITY(irq, cpu);
|
|
*best_irq = irq;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (*best_irq < 1023) {
|
|
*group = GIC_DIST_TEST_GROUP(*best_irq, cm);
|
|
}
|
|
}
|
|
|
|
static inline void gic_get_best_virq(GICState *s, int cpu,
|
|
int *best_irq, int *best_prio, int *group)
|
|
{
|
|
int lr_idx = 0;
|
|
|
|
*best_irq = 1023;
|
|
*best_prio = 0x100;
|
|
|
|
for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) {
|
|
uint32_t lr_entry = s->h_lr[lr_idx][cpu];
|
|
int state = GICH_LR_STATE(lr_entry);
|
|
|
|
if (state == GICH_LR_STATE_PENDING) {
|
|
int prio = GICH_LR_PRIORITY(lr_entry);
|
|
|
|
if (prio < *best_prio) {
|
|
*best_prio = prio;
|
|
*best_irq = GICH_LR_VIRT_ID(lr_entry);
|
|
*group = GICH_LR_GROUP(lr_entry);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Return true if IRQ signaling is enabled for the given cpu and at least one
|
|
* of the given groups:
|
|
* - in the non-virt case, the distributor must be enabled for one of the
|
|
* given groups
|
|
* - in the virt case, the virtual interface must be enabled.
|
|
* - in all cases, the (v)CPU interface must be enabled for one of the given
|
|
* groups.
|
|
*/
|
|
static inline bool gic_irq_signaling_enabled(GICState *s, int cpu, bool virt,
|
|
int group_mask)
|
|
{
|
|
int cpu_iface = virt ? (cpu + GIC_NCPU) : cpu;
|
|
|
|
if (!virt && !(s->ctlr & group_mask)) {
|
|
return false;
|
|
}
|
|
|
|
if (virt && !(s->h_hcr[cpu] & R_GICH_HCR_EN_MASK)) {
|
|
return false;
|
|
}
|
|
|
|
if (!(s->cpu_ctlr[cpu_iface] & group_mask)) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* TODO: Many places that call this routine could be optimized. */
|
|
/* Update interrupt status after enabled or pending bits have been changed. */
|
|
static inline void gic_update_internal(GICState *s, bool virt)
|
|
{
|
|
int best_irq;
|
|
int best_prio;
|
|
int irq_level, fiq_level;
|
|
int cpu, cpu_iface;
|
|
int group = 0;
|
|
qemu_irq *irq_lines = virt ? s->parent_virq : s->parent_irq;
|
|
qemu_irq *fiq_lines = virt ? s->parent_vfiq : s->parent_fiq;
|
|
|
|
for (cpu = 0; cpu < s->num_cpu; cpu++) {
|
|
cpu_iface = virt ? (cpu + GIC_NCPU) : cpu;
|
|
|
|
s->current_pending[cpu_iface] = 1023;
|
|
if (!gic_irq_signaling_enabled(s, cpu, virt,
|
|
GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1)) {
|
|
qemu_irq_lower(irq_lines[cpu]);
|
|
qemu_irq_lower(fiq_lines[cpu]);
|
|
continue;
|
|
}
|
|
|
|
if (virt) {
|
|
gic_get_best_virq(s, cpu, &best_irq, &best_prio, &group);
|
|
} else {
|
|
gic_get_best_irq(s, cpu, &best_irq, &best_prio, &group);
|
|
}
|
|
|
|
if (best_irq != 1023) {
|
|
trace_gic_update_bestirq(virt ? "vcpu" : "cpu", cpu,
|
|
best_irq, best_prio,
|
|
s->priority_mask[cpu_iface],
|
|
s->running_priority[cpu_iface]);
|
|
}
|
|
|
|
irq_level = fiq_level = 0;
|
|
|
|
if (best_prio < s->priority_mask[cpu_iface]) {
|
|
s->current_pending[cpu_iface] = best_irq;
|
|
if (best_prio < s->running_priority[cpu_iface]) {
|
|
if (gic_irq_signaling_enabled(s, cpu, virt, 1 << group)) {
|
|
if (group == 0 &&
|
|
s->cpu_ctlr[cpu_iface] & GICC_CTLR_FIQ_EN) {
|
|
DPRINTF("Raised pending FIQ %d (cpu %d)\n",
|
|
best_irq, cpu_iface);
|
|
fiq_level = 1;
|
|
trace_gic_update_set_irq(cpu, virt ? "vfiq" : "fiq",
|
|
fiq_level);
|
|
} else {
|
|
DPRINTF("Raised pending IRQ %d (cpu %d)\n",
|
|
best_irq, cpu_iface);
|
|
irq_level = 1;
|
|
trace_gic_update_set_irq(cpu, virt ? "virq" : "irq",
|
|
irq_level);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
qemu_set_irq(irq_lines[cpu], irq_level);
|
|
qemu_set_irq(fiq_lines[cpu], fiq_level);
|
|
}
|
|
}
|
|
|
|
static void gic_update(GICState *s)
|
|
{
|
|
gic_update_internal(s, false);
|
|
}
|
|
|
|
/* Return true if this LR is empty, i.e. the corresponding bit
|
|
* in ELRSR is set.
|
|
*/
|
|
static inline bool gic_lr_entry_is_free(uint32_t entry)
|
|
{
|
|
return (GICH_LR_STATE(entry) == GICH_LR_STATE_INVALID)
|
|
&& (GICH_LR_HW(entry) || !GICH_LR_EOI(entry));
|
|
}
|
|
|
|
/* Return true if this LR should trigger an EOI maintenance interrupt, i.e. the
|
|
* corrsponding bit in EISR is set.
|
|
*/
|
|
static inline bool gic_lr_entry_is_eoi(uint32_t entry)
|
|
{
|
|
return (GICH_LR_STATE(entry) == GICH_LR_STATE_INVALID)
|
|
&& !GICH_LR_HW(entry) && GICH_LR_EOI(entry);
|
|
}
|
|
|
|
static inline void gic_extract_lr_info(GICState *s, int cpu,
|
|
int *num_eoi, int *num_valid, int *num_pending)
|
|
{
|
|
int lr_idx;
|
|
|
|
*num_eoi = 0;
|
|
*num_valid = 0;
|
|
*num_pending = 0;
|
|
|
|
for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) {
|
|
uint32_t *entry = &s->h_lr[lr_idx][cpu];
|
|
|
|
if (gic_lr_entry_is_eoi(*entry)) {
|
|
(*num_eoi)++;
|
|
}
|
|
|
|
if (GICH_LR_STATE(*entry) != GICH_LR_STATE_INVALID) {
|
|
(*num_valid)++;
|
|
}
|
|
|
|
if (GICH_LR_STATE(*entry) == GICH_LR_STATE_PENDING) {
|
|
(*num_pending)++;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void gic_compute_misr(GICState *s, int cpu)
|
|
{
|
|
uint32_t value = 0;
|
|
int vcpu = cpu + GIC_NCPU;
|
|
|
|
int num_eoi, num_valid, num_pending;
|
|
|
|
gic_extract_lr_info(s, cpu, &num_eoi, &num_valid, &num_pending);
|
|
|
|
/* EOI */
|
|
if (num_eoi) {
|
|
value |= R_GICH_MISR_EOI_MASK;
|
|
}
|
|
|
|
/* U: true if only 0 or 1 LR entry is valid */
|
|
if ((s->h_hcr[cpu] & R_GICH_HCR_UIE_MASK) && (num_valid < 2)) {
|
|
value |= R_GICH_MISR_U_MASK;
|
|
}
|
|
|
|
/* LRENP: EOICount is not 0 */
|
|
if ((s->h_hcr[cpu] & R_GICH_HCR_LRENPIE_MASK) &&
|
|
((s->h_hcr[cpu] & R_GICH_HCR_EOICount_MASK) != 0)) {
|
|
value |= R_GICH_MISR_LRENP_MASK;
|
|
}
|
|
|
|
/* NP: no pending interrupts */
|
|
if ((s->h_hcr[cpu] & R_GICH_HCR_NPIE_MASK) && (num_pending == 0)) {
|
|
value |= R_GICH_MISR_NP_MASK;
|
|
}
|
|
|
|
/* VGrp0E: group0 virq signaling enabled */
|
|
if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP0EIE_MASK) &&
|
|
(s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP0)) {
|
|
value |= R_GICH_MISR_VGrp0E_MASK;
|
|
}
|
|
|
|
/* VGrp0D: group0 virq signaling disabled */
|
|
if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP0DIE_MASK) &&
|
|
!(s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP0)) {
|
|
value |= R_GICH_MISR_VGrp0D_MASK;
|
|
}
|
|
|
|
/* VGrp1E: group1 virq signaling enabled */
|
|
if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP1EIE_MASK) &&
|
|
(s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP1)) {
|
|
value |= R_GICH_MISR_VGrp1E_MASK;
|
|
}
|
|
|
|
/* VGrp1D: group1 virq signaling disabled */
|
|
if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP1DIE_MASK) &&
|
|
!(s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP1)) {
|
|
value |= R_GICH_MISR_VGrp1D_MASK;
|
|
}
|
|
|
|
s->h_misr[cpu] = value;
|
|
}
|
|
|
|
static void gic_update_maintenance(GICState *s)
|
|
{
|
|
int cpu = 0;
|
|
int maint_level;
|
|
|
|
for (cpu = 0; cpu < s->num_cpu; cpu++) {
|
|
gic_compute_misr(s, cpu);
|
|
maint_level = (s->h_hcr[cpu] & R_GICH_HCR_EN_MASK) && s->h_misr[cpu];
|
|
|
|
trace_gic_update_maintenance_irq(cpu, maint_level);
|
|
qemu_set_irq(s->maintenance_irq[cpu], maint_level);
|
|
}
|
|
}
|
|
|
|
static void gic_update_virt(GICState *s)
|
|
{
|
|
gic_update_internal(s, true);
|
|
gic_update_maintenance(s);
|
|
}
|
|
|
|
static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
|
|
int cm, int target)
|
|
{
|
|
if (level) {
|
|
GIC_DIST_SET_LEVEL(irq, cm);
|
|
if (GIC_DIST_TEST_EDGE_TRIGGER(irq) || GIC_DIST_TEST_ENABLED(irq, cm)) {
|
|
DPRINTF("Set %d pending mask %x\n", irq, target);
|
|
GIC_DIST_SET_PENDING(irq, target);
|
|
}
|
|
} else {
|
|
GIC_DIST_CLEAR_LEVEL(irq, cm);
|
|
}
|
|
}
|
|
|
|
static void gic_set_irq_generic(GICState *s, int irq, int level,
|
|
int cm, int target)
|
|
{
|
|
if (level) {
|
|
GIC_DIST_SET_LEVEL(irq, cm);
|
|
DPRINTF("Set %d pending mask %x\n", irq, target);
|
|
if (GIC_DIST_TEST_EDGE_TRIGGER(irq)) {
|
|
GIC_DIST_SET_PENDING(irq, target);
|
|
}
|
|
} else {
|
|
GIC_DIST_CLEAR_LEVEL(irq, cm);
|
|
}
|
|
}
|
|
|
|
/* Process a change in an external IRQ input. */
|
|
static void gic_set_irq(void *opaque, int irq, int level)
|
|
{
|
|
/* Meaning of the 'irq' parameter:
|
|
* [0..N-1] : external interrupts
|
|
* [N..N+31] : PPI (internal) interrupts for CPU 0
|
|
* [N+32..N+63] : PPI (internal interrupts for CPU 1
|
|
* ...
|
|
*/
|
|
GICState *s = (GICState *)opaque;
|
|
int cm, target;
|
|
if (irq < (s->num_irq - GIC_INTERNAL)) {
|
|
/* The first external input line is internal interrupt 32. */
|
|
cm = ALL_CPU_MASK;
|
|
irq += GIC_INTERNAL;
|
|
target = GIC_DIST_TARGET(irq);
|
|
} else {
|
|
int cpu;
|
|
irq -= (s->num_irq - GIC_INTERNAL);
|
|
cpu = irq / GIC_INTERNAL;
|
|
irq %= GIC_INTERNAL;
|
|
cm = 1 << cpu;
|
|
target = cm;
|
|
}
|
|
|
|
assert(irq >= GIC_NR_SGIS);
|
|
|
|
if (level == GIC_DIST_TEST_LEVEL(irq, cm)) {
|
|
return;
|
|
}
|
|
|
|
if (s->revision == REV_11MPCORE) {
|
|
gic_set_irq_11mpcore(s, irq, level, cm, target);
|
|
} else {
|
|
gic_set_irq_generic(s, irq, level, cm, target);
|
|
}
|
|
trace_gic_set_irq(irq, level, cm, target);
|
|
|
|
gic_update(s);
|
|
}
|
|
|
|
static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
|
|
MemTxAttrs attrs)
|
|
{
|
|
uint16_t pending_irq = s->current_pending[cpu];
|
|
|
|
if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
|
|
int group = gic_test_group(s, pending_irq, cpu);
|
|
|
|
/* On a GIC without the security extensions, reading this register
|
|
* behaves in the same way as a secure access to a GIC with them.
|
|
*/
|
|
bool secure = !gic_cpu_ns_access(s, cpu, attrs);
|
|
|
|
if (group == 0 && !secure) {
|
|
/* Group0 interrupts hidden from Non-secure access */
|
|
return 1023;
|
|
}
|
|
if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
|
|
/* Group1 interrupts only seen by Secure access if
|
|
* AckCtl bit set.
|
|
*/
|
|
return 1022;
|
|
}
|
|
}
|
|
return pending_irq;
|
|
}
|
|
|
|
static int gic_get_group_priority(GICState *s, int cpu, int irq)
|
|
{
|
|
/* Return the group priority of the specified interrupt
|
|
* (which is the top bits of its priority, with the number
|
|
* of bits masked determined by the applicable binary point register).
|
|
*/
|
|
int bpr;
|
|
uint32_t mask;
|
|
|
|
if (gic_has_groups(s) &&
|
|
!(s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) &&
|
|
gic_test_group(s, irq, cpu)) {
|
|
bpr = s->abpr[cpu] - 1;
|
|
assert(bpr >= 0);
|
|
} else {
|
|
bpr = s->bpr[cpu];
|
|
}
|
|
|
|
/* a BPR of 0 means the group priority bits are [7:1];
|
|
* a BPR of 1 means they are [7:2], and so on down to
|
|
* a BPR of 7 meaning no group priority bits at all.
|
|
*/
|
|
mask = ~0U << ((bpr & 7) + 1);
|
|
|
|
return gic_get_priority(s, irq, cpu) & mask;
|
|
}
|
|
|
|
static void gic_activate_irq(GICState *s, int cpu, int irq)
|
|
{
|
|
/* Set the appropriate Active Priority Register bit for this IRQ,
|
|
* and update the running priority.
|
|
*/
|
|
int prio = gic_get_group_priority(s, cpu, irq);
|
|
int min_bpr = gic_is_vcpu(cpu) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
|
|
int preemption_level = prio >> (min_bpr + 1);
|
|
int regno = preemption_level / 32;
|
|
int bitno = preemption_level % 32;
|
|
uint32_t *papr = NULL;
|
|
|
|
if (gic_is_vcpu(cpu)) {
|
|
assert(regno == 0);
|
|
papr = &s->h_apr[gic_get_vcpu_real_id(cpu)];
|
|
} else if (gic_has_groups(s) && gic_test_group(s, irq, cpu)) {
|
|
papr = &s->nsapr[regno][cpu];
|
|
} else {
|
|
papr = &s->apr[regno][cpu];
|
|
}
|
|
|
|
*papr |= (1 << bitno);
|
|
|
|
s->running_priority[cpu] = prio;
|
|
gic_set_active(s, irq, cpu);
|
|
}
|
|
|
|
static int gic_get_prio_from_apr_bits(GICState *s, int cpu)
|
|
{
|
|
/* Recalculate the current running priority for this CPU based
|
|
* on the set bits in the Active Priority Registers.
|
|
*/
|
|
int i;
|
|
|
|
if (gic_is_vcpu(cpu)) {
|
|
uint32_t apr = s->h_apr[gic_get_vcpu_real_id(cpu)];
|
|
if (apr) {
|
|
return ctz32(apr) << (GIC_VIRT_MIN_BPR + 1);
|
|
} else {
|
|
return 0x100;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < GIC_NR_APRS; i++) {
|
|
uint32_t apr = s->apr[i][cpu] | s->nsapr[i][cpu];
|
|
if (!apr) {
|
|
continue;
|
|
}
|
|
return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
|
|
}
|
|
return 0x100;
|
|
}
|
|
|
|
static void gic_drop_prio(GICState *s, int cpu, int group)
|
|
{
|
|
/* Drop the priority of the currently active interrupt in the
|
|
* specified group.
|
|
*
|
|
* Note that we can guarantee (because of the requirement to nest
|
|
* GICC_IAR reads [which activate an interrupt and raise priority]
|
|
* with GICC_EOIR writes [which drop the priority for the interrupt])
|
|
* that the interrupt we're being called for is the highest priority
|
|
* active interrupt, meaning that it has the lowest set bit in the
|
|
* APR registers.
|
|
*
|
|
* If the guest does not honour the ordering constraints then the
|
|
* behaviour of the GIC is UNPREDICTABLE, which for us means that
|
|
* the values of the APR registers might become incorrect and the
|
|
* running priority will be wrong, so interrupts that should preempt
|
|
* might not do so, and interrupts that should not preempt might do so.
|
|
*/
|
|
if (gic_is_vcpu(cpu)) {
|
|
int rcpu = gic_get_vcpu_real_id(cpu);
|
|
|
|
if (s->h_apr[rcpu]) {
|
|
/* Clear lowest set bit */
|
|
s->h_apr[rcpu] &= s->h_apr[rcpu] - 1;
|
|
}
|
|
} else {
|
|
int i;
|
|
|
|
for (i = 0; i < GIC_NR_APRS; i++) {
|
|
uint32_t *papr = group ? &s->nsapr[i][cpu] : &s->apr[i][cpu];
|
|
if (!*papr) {
|
|
continue;
|
|
}
|
|
/* Clear lowest set bit */
|
|
*papr &= *papr - 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
|
|
}
|
|
|
|
static inline uint32_t gic_clear_pending_sgi(GICState *s, int irq, int cpu)
|
|
{
|
|
int src;
|
|
uint32_t ret;
|
|
|
|
if (!gic_is_vcpu(cpu)) {
|
|
/* Lookup the source CPU for the SGI and clear this in the
|
|
* sgi_pending map. Return the src and clear the overall pending
|
|
* state on this CPU if the SGI is not pending from any CPUs.
|
|
*/
|
|
assert(s->sgi_pending[irq][cpu] != 0);
|
|
src = ctz32(s->sgi_pending[irq][cpu]);
|
|
s->sgi_pending[irq][cpu] &= ~(1 << src);
|
|
if (s->sgi_pending[irq][cpu] == 0) {
|
|
gic_clear_pending(s, irq, cpu);
|
|
}
|
|
ret = irq | ((src & 0x7) << 10);
|
|
} else {
|
|
uint32_t *lr_entry = gic_get_lr_entry(s, irq, cpu);
|
|
src = GICH_LR_CPUID(*lr_entry);
|
|
|
|
gic_clear_pending(s, irq, cpu);
|
|
ret = irq | (src << 10);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
|
|
{
|
|
int ret, irq;
|
|
|
|
/* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
|
|
* for the case where this GIC supports grouping and the pending interrupt
|
|
* is in the wrong group.
|
|
*/
|
|
irq = gic_get_current_pending_irq(s, cpu, attrs);
|
|
trace_gic_acknowledge_irq(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
|
|
gic_get_vcpu_real_id(cpu), irq);
|
|
|
|
if (irq >= GIC_MAXIRQ) {
|
|
DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
|
|
return irq;
|
|
}
|
|
|
|
if (gic_get_priority(s, irq, cpu) >= s->running_priority[cpu]) {
|
|
DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
|
|
return 1023;
|
|
}
|
|
|
|
gic_activate_irq(s, cpu, irq);
|
|
|
|
if (s->revision == REV_11MPCORE) {
|
|
/* Clear pending flags for both level and edge triggered interrupts.
|
|
* Level triggered IRQs will be reasserted once they become inactive.
|
|
*/
|
|
gic_clear_pending(s, irq, cpu);
|
|
ret = irq;
|
|
} else {
|
|
if (irq < GIC_NR_SGIS) {
|
|
ret = gic_clear_pending_sgi(s, irq, cpu);
|
|
} else {
|
|
gic_clear_pending(s, irq, cpu);
|
|
ret = irq;
|
|
}
|
|
}
|
|
|
|
if (gic_is_vcpu(cpu)) {
|
|
gic_update_virt(s);
|
|
} else {
|
|
gic_update(s);
|
|
}
|
|
DPRINTF("ACK %d\n", irq);
|
|
return ret;
|
|
}
|
|
|
|
static uint32_t gic_fullprio_mask(GICState *s, int cpu)
|
|
{
|
|
/*
|
|
* Return a mask word which clears the unimplemented priority
|
|
* bits from a priority value for an interrupt. (Not to be
|
|
* confused with the group priority, whose mask depends on BPR.)
|
|
*/
|
|
int priBits;
|
|
|
|
if (gic_is_vcpu(cpu)) {
|
|
priBits = GIC_VIRT_MAX_GROUP_PRIO_BITS;
|
|
} else {
|
|
priBits = s->n_prio_bits;
|
|
}
|
|
return ~0U << (8 - priBits);
|
|
}
|
|
|
|
void gic_dist_set_priority(GICState *s, int cpu, int irq, uint8_t val,
|
|
MemTxAttrs attrs)
|
|
{
|
|
if (s->security_extn && !attrs.secure) {
|
|
if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
|
|
return; /* Ignore Non-secure access of Group0 IRQ */
|
|
}
|
|
val = 0x80 | (val >> 1); /* Non-secure view */
|
|
}
|
|
|
|
val &= gic_fullprio_mask(s, cpu);
|
|
|
|
if (irq < GIC_INTERNAL) {
|
|
s->priority1[irq][cpu] = val;
|
|
} else {
|
|
s->priority2[(irq) - GIC_INTERNAL] = val;
|
|
}
|
|
}
|
|
|
|
static uint32_t gic_dist_get_priority(GICState *s, int cpu, int irq,
|
|
MemTxAttrs attrs)
|
|
{
|
|
uint32_t prio = GIC_DIST_GET_PRIORITY(irq, cpu);
|
|
|
|
if (s->security_extn && !attrs.secure) {
|
|
if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
|
|
return 0; /* Non-secure access cannot read priority of Group0 IRQ */
|
|
}
|
|
prio = (prio << 1) & 0xff; /* Non-secure view */
|
|
}
|
|
return prio & gic_fullprio_mask(s, cpu);
|
|
}
|
|
|
|
static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
|
|
MemTxAttrs attrs)
|
|
{
|
|
if (gic_cpu_ns_access(s, cpu, attrs)) {
|
|
if (s->priority_mask[cpu] & 0x80) {
|
|
/* Priority Mask in upper half */
|
|
pmask = 0x80 | (pmask >> 1);
|
|
} else {
|
|
/* Non-secure write ignored if priority mask is in lower half */
|
|
return;
|
|
}
|
|
}
|
|
s->priority_mask[cpu] = pmask & gic_fullprio_mask(s, cpu);
|
|
}
|
|
|
|
static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
|
|
{
|
|
uint32_t pmask = s->priority_mask[cpu];
|
|
|
|
if (gic_cpu_ns_access(s, cpu, attrs)) {
|
|
if (pmask & 0x80) {
|
|
/* Priority Mask in upper half, return Non-secure view */
|
|
pmask = (pmask << 1) & 0xff;
|
|
} else {
|
|
/* Priority Mask in lower half, RAZ */
|
|
pmask = 0;
|
|
}
|
|
}
|
|
return pmask;
|
|
}
|
|
|
|
static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
|
|
{
|
|
uint32_t ret = s->cpu_ctlr[cpu];
|
|
|
|
if (gic_cpu_ns_access(s, cpu, attrs)) {
|
|
/* Construct the NS banked view of GICC_CTLR from the correct
|
|
* bits of the S banked view. We don't need to move the bypass
|
|
* control bits because we don't implement that (IMPDEF) part
|
|
* of the GIC architecture.
|
|
*/
|
|
ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
|
|
MemTxAttrs attrs)
|
|
{
|
|
uint32_t mask;
|
|
|
|
if (gic_cpu_ns_access(s, cpu, attrs)) {
|
|
/* The NS view can only write certain bits in the register;
|
|
* the rest are unchanged
|
|
*/
|
|
mask = GICC_CTLR_EN_GRP1;
|
|
if (s->revision == 2) {
|
|
mask |= GICC_CTLR_EOIMODE_NS;
|
|
}
|
|
s->cpu_ctlr[cpu] &= ~mask;
|
|
s->cpu_ctlr[cpu] |= (value << 1) & mask;
|
|
} else {
|
|
if (s->revision == 2) {
|
|
mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
|
|
} else {
|
|
mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
|
|
}
|
|
s->cpu_ctlr[cpu] = value & mask;
|
|
}
|
|
DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
|
|
"Group1 Interrupts %sabled\n", cpu,
|
|
(s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
|
|
(s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
|
|
}
|
|
|
|
static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
|
|
{
|
|
if ((s->revision != REV_11MPCORE) && (s->running_priority[cpu] > 0xff)) {
|
|
/* Idle priority */
|
|
return 0xff;
|
|
}
|
|
|
|
if (gic_cpu_ns_access(s, cpu, attrs)) {
|
|
if (s->running_priority[cpu] & 0x80) {
|
|
/* Running priority in upper half of range: return the Non-secure
|
|
* view of the priority.
|
|
*/
|
|
return s->running_priority[cpu] << 1;
|
|
} else {
|
|
/* Running priority in lower half of range: RAZ */
|
|
return 0;
|
|
}
|
|
} else {
|
|
return s->running_priority[cpu];
|
|
}
|
|
}
|
|
|
|
/* Return true if we should split priority drop and interrupt deactivation,
|
|
* ie whether the relevant EOIMode bit is set.
|
|
*/
|
|
static bool gic_eoi_split(GICState *s, int cpu, MemTxAttrs attrs)
|
|
{
|
|
if (s->revision != 2) {
|
|
/* Before GICv2 prio-drop and deactivate are not separable */
|
|
return false;
|
|
}
|
|
if (gic_cpu_ns_access(s, cpu, attrs)) {
|
|
return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE_NS;
|
|
}
|
|
return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE;
|
|
}
|
|
|
|
static void gic_deactivate_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
|
|
{
|
|
int group;
|
|
|
|
if (irq >= GIC_MAXIRQ || (!gic_is_vcpu(cpu) && irq >= s->num_irq)) {
|
|
/*
|
|
* This handles two cases:
|
|
* 1. If software writes the ID of a spurious interrupt [ie 1023]
|
|
* to the GICC_DIR, the GIC ignores that write.
|
|
* 2. If software writes the number of a non-existent interrupt
|
|
* this must be a subcase of "value written is not an active interrupt"
|
|
* and so this is UNPREDICTABLE. We choose to ignore it. For vCPUs,
|
|
* all IRQs potentially exist, so this limit does not apply.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
if (!gic_eoi_split(s, cpu, attrs)) {
|
|
/* This is UNPREDICTABLE; we choose to ignore it */
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"gic_deactivate_irq: GICC_DIR write when EOIMode clear");
|
|
return;
|
|
}
|
|
|
|
if (gic_is_vcpu(cpu) && !gic_virq_is_valid(s, irq, cpu)) {
|
|
/* This vIRQ does not have an LR entry which is either active or
|
|
* pending and active. Increment EOICount and ignore the write.
|
|
*/
|
|
int rcpu = gic_get_vcpu_real_id(cpu);
|
|
s->h_hcr[rcpu] += 1 << R_GICH_HCR_EOICount_SHIFT;
|
|
|
|
/* Update the virtual interface in case a maintenance interrupt should
|
|
* be raised.
|
|
*/
|
|
gic_update_virt(s);
|
|
return;
|
|
}
|
|
|
|
group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
|
|
|
|
if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
|
|
DPRINTF("Non-secure DI for Group0 interrupt %d ignored\n", irq);
|
|
return;
|
|
}
|
|
|
|
gic_clear_active(s, irq, cpu);
|
|
}
|
|
|
|
static void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
|
|
{
|
|
int cm = 1 << cpu;
|
|
int group;
|
|
|
|
DPRINTF("EOI %d\n", irq);
|
|
if (gic_is_vcpu(cpu)) {
|
|
/* The call to gic_prio_drop() will clear a bit in GICH_APR iff the
|
|
* running prio is < 0x100.
|
|
*/
|
|
bool prio_drop = s->running_priority[cpu] < 0x100;
|
|
|
|
if (irq >= GIC_MAXIRQ) {
|
|
/* Ignore spurious interrupt */
|
|
return;
|
|
}
|
|
|
|
gic_drop_prio(s, cpu, 0);
|
|
|
|
if (!gic_eoi_split(s, cpu, attrs)) {
|
|
bool valid = gic_virq_is_valid(s, irq, cpu);
|
|
if (prio_drop && !valid) {
|
|
/* We are in a situation where:
|
|
* - V_CTRL.EOIMode is false (no EOI split),
|
|
* - The call to gic_drop_prio() cleared a bit in GICH_APR,
|
|
* - This vIRQ does not have an LR entry which is either
|
|
* active or pending and active.
|
|
* In that case, we must increment EOICount.
|
|
*/
|
|
int rcpu = gic_get_vcpu_real_id(cpu);
|
|
s->h_hcr[rcpu] += 1 << R_GICH_HCR_EOICount_SHIFT;
|
|
} else if (valid) {
|
|
gic_clear_active(s, irq, cpu);
|
|
}
|
|
}
|
|
|
|
gic_update_virt(s);
|
|
return;
|
|
}
|
|
|
|
if (irq >= s->num_irq) {
|
|
/* This handles two cases:
|
|
* 1. If software writes the ID of a spurious interrupt [ie 1023]
|
|
* to the GICC_EOIR, the GIC ignores that write.
|
|
* 2. If software writes the number of a non-existent interrupt
|
|
* this must be a subcase of "value written does not match the last
|
|
* valid interrupt value read from the Interrupt Acknowledge
|
|
* register" and so this is UNPREDICTABLE. We choose to ignore it.
|
|
*/
|
|
return;
|
|
}
|
|
if (s->running_priority[cpu] == 0x100) {
|
|
return; /* No active IRQ. */
|
|
}
|
|
|
|
if (s->revision == REV_11MPCORE) {
|
|
/* Mark level triggered interrupts as pending if they are still
|
|
raised. */
|
|
if (!GIC_DIST_TEST_EDGE_TRIGGER(irq) && GIC_DIST_TEST_ENABLED(irq, cm)
|
|
&& GIC_DIST_TEST_LEVEL(irq, cm)
|
|
&& (GIC_DIST_TARGET(irq) & cm) != 0) {
|
|
DPRINTF("Set %d pending mask %x\n", irq, cm);
|
|
GIC_DIST_SET_PENDING(irq, cm);
|
|
}
|
|
}
|
|
|
|
group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
|
|
|
|
if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
|
|
DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
|
|
return;
|
|
}
|
|
|
|
/* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
|
|
* interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
|
|
* i.e. go ahead and complete the irq anyway.
|
|
*/
|
|
|
|
gic_drop_prio(s, cpu, group);
|
|
|
|
/* In GICv2 the guest can choose to split priority-drop and deactivate */
|
|
if (!gic_eoi_split(s, cpu, attrs)) {
|
|
gic_clear_active(s, irq, cpu);
|
|
}
|
|
gic_update(s);
|
|
}
|
|
|
|
static uint32_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
|
|
{
|
|
GICState *s = (GICState *)opaque;
|
|
uint32_t res;
|
|
int irq;
|
|
int i;
|
|
int cpu;
|
|
int cm;
|
|
int mask;
|
|
|
|
cpu = gic_get_current_cpu(s);
|
|
cm = 1 << cpu;
|
|
if (offset < 0x100) {
|
|
if (offset == 0) { /* GICD_CTLR */
|
|
if (s->security_extn && !attrs.secure) {
|
|
/* The NS bank of this register is just an alias of the
|
|
* EnableGrp1 bit in the S bank version.
|
|
*/
|
|
return extract32(s->ctlr, 1, 1);
|
|
} else {
|
|
return s->ctlr;
|
|
}
|
|
}
|
|
if (offset == 4)
|
|
/* Interrupt Controller Type Register */
|
|
return ((s->num_irq / 32) - 1)
|
|
| ((s->num_cpu - 1) << 5)
|
|
| (s->security_extn << 10);
|
|
if (offset < 0x08)
|
|
return 0;
|
|
if (offset >= 0x80) {
|
|
/* Interrupt Group Registers: these RAZ/WI if this is an NS
|
|
* access to a GIC with the security extensions, or if the GIC
|
|
* doesn't have groups at all.
|
|
*/
|
|
res = 0;
|
|
if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
|
|
/* Every byte offset holds 8 group status bits */
|
|
irq = (offset - 0x080) * 8;
|
|
if (irq >= s->num_irq) {
|
|
goto bad_reg;
|
|
}
|
|
for (i = 0; i < 8; i++) {
|
|
if (GIC_DIST_TEST_GROUP(irq + i, cm)) {
|
|
res |= (1 << i);
|
|
}
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
goto bad_reg;
|
|
} else if (offset < 0x200) {
|
|
/* Interrupt Set/Clear Enable. */
|
|
if (offset < 0x180)
|
|
irq = (offset - 0x100) * 8;
|
|
else
|
|
irq = (offset - 0x180) * 8;
|
|
if (irq >= s->num_irq)
|
|
goto bad_reg;
|
|
res = 0;
|
|
for (i = 0; i < 8; i++) {
|
|
if (s->security_extn && !attrs.secure &&
|
|
!GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
|
|
continue; /* Ignore Non-secure access of Group0 IRQ */
|
|
}
|
|
|
|
if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
|
|
res |= (1 << i);
|
|
}
|
|
}
|
|
} else if (offset < 0x300) {
|
|
/* Interrupt Set/Clear Pending. */
|
|
if (offset < 0x280)
|
|
irq = (offset - 0x200) * 8;
|
|
else
|
|
irq = (offset - 0x280) * 8;
|
|
if (irq >= s->num_irq)
|
|
goto bad_reg;
|
|
res = 0;
|
|
mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK;
|
|
for (i = 0; i < 8; i++) {
|
|
if (s->security_extn && !attrs.secure &&
|
|
!GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
|
|
continue; /* Ignore Non-secure access of Group0 IRQ */
|
|
}
|
|
|
|
if (gic_test_pending(s, irq + i, mask)) {
|
|
res |= (1 << i);
|
|
}
|
|
}
|
|
} else if (offset < 0x400) {
|
|
/* Interrupt Set/Clear Active. */
|
|
if (offset < 0x380) {
|
|
irq = (offset - 0x300) * 8;
|
|
} else if (s->revision == 2) {
|
|
irq = (offset - 0x380) * 8;
|
|
} else {
|
|
goto bad_reg;
|
|
}
|
|
|
|
if (irq >= s->num_irq)
|
|
goto bad_reg;
|
|
res = 0;
|
|
mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK;
|
|
for (i = 0; i < 8; i++) {
|
|
if (s->security_extn && !attrs.secure &&
|
|
!GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
|
|
continue; /* Ignore Non-secure access of Group0 IRQ */
|
|
}
|
|
|
|
if (GIC_DIST_TEST_ACTIVE(irq + i, mask)) {
|
|
res |= (1 << i);
|
|
}
|
|
}
|
|
} else if (offset < 0x800) {
|
|
/* Interrupt Priority. */
|
|
irq = (offset - 0x400);
|
|
if (irq >= s->num_irq)
|
|
goto bad_reg;
|
|
res = gic_dist_get_priority(s, cpu, irq, attrs);
|
|
} else if (offset < 0xc00) {
|
|
/* Interrupt CPU Target. */
|
|
if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
|
|
/* For uniprocessor GICs these RAZ/WI */
|
|
res = 0;
|
|
} else {
|
|
irq = (offset - 0x800);
|
|
if (irq >= s->num_irq) {
|
|
goto bad_reg;
|
|
}
|
|
if (irq < 29 && s->revision == REV_11MPCORE) {
|
|
res = 0;
|
|
} else if (irq < GIC_INTERNAL) {
|
|
res = cm;
|
|
} else {
|
|
res = GIC_DIST_TARGET(irq);
|
|
}
|
|
}
|
|
} else if (offset < 0xf00) {
|
|
/* Interrupt Configuration. */
|
|
irq = (offset - 0xc00) * 4;
|
|
if (irq >= s->num_irq)
|
|
goto bad_reg;
|
|
res = 0;
|
|
for (i = 0; i < 4; i++) {
|
|
if (s->security_extn && !attrs.secure &&
|
|
!GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
|
|
continue; /* Ignore Non-secure access of Group0 IRQ */
|
|
}
|
|
|
|
if (GIC_DIST_TEST_MODEL(irq + i)) {
|
|
res |= (1 << (i * 2));
|
|
}
|
|
if (GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
|
|
res |= (2 << (i * 2));
|
|
}
|
|
}
|
|
} else if (offset < 0xf10) {
|
|
goto bad_reg;
|
|
} else if (offset < 0xf30) {
|
|
if (s->revision == REV_11MPCORE) {
|
|
goto bad_reg;
|
|
}
|
|
|
|
if (offset < 0xf20) {
|
|
/* GICD_CPENDSGIRn */
|
|
irq = (offset - 0xf10);
|
|
} else {
|
|
irq = (offset - 0xf20);
|
|
/* GICD_SPENDSGIRn */
|
|
}
|
|
|
|
if (s->security_extn && !attrs.secure &&
|
|
!GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
|
|
res = 0; /* Ignore Non-secure access of Group0 IRQ */
|
|
} else {
|
|
res = s->sgi_pending[irq][cpu];
|
|
}
|
|
} else if (offset < 0xfd0) {
|
|
goto bad_reg;
|
|
} else if (offset < 0x1000) {
|
|
if (offset & 3) {
|
|
res = 0;
|
|
} else {
|
|
switch (s->revision) {
|
|
case REV_11MPCORE:
|
|
res = gic_id_11mpcore[(offset - 0xfd0) >> 2];
|
|
break;
|
|
case 1:
|
|
res = gic_id_gicv1[(offset - 0xfd0) >> 2];
|
|
break;
|
|
case 2:
|
|
res = gic_id_gicv2[(offset - 0xfd0) >> 2];
|
|
break;
|
|
default:
|
|
res = 0;
|
|
}
|
|
}
|
|
} else {
|
|
g_assert_not_reached();
|
|
}
|
|
return res;
|
|
bad_reg:
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"gic_dist_readb: Bad offset %x\n", (int)offset);
|
|
return 0;
|
|
}
|
|
|
|
static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
|
|
unsigned size, MemTxAttrs attrs)
|
|
{
|
|
switch (size) {
|
|
case 1:
|
|
*data = gic_dist_readb(opaque, offset, attrs);
|
|
break;
|
|
case 2:
|
|
*data = gic_dist_readb(opaque, offset, attrs);
|
|
*data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
|
|
break;
|
|
case 4:
|
|
*data = gic_dist_readb(opaque, offset, attrs);
|
|
*data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
|
|
*data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
|
|
*data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
|
|
break;
|
|
default:
|
|
return MEMTX_ERROR;
|
|
}
|
|
|
|
trace_gic_dist_read(offset, size, *data);
|
|
return MEMTX_OK;
|
|
}
|
|
|
|
static void gic_dist_writeb(void *opaque, hwaddr offset,
|
|
uint32_t value, MemTxAttrs attrs)
|
|
{
|
|
GICState *s = (GICState *)opaque;
|
|
int irq;
|
|
int i;
|
|
int cpu;
|
|
|
|
cpu = gic_get_current_cpu(s);
|
|
if (offset < 0x100) {
|
|
if (offset == 0) {
|
|
if (s->security_extn && !attrs.secure) {
|
|
/* NS version is just an alias of the S version's bit 1 */
|
|
s->ctlr = deposit32(s->ctlr, 1, 1, value);
|
|
} else if (gic_has_groups(s)) {
|
|
s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
|
|
} else {
|
|
s->ctlr = value & GICD_CTLR_EN_GRP0;
|
|
}
|
|
DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
|
|
s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
|
|
s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
|
|
} else if (offset < 4) {
|
|
/* ignored. */
|
|
} else if (offset >= 0x80) {
|
|
/* Interrupt Group Registers: RAZ/WI for NS access to secure
|
|
* GIC, or for GICs without groups.
|
|
*/
|
|
if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
|
|
/* Every byte offset holds 8 group status bits */
|
|
irq = (offset - 0x80) * 8;
|
|
if (irq >= s->num_irq) {
|
|
goto bad_reg;
|
|
}
|
|
for (i = 0; i < 8; i++) {
|
|
/* Group bits are banked for private interrupts */
|
|
int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
|
|
if (value & (1 << i)) {
|
|
/* Group1 (Non-secure) */
|
|
GIC_DIST_SET_GROUP(irq + i, cm);
|
|
} else {
|
|
/* Group0 (Secure) */
|
|
GIC_DIST_CLEAR_GROUP(irq + i, cm);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
goto bad_reg;
|
|
}
|
|
} else if (offset < 0x180) {
|
|
/* Interrupt Set Enable. */
|
|
irq = (offset - 0x100) * 8;
|
|
if (irq >= s->num_irq)
|
|
goto bad_reg;
|
|
if (irq < GIC_NR_SGIS) {
|
|
value = 0xff;
|
|
}
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
if (value & (1 << i)) {
|
|
int mask =
|
|
(irq < GIC_INTERNAL) ? (1 << cpu)
|
|
: GIC_DIST_TARGET(irq + i);
|
|
int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
|
|
|
|
if (s->security_extn && !attrs.secure &&
|
|
!GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
|
|
continue; /* Ignore Non-secure access of Group0 IRQ */
|
|
}
|
|
|
|
if (!GIC_DIST_TEST_ENABLED(irq + i, cm)) {
|
|
DPRINTF("Enabled IRQ %d\n", irq + i);
|
|
trace_gic_enable_irq(irq + i);
|
|
}
|
|
GIC_DIST_SET_ENABLED(irq + i, cm);
|
|
/* If a raised level triggered IRQ enabled then mark
|
|
is as pending. */
|
|
if (GIC_DIST_TEST_LEVEL(irq + i, mask)
|
|
&& !GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
|
|
DPRINTF("Set %d pending mask %x\n", irq + i, mask);
|
|
GIC_DIST_SET_PENDING(irq + i, mask);
|
|
}
|
|
}
|
|
}
|
|
} else if (offset < 0x200) {
|
|
/* Interrupt Clear Enable. */
|
|
irq = (offset - 0x180) * 8;
|
|
if (irq >= s->num_irq)
|
|
goto bad_reg;
|
|
if (irq < GIC_NR_SGIS) {
|
|
value = 0;
|
|
}
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
if (value & (1 << i)) {
|
|
int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
|
|
|
|
if (s->security_extn && !attrs.secure &&
|
|
!GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
|
|
continue; /* Ignore Non-secure access of Group0 IRQ */
|
|
}
|
|
|
|
if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
|
|
DPRINTF("Disabled IRQ %d\n", irq + i);
|
|
trace_gic_disable_irq(irq + i);
|
|
}
|
|
GIC_DIST_CLEAR_ENABLED(irq + i, cm);
|
|
}
|
|
}
|
|
} else if (offset < 0x280) {
|
|
/* Interrupt Set Pending. */
|
|
irq = (offset - 0x200) * 8;
|
|
if (irq >= s->num_irq)
|
|
goto bad_reg;
|
|
if (irq < GIC_NR_SGIS) {
|
|
value = 0;
|
|
}
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
if (value & (1 << i)) {
|
|
if (s->security_extn && !attrs.secure &&
|
|
!GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
|
|
continue; /* Ignore Non-secure access of Group0 IRQ */
|
|
}
|
|
|
|
GIC_DIST_SET_PENDING(irq + i, GIC_DIST_TARGET(irq + i));
|
|
}
|
|
}
|
|
} else if (offset < 0x300) {
|
|
/* Interrupt Clear Pending. */
|
|
irq = (offset - 0x280) * 8;
|
|
if (irq >= s->num_irq)
|
|
goto bad_reg;
|
|
if (irq < GIC_NR_SGIS) {
|
|
value = 0;
|
|
}
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
if (s->security_extn && !attrs.secure &&
|
|
!GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
|
|
continue; /* Ignore Non-secure access of Group0 IRQ */
|
|
}
|
|
|
|
/* ??? This currently clears the pending bit for all CPUs, even
|
|
for per-CPU interrupts. It's unclear whether this is the
|
|
corect behavior. */
|
|
if (value & (1 << i)) {
|
|
GIC_DIST_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
|
|
}
|
|
}
|
|
} else if (offset < 0x380) {
|
|
/* Interrupt Set Active. */
|
|
if (s->revision != 2) {
|
|
goto bad_reg;
|
|
}
|
|
|
|
irq = (offset - 0x300) * 8;
|
|
if (irq >= s->num_irq) {
|
|
goto bad_reg;
|
|
}
|
|
|
|
/* This register is banked per-cpu for PPIs */
|
|
int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
if (s->security_extn && !attrs.secure &&
|
|
!GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
|
|
continue; /* Ignore Non-secure access of Group0 IRQ */
|
|
}
|
|
|
|
if (value & (1 << i)) {
|
|
GIC_DIST_SET_ACTIVE(irq + i, cm);
|
|
}
|
|
}
|
|
} else if (offset < 0x400) {
|
|
/* Interrupt Clear Active. */
|
|
if (s->revision != 2) {
|
|
goto bad_reg;
|
|
}
|
|
|
|
irq = (offset - 0x380) * 8;
|
|
if (irq >= s->num_irq) {
|
|
goto bad_reg;
|
|
}
|
|
|
|
/* This register is banked per-cpu for PPIs */
|
|
int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
if (s->security_extn && !attrs.secure &&
|
|
!GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
|
|
continue; /* Ignore Non-secure access of Group0 IRQ */
|
|
}
|
|
|
|
if (value & (1 << i)) {
|
|
GIC_DIST_CLEAR_ACTIVE(irq + i, cm);
|
|
}
|
|
}
|
|
} else if (offset < 0x800) {
|
|
/* Interrupt Priority. */
|
|
irq = (offset - 0x400);
|
|
if (irq >= s->num_irq)
|
|
goto bad_reg;
|
|
gic_dist_set_priority(s, cpu, irq, value, attrs);
|
|
} else if (offset < 0xc00) {
|
|
/* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
|
|
* annoying exception of the 11MPCore's GIC.
|
|
*/
|
|
if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
|
|
irq = (offset - 0x800);
|
|
if (irq >= s->num_irq) {
|
|
goto bad_reg;
|
|
}
|
|
if (irq < 29 && s->revision == REV_11MPCORE) {
|
|
value = 0;
|
|
} else if (irq < GIC_INTERNAL) {
|
|
value = ALL_CPU_MASK;
|
|
}
|
|
s->irq_target[irq] = value & ALL_CPU_MASK;
|
|
}
|
|
} else if (offset < 0xf00) {
|
|
/* Interrupt Configuration. */
|
|
irq = (offset - 0xc00) * 4;
|
|
if (irq >= s->num_irq)
|
|
goto bad_reg;
|
|
if (irq < GIC_NR_SGIS)
|
|
value |= 0xaa;
|
|
for (i = 0; i < 4; i++) {
|
|
if (s->security_extn && !attrs.secure &&
|
|
!GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
|
|
continue; /* Ignore Non-secure access of Group0 IRQ */
|
|
}
|
|
|
|
if (s->revision == REV_11MPCORE) {
|
|
if (value & (1 << (i * 2))) {
|
|
GIC_DIST_SET_MODEL(irq + i);
|
|
} else {
|
|
GIC_DIST_CLEAR_MODEL(irq + i);
|
|
}
|
|
}
|
|
if (value & (2 << (i * 2))) {
|
|
GIC_DIST_SET_EDGE_TRIGGER(irq + i);
|
|
} else {
|
|
GIC_DIST_CLEAR_EDGE_TRIGGER(irq + i);
|
|
}
|
|
}
|
|
} else if (offset < 0xf10) {
|
|
/* 0xf00 is only handled for 32-bit writes. */
|
|
goto bad_reg;
|
|
} else if (offset < 0xf20) {
|
|
/* GICD_CPENDSGIRn */
|
|
if (s->revision == REV_11MPCORE) {
|
|
goto bad_reg;
|
|
}
|
|
irq = (offset - 0xf10);
|
|
|
|
if (!s->security_extn || attrs.secure ||
|
|
GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
|
|
s->sgi_pending[irq][cpu] &= ~value;
|
|
if (s->sgi_pending[irq][cpu] == 0) {
|
|
GIC_DIST_CLEAR_PENDING(irq, 1 << cpu);
|
|
}
|
|
}
|
|
} else if (offset < 0xf30) {
|
|
/* GICD_SPENDSGIRn */
|
|
if (s->revision == REV_11MPCORE) {
|
|
goto bad_reg;
|
|
}
|
|
irq = (offset - 0xf20);
|
|
|
|
if (!s->security_extn || attrs.secure ||
|
|
GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
|
|
GIC_DIST_SET_PENDING(irq, 1 << cpu);
|
|
s->sgi_pending[irq][cpu] |= value;
|
|
}
|
|
} else {
|
|
goto bad_reg;
|
|
}
|
|
gic_update(s);
|
|
return;
|
|
bad_reg:
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"gic_dist_writeb: Bad offset %x\n", (int)offset);
|
|
}
|
|
|
|
static void gic_dist_writew(void *opaque, hwaddr offset,
|
|
uint32_t value, MemTxAttrs attrs)
|
|
{
|
|
gic_dist_writeb(opaque, offset, value & 0xff, attrs);
|
|
gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
|
|
}
|
|
|
|
static void gic_dist_writel(void *opaque, hwaddr offset,
|
|
uint32_t value, MemTxAttrs attrs)
|
|
{
|
|
GICState *s = (GICState *)opaque;
|
|
if (offset == 0xf00) {
|
|
int cpu;
|
|
int irq;
|
|
int mask;
|
|
int target_cpu;
|
|
|
|
cpu = gic_get_current_cpu(s);
|
|
irq = value & 0xf;
|
|
switch ((value >> 24) & 3) {
|
|
case 0:
|
|
mask = (value >> 16) & ALL_CPU_MASK;
|
|
break;
|
|
case 1:
|
|
mask = ALL_CPU_MASK ^ (1 << cpu);
|
|
break;
|
|
case 2:
|
|
mask = 1 << cpu;
|
|
break;
|
|
default:
|
|
DPRINTF("Bad Soft Int target filter\n");
|
|
mask = ALL_CPU_MASK;
|
|
break;
|
|
}
|
|
GIC_DIST_SET_PENDING(irq, mask);
|
|
target_cpu = ctz32(mask);
|
|
while (target_cpu < GIC_NCPU) {
|
|
s->sgi_pending[irq][target_cpu] |= (1 << cpu);
|
|
mask &= ~(1 << target_cpu);
|
|
target_cpu = ctz32(mask);
|
|
}
|
|
gic_update(s);
|
|
return;
|
|
}
|
|
gic_dist_writew(opaque, offset, value & 0xffff, attrs);
|
|
gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
|
|
}
|
|
|
|
static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
|
|
unsigned size, MemTxAttrs attrs)
|
|
{
|
|
trace_gic_dist_write(offset, size, data);
|
|
|
|
switch (size) {
|
|
case 1:
|
|
gic_dist_writeb(opaque, offset, data, attrs);
|
|
return MEMTX_OK;
|
|
case 2:
|
|
gic_dist_writew(opaque, offset, data, attrs);
|
|
return MEMTX_OK;
|
|
case 4:
|
|
gic_dist_writel(opaque, offset, data, attrs);
|
|
return MEMTX_OK;
|
|
default:
|
|
return MEMTX_ERROR;
|
|
}
|
|
}
|
|
|
|
static inline uint32_t gic_apr_ns_view(GICState *s, int cpu, int regno)
|
|
{
|
|
/* Return the Nonsecure view of GICC_APR<regno>. This is the
|
|
* second half of GICC_NSAPR.
|
|
*/
|
|
switch (GIC_MIN_BPR) {
|
|
case 0:
|
|
if (regno < 2) {
|
|
return s->nsapr[regno + 2][cpu];
|
|
}
|
|
break;
|
|
case 1:
|
|
if (regno == 0) {
|
|
return s->nsapr[regno + 1][cpu];
|
|
}
|
|
break;
|
|
case 2:
|
|
if (regno == 0) {
|
|
return extract32(s->nsapr[0][cpu], 16, 16);
|
|
}
|
|
break;
|
|
case 3:
|
|
if (regno == 0) {
|
|
return extract32(s->nsapr[0][cpu], 8, 8);
|
|
}
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline void gic_apr_write_ns_view(GICState *s, int cpu, int regno,
|
|
uint32_t value)
|
|
{
|
|
/* Write the Nonsecure view of GICC_APR<regno>. */
|
|
switch (GIC_MIN_BPR) {
|
|
case 0:
|
|
if (regno < 2) {
|
|
s->nsapr[regno + 2][cpu] = value;
|
|
}
|
|
break;
|
|
case 1:
|
|
if (regno == 0) {
|
|
s->nsapr[regno + 1][cpu] = value;
|
|
}
|
|
break;
|
|
case 2:
|
|
if (regno == 0) {
|
|
s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 16, 16, value);
|
|
}
|
|
break;
|
|
case 3:
|
|
if (regno == 0) {
|
|
s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 8, 8, value);
|
|
}
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
|
|
uint64_t *data, MemTxAttrs attrs)
|
|
{
|
|
switch (offset) {
|
|
case 0x00: /* Control */
|
|
*data = gic_get_cpu_control(s, cpu, attrs);
|
|
break;
|
|
case 0x04: /* Priority mask */
|
|
*data = gic_get_priority_mask(s, cpu, attrs);
|
|
break;
|
|
case 0x08: /* Binary Point */
|
|
if (gic_cpu_ns_access(s, cpu, attrs)) {
|
|
if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
|
|
/* NS view of BPR when CBPR is 1 */
|
|
*data = MIN(s->bpr[cpu] + 1, 7);
|
|
} else {
|
|
/* BPR is banked. Non-secure copy stored in ABPR. */
|
|
*data = s->abpr[cpu];
|
|
}
|
|
} else {
|
|
*data = s->bpr[cpu];
|
|
}
|
|
break;
|
|
case 0x0c: /* Acknowledge */
|
|
*data = gic_acknowledge_irq(s, cpu, attrs);
|
|
break;
|
|
case 0x14: /* Running Priority */
|
|
*data = gic_get_running_priority(s, cpu, attrs);
|
|
break;
|
|
case 0x18: /* Highest Pending Interrupt */
|
|
*data = gic_get_current_pending_irq(s, cpu, attrs);
|
|
break;
|
|
case 0x1c: /* Aliased Binary Point */
|
|
/* GIC v2, no security: ABPR
|
|
* GIC v1, no security: not implemented (RAZ/WI)
|
|
* With security extensions, secure access: ABPR (alias of NS BPR)
|
|
* With security extensions, nonsecure access: RAZ/WI
|
|
*/
|
|
if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
|
|
*data = 0;
|
|
} else {
|
|
*data = s->abpr[cpu];
|
|
}
|
|
break;
|
|
case 0xd0: case 0xd4: case 0xd8: case 0xdc:
|
|
{
|
|
int regno = (offset - 0xd0) / 4;
|
|
int nr_aprs = gic_is_vcpu(cpu) ? GIC_VIRT_NR_APRS : GIC_NR_APRS;
|
|
|
|
if (regno >= nr_aprs || s->revision != 2) {
|
|
*data = 0;
|
|
} else if (gic_is_vcpu(cpu)) {
|
|
*data = s->h_apr[gic_get_vcpu_real_id(cpu)];
|
|
} else if (gic_cpu_ns_access(s, cpu, attrs)) {
|
|
/* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
|
|
*data = gic_apr_ns_view(s, regno, cpu);
|
|
} else {
|
|
*data = s->apr[regno][cpu];
|
|
}
|
|
break;
|
|
}
|
|
case 0xe0: case 0xe4: case 0xe8: case 0xec:
|
|
{
|
|
int regno = (offset - 0xe0) / 4;
|
|
|
|
if (regno >= GIC_NR_APRS || s->revision != 2 || !gic_has_groups(s) ||
|
|
gic_cpu_ns_access(s, cpu, attrs) || gic_is_vcpu(cpu)) {
|
|
*data = 0;
|
|
} else {
|
|
*data = s->nsapr[regno][cpu];
|
|
}
|
|
break;
|
|
}
|
|
case 0xfc:
|
|
if (s->revision == REV_11MPCORE) {
|
|
/* Reserved on 11MPCore */
|
|
*data = 0;
|
|
} else {
|
|
/* GICv1 or v2; Arm implementation */
|
|
*data = (s->revision << 16) | 0x43b;
|
|
}
|
|
break;
|
|
default:
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"gic_cpu_read: Bad offset %x\n", (int)offset);
|
|
*data = 0;
|
|
break;
|
|
}
|
|
|
|
trace_gic_cpu_read(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
|
|
gic_get_vcpu_real_id(cpu), offset, *data);
|
|
return MEMTX_OK;
|
|
}
|
|
|
|
static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
|
|
uint32_t value, MemTxAttrs attrs)
|
|
{
|
|
trace_gic_cpu_write(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
|
|
gic_get_vcpu_real_id(cpu), offset, value);
|
|
|
|
switch (offset) {
|
|
case 0x00: /* Control */
|
|
gic_set_cpu_control(s, cpu, value, attrs);
|
|
break;
|
|
case 0x04: /* Priority mask */
|
|
gic_set_priority_mask(s, cpu, value, attrs);
|
|
break;
|
|
case 0x08: /* Binary Point */
|
|
if (gic_cpu_ns_access(s, cpu, attrs)) {
|
|
if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
|
|
/* WI when CBPR is 1 */
|
|
return MEMTX_OK;
|
|
} else {
|
|
s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
|
|
}
|
|
} else {
|
|
int min_bpr = gic_is_vcpu(cpu) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
|
|
s->bpr[cpu] = MAX(value & 0x7, min_bpr);
|
|
}
|
|
break;
|
|
case 0x10: /* End Of Interrupt */
|
|
gic_complete_irq(s, cpu, value & 0x3ff, attrs);
|
|
return MEMTX_OK;
|
|
case 0x1c: /* Aliased Binary Point */
|
|
if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
|
|
/* unimplemented, or NS access: RAZ/WI */
|
|
return MEMTX_OK;
|
|
} else {
|
|
s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
|
|
}
|
|
break;
|
|
case 0xd0: case 0xd4: case 0xd8: case 0xdc:
|
|
{
|
|
int regno = (offset - 0xd0) / 4;
|
|
int nr_aprs = gic_is_vcpu(cpu) ? GIC_VIRT_NR_APRS : GIC_NR_APRS;
|
|
|
|
if (regno >= nr_aprs || s->revision != 2) {
|
|
return MEMTX_OK;
|
|
}
|
|
if (gic_is_vcpu(cpu)) {
|
|
s->h_apr[gic_get_vcpu_real_id(cpu)] = value;
|
|
} else if (gic_cpu_ns_access(s, cpu, attrs)) {
|
|
/* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
|
|
gic_apr_write_ns_view(s, regno, cpu, value);
|
|
} else {
|
|
s->apr[regno][cpu] = value;
|
|
}
|
|
s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
|
|
break;
|
|
}
|
|
case 0xe0: case 0xe4: case 0xe8: case 0xec:
|
|
{
|
|
int regno = (offset - 0xe0) / 4;
|
|
|
|
if (regno >= GIC_NR_APRS || s->revision != 2) {
|
|
return MEMTX_OK;
|
|
}
|
|
if (gic_is_vcpu(cpu)) {
|
|
return MEMTX_OK;
|
|
}
|
|
if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
|
|
return MEMTX_OK;
|
|
}
|
|
s->nsapr[regno][cpu] = value;
|
|
s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
|
|
break;
|
|
}
|
|
case 0x1000:
|
|
/* GICC_DIR */
|
|
gic_deactivate_irq(s, cpu, value & 0x3ff, attrs);
|
|
break;
|
|
default:
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"gic_cpu_write: Bad offset %x\n", (int)offset);
|
|
return MEMTX_OK;
|
|
}
|
|
|
|
if (gic_is_vcpu(cpu)) {
|
|
gic_update_virt(s);
|
|
} else {
|
|
gic_update(s);
|
|
}
|
|
|
|
return MEMTX_OK;
|
|
}
|
|
|
|
/* Wrappers to read/write the GIC CPU interface for the current CPU */
|
|
static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
|
|
unsigned size, MemTxAttrs attrs)
|
|
{
|
|
GICState *s = (GICState *)opaque;
|
|
return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
|
|
}
|
|
|
|
static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
|
|
uint64_t value, unsigned size,
|
|
MemTxAttrs attrs)
|
|
{
|
|
GICState *s = (GICState *)opaque;
|
|
return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
|
|
}
|
|
|
|
/* Wrappers to read/write the GIC CPU interface for a specific CPU.
|
|
* These just decode the opaque pointer into GICState* + cpu id.
|
|
*/
|
|
static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
|
|
unsigned size, MemTxAttrs attrs)
|
|
{
|
|
GICState **backref = (GICState **)opaque;
|
|
GICState *s = *backref;
|
|
int id = (backref - s->backref);
|
|
return gic_cpu_read(s, id, addr, data, attrs);
|
|
}
|
|
|
|
static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
|
|
uint64_t value, unsigned size,
|
|
MemTxAttrs attrs)
|
|
{
|
|
GICState **backref = (GICState **)opaque;
|
|
GICState *s = *backref;
|
|
int id = (backref - s->backref);
|
|
return gic_cpu_write(s, id, addr, value, attrs);
|
|
}
|
|
|
|
static MemTxResult gic_thisvcpu_read(void *opaque, hwaddr addr, uint64_t *data,
|
|
unsigned size, MemTxAttrs attrs)
|
|
{
|
|
GICState *s = (GICState *)opaque;
|
|
|
|
return gic_cpu_read(s, gic_get_current_vcpu(s), addr, data, attrs);
|
|
}
|
|
|
|
static MemTxResult gic_thisvcpu_write(void *opaque, hwaddr addr,
|
|
uint64_t value, unsigned size,
|
|
MemTxAttrs attrs)
|
|
{
|
|
GICState *s = (GICState *)opaque;
|
|
|
|
return gic_cpu_write(s, gic_get_current_vcpu(s), addr, value, attrs);
|
|
}
|
|
|
|
static uint32_t gic_compute_eisr(GICState *s, int cpu, int lr_start)
|
|
{
|
|
int lr_idx;
|
|
uint32_t ret = 0;
|
|
|
|
for (lr_idx = lr_start; lr_idx < s->num_lrs; lr_idx++) {
|
|
uint32_t *entry = &s->h_lr[lr_idx][cpu];
|
|
ret = deposit32(ret, lr_idx - lr_start, 1,
|
|
gic_lr_entry_is_eoi(*entry));
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static uint32_t gic_compute_elrsr(GICState *s, int cpu, int lr_start)
|
|
{
|
|
int lr_idx;
|
|
uint32_t ret = 0;
|
|
|
|
for (lr_idx = lr_start; lr_idx < s->num_lrs; lr_idx++) {
|
|
uint32_t *entry = &s->h_lr[lr_idx][cpu];
|
|
ret = deposit32(ret, lr_idx - lr_start, 1,
|
|
gic_lr_entry_is_free(*entry));
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void gic_vmcr_write(GICState *s, uint32_t value, MemTxAttrs attrs)
|
|
{
|
|
int vcpu = gic_get_current_vcpu(s);
|
|
uint32_t ctlr;
|
|
uint32_t abpr;
|
|
uint32_t bpr;
|
|
uint32_t prio_mask;
|
|
|
|
ctlr = FIELD_EX32(value, GICH_VMCR, VMCCtlr);
|
|
abpr = FIELD_EX32(value, GICH_VMCR, VMABP);
|
|
bpr = FIELD_EX32(value, GICH_VMCR, VMBP);
|
|
prio_mask = FIELD_EX32(value, GICH_VMCR, VMPriMask) << 3;
|
|
|
|
gic_set_cpu_control(s, vcpu, ctlr, attrs);
|
|
s->abpr[vcpu] = MAX(abpr, GIC_VIRT_MIN_ABPR);
|
|
s->bpr[vcpu] = MAX(bpr, GIC_VIRT_MIN_BPR);
|
|
gic_set_priority_mask(s, vcpu, prio_mask, attrs);
|
|
}
|
|
|
|
static MemTxResult gic_hyp_read(void *opaque, int cpu, hwaddr addr,
|
|
uint64_t *data, MemTxAttrs attrs)
|
|
{
|
|
GICState *s = ARM_GIC(opaque);
|
|
int vcpu = cpu + GIC_NCPU;
|
|
|
|
switch (addr) {
|
|
case A_GICH_HCR: /* Hypervisor Control */
|
|
*data = s->h_hcr[cpu];
|
|
break;
|
|
|
|
case A_GICH_VTR: /* VGIC Type */
|
|
*data = FIELD_DP32(0, GICH_VTR, ListRegs, s->num_lrs - 1);
|
|
*data = FIELD_DP32(*data, GICH_VTR, PREbits,
|
|
GIC_VIRT_MAX_GROUP_PRIO_BITS - 1);
|
|
*data = FIELD_DP32(*data, GICH_VTR, PRIbits,
|
|
(7 - GIC_VIRT_MIN_BPR) - 1);
|
|
break;
|
|
|
|
case A_GICH_VMCR: /* Virtual Machine Control */
|
|
*data = FIELD_DP32(0, GICH_VMCR, VMCCtlr,
|
|
extract32(s->cpu_ctlr[vcpu], 0, 10));
|
|
*data = FIELD_DP32(*data, GICH_VMCR, VMABP, s->abpr[vcpu]);
|
|
*data = FIELD_DP32(*data, GICH_VMCR, VMBP, s->bpr[vcpu]);
|
|
*data = FIELD_DP32(*data, GICH_VMCR, VMPriMask,
|
|
extract32(s->priority_mask[vcpu], 3, 5));
|
|
break;
|
|
|
|
case A_GICH_MISR: /* Maintenance Interrupt Status */
|
|
*data = s->h_misr[cpu];
|
|
break;
|
|
|
|
case A_GICH_EISR0: /* End of Interrupt Status 0 and 1 */
|
|
case A_GICH_EISR1:
|
|
*data = gic_compute_eisr(s, cpu, (addr - A_GICH_EISR0) * 8);
|
|
break;
|
|
|
|
case A_GICH_ELRSR0: /* Empty List Status 0 and 1 */
|
|
case A_GICH_ELRSR1:
|
|
*data = gic_compute_elrsr(s, cpu, (addr - A_GICH_ELRSR0) * 8);
|
|
break;
|
|
|
|
case A_GICH_APR: /* Active Priorities */
|
|
*data = s->h_apr[cpu];
|
|
break;
|
|
|
|
case A_GICH_LR0 ... A_GICH_LR63: /* List Registers */
|
|
{
|
|
int lr_idx = (addr - A_GICH_LR0) / 4;
|
|
|
|
if (lr_idx > s->num_lrs) {
|
|
*data = 0;
|
|
} else {
|
|
*data = s->h_lr[lr_idx][cpu];
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"gic_hyp_read: Bad offset %" HWADDR_PRIx "\n", addr);
|
|
return MEMTX_OK;
|
|
}
|
|
|
|
trace_gic_hyp_read(addr, *data);
|
|
return MEMTX_OK;
|
|
}
|
|
|
|
static MemTxResult gic_hyp_write(void *opaque, int cpu, hwaddr addr,
|
|
uint64_t value, MemTxAttrs attrs)
|
|
{
|
|
GICState *s = ARM_GIC(opaque);
|
|
int vcpu = cpu + GIC_NCPU;
|
|
|
|
trace_gic_hyp_write(addr, value);
|
|
|
|
switch (addr) {
|
|
case A_GICH_HCR: /* Hypervisor Control */
|
|
s->h_hcr[cpu] = value & GICH_HCR_MASK;
|
|
break;
|
|
|
|
case A_GICH_VMCR: /* Virtual Machine Control */
|
|
gic_vmcr_write(s, value, attrs);
|
|
break;
|
|
|
|
case A_GICH_APR: /* Active Priorities */
|
|
s->h_apr[cpu] = value;
|
|
s->running_priority[vcpu] = gic_get_prio_from_apr_bits(s, vcpu);
|
|
break;
|
|
|
|
case A_GICH_LR0 ... A_GICH_LR63: /* List Registers */
|
|
{
|
|
int lr_idx = (addr - A_GICH_LR0) / 4;
|
|
|
|
if (lr_idx > s->num_lrs) {
|
|
return MEMTX_OK;
|
|
}
|
|
|
|
s->h_lr[lr_idx][cpu] = value & GICH_LR_MASK;
|
|
trace_gic_lr_entry(cpu, lr_idx, s->h_lr[lr_idx][cpu]);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"gic_hyp_write: Bad offset %" HWADDR_PRIx "\n", addr);
|
|
return MEMTX_OK;
|
|
}
|
|
|
|
gic_update_virt(s);
|
|
return MEMTX_OK;
|
|
}
|
|
|
|
static MemTxResult gic_thiscpu_hyp_read(void *opaque, hwaddr addr, uint64_t *data,
|
|
unsigned size, MemTxAttrs attrs)
|
|
{
|
|
GICState *s = (GICState *)opaque;
|
|
|
|
return gic_hyp_read(s, gic_get_current_cpu(s), addr, data, attrs);
|
|
}
|
|
|
|
static MemTxResult gic_thiscpu_hyp_write(void *opaque, hwaddr addr,
|
|
uint64_t value, unsigned size,
|
|
MemTxAttrs attrs)
|
|
{
|
|
GICState *s = (GICState *)opaque;
|
|
|
|
return gic_hyp_write(s, gic_get_current_cpu(s), addr, value, attrs);
|
|
}
|
|
|
|
static MemTxResult gic_do_hyp_read(void *opaque, hwaddr addr, uint64_t *data,
|
|
unsigned size, MemTxAttrs attrs)
|
|
{
|
|
GICState **backref = (GICState **)opaque;
|
|
GICState *s = *backref;
|
|
int id = (backref - s->backref);
|
|
|
|
return gic_hyp_read(s, id, addr, data, attrs);
|
|
}
|
|
|
|
static MemTxResult gic_do_hyp_write(void *opaque, hwaddr addr,
|
|
uint64_t value, unsigned size,
|
|
MemTxAttrs attrs)
|
|
{
|
|
GICState **backref = (GICState **)opaque;
|
|
GICState *s = *backref;
|
|
int id = (backref - s->backref);
|
|
|
|
return gic_hyp_write(s, id + GIC_NCPU, addr, value, attrs);
|
|
|
|
}
|
|
|
|
static const MemoryRegionOps gic_ops[2] = {
|
|
{
|
|
.read_with_attrs = gic_dist_read,
|
|
.write_with_attrs = gic_dist_write,
|
|
.endianness = DEVICE_NATIVE_ENDIAN,
|
|
},
|
|
{
|
|
.read_with_attrs = gic_thiscpu_read,
|
|
.write_with_attrs = gic_thiscpu_write,
|
|
.endianness = DEVICE_NATIVE_ENDIAN,
|
|
}
|
|
};
|
|
|
|
static const MemoryRegionOps gic_cpu_ops = {
|
|
.read_with_attrs = gic_do_cpu_read,
|
|
.write_with_attrs = gic_do_cpu_write,
|
|
.endianness = DEVICE_NATIVE_ENDIAN,
|
|
};
|
|
|
|
static const MemoryRegionOps gic_virt_ops[2] = {
|
|
{
|
|
.read_with_attrs = gic_thiscpu_hyp_read,
|
|
.write_with_attrs = gic_thiscpu_hyp_write,
|
|
.endianness = DEVICE_NATIVE_ENDIAN,
|
|
},
|
|
{
|
|
.read_with_attrs = gic_thisvcpu_read,
|
|
.write_with_attrs = gic_thisvcpu_write,
|
|
.endianness = DEVICE_NATIVE_ENDIAN,
|
|
}
|
|
};
|
|
|
|
static const MemoryRegionOps gic_viface_ops = {
|
|
.read_with_attrs = gic_do_hyp_read,
|
|
.write_with_attrs = gic_do_hyp_write,
|
|
.endianness = DEVICE_NATIVE_ENDIAN,
|
|
};
|
|
|
|
static void arm_gic_realize(DeviceState *dev, Error **errp)
|
|
{
|
|
/* Device instance realize function for the GIC sysbus device */
|
|
int i;
|
|
GICState *s = ARM_GIC(dev);
|
|
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
|
|
ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
|
|
Error *local_err = NULL;
|
|
|
|
agc->parent_realize(dev, &local_err);
|
|
if (local_err) {
|
|
error_propagate(errp, local_err);
|
|
return;
|
|
}
|
|
|
|
if (kvm_enabled() && !kvm_arm_supports_user_irq()) {
|
|
error_setg(errp, "KVM with user space irqchip only works when the "
|
|
"host kernel supports KVM_CAP_ARM_USER_IRQ");
|
|
return;
|
|
}
|
|
|
|
if (s->n_prio_bits > GIC_MAX_PRIORITY_BITS ||
|
|
(s->virt_extn ? s->n_prio_bits < GIC_VIRT_MAX_GROUP_PRIO_BITS :
|
|
s->n_prio_bits < GIC_MIN_PRIORITY_BITS)) {
|
|
error_setg(errp, "num-priority-bits cannot be greater than %d"
|
|
" or less than %d", GIC_MAX_PRIORITY_BITS,
|
|
s->virt_extn ? GIC_VIRT_MAX_GROUP_PRIO_BITS :
|
|
GIC_MIN_PRIORITY_BITS);
|
|
return;
|
|
}
|
|
|
|
/* This creates distributor, main CPU interface (s->cpuiomem[0]) and if
|
|
* enabled, virtualization extensions related interfaces (main virtual
|
|
* interface (s->vifaceiomem[0]) and virtual CPU interface).
|
|
*/
|
|
gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops, gic_virt_ops);
|
|
|
|
/* Extra core-specific regions for the CPU interfaces. This is
|
|
* necessary for "franken-GIC" implementations, for example on
|
|
* Exynos 4.
|
|
* NB that the memory region size of 0x100 applies for the 11MPCore
|
|
* and also cores following the GIC v1 spec (ie A9).
|
|
* GIC v2 defines a larger memory region (0x1000) so this will need
|
|
* to be extended when we implement A15.
|
|
*/
|
|
for (i = 0; i < s->num_cpu; i++) {
|
|
s->backref[i] = s;
|
|
memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
|
|
&s->backref[i], "gic_cpu", 0x100);
|
|
sysbus_init_mmio(sbd, &s->cpuiomem[i+1]);
|
|
}
|
|
|
|
/* Extra core-specific regions for virtual interfaces. This is required by
|
|
* the GICv2 specification.
|
|
*/
|
|
if (s->virt_extn) {
|
|
for (i = 0; i < s->num_cpu; i++) {
|
|
memory_region_init_io(&s->vifaceiomem[i + 1], OBJECT(s),
|
|
&gic_viface_ops, &s->backref[i],
|
|
"gic_viface", 0x200);
|
|
sysbus_init_mmio(sbd, &s->vifaceiomem[i + 1]);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
static void arm_gic_class_init(ObjectClass *klass, void *data)
|
|
{
|
|
DeviceClass *dc = DEVICE_CLASS(klass);
|
|
ARMGICClass *agc = ARM_GIC_CLASS(klass);
|
|
|
|
device_class_set_parent_realize(dc, arm_gic_realize, &agc->parent_realize);
|
|
}
|
|
|
|
static const TypeInfo arm_gic_info = {
|
|
.name = TYPE_ARM_GIC,
|
|
.parent = TYPE_ARM_GIC_COMMON,
|
|
.instance_size = sizeof(GICState),
|
|
.class_init = arm_gic_class_init,
|
|
.class_size = sizeof(ARMGICClass),
|
|
};
|
|
|
|
static void arm_gic_register_types(void)
|
|
{
|
|
type_register_static(&arm_gic_info);
|
|
}
|
|
|
|
type_init(arm_gic_register_types)
|